
CROSSTALK The Journal of Defense Software Engineering 27September 1998

A variety of testing techniques are available that
can easily be adapted and applied to Year 2000 (Y2K)
 projects. One technique that greatly helps plan, coordi-

nate, document, and track testing is the test-cycle technique.
In this technique, testing is organized and performed in cycles
that can be defined to simulate specific dates. The great value
in this approach is its application to large-scale enterprise sys-
tems. This kind of “end-to-end” test is especially critical in
Y2K projects because of the need for testing interfaces between
many different systems, both internal and external to the en-
terprise. This article presents an overview of the test-cycle
concept, the benefits of using test cycles, and an example of
how test cycles can facilitate Y2K testing.

The examples presented in this article may appear simple
because they are presented for the sake of illustration. In the
real-world application of the test-cycle approach, the scope can
be much larger but these techniques may still be used to man-
age the complexity of large-scale systems or user acceptance
testing.

What Is the Test-Cycle Concept?
First, a test cycle is any defined period of testing. A test cycle
could simulate a day, a week, a month, or no period. The abil-
ity to simulate a given period, however, is what makes test
cycles an ideal technique for date-sensitive testing.

Exactly what happens during a test cycle depends on the
technology involved. For example, in a traditional legacy main-
frame environment, a test cycle usually consists of three parts:
on-line data entry, batch processing, and the verification of
batch results (Figure 1). In an environment that does not con-
tain batch processing, the test cycle consists of interactive pro-
cessing only. In a batch-only environment, a test cycle would
consist of batch processing followed by the verification of
batch results.

For each test cycle, a simulated processing period can be
defined. That is why test cycles are an ideal way to plan and
organize Y2K testing. One test cycle can be set for 12/15/
1999, another cycle defined as 12/31/1999, another at 1/1/
2000 and so on. The test environment date for each test cycle
will need to be set using a date simulation tool.

The number of test cycles required for a test will depend on
the amount of simulated time to be spanned during the test.
For example, if you are merely testing the date rollover, you
will only need a few cycles—probably 12/31/1999, 1/1/2000,
and 1/3/2000 (the first Monday in 2000). However, if you are
going to perform a more complete Y2K compliance test, you
will need to define test cycles that allow a longer span of test-
ing. For example, if you are testing a 30-day cancellation pe-
riod across the century rollover, you might have one cycle
defined as 12/15/1999 and another at 1/15/2000. You would
also want other test cycles defined at 2/28/2000 and 2/29/
2000 to test leap year processing. With the test-cycle approach
and a date simulation tool and a data aging tool, you can de-
fine cycles as far in the future as you like. So, for testing leap
year processing, you could also have cycles for 2/28/2004 and
2/29/2004.

Within each test cycle, one or more tests are defined to be
performed. In some test cycles, it may be desirable to define no
tests, depending on the cases being tested. The tests may be
defined using test scripts or test cases.

The Process of Defining and Using Test Cycles
Now that test-cycle concepts have been discussed, let us look
at the details of planning a Y2K test using test cycles.

Step 1 – Make Sure You Have the Right Tools
You will need a date simulation tool to easily change your test
environment dates. You will also need a data aging tool to

Using Test Cycles for Testing Year 2000 Projects
Randall W. Rice

Rice Consulting Services

Figure 1. Traditional test cycle.

Figure 2. Matrix headings with test-cycle dates.

A major challenge in enterprise-wide system testing is to devise a test process that simulates the
operation of the organization over a period of time and that covers the processing of many
systems. Enterprise-wide testing is extremely complex, and the need for such testing is particu-
larly evident in most Year 2000 testing efforts. However, traditional testing processes often test
software and systems at snapshots of time as opposed to testing transactions through specific
checkpoints or cycles. The test-cycle approach in this article describes how to construct a set of
tests that are controllable, repeatable, and measurable across any given span of time.

