
CROSSTALK The Journal of Defense Software Engineering 29July 1998

Software in developmental sys-
tems causes three critical challenges
for the manager of a system pro-

gram office (SPO), the testers, and ulti-
mately the customers: software-induced
workload, software system complexity,
and software systems cost. For each of
these challenges, you could insert the
word “integrated” in place of “software”;
the result is the same. Even though these
three problems have an enormous effect
on the overall system, they are given
little attention because SPOs rarely real-
ize they exist. All three of these problems
are “program invisible”—they are rarely
tested or given any thought until after
they have become a serious difficulty for
the SPO. The problem is that these
software and integration problems are
some of the foremost reasons for cus-
tomer dissatisfaction and increased sys-
tems cost.

Software-Induced Workload
SPOs attempt to reduce software-in-
duced workload by adding software to
the system. Current hardware and the
missions this hardware supports are
extremely complex. Software is prima-
rily used to integrate and consolidate
complex systems so the equipment
operators can accomplish the mission
with decreased workload and increased
mission effectiveness. However, no one
has discovered a way to measure work-
load. All the measures we currently
have for workload are qualitative and
not quantitative.

In the past, engineers tried to use
quantitative measures such as altitude
and airspeed capture to measure work-
load; unfortunately, these measures have
nothing to do with workload. Take the
example of a test pilot who is required to

use digital instruments to keep an air-
craft within 10 feet above or below a
target altitude. According to conven-
tional engineering measures, the work-
load should not be great because the
event falls within the realm of possibil-
ity; nevertheless, the workload is ex-
tremely high—the pilot has to con-
stantly work the controls and interpret
instruments. Even a test pilot cannot
accomplish this task for long. After a
series of engineering analyses, tape altim-
eters were installed on the C-5, C-141,
F-111, and FB-111 aircraft. Aviators
who have flown these aircraft will testify
to their “low” workload after they have
become proficient in the systems; how-
ever, controlled analytical tests with
other aviators using standard instru-
ments always show that their perceptions
are inaccurate.

Because there is no usable measure
for workload, when we try to measure
workload, data from such analyses are
always suspect: The sample size is rarely
large, the statistical confidence is low,
and there is no method to quantitatively
measure the workload. Since we use
these analyses when evaluating whether
we want to reduce the number of crew
members in the cockpit, for instance, it
is not a decision based on analysis and
test; it is a hope based on politics and the
cost of the additional crew members.
The best examples of this are the MC-
130H aircraft and the current U.S. Air
Force glass cockpits and heads-up dis-
plays (HUDs). On the one hand, the
MC-130H is one of the best missionized
aircraft in the world. The pilot puts the
cue on the dot and can fly any terrain by
following profile programmed by the
navigator and the aircraft system. On the
other hand, it is a poor instrument air-

craft. The tape digital displays make it
extremely difficult to fly. In like fashion,
the glass cockpits and HUDs of Air
Force aircraft are based on similar tape
displays. These displays work well for
civil aircraft, which are flown from take-
off to touchdown on the autopilot, but
they are “workload sinks” for military
tactical flight. This workload problem
will continue to be an obstacle until a
method to quantitatively measure work-
load is discovered.

Fortunately, there is research toward
this end, but a majority of fielded and
future systems have been or are being
designed without regard to the work-
load involved. A final example is radio
frequency changes in aircraft that use
digital integrated radio systems. It is
simple to change a frequency using the
old analogue dial paradigm—the pilot
inputs the frequency by turning a dial
on the console. But in a software dis-
play, the pilot must first find the page
for frequency entry, then select the
proper place for the entry, and finally,
input the digits from a touch pad. This
is at least 10 times greater workload
than the analogue dialing system, yet it
is the new paradigm. If you multiply
the workload in this example by the
number of system inputs the pilot must
make to accomplish any mission, it will
demonstrate only a small fraction of the
magnitude of problems associated with
workload. It is enough to say that soft-
ware and integrated systems generally
have significantly increased workload
without a proportional increase in
mission effectiveness.

Software Complexity
The second great hidden problem in
software development is software com-

Software Surprise
The Three Invisible Problems of

Weapons System Software Development
Lt. Col. Lionel D. Alford Jr.

U.S. Air Force
This article describes how software-induced workload, software system complexity, and software systems
cost may cause rarely identified but long-lasting adverse effects to a program. If you cannot find these three
problems in your software development program, you may not realize what hit you until it is too late.

