No Hypoxic Heroes, Please!
Biological Limits on Cowboy Programmers

Lewis Gray
Abelia Corporation

What do you say when someone rejects IEEE/IEA 12207, the Software Engineering Institute
Capability Maturity Model*™ (CMM)®, and every other process standard? Here is a response.

dynamics of Process Evolution” [1]

moved me to write a response to the
entire collection of methodological argu-
ments it exemplifies. Along with other
like-minded arguments, Bach's article
promotes heroism as a substitute for
process. My goal here is to point out an
inherent biological limit to dependence
on heroes.

Mountaineers who climb high
mountains, like Mount Everest, experi-
ence an insidious debilitation called
hypoxia that impairs judgment—even
the ability to detect the impairment.
Software managers and developers expe-
rience a common problem that is similar
in some ways to hypoxia. It limits what
heroes can be expected to do.

When managers take away process
standards as development tools, they
take away the very tools that developers
need to cope with the problem.

James Bach's article “The Micro-

Hypoxia and Stress
I have been reading a lot about Mount
Everest in the last year, including Jon
Krakauer’s Into Thin Air, a tragic story
about the death of five people near the
summit in 1996 [2]. Two of them were
widely admired, professional mountain-
eers and guides. All of them were fit and
well trained. Their exceptional drive and
focus pushed them through miserable
conditions all the way to the top of the
highest mountain on earth. Their behav-
ior during the climb is what most of us
mean by the word heroic.

Krakauer reports that a major factor
in the deaths of these five heroic people

An earlier version of this article, “Gray Rebuts Bach:
No Cowboy Programmers!” appeared in IEEE’s
Computer (April 1998), pp. 102-103, 105.

Capability Maturity Model is a service mark of
Carnegie Mellon University. CMM s registered
in the U.S. Patent and Trademark Office.

December 1998

was hypoxia (lack of oxygen). High on
Mount Everest, in the death zone above
25,000 feet, the amount of oxygen in
the air drops to only one third of what it
is at sea level. When the human body is
deprived of oxygen to this extent, it
always breaks down. Even Sherpas in
Nepal, for example, live well below the
altitudes of the camp sites on the way to
the summit. Everyone who goes to the
summit of Mount Everest becomes seri-
ously hypoxic.

Hypoxic people not only do not
think well, they also do not know that
they do not think well. Anticipating this
problem in 1996, the guides set strict
rules for how and when their group
members would make their summit
attempts. In effect, the rules were in-
tended to replace judgment at the most
dangerous part of the climb near the
summit. One of the rules was to turn
around and head back down the moun-
tain at 2 p.m. on summit day, no matter
how close to the summit anyone might
be at that time.

In the everyday world, there is a
common medical condition—stress—
that is similar in some ways to hypoxia.
Heavy stress impairs our thinking and
judgment. We find that we cannot iden-
tify and weigh alternatives like we can
when we are calm. As with hypoxia,
under heavy stress, we often simplify our
options into black-or-white problems
with an obvious solution. Then, we
quickly seize the solution so we can get
on to the next problem. It feels right,

and we feel like efficient problem solvers.

But from past experience, we all
know that this approach to decision-
making is seductive and defective.

Lists Are an Antidote
There is a popular antidote for poor
decision-making under stress: lists. All

kinds of lists can help, from grocery lists
to to-do lists. Project managers use
checklists to estimate and control
projects. Pilots use checklists to prepare
for flight. Scuba divers use checklists
before going into the water.

Everyone uses lists for the same basic
reason. We all recognize that when we
are preoccupied, under pressure, or dis-
tracted, we forget things and make errors
in judgment. Lists are like the rules that
the Mount Everest climbers imposed
before their climb. We need them to
simulate good judgment at certain criti-
cal times.

Many modern software engineering
standards, like ISO/IEC 12207 (Infor-
mation Technology — Software Life
Cycle Processes), MIL-STD-498 (Soft-
ware Development and Documenta-
tion), quality standards such as the 1ISO
9000 series, and process documents like
the CMM, are just lists. Speaking as one
of the designers of MIL-STD-498 and
IEEE/EIA 12207, | can report that these
standards were designed to be checklists
of tasks to consider during software
project planning.

We instinctively use lists for survival.
The motivation for using standards is
not just good form—not just being the
best. We need standards and other lists
to avoid disaster (although they may be
useful for more than that).

Process Standards
In a development situation, you or |
might choose not to do some task in a
standard because it might not be appro-
priate for the project or organization. In
many modern standards, the only man-
datory activity is tailoring the standard
to your particular needs.

Modern process standards are not
designed to replace professional skill or
experience in software development.