DI noitpircseD 1elcyC 2elcyC 3elcyC 4elcyC 5elcyC 6elcyC 7elcyC

9991/51/21 9991/13/21 0002/1/1 0002/3/1 0002/51/1 0002/82/2 0002/92/2

28 CROSSTALK The Journal of Defense Software Engineering September 1998

advance the dates in the test data and keep the relationships
synchronized.

Step 2 – Define the Dates You Will Need to Simulate
These simulated system dates will depend upon the extent of
your testing—namely, the levels of Y2K compliance you need
to validate. There are four basic categories of Y2K compliance
to consider:
• No value for the current date will cause interruption in

operation. No matter what the system date is, the system
will work correctly.

• Date-based functionality must behave consistently for dates
prior to, during, and after 2000. All functions using dates
as a basis should be correct. This includes calculations in
the 19th, 20th, and 21st centuries, and calculations that
span those centuries.

• In all interfaces and data storage, the century in any date
must be specified either explicitly or by unambiguous algo-
rithms. Either the century must be explicitly shown in the
date, e.g., as a four-position field or by using a century
indicator, or by using a logic routine to interpret the date
based on a window of time or some other method.

• The year 2000 must be recognized as a leap year. If your
system processes data from early in the 20th century, you
need to be able to distinguish 1900 from 2000 for leap year
purposes.
The dates that many people are using as system test dates at

a minimum are
• 1/1/1999
• 9/9/1999
• 12/31/1999
• 1/1/2000
• 1/3/2000
• 1/4/2000
• 2/28/2000
• 2/29/2000

Your specific system dates will depend on your applica-
tions, business, and technology needs.

Step 3 – Build a Test-Cycle Matrix
Spreadsheets are great tools for this. You need to leave at least
the first two columns blank for the test case identification (ID)
and description, then define the test cycles along the top of the
spreadsheet (Figure 2).

Step 4 – Define the Test Cases or Business Cases to
Be Placed on the Matrix
Test cases and business cases are those entities you intend to
test. These cases will go through one or more cycles of testing
and will execute several test scripts or test scenarios. This ap-
proach to testing is what gives the test cycle concept so much
power. You get to simulate not only the effect of the century
rollover but also how people and things are processed through
your systems from beginning to end. This is in contrast to
merely testing one program at a time in a stand-alone fashion.

Figure 3. Test cycle matrix with cases.

Figure 4. Test cycle with test ID numbers.

Figure 5. Sample test script.

Some examples of test and business cases would be a
policyholder, a customer, a patient, or a taxpayer. Each of these
entities would then have attributes that would make it unique.
For example, if you are testing policyholders, you might have
one policyholder with a deductible of $500 and another with a
$1,000 deductible (Figure 3). The number of test and business
cases you include will depend on the level of test coverage you
need relative to the risk involved.

Step 5 – Define the Test Order for Each Test or
Business Case and Place in Correct Spreadsheet Cell
Each cell can contain a reference to a test or tests that are to be
performed for a particular test and business case in a particular
test cycle (Figure 4). You might decide to skip a cycle or two
for some cases and double up or have several tests in other
cycles. Once again, this is an example of how test cycles help
you simulate the real world. Just like your live production
databases were not instantly created in your business, the test
data entered into the system cycle by cycle will continuously
build. Keep in mind, however, that every test and business case
added to the test will be one more item to maintain through-
out the test.

Step 6 – Define the Tests in Detail
For every test indicated on the test-cycle matrix, a detailed
description of the test will be needed for documentation both
before and after the test. The details should include controls
(such as when the test will start and stop), input, expected
output, and the test procedure to be followed. An ideal way to

