How Scalable Are CMM Key Practices?

Rita Hadden
Project Performance Corporation

Many software practitioners are convinced that cost outweighs benefit when the Software Engi-
neering Institute Capability Maturity Model’s (CMM) key practices are applied to small projects.
Practitioners believe that only the complexity that typically comes with project size justifies the
investment. This article is based on observations and experience with over 50 small projects. It
describes using a repeatable and disciplined approach for system development efforts in spite of
short durations. It illustrates the use of professional judgment to appropriately scale down and
apply CMM key practices to make a difference in the outcome of small software projects.

any software professionals
believe that the key practices
of the Software Engineering

Institute (SEI) CMM are inappropriate
and not scalable for small software
projects (three to four months with five
or fewer staff members). These practi-
tioners are convinced that the costs
outweigh the benefits unless the com-
plexity that typically comes with project
size justifies the investment.

Some professionals also believe that
customer satisfaction is their most im-
portant measure of performance, mean-
ing that to accept one more require-
ment is almost always “the right thing
to do,” no matter how close the pro-
duction or release date might be. They
are convinced that in the “real world,”
requirements cannot be frozen or “base-
lined” because there are too many le-
gitimate reasons for requirements to
change, and new ones must be added to
the current version of the software.

Many developers frequently do not
see the benefits of managing require-
ments, nor do they feel the need to take
time for project planning, tracking, and
oversight, as advocated by the CMM.
They do not understand the payback
from a software quality assurance func-
tion or configuration management. |
recently worked with several managers
and practitioners who held these views.

No Defined Requirements But a
Set End Date — An Example

The project was to develop a software
system that provides a consistent esti-

18 CrossTaLk The Journal of Defense Software Engineering

mation approach and addresses soft-
ware size, effort, and assumptions for
planning. The system’s goal was to
improve the client organization’s soft-
ware estimation process. The
organization’s overall strategy was to use
the SEI CMM Repeatable level (Level
2) key practices to move toward a more
disciplined software development envi-
ronment. When | started, no require-
ments had been defined for this estima-
tion system but an end date had been
set—the system had to be operational
in two months.

The client was an information sys-
tems business unit in a large company.
A formal CMM-based software process
assessment conducted a month prior to
my arrival found that this organization’s
estimation process for software change
requests was ad hoc and inconsistent.
This estimation process frequently
produced understated effort estimates,
perhaps due to institutional pressure to
get things done faster or a desire to
minimize what is involved. In turn,
these understated estimates often led to
budget overruns, crisis management,
eleventh-hour firefighting, low em-
ployee morale, and high rates of post-
release defects.

My immediate clients, all informa-
tion systems professionals, had been
working on improving their software
management practices for over 18
months. Their corporate direction was
to use the CMM to guide their process
improvement. Some of them had been
promoting the CMM for close to two

years. The sponsor of our software
project was the head of the Software
Engineering Process Group. The
project team consisted mostly of client
personnel to the project part time, and
three full-time outside consultants: a
junior analyst, a Visual Basic program-
mer, and me.

Getting Buy-In

A fellow team member and | began the
project by meeting with our sponsor
and key stakeholders to define the busi-
ness objectives, scope, and constraints
of the estimation system. After review-
ing existing relevant documentation, we
developed a high-level project plan. It
was an ideal opportunity to apply the
CMM Kkey practices to our day-to-day
project work. In particular, 1 believed
the management and technical practices
from Levels 2 and 3 of the CMM were
appropriate. These included require-
ments management; project planning,
tracking, and oversight; quality assur-
ance (QA); configuration management
(CM); software product engineering;
and peer reviews. | recommended to
our clients that we apply scaled-down
CMM key practices to meet the needs
of our estimation system project.

“The system must be finished in
two months. We need to start coding
right away!” was my sponsor and other
team members’ reply.

| pointed out that automating a
more disciplined software estimation
process with a structured and repeatable
approach would not only assist their

April 1998

overall process improvement effort but
also would help the current project
meet its pressing deadline as well.

As far as | could tell, | had been
brought into this project for three rea-
sons. First, | had earned the trust and
respect of some of the key players in
this organization by contributing to a
previous process improvement project.
Second, | was a seasoned software engi-
neer and manager with over 70 software
projects from which to draw. Finally, |
was certified by the SEI as a lead soft-
ware process assessor.

