Performing Verification and Validation in Architecture-
Based Software Engineering

Edward A. Addy
Logicon Advanced Technology

Verification and validation (V&V) now is performed during application development for many
systems, especially safety-critical and mission-critical systems. The application system provides the
context under which the software artifacts are validated. This article describes a framework that
extends V&V from an individual application system to a product line of systems that are devel-
oped within an architecture-based software engineering environment. The product line architec-
ture provides the context for evaluation in this approach.

Introduction

The implementation of architecture-based software engineering
not only introduces new activities to the software development
process, such as domain analysis and domain modeling, it also
impacts other activities of software engineering including con-
figuration management, testing, quality control, and verification
and validation. Activities in each of these areas must be adapted
to address the entire domain or product line rather than a spe-
cific application.

V&V methods are used to increase the level of assurance of
critical software, particularly that of safety-critical and mission-
critical software. Software V&YV is a systems engineering disci-
pline that evaluates software in a systems context [1]. The V&V
methodology has been used in concert with various software
development paradigms, but always in the context of developing
a specific application system. However, an architecture-based
software development process separates domain engineering
from application engineering in order to develop generic
reusable software components that are appropriate for use in
multiple applications.

The earlier a problem is discovered in the development
process, the less costly it is to correct the problem. To take advan-
tage of this, V&V begins verification within system application
development at the concept or high-level requirements phase.
However, an architecture-based software development process has
tasks that are performed earlier — possibly much earlier — than
high-level requirements for a particular application system. In
order to bring the effectiveness of V&V to bear within an archi-
tecture-based software development process, V&V must be incor-
porated within the domain engineering process.

On the other hand, it is not possible for all V&V activities
to be transferred into domain engineering, since verification
extends to the installation and operation phases of development,
and validation is primarily performed using a developed system.
This leads to the question of which existing and/or new V&V
activities would be more effectively performed in domain engi-
neering rather than in — or in addition to — application engi-
neering. Related questions include how to identify the reusable
components for which V&V at the domain level would be cost-
effective, and how to determine the level to which V&V should
be performed on the reusable components.

14 CrosstaLk ThedurddDebreeSobnaeEgeaiy

Differences Between V&V

and Component Certification

Much work has been done in the area of component certifica-
tion, which is also called evaluation, assessment, or qualifica-
tion. These terms can have slightly different meanings, but refer
in general to rating a reusable component against a specified set
of criteria. Reuse libraries often use levels to indicate the degree
to which the library has evaluated a component. The Asset
Source for Software Engineering Technology (ASSET) library
and the Army Reuse Center library both have four levels of cer-
tification, although the use of the term “levels” is operationally
different in the two libraries [2]. Component-based libraries
evaluate reusable components against criteria such as reusability,
evolvability, maintainability, and portability, as well as expend-
ing various levels of effort to ensure the component meets its
specification. Other schemes for component certification
include the certification framework developed by the
Certification of Reusable Software Components Program at
Rome Laboratory [3], and the suitability testing performed by
the National Product Line Asset Center on behalf of the Air
Force Electronic Systems Center [4].

The common thread through all of these certification process-
es is the focus on the component rather than on the systems in
which the component will eventually be (re)used. Michael Dunn
and John Knight [5] note that with the exception of the software
industry, customers purchase systems and not components.
Ensuring that components are well designed and reliable with
respect to their specifications is necessary, but not sufficient, to
show that the final system meets the needs of the user.
Component evaluation is but one part of an overall V&V effort,
analogous to code evaluation in V&V of an application system.

Another distinction between V&YV and component certifi-
cation is the scope of the artifacts that are considered. While
component certification is primarily focused on the evaluation
of reusable components (usually code-level components), V&V
also considers the domain model and the generic architecture,
along with the connections between domain artifacts and appli-
cation system artifacts. Some level of component certification
should be performed for all reusable components, but V&V is
not always appropriate. V&V should be conducted at the level
determined by an overall risk mitigation strategy.

September 1999

Domain Management

Performing Verification and Validation in Architecture-Based Software Engineering

(" Domain Engineering)
flew and et Domain ~> Domain Domain
Existing System™ [™| . .]
. Analysi Design Implementation
Artifacts and alysis esig plementatio
Requirements Domain Domain Domain
(Domain Model rchitecture | .\Components
Concepts)
~ p
. N
System L Requwem_ents L Syst_em L System.
Requirements Analysis Design Implementation
(Common and System System New
Unique) Specification \Architecture System

—» Development
~&—— Verification
-« Validation
-a— Correspondence

Figure 1. Framework for V&V in architecture-based software engineering.

Application Engineering

Program Management

Framework for Performing V&V within
Architecture-based Software Engineering

A draft framework for performing V&YV within architecture-
based software engineering is formed by adding V&V activities
to a two life cycle model involving both domain engineering
and application engineering. The application-level V&YV tasks
described in IEEE STD 1012 [6] serve as a starting point.
Domain-level tasks are added to link life cycle phases in the
domain level, and transition tasks are added to link application
phases with domain phases. This draft framework was refined
by a working group at Reuse "96 [7], and the resultant frame-
work is shown in Figure 1.