CROSSTALK The Journal of Defense Software Engineering 33



Open Forum

Pilots know how to fly before they are
hired by airlines. They do not use check-
lists as do-it-yourself flying manuals. No
one should expect standards like IEEE/
EIA 12207 to be do-it-yourself software
development manuals for novices. For
the software professional, process stan-
dards are “pilot checklists” to get soft-
ware development off the ground. The
value of putting the tasks in a standard is
it forces standard users to at least ac-
knowledge, and better yet, to attempt to
understand the possible negative conse-
quences of not doing the tasks in the
standard on their projects. This is the
heart of the tailoring process. It is a criti-
cal part of successful project planning.

Modern process standards like IEEE/
EIA 12207 are more useful today than
their predecessor standards such as
DOD-STD-2167A and DOD-STD-
1679A. The earlier standards did not
reflect current thinking that process
standards can be standard checklists.

Why use a standard when you can
develop your own personal checklist? One
reason is that hundreds or thousands of
software professionals have contributed
tens of thousands of comments designed
to polish a standard like MIL-STD-498.
It does not seem sensible to many people
to completely ignore these insights and
start a list from scratch based only on
personal, necessarily more-limited experi-
ences. It is sensible to start your own list
with a good standard.

Compliance with Standards

So what about a hard-hearted auditor
who objects to any deletion of any re-
quirement in a standard such as the 1ISO
9000 series or the CMM? Perhaps the
auditor will not let you tailor the stan-
dard even though you feel that some
requirements are inappropriate to your
particular project.

Does not the audit refute the claim
that modern process standards are de-
signed to be checklists for use as me-
mory aids by skilled software profession-
als? Does not the audit show that the
standards are full of requirements that
must be satisfied even when it does not
make sense to do so, that they are really

34 CrossTaLk The Journal of Defense Software Engineering

employed to substitute the standard
writer’s judgment for the judgment of
real people on the project?

Actually, it does not. The audit is
imposed (directly or indirectly) by buy-
ers, who are customers. A company
might voluntarily submit to an audit—
an 1SO 9000 audit, for example—to
certify or register a quality system, but it
would only do so with the expectation
that the audit results would favorably
impress potential customers. Foolish
buyers or foolish auditors might insist
that developers do foolish things, and
they might be more of a nuisance wield-
ing a standard than they would be with-
out it. But buyers and auditors are not
under the control of the standard.

The only rule for many modern
process standards is to tailor them to suit
your development conditions. Now, let
us say that someone does this poorly—
should we blame the authors of the stan-
dard?

Hypoxic Heroes Are Vulnerable
When people argue that all process stan-
dards hinder software development, as
Bach does, they are promoting a “cow-
boy” approach that glorifies heroic indi-
viduals. According to his logic, you
cannot be a hero using a process stan-
dard. There are no heroes without risk.
In fact, the bigger the risk, the bigger the
hero and the more the stress.

Without process standards to nag
them at times of stress, when they
need them the most, cowboy develop-
ers will push past their biological lim-
its with no help in sight. It is like put-
ting climbers into the death zone on
Mount Everest with no rules for what
to do on summit day.

Stress will cut away their compe-
tence. They will not notice. And because
they rely only on themselves, they will
make bad decisions. Now, some of us
resolve, instinctively, to follow a com-
mon rule, to check off our mental lists
before we act. If | read Krakauer cor-
rectly, a big part of the reason that the
climbers died on Mount Everest in May
1996 was that, tragically, in their im-
paired, hypoxic state, they broke their
own rules.

The lesson | see for software develop-
ment is that organizations and projects
need process standards the most when
their employees are most under pressure
and have little time for thought. That is
when everyone hits a biological limit and
when it is most dangerous to let heroes
run free without rules or guidelines.

Acknowledgments

Thanks to James Bach for the spirited,
good-natured E-mail debate that helped
me to identify the most important objec-
tions to my arguments and for his gener-
osity in publishing my original rebuttal
in his column. Thanks to Kirk L. Kroe-
ker and the other editors at Computer for
tightening and smoothing my original
language. O

About the Author
Lewis Gray is president
of Abelia Corporation.
He is also a software
process improvement
coach and long-time
. teacher of software
development standards.
He has 17 years experience developing
software systems for government, industry,
and academia. He was a leader in the
development of MIL-STD-498 and in the
development of IEEE/EIA 12207. He is
the author of many technical papers on
process improvement and software engi-
neering. He is the only instructor outside
the Software Engineering Institute who is
authorized to teach the TXM model of
technology introduction. He holds a doc-
torate in the philosophy of science from
Indiana University.

Abelia Corporation

12224 Grassy Hill Court
Fairfax, VA 22033-2819

Voice: 703-591-5247

Fax: 703-591-5005

E-mail: lewis@abelia.com
Internet: http://www.abelia.com

References

1. Bach, James, “Microdynamics of Process
Evolution,” Computer, February 1998,
pp. 111-113.

2. Krakauer, Jon, Into Thin Air, Villard,
New York, 1997.

December 1998