My sponsor agreed to let me apply
some of the CMM key practices on the
grounds that they would legitimize the
product we were developing. | knew I
was going to have to make believers out
of these skeptics.

Turning Expectations into
Requirements

Our stakeholders were software project
managers, team leaders, functional
subject matter experts called “evalua-
tors,” software practitioners who per-
formed estimation called “estimators,”
and coordinators of the many software
change requests. These stakeholders
were accountable for the effectiveness
and efficiency of this organization’s
estimating process.

My team of one analyst, one devel-
oper, and two part-time client func-
tional experts had to first come to con-
sensus on “what is a requirement?” We
agreed that a requirement is a func-
tional or technical capability needed to
solve a problem or achieve an objective.
A good requirement is traceable to
business objectives and related system
lifecycle components. It is consistent
with the scope and constraints of the
product, incorporates stakeholder ex-
pectations, is measurable against accep-
tance criteria, and is maintainable over
the product’s lifecycle.

To expedite the requirements-
gathering phase, my team developed a
set of straw man functional expecta-
tions. These expectations were based on
our documentation review, our under-
standing of the organization’s estima-
tion process and user desires, our
knowledge of industry best practices,

April 1998

and the objectives, scope, constraints,
and assumptions of the estimation
system.

Next, we used the straw man set of
expectations and Joint Application
Design techniques to elicit additional
input from our stakeholders. We held
focus groups and one-on-one inter-
views. We then analyzed all gathered
expectations and developed a manage-
able set of functional requirements.
Where necessary, we consolidated simi-
lar expectations and identified and
resolved conflicts between expectations.

Explicit vs. Implicit Requirements
My team then supplemented these
“explicit” requirements with “implicit”
technical requirements. Implicit re-
quirements include stakeholder expec-
tations that were not articulated but are
essential to develop a product that
achieves exceptional user satisfaction.
For example, we ensured that the
system’s response time and maximum
number of concurrent users were stated
as measurable requirements. We also
addressed usability, availability, security,
maintainability, and portability of the
estimation system.

We documented all requirements
and validated them with all stakehold-
ers. We requested that our key stake-
holders review and sign off on the
Statement of Requirements for the
estimation system, then baselined these
requirements. We obtained the sign-off
three weeks after the project start.

Building In Quality

Based on the system requirements, we
next developed a conceptual design that
we revalidated with our stakeholders in
small walk-through sessions where
feedback and ideas were solicited. This
conceptual design was informally docu-
mented in two days. Three concurrent
efforts followed: one to create a detailed
software development plan (SDP), a
second to design and prototype user
interface data entry screens and system
navigation using a Rapid Application
Development, and a third to design
database structures and define data
validation criteria. We involved our
stakeholders throughout the process.

How Scalable Are CMM Key Practices?

Using Requirements to Drive the
Software Size Estimate

We now had what we needed to get a
relatively reliable estimate of the size of
the estimation system. We used func-
tion points and work breakdown struc-
tures to estimate size. The results from
these methods took less than two days
to produce and were remarkably close
(4.3 staff months for the construction
phase using work breakdown structures
vs. 4.7 using function points). We met
with senior management and presented
our estimates of size, effort, cost, sched-
ule, critical computer resources, and
what it would take to do the project
“right the first time.” Faced with the
detailed planning data, senior manage-
ment had to choose among cutting
scope, changing the schedule, or adding
more people to the project. They agreed
to allocate more resources and time:
one programmer for four weeks and
one additional elapsed month.

The SDP also contained a detailed
task plan, test plan, QA plan, CM plan,
measurement plan, and risk manage-
ment plan. Because this was a small
project (2,275 hours, [3.5 months]), we
scaled our SDP accordingly to 28
pages. To save time, we rewrote an
existing QA plan to meet our needs.

Involving Stakeholders and
Controlling Requirement Changes
Five weeks into the project, our designs
and prototype were ready for a walk-
through with our stakeholders. Many
issues and concerns surfaced at this
session that we had to address. In addi-
tion, many requirements changes were
proposed following the walk-through.
We listened to each rationale for change
and recorded the request. Where a
change improved usability and the
effort was negligible, we included it in
our revised design. Dealing with these
challenges upfront minimized rework
for us later.