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering July 1998

plexity. Because software is so intru-
sive—that is, it affects many systems—
it has become impossible to fully test
even the safety-related effects of the
software. When a new software build is
installed in an aircraft, unknowns are
rampant, and the “bugs” are rarely fully
discovered during flight test. Some
problems lie dormant until the systems
are well deployed. One example was an
operational flight program (OFP) re-
lease on the MC-130H. This release
was supposed to affect only the terrain-
following (TF) system of the aircraft.
The aircraft was released for flight un-
der the assumption that it would oper-
ate properly as long as the TF system
was not engaged. In the middle of a
training flight, during an engine-out
approach, the crew noticed that the
“ball” (primary flight coordination
instrument) was indicating sideslip in
the opposite direction. Because the TF
system was an integral part of the OFP,
a change to the TF system software
resulted in an erroneous reading in
another part of the system. If this OFP
had made it into the fleet, or an experi-
enced test crew had not been flying the
aircraft, it is likely there would have
been a smoking hole where a multimil-
lion-dollar aircraft once had been. This
is an extreme example, but there have
been hundreds of others in and out of
flight test.

Software and integrated systems
increase risk proportional to the increas-
ing code and increasing integration
complexity. In the C-21 aircraft (Lear
35), a pulled or popped oil pressure
circuit would cause the engine control
settings to indicate fire on an engine. An
operational crew discovered this problem
when they got two fire lights, one on
each engine. They had to shut down a
good engine and land short of their
destination. They were lucky to realize
there was a problem with the indicating
system before they shut down both en-
gines. The circuit breaker had popped
due to a faulty circuit problem, and a
sneak circuit caused the fire warning in
the indicating system. A $10 piece of
equipment gave the software false infor-

mation, and the crew and passengers
were placed at risk because testing had
not been done with the oil pressure
circuits pulled. This defect has been
fixed since the incident, but who knows
how many similar problems wait to be
found? Software and integration com-
plexity increase risk.

Software Systems Cost
The third problem is related to the first
two. Software always requires future
improvements and rewrites. Complex
software invariably comes with bugs that
are never entirely discovered. Modifica-
tions and fixes add more bugs, which
results in future modifications and fixes.
Rarely are software systems provided
with sufficient lifecycle funding for these
processes.

Software has become so intrusive
that the simplest components on many
aircraft incorporate some software. In
fact, such things as the clocks, circuit
breakers, and pressurization systems in
most modern aircraft incorporate or are
dependent on software for correct indi-
cation and operation. Most aircraft are
now to some degree fly-by-wire and
engine control-by-wire. This trend
toward software-driven controls and
systems shows no sign of change or
reversal. Therefore, funding must be
provided for any software system until
the decommission of the system—a
given that has not been acknowledged
by most services and program offices.
For example, there are numerous elec-
tronic warfare systems that are not
adequately funded for software changes
but are nevertheless going through
major changes. This has resulted in
serious program problems such as mul-
tiple OFPs in multiple versions being
deployed by more than one agency. The
resulting costs are much more than they
would have been if software changes
had been planned for the life of the
system. The examples of the MC-130H
and the C-21 resulted in unplanned
cost increases that could have radically
affected the safety of the aircraft if the
funding had not been made available.

Conclusion
The lessons to learn from these three
invisible software and integration prob-
lems are simple—their solutions are
not. First, try to evaluate workload
when developing a system. Attempt to
use nonintegrated systems when pos-
sible, especially when workload studies
indicate a problem. The Department of
Defense must fund research and devel-
opment to discover effective quantita-
tive workload measures. Second, plan
and test for as much as possible, and be
ready—during all program phases—for
software problems to rear their ugly
heads. Do not be content with minimal
software testing even when risk is low.
Finally, fund software for the life of the
system.

These three issues are critical, rarely
visible problems. They should be pri-
mary considerations during all SPO
phases. They may be invisible now, but
unless tamed, they will drive your pro-
gram and the capability of your weapons
system. ◆

About the Author
Lt. Col. Lionel D.
Alford Jr. is the chief
of the Special Opera-
tions Forces Test and
Evaluation Division,
Wright-Patterson Air
Force Base, Ohio. He

is an Air Force experimental test pilot
with over 3,600 hours in more than 40
different type aircraft and is a member of
the Society of Experimental Test Pilots.
Alford has served as the chief of the Test-
ing Commercial Aircraft for Military
Acquisition Office at Edwards Air Force
Base, Calif., holds an Airline Transport
Pilot license, and was the chief test pilot
for a number of Air Force acquisitions.
He is a graduate of the Defense Systems
Management College Advanced Program
Management Course 98-1. He has a
master’s degree in mechanical engineering
from Boston University and a bachelor’s
degree in chemistry from Pacific
Lutheran University.

ASC/LUQ
2275 D Street, Room 142
Wright-Patterson AFB, OH 45433
Voice: 937-255-9311
Fax: 937-255-0995
E-mail: Pilotlion@aol.com

Open Forum

