Simplex Architecture: Meeting the Challenges of
Using COTS in High-Reliability Systems

Lui Sha, John B. Goodenough, and Bill Pollak

Software Engineering Institute

Since the end of the Cold War and the downsizing of military budgets, it has been more important
than ever that mission-critical systems be reliable, affordable, and capable of evolving to prevent
obsolescence. Furthermore, as operational software systems play a more critical role in both military
and nonmilitary applications, the need for dependability in all software systems is increasing. In
this article, we review a new combination of existing technologies that can meet these challenges.

The Challenges

To cut costs and gain leverage from
technical advances in the commercial
sector, the Department of Defense
(DoD) has actively encouraged the
more frequent use of commercial-off-
the-shelf (COTS) components in its
software systems. This DoD mandate
challenges systems developers to inte-
grate COTS components into systems
without compromising the strict reli-
ability and availability requirements of
DoD applications. What is more, there
are significant strategic and tactical
advantages afforded by the ability to
adapt quickly to changing situations.
These potential advantages challenge
developers of DoD systems to find ways
to modify and upgrade system compo-
nents more quickly while reducing the
possibility of error.

In hardware, problems inherent in
the use of COTS components in
harsher environments—such as those in
which DoD systems operate—can often
be solved by packaging. System-level
hardware reliability can also be im-
proved by the use of standard fault-
tolerance technologies. For example,
COTS hardware components can be
replicated (replication) and a vote can
be taken on their outputs (majority
voting). These methods can provide
significant protection from hardware
faults.

The SEI's work is supported by the Department of
Defense. An earlier version of this article appeared
in Bridge (August 1997), a publication of the Soft-
ware Engineering Institute.

April 1998

To ensure the reliability of software
is far more difficult. Statistics from the
field indicate that software faults cause
system failures about 10 times more
often than hardware faults [1]. Al-
though a high-assurance software devel-
opment process can significantly reduce
the number of software faults, such
processes are typically used only for
custom-made software—software de-
signed to one customer’s specifications.
Most COTS software components,
however, are sold as “black boxes” with
no warranty and are not typically sub-
ject to rigid development, verification,
or testing processes. It often is possible
to obtain the source code of a COTS
software component by paying a large
sum of money to the vendor. With the
source code, the customer can then
subject the COTS components to a
high-assurance inspection and testing
process and make any modifications
that are needed. But once a COTS
software component has been modified,
it is no longer COTS software, and
because the modified COTS software is
no longer compatible with the vendor’s
future releases, most if not all of the
benefits of the COTS approach are lost.
Therefore, this approach—making
proprietary modifications to COTS
components—is inconsistent with the
original motivation for their use.

Existing architectures cannot tolerate
software faults, including faults caused
by COTS components or by component
changes. This makes the DoD mandate
to increase the use of COTS compo-

nents a challenge to implement. Systems
must maintain their existing level of
performance even when upgraded com-
ponents are introduced and do not work
under all circumstances. For COTS
components to be used safely and effec-
tively, a software fault-tolerant architec-
ture—one that allows developers to
modify existing applications and to try
out new or upgraded COTS software
components easily, affordably, and reli-
ably—is essential.

Figure 1. Analytically redundant module: a
hardware example.

Mechanical Steering

O

Reliability

Mechanical Steering

O

CRrossTALK The Journal of Defense Software Engineering 7



COTS Software

The Simplex Architecture Solution

Replication and majority voting are effective tools for dealing
with random hardware faults. The probability that the major-
ity of replicated hardware components will have the same
random fault is extremely small. Unfortunately, replication
and majority voting are ineffective against software faults.
Given the same inputs, replicated software components will
produce the same results, right or wrong.

N-version programming is an approach that is intended
to randomize software errors and thus make majority voting
work for software faults. In this technique, different pro-
grammers build different versions of the same software (or
critical parts of a software system) with the idea that different
designers and implementers will produce different errors.
Therefore, when one system fails under a given set of circum-
stances, the other probably will not fail. A pragmatic way to
use N-version programming is to use different vendors’
COTS components with the same interface. For example, in
the Boeing 777, three different vendors’ Ada run-times and
compilers are used [2]. However, because some studies have
indicated that some errors will still be shared among the
independently developed systems [3], the FAA DO 178B
certification process requires that each of the run-times be
certified together with the applications. As pointed out by
FAA DO 178B, N-version programming may provide some
reliability improvement, but the improvement cannot be
quantified, and the results cannot be relied on.