We resisted the temptation to add a
new feature for every stakeholder con-
cern. We presented the total requested
change in scope and its associated im-
pact on schedule, resource, and cost to
the client senior management and Soft-
ware Configuration Control Board. It

CROSSTALK The Journal of Defense Software Engineering 19

Software Engineering Technology

would have taken 31 additional staff
days to incorporate all the requested
changes.

The stakeholders decided to revisit
the change requests in a subsequent
release of the system. Our requirement
control approach helped us gain buy-
in and credibility from all project par-
ticipants.

Paving the Way for Culture
Change

Because senior management recognized
that this project would require many
people to fundamentally change the
way they perform software estimation,
we wanted to pave the way for this
culture change. To meet this objective,
we deployed a set of spreadsheets that
emulated the new estimation process six
weeks prior to piloting the new estima-
tion system. With these spreadsheets,
we trained future users of the estima-
tion process in the “whys” and “hows”
of the new procedures.

We left the detailed design of the
reporting requirements until last. Key
stakeholders were invited to sit by our
side as we designed the reports and
queries that contributed to their job
effectiveness. We also requested stake-
holder participation and feedback in
our system testing to fine-tune our
system. Meanwhile, we developed train-
ing materials and user documentation
that emphasize audience participation
and usability. Later, we provided mul-
tiple training sessions that gave partici-
pants hands-on system experience.

Tracing Test Cases to
Requirements

As soon as we received approval for our
design, we began to define test cases
and expected results for each of the
system functions. We had limited time
for testing, so we wanted to ensure each
test case was traceable back to one or
more requirements and that our prod-
uct met the stated requirements.

We then created a test database and
seeded it based on our test cases. As
each software module was completed,
we performed functional testing using
the test cases and seeded database. We
compared actual results against our

20 CrossTaLk The Journal of Defense Software Engineering

documented expected results for each
test case. At the end of each testing
session, we reviewed our test results
with the responsible software developer.
Hundreds of defects were uncovered
early enough to correct with minimum
effort. Some modules were particularly
problematic and had to undergo several
iterations of functional testing.

Keeping Our Project on Track
Our team met weekly to discuss status,
issues, and required actions. | worked
continuously to mitigate the risks to
project success. These risks included a
language barrier between the two pro-
grammers, since one spoke little En-
glish; insufficient face-to-face commu-
nication with users of the system, which
could result in misunderstanding of the
new estimation process; performance
and usability issues that could cause
stakeholders to not fully accept the
product; delays in functional testing
due to defects, which could jeopardize
the start of system test and overall
project schedule.

We also met periodically with the
client organization’s QA, CM, and
senior management. QA role was to
review and monitor our design and
development activities to verify compli-
ance with the organization’s standards
and procedures. CM’s function was to
maintain the integrity of our product
through configuration identification,
change control, status accounting, and
audit. CM also ensured that all re-
guested changes to the functionality of
the estimation system were reviewed by
senior management and the Software
Configuration Control Board.

All this oversight and coordination
set the stage for an extremely smooth
pilot. This pilot lasted a week and in-
volved a dozen users working hard to
exercise all aspects of the estimation
system. These users entered “real-
world” data from recent estimates they
had prepared. They also tested the
system’s user’s guide. Based on their
feedback, we enhanced the user’s guide
to include exception handling. No
rework was required on the system
software.

The estimation system was accepted
with enthusiasm and went into full
production without delay. No signifi-
cant defects had been identified to date
six months following the rollout.

CMM Key Practices Are
Scalable!

We held a feedback session to develop
lessons learned with members of our
team when the project was over. To our
surprise, we heard that this was the first
time that a PC-based system developed
by this group had been delivered on
time, within budget, and with satisfied
stakeholders. Even the Visual Basic
programmers admitted that a managed
set of requirements, a documented
design, early and frequent user involve-
ment, and disciplined approach to
testing contributed to the success of the
project.

These practitioners’ beliefs that
design was “paperwork,” that there was
no time for walk-throughs, and that ad
hoc testing was sufficient were begin-
ning to change. Their conviction that
requirements could not be baselined
was also becoming less absolute. We
had given them an alternate way to
approach software development—we
had made the CMM come alive for
them!

Looking back, | feel tremendous
satisfaction for sticking to a repeatable
and disciplined approach for our system
development effort in spite of its short
duration. I can imagine the outcome of
this project had we given in to pressure
to start coding at the beginning of the
project.