Software Engineering Technology

DI noitpircseD 1elcyC 2elcyC 3elcyC 4elcyC 5elcyC 6elcyC 7elcyC

9991/51/21 9991/13/21 0002/1/1 0002/3/1 0002/51/1 0002/82/2 0002/92/2

1
=DED

005$

2
=DED
000.1$

DI noitpircseD 1elcyC 2elcyC 3elcyC 4elcyC 5elcyC 6elcyC 7elcyC

9991/51/21 9991/13/21 0002/1/1 0002/3/1 0002/51/1 0002/82/2 0002/92/2

1
=DED

005$
100A 200A 300A 400A 500A 500A

2
=DED
000.1$

100A 200A 300A 400A 500A 500A

petS DImargorP noitcA tluseRdetcepxE tluseRdevresbO liaF/ssaP

1 100BCA rebmunredlohycilopretnE
.>RETNE<sserpdna

noitamrofniredlohyciloP
.yltcerrocdeyalpsid

2 100BCA redlohycilophtiW
,deyalpsidnoitamrofni

.>5f<sserp

otderrefsnartsilortnoC
.)200BCA(neercsgnillib

tcerrocnoitamrofnignilliB
.redlohyciloprof

3 200BCA .>01f<sserP .unemniamottixE

CROSSTALK The Journal of Defense Software Engineering 29September 1998

document these aspects of a test for interactive software is to
use a test script (Figure 5). You must determine how much
detail is reasonable, given the amount of time you have left for
testing and the relative business and technical risk.

Step 7 – Put It All Together
After using this method for many years, I have developed what
seems to be a fairly smooth procedure to organize a major test
based on the test-cycle concept. Although you can certainly
automate testing using test cycles, many organizations do not
have test automation tools in place and do not have the time to
integrate a tool before starting Y2K testing. In addition, my
surveys show that although 80 percent of the organizations I
surveyed own an automated test tool, only about 25 percent of
those organizations use the tool. For these reasons, the manual
application of the test execution process will be shown.

First, you will need a manila folder for each test and busi-
ness case you have defined. There will be a folder for each row
on the matrix (spreadsheet). Label each folder with a business
case ID number. This should also correspond to the ID on the
matrix. Next, place everything you will need for the business
case in the folder. This will include test data and test scripts or
test procedures (Figure 6).

To simplify things and to find the right test information
quickly, place a cover sheet (Figure 7) on the outside of the
folder. The cover sheet shows the test cycles, the test scripts
and the procedures performed in each test cycle, and a sign-
off column to be initialed by the person who tests the busi-
ness case.

The final piece is to get as many cardboard bankers’ boxes
as you have test cycles. If you have only a few folders per cycle,

you can get by with using dividers in one or two boxes. You
will need a way to start out the test with each set of folders
separated by test cycle. Place the folders in the boxes by test
cycle and in business case ID order. Each test cycle results in a
new collection of these types of folders.

Step 8 – Execute the Test
Start the test by setting the system date with the date simulator
to the first test-cycle date. If a bed of test data will be used
from the start, make sure the dates in the test data are correct.

Starting with the folders in the first cycle box, perform the
tests in each folder for Cycle 1 only. During the test, you
might create documentation you would like to save, such as
screen prints or reports. These can be placed in the folder,
unless the volume is large. In this regard, the test is self-docu-
menting. When the test is complete, initial the folder in the
“tested” and “verified” columns on the cover sheet, and place

Figure 6. Business case folder.

Figure 7. Folder cover sheet.

Figure 8. Test execution process using cycles.

it in the next cycle in which it will be used. If batch processing
is part of the test cycle or test procedure, the folder will go
back into the same test-cycle division from which it was re-
trieved. After batch processing is complete, the folder can be
pulled, evaluated, and moved on to the next cycle division in
which it will be used (Figure 8).

This process continues until the folder is finished and
placed in a “done” box. Eventually, all of the business case
folders will be filed in the done box in business case ID order.
A year or two from now, if anyone needs to know what was
tested, it is a simple matter to locate and retrieve the test
documentation.

Step 9 – Evaluate and Track the Test
As the test is performed, you will evaluate the results and deter-
mine if the test passed or failed in that particular cycle. There
are two effective and easy ways to keep track of test progress

Using Test Cycles for Testing Year 2000 Projects

elcyC stpircStseT detseT deifireV

1 100A

2 200A

3 300A

4

30 CROSSTALK The Journal of Defense Software Engineering September 1998

manually. One way is to use the outside cover sheet of the
folder to indicate pass or fail. The other is to highlight each cell
in the matrix as the test is completed and passed. It is good to
use both methods.