Software faults are the result of product complexity that is
beyond the developers’ capabilities in specification, design,
verification, and testing. A well-established engineering ap-
proach to guard against the failures of a complex system is to
provide a simpler back-up system with assured reliability. For
example, the power-assisted steering system in cars is built on
and backed up with a simpler mechanical steering system.
The two steering systems are not different designs that meet a
common specification; the requirements for them are differ-
ent. One set of requirements emphasizes performance (ease
of steering) while the other emphasizes reliability: safe opera-
tion even in the presence of engine or hydraulic-system fail-
ure. The mechanical steering system is said to be analytically
redundant with the power-assisted steering system in the
sense that it provides just enough of the power steering
system’s performance to assure safety (see Figure 1). Power-
assisted brakes follow the same principle.

Analytic redundancy can be and has been applied to soft-
ware systems. Using analytic redundancy, a system is parti-
tioned into a high-assurance portion and a high-performance
portion. The high-assurance application kernel is designed to
ensure simplicity and reliability. Because of the need to apply
costly high-assurance processes to the kernel, the system must
be designed such that the rate of changes to the high-assur-
ance kernel is much slower than the rate of changes to the
high-performance subsystem. Therefore, COTS components
with uncertain reliability are not used in the high-assurance
kernel. On the other hand, COTS components can be used
extensively in the high-performance subsystem. This model is

8 CrossTaLk The Journal of Defense Software Engineering

applied in the Boeing 777: a high-assurance backup software
controller, known as the secondary digital controller, imple-
ments the tried-and-true 747 control laws, whereas a high-
performance 777 software controller serves as the normal
digital controller [2].

To do the right control job, the high-performance sub-
system receives information from a wider variety of sensors
compared to the information that the high-assurance kernel
receives. The kernel monitors the system state. If the sub-
system is driving the system toward a state that the kernel
cannot control, the kernel dynamically takes over, meaning
that the kernel’s outputs are used instead of those of the high-
performance subsystem. The kernel can reset and restart the
subsystem if and when certain constraints are violated. After
the kernel has successfully brought the system back to a new
and stable system state, the kernel switches control back to
the high-performance subsystem (Figure 2). Since residual
software errors are activated only infrequently in certain
system states, the subsystem will behave correctly most of the
time. This approach works well for systems that have states
that can be monitored, such as feedback control and com-
mand-and-control applications.

When combined with technologies for real-time comput-
ing and component swapping, this approach can also be used
to implement upgrades to the high-performance subsystem
while the system is on-line. The upgrade need not be per-
fectly reliable. Failures in upgrades of the high-performance
subsystem are no different from the activation of residual
errors in the subsystem: The kernel will take over if the new
subsystem misbehaves. In addition, the kernel can dynami-
cally return control back to the old version of a component
when the upgrade fails, as shown in Figure 3.

Software engineers at the Software Engineering Institute
(SEI) have integrated well-established technologies—high-
assurance application-kernel technology, address-space pro-
tection mechanisms, real-time scheduling algorithms, and

Figure 2. Run-time replaceable analytically redundant unit.

High-Assurance Kernel

* Safety Controller
* Safety Switching Rules

Output

Input

High-Performance Subsystem

{ﬁ?}

* Enhanced Features
and Functions

* Performance Monitoring
and Data Logging Unit

Input

April 1998



1 An upgraded controller
. has been added to the

. system. Notice the

. increased performance
. of the system.

Level of Performance

High-Assurance Kernel

Simplex Architecture: Meeting the Challenges of Using COTS in High-Reliability Systems

' A failure has been

» introduced into the
. system. Notice that
| the system’s

. performance has

1 decreased, but

. it has not shut down, |
. because of the high-

' assurance kernel,
' which stabilizes

. the system.

| Upgraded Controller

Time

Figure 3. Analytically redundant module: reliability and performance.