Domain-level V&V tasks are performed to ensure that
domain products fulfill the requirements established during ear-
lier phases of domain engineering. Transition-level tasks provide
assurance that an application artifact correctly implements the
corresponding domain artifact. Traditional application-level
V&V tasks ensure the application products fulfill the require-
ments established during previous application life cycle phases.
More details on the framework than allowed by the space of this
article can be found in [8].

Performing V&YV tasks at the domain and transition levels
will not automatically eliminate any V&V tasks at the applica-
tion level. However, reduction in the level of effort for some
application-level tasks might be possible. The reduction in effort
could occur in a case where the application artifact is used in an
unmodified form from the domain component, or where the
application artifact is an instantiation of the domain component
through parameter resolution or through generation. Domain
maintenance and evolution are handled in a manner similar to

September 1999

that described in the operations and maintenance phase of appli-
cation-level V&V. Changes proposed to domain artifacts are
assessed to determine the impact of the proposed correction or
enhancement. If the assessment determines that the change will
impact a critical area or function within the domain, appropriate
V&YV activities are repeated to assure a correct implementation.
Although not shown as a specific V&YV task for any particu-
lar phase of the life cycle, criticality analysis is an integral part of
V&YV planning. Criticality analysis is performed in V&V of
application development in order to allocate V&V resources to
the most important (i.e. critical) areas of the software [9]. This
assessment of criticality and the ensuing determination of the
level of intensity for V&V tasks also are crucial within architec-
ture-based software engineering. Not all domain products will be
used in critical application systems, and some of those used in
critical application systems may not be in a critical area of the
software. Some reusable components may be used in multiple
systems, but may be a part of the critical software in only one or
two of the systems. V&V should be performed only on domain
products that are involved in the critical software in one or more
application systems, and V&V tasks should be performed at a
level of intensity appropriate to the level of criticality.
Determining the domain products for which to perform
V&YV, and the appropriate level of intensity for the V&V tasks,
is complicated by the use of the products in multiple systems,
some of which may only be in early stages of planning. If a com-
ponent is used in only one critical application system, it may be
more cost-effective to perform V&YV during application engi-
neering for that system rather than during domain engineering.
Extension of criticality analysis from application engineering to
domain engineering is an important area of this framework.

CrossTALK ThedurelofDebrse SknareErgeaing 15

Software Engineering Technology

V&V of Domain Artifacts
Many of the same justifications for performing V&V in a prod-
uct line that includes critical systems also apply to V&V of gen-
eral purpose reusable components. These general purpose com-
ponents include domain artifacts for systems that are not criti-
cal, as well as reusable components that are developed for gener-
al usage rather than for a specific product line. The Component
Verification, Validation, and Certification Working Group at
WISR 8 found four considerations that should be used in deter-
mining the level of V&V of reusable components [10]:
e Span of application — the number of components or
systems that depend on the component
e Criticality — potential impact due to a fault in the
component
» Marketability — degree to which a component would be
more likely to be reused by a third party
e Lifetime — length of time that a component will be used

The domain architecture serves as the context for evaluating
software components in a product-line environment. However,
this architecture may not exist for general use components. The
working group determined that the concept of validation was
different for a general use component than for a component
developed for a specific system or product line. In the latter case,
validation refers to ensuring that the component meets the needs
of the customer. A general use component has not one customer,
but many customers, who are software developers rather then
end-users. Hence validation of a general use component should
involve the assurance — and supporting documentation — that
the component satisfies a wide range of alternative usages, rather
than the specific needs of a particular end-user.

Related Work

Although work is lacking specifically in the area of V&V as
applied to architecture-based software engineering, there is relat-
ed work that is applicable to some of the tasks within the frame-
work. Component certification was discussed in a previous sec-
tion, and this work is certainly applicable (although not suffi-
cient) for V&V activity at the domain level. The analysis of
architectures is the focus of attention and discussion [11, 12],
but there is not as yet consensus on methods and approaches
and much of this work is directed toward system architectures
rather than product line architectures. One of the approaches
being researched is a scenario-based analysis approach, Software
Architecture Analysis Method [13]. In the area of correspon-
dence tasks, the Centre for Requirements and Foundations at
Oxford is developing a tool (TOOR) to support tracing
dependencies among evolving objects [14].

Future Work

An initial, high-level framework for performing V&V in archi-
tecture-based software engineering has been developed. Once
completed, this framework will allow the V&V effort to be
amortized over the systems within a domain or product line.
However, this framework is an outline with few details. V&V
tasks that now are performed at the application level need to be

16 CrosstaLk ThedurddDebreeSonaeEgeaiy

adapted for the domain level, and traceability tasks need to be
adapted for the transition level. New methods not used on
applications but appropriate for domain models or architectures
need to be considered. Since V&YV should be performed as part
of an overall risk mitigation strategy within the domain or prod-
uct line, methods of domain criticality analysis need to be devel-
oped, with attention paid to support from emerging architec-
ture description languages. The methods identified need to be
validated by use in projects having an architecture-based soft-
ware engineering approach to producing applications that
require V&V. [

About the Author

TN Edward A. Addy is currently a project manager
y with Logicon Advanced Technology. The work
= ~ | ' on which this article is based was done while
Addy was a research associate with the
NASA/WVU Software Research Laboratory, a
cooperative effort between West Virginia
University and the NASA Ames Software 1IV&V
Facility in Fairmont, W. Va. His research interests are in the areas
of IV&YV, software product lines, component-based software
reuse, software safety, and risk analysis. Addy is a doctoral candi-
date in computer science at West Virginia University.