Using professional judgment to
appropriately scale down and apply
CMM key practices instead of using
“code and load” did make a difference.
Managing requirements helped us con-
trol “scope creep” and keep our stake-
holders aware of the trade-offs, allowing
them to make informed decisions. Us-
ing a disciplined process helped us
discover defects prior to testing, mini-
mize rework, and reduce post-release
defects. We delivered a better product on

see CMM, page 23

April 1998

cases are tested in the courts, no one
knows how much protection software
disclaimers will afford.

Article 2B

There is one more interesting develop-
ment that has occurred: a draft of Ar-
ticle 2B of the Uniform Commercial
Code (UCC) (which pertains to com-
puters and computer services) was re-
leased Nov. 1, 1997 [2]. Article 2B will
play an important role in defining soft-
ware warranties. Article 2B will only
serve as a model template, and each
state in the United States will be re-
sponsible to modify it to their standards
before adopting it as law. Further, Ar-
ticle 2B has the potential to relax the
liability concerns that might force an
ISV to use a certification laboratory.
This could turn out to be a disaster for
those parties most concerned with soft-
ware quality.

Conclusion

Before we can determine what role
SCLs will play in software liability, we
must wait for more cases to be tested in
court to see to what standard of profes-
sionalism ISVs are held. If the criteria
for which SCLs test are not meaningful,
SCLs will find that neither developers

Software Certification Laboratories: To Be or Not to Be Liable?

nor consumers of software care about
the certification process.

For SCLs to succeed, it also is im-
perative that they employ accurate
assessment technologies for objective
criteria. If SCLs do this, malpractice
suits against them will be difficult to
win unless they mishandle a particular
case or make false statements.

This article is entitled “Software
Certification Laboratories: To Be or
Not to Be Liable” because until these
hard issues are resolved, it is hard to
measure the degree of liability protec-
tion afforded an ISV by hiring the
services of an SCL. Nonetheless, if
SCLs can measure valuable criteria (and
by this I do not mean “lines of code™)
in a quick and inexpensive manner,
SCLs have the ability to foster greater
software commerce between vendors
and consumers. This could move an
SCL certificate from being viewed as a
tax to a trophy. ¢

About the Author

Jeffrey Voas is a co-founder of and chief
scientist for Reliable Software Technolo-
gies and is currently the principal investi-
gator on research initiatives for the De-
fense Advanced Research Projects Agency
and the National Institute of Standards

and Technology. He has

published over 85 re-
. fereed journal and con-
ference papers. He co-
wrote Software
Assessment: Reliability,
Safety, Testability (John
Wiley & Sons, 1995) and Software Fault-
Injection: Inoculating Programs Against
Errors (John Wiley & Sons, 1997). His
current research interests include informa-
tion security metrics, software dependabil-
ity metrics, software liability and certifica-
tion, software safety and testing, and
information warfare tactics. He is a mem-
ber of the Institute of Electrical and Elec-
tronics Engineers and he holds a doctor-
ate in computer science from the College
of William & Mary.

Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166

Voice: 703-404-9293

Fax: 703-404-9295

E-mail: jmvoas@rstcorp.com

References

1. Jones, C., “Legal Status of Software
Engineering,” IEEE Computer, May
1995.

2. UCC Article 2B (Draft), November
1997, the American Law Institute and
the National Conference of Commis-
sioners on Uniform State Laws.

CMM, from page 20

time and within budget. Best of all, we
achieved exceptional customer satisfac-
tion, which is, after all, what counts. ¢

About the Author

Rita Hadden is the information systems
performance practice leader at Project
Performance Corporation. She has pro-
vided leadership, coordination, and
coaching on more than 70 software
projects for more than 35 organizations.

April 1998

Her software engineer-
ing and management
experience includes 28
years working with
multiple teams of devel-
opers and managers.
o She has successfully
managed cross-platform information
system projects for the private and public
sectors. She is an acknowledged leader in
industry best practices, software process

improvement, and corporate culture
change. She has helped organizations
worldwide mature their software capabili-
ties and meet their business objectives.
She is certified by the SEI as a lead soft-
ware process assessor.

Project Performance Corporation
20251 Century Boulevard
Germantown, MD 20874

Voice: 301-601-1810

E-mail: rhadden@ppc.com.

CROSSTALK The Journal of Defense Software Engineering 23