' The baseline

. controller takes
. control from the
. high-assurance kernel. | Again, notice the increased

The upgraded controller
. has been repaired and
. placed back into the system.

. performance of the system.

Upgraded Controller

methods for dynamic communication
among modules—to create a frame-
work for the reliable evolution of soft-
ware systems. This framework is called
the Simplex architecture [4]. Although
most of the technologies upon which
the Simplex architecture is based have
existed for some time, the increased
adoption of these technologies is mak-
ing the Simplex architecture increas-
ingly viable.

Under the Simplex architecture,
each major system function is imple-
mented as an analytically redundant
module consisting of a high-assurance
application kernel and a high-perfor-
mance subsystem, the components of
which can be swapped in real time.
Like power-assisted steering and power-
assisted brakes in a car, analytically
redundant software modules can be put
together to form an application just as
any modules can, except that the com-
ponents in an analytically redundant
module can be replaced easily, reliably,
and with no adverse effect on the rest of
the system. Should the high-perfor-
mance portion prove through deploy-
ment to be sufficiently reliable, the
Simplex architecture also permits users
to replace an analytically redundant
module with a nonredundant software
module consisting only of the high-
performance portion. In this way, users
can dynamically balance the sometimes
conflicting concerns of reliability and
efficiency.

April 1998

In addition to the maintenance of
system reliability when COTS software
is used, Simplex has proven to be useful
for other dependable-system applica-
tions. The SEI has participated in sev-
eral pilot studies that have tested the
concepts described in this article in
prototypes of real-world applications.
These include

e The INSERT (INcremental Soft-
ware Evolution for Real-Time appli-
cations) project: The objective of
this project is to generalize and scale
up the technologies of the Simplex
architecture for dependable evolu-
tion of on-board avionics systems.
The problem of upgrading mission-
control software for the F-16 air-
craft is being used as a demonstra-
tion vehicle. The sponsors are the
Defense Advanced Research Projects
Agency Evolutionary Design of
Complex Software Programs and
the Air Force Research Laboratory
(AFRL). The participants are AFRL,
Lockheed Martin, Carnegie Mellon
University, and the SEI.

» New Attack Submarine Program
fault-tolerant submarine control:
The objective of this project is to
develop, demonstrate, and transi-
tion a COTS-based fault-tolerant
control system that can be upgraded
inexpensively and dependably. The
sponsors are the Office of Naval
Research (ONR) and Naval Systems
Engineering Activity PMS-450. The

participants are Naval Surface War-

fare Center, Carderock Division,

ONR, Electric Boat Corporation,

and the SEI.

e CMU’s Real-Time Multivariable
Control of Plasma-Enhanced
Chemical Vapor Deposition project
[5]: The objective of this silicon
wafer manufacturing project is to
demonstrate the use of the Simplex
architecture as a basis for the con-
trol architecture in manufacturing
process-control software. The
project is based on a suggestion by
engineers from SEMATECH
(SEmiconductor MAnufacturing
TECHnNology). The participants are
Carnegie Mellon University and the
SELI.

The SEI has also developed demon-
stration prototypes of the Simplex ar-
chitecture. The simplest of these dem-
onstration prototypes can be viewed as
a QuickTime movie on the SEI Web
site (http://lwww.sei.cmu.edu/technol-
ogy/simplex/SIMPLEX.MQV). In this
demonstration, a feedback-control-loop
device controls the positioning of an
inverted pendulum. The purpose of the
control software is to balance the pen-
dulum in an upright position and keep
it as close to the center position as
possible. The demonstration shows a
safe on-line upgrade from a legacy C
program to an Ada 95 program that
implements an improved control algo-
rithm. The Ada program visibly im-

CROSSTALK The Journal of Defense Software Engineering 9



COTS Software

proves the control performance. When
a bug is introduced into the Ada code
and the flawed Ada program is swapped
back into the system, the system detects
the fault and transfers control back to
the C program. The pendulum remains
in balance throughout the transfer to
the high-performance Ada program, the
transfer to the flawed Ada program, and
the reversion to the C program. Live
interactive demonstrations of more
advanced applications such as distrib-
uted fault-tolerant controls are available
at the SEI for those who wish to pursue
this subject further.