/. ’\

Logicon Advanced Technology

2003 Apalachee Parkway

Suite 211

Tallahassee, Fla. 32301

Voice: 850-219-8033

Fax: 850-219-8034

E-mail: eaddy@Iogicon.com

Internet: http://research.ivv.nasa.gov/~eaddy

References

1. Wallace, Dolores R. and Roger U. Fuijii, “Software
Verification and Validation: Its Role in Computer Assurance
and Its Relationship with Software Project Management
Standards.” NIST Special Publication 500-165, National
Institute of Standards and Technology, Gaithersburg, Md.
1989.

2. Poore, J.H., Theresa Pepin, Murali Sitaraman, and Frances L.
Van Scoy, “Criteria and Implementation Procedures for
Evaluating Reusable Software Engineering Assets.” DTIC AD-
B166803, prepared for IBM Corporation Federal Sectors
Division, Gaithersburg, Md. 1992.

3. Software Productivity Solutions Inc., “Certification of
Reusable Software Components, Vol. 2 - Certification
Framework.” Prepared for Rome Laboratory/C3CB,

Griffiss AFB, N.Y. 1996.

4. Unisys, Valley Forge Engineering Center, and EWA Inc.,
“Component Provider’s and Tool Developer’s Handbook.”
STARS-VC-B017/001/00, prepared for Electronic Systems
Center, Air Force Material Command, USAF, Hanscom AFB,
Mass. 1994.

5. Dunn, Michael F. and John C. Knight, “Certification
of Reusable Software Parts.” 1993 Technical Report CS-93-41,
University of Virginia, Charlottesville, Va.

September 1999

6. IEEE STD 1012-1986 (R 1992), IEEE Standard for Software
Verification and Validation Plans, Institute of Electrical and
Electronics Engineers, Inc., New York, N.Y.

7. Addy, Edward A., “V&YV Within Reuse-Based Software
Engineering.” In proceedings of the Fifth Annual Workshop
on Software Reuse Education and Training, Reuse 96,
http://www.asset.com/WSRD/conferences/proceedings/
results/addy/addy.html. 1996.

8. Addy, Edward A., “A Framework for Performing Verification
and Validation in Reuse-Based Software Engineering.” Annals
of Software Engineering, Vol. 5, 1998.

9. IEEE STD 1059-1993, IEEE Guide for Software Verification
and Validation Plans, Institute of Electrical and Electronics,
Inc., New York, N.Y.

10. Edwards, Stephen H. and Bruce W. Wiede, “WISR8: 8th
Annual Workshop on SW Reuse.” Software Engineering

Performing Verification and Validation in Architecture-Based Software Engineering

Notes, 22, Sept. 5, 1997, pp 17-32.

11. Tracz, Will, “Test and Analysis of Software Architectures.”

In proceedings, International Symposium on Software Testing
and Analysis (ISSTA '96), ACM Press, New York, N.Y, pp 1-
3, 1996.

12. Garlan, David, “First International Workshop on
Architectures for Software Systems Workshop Summary.”
Software Engineering Notes, 20, July 3, 1995, pp 84-89.

13. Kazman, Rick, Gregory Abowd, Len Bass, and Paul Clements,
“Scenario-Based Analysis of Software Architecture.” IEEE
Software, 13, Nov. 6, 1996, pp 47-55.

14. Goguen, Joseph A., “Parameterized Programming and
Software Architecture.” In proceedings of the Fourth
International Conference on Software Reuse, IEEE Computer
Society Press, Los Alamitos, Calif., pp 2-10, 1996.

The Data & Analysis Center for Software (DACS) announces

another new technical report
“Using Defect Tracking and Analysis to Improve Software Quality”

This state-of-the-art report discusses five defect categorization and analysis efforts from four different organizations. The analysis
efforts at these organizations generally focus on one of three goals: finding the nature of defects, finding the location of defects,
and finding when the defects are inserted. The intent is to use this information to characterize or analyze the environment or a
specific development process. The report also presents some suggestions for how companies could begin or expand their defect

classification efforts.

This report may be viewed free on the Internet or downloaded for free in PDF at: http://www.dacs.dtic.mil/techs/defect/

A bound, hard copy of this report, is available for $50 and may be ordered from the DACS product order form at:
http://www.dacs.dtic.mil/forms/orderform.shtml or by calling the DACS at (800) 214-7921.

September 1999

CrossTALK TredurddDebreeSonaeEgeaiy 17