The Key Benefits of Using Test Cycles
Although designing test cycles and business cases is extra work,
there are some excellent benefits you achieve with no other test
method that are especially important for Y2K testing.
• The ability to simulate a business case from point A to

point Z in your processing. Most other test methods focus
on one process or software module at a time, but never
have a way to effectively string them together for end-to-
end testing of a system or systems.

• The ability to plan and coordinate the march of time for a
test. For Y2K testing, the tester knows that time must be
advanced, but the problem is how to maintain synchroniza-
tion among the test data, test environment, and test cases.
The test-cycle concept allows you to do this with ease.

• A safety net in case the test environment gets corrupted.
It is common in testing for the test to destroy data or up-
date data files with incorrect information. It also is not
uncommon for other people to delete or to restore over test
files. The common response to this situation is to restore
from the last backup, but how do you know what was
tested since the last backup? In most test processes you do
not know exactly what was done, but with test cycles, you
do know. The backup process is fairly straightforward. You
take image backups of the test environment before and
after on-line input. If batch processing is part of your test,
the backup taken after on-line processing will also suffice
for the batch backup (Figure 9). These backups should be
taken during each test cycle.

Conclusion
In testing, the confidence level of the test depends on the rigor
and coverage of the test. The rigor and coverage of the test
depends on the relative risk, both business and technical.
While some might look at the work involved in planning a test
using test cycles as being excessive, others will testify that this
kind of effort is required on some projects and systems to
validate their operation through multiple simulated dates. The
extent of test planning and execution always depends on the
scope of coverage and risk. The question is, are you willing to
bet your business or systems operation on anything less than
the right test method for the job? u

Figure 9. Backups performed in test cycle.

About the Author
Randall W. Rice is president of Rice Consult-
ing Services, Inc. and has over 20 years experi-
ence building and testing large-scale informa-
tion systems. He is a certified quality analyst
and certified software test engineer specializing
in systems testing and the testing of Y2K
projects. He is the author of The Year 2000

Testing Handbook, creator of the “Testing the Year 2000” work-
shop, and co-author of The Top Ten Challenges of Software Testing.
He also is chairman of the Quality Assurance Institute’s annual
International Software Testing Conference. He has worked with
corporations and government agencies worldwide on Y2K testing
issues.

Rice Consulting Services
P.O. Box 891284
Oklahoma City, OK 73189
Voice: 405-692-7331
Fax: 405-692-7570
E-mail: rcs@telepath.com
Internet: http://www.riceconsulting.com

Software Engineering Technology

Coming Events
Call for Papers: Software Engineering Laboratory
Software Engineering Workshop

Dates: Dec. 2-3, 1998
Location: Goddard Space Flight Center, Md.
Topics: Software benchmarks, technologies, environ-

ments, standards, requirements capture and valida-
tion approaches, methods for safety-critical systems,
reuse, COTS-based development (emphasis on pro-
cess experiences, not products), automatic code
generation, process improvement, and measures.

Abstracts (3-5 pages) should be directed to
SEB Abstracts Coordinator
Code 581
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

E-mail (ASCII text only): Jackie Boger,
jboger@cscmail.csc.com

Deadline for receipt of abstracts: Sept. 14, 1998
Internet: http://fdd.gsfc.gov/seltext.html.

Camden Technology Conference: The
Transformation of Learning

Dates: Oct. 23-25, 1998
Location: Camden, Maine
Hosts: Bob Metcalfe, Tom DeMarco, and John Sculley.
Subject: The event will gather a faculty of experts from

business, technology, government, and academia
who will play a major role in shaping the learning
methods and technologies of the coming century.
Speakers include Alan Kay, Brenda Laurel, Seymour
Papert, and Roger Schank.

Contact: 877-223-9752
Internet: http://www.camcon.org