For more information about Sim-
plex architecture, visit the SEI Web site
at http://www.sei.cmu.edu/technol-
ogy/dynamic_systems/simplex/intro-
duction/simplex01.shtml.

Summary

It is more important than ever that
mission-critical systems be reliable,
affordable, and capable of evolving to
prevent obsolescence. In this article, we
have reviewed a set of existing tech-
nologies upon which we can develop an
application architecture that is designed
to meet these challenges.

The early success of analytically
redundant software modules in high-
reliability applications provides grounds
for optimism that the DoD can achieve
the goal of reliable, affordable, evolu-
tionary acquisition of mission-critical
systems that exploit the advantages of
COTS components. ¢

Acknowledgments

We thank Carol Sledge and John Fore-
man for their helpful reviews and Mark
Paat for creating the graphics for this
article.

10 CrossTaLk The Journal of Defense Software Engineering

About the Authors

Lui Sha is a senior
member of the technical
staff of the SEI, a fellow
of the Institute of Elec-
trical and Electronics
Engineers (IEEE), an
associate editor for the
Real-Time System Journal, and the chair-
man-elect of the IEEE Real-Time Sys-
tems Technical Committee. He made key
contributions to the development and
transition of generalized rate monotonic
scheduling theory, which has been suc-
cessfully used in practice and is now
supported by the POSIX real-time exten-
sion and by Ada 95. He formulated the
Simplex architecture and led its develop-
ment from a concept to the core product
of the SEI’s Dependable Systems Upgrade
Initiative.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Voice: 412-268-5875

Fax: 412-268-5758

E-mail: Irs@sei.cmu.edu

Internet: http://www.sei.cmu.edu/technol-
ogy/dynamic_systems/simplex/

‘«—hs
‘\m puting Machinery in
1995. He is the former

leader of the Rate Monotonic Analysis for
Real-Time Systems Project. He was a
distinguished reviewer for the Ada 95
language revision effort and has served as
head of the U.S. delegation to the Inter-
national Organization for Standardiza-
tion working group on Ada. He was the
principal author of the document specify-
ing the revision requirements for Ada 95
and has served as chairman of the group

John B. Goodenough is
the chief technical of-
ficer of the SEI and was
named a fellow of the
Association for Com-

responsible for recommending interpreta-
tions of the Ada language.

Bill Pollak is a senior
writer and editor, mem-
ber of the technical
staff, and team leader of
the Technical Commu-
nication team at the
SEI. He is the editor
and co-author of A Practitioner’s Hand-
book for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems
(Kluwer Academic Publishers, 1993) and
has written articles for the Journal of the
Association of Computing Machinery Spe-
cial Interest Group for Computer Documen-
tation and IEEE Computer.

References

1. Gray, J., “A Census of Tandem System
Availability Between 1985 and 1990,”
IEEE Transactions on Reliability 39, Vol.
4, October 1990, pp. 409-418.

2. Yeh, Y.C., “Triple-Triple Redundant 777
Primary Flight Computer,” Proceedings of
the 1996 IEEE Aerospace Applications
Conference, Vol. 1, New York, N.Y., Feb.
3-10, 1996, pp. 293-307.

3. Knight, J.C. and N.G. Leveson, “An
Experimental Evaluation of the As-
sumption of Independence in Multi-
\ersion Programming,” IEEE Transac-
tions on Software Engineering,
SE-12(1):96-109, January 1986.

4. Sha, L., R. Rajkumar, and M.
Gagliardi, “Evolving Dependable Real-
Time Systems,” Proceedings of the 1996
IEEE Aerospace Applications Conference,
Vol. 1, New York, N.Y., Feb. 3-10,
1996, pp. 335-346.

5. Knight, T.J., D.W. Greve, X. Cheng,
and B.H. Krogh, “Real-Time Multivari-
able Control of PECVD Silicon Nitride
Film Properties,” IEEE Transactions on
Semiconductor Manufacturing, Vol. 10,
No. 1, February 1997, pp. 137-146.

April 1998



