
6 CROSSTALK The Journal of Defense Software Engineering September 1999

THE DII COE ORIGINATED with a
simple observation about C2 sys-
tems: certain functions (mapping,

track management, and communication
interfaces) are fundamental to virtually
every C2 system. Yet, these functions are
built repeatedly in incompatible ways
even when the requirements are the same
or vary only slightly between systems. If
these common functions could be
extracted, implemented as a set of exten-
sible building blocks, and made readily
available to system designers, develop-
ment schedules could be accelerated and
substantial savings achieved through soft-
ware reuse. Moreover, interoperability
would be significantly improved if com-
mon software was used across systems for
common functions. Realizing these bene-
fits is DII COE’s goal as stated in [1].

Several DoD systems, notably the
Global Command and Control System,
Global Command Support System, and
Theater Battle Management Core
System, utilize the DII COE, with addi-
tional systems planning anticipated for
the DII COE. They are being connected
into a global grid that will include, in
addition to C2, sensor systems and
weapons platforms. With sensors and
weapons intrinsically operating in a real-
time arena, and with time-sensitive tar-
gets becoming increasingly important, the
application of the DII COE concepts to
real-time C2 becomes more compelling.

Background

In 1996, at the Air Force Electronic
Systems Command (ESC) Hanscom Air
Force Base, Integrated Command and

Control System (IC2S) planners began to
explore the application and viability of
DII COE concepts. Since critical IC2S
missions were expected to respond to
stringent real-time requirements that
could not be satisfied by the DII COE,
the ESC Commander, Lt. Gen. Ronald T.
Kadish, directed that all C2 programs
develop a set of requirements for real-time
extensions to existing DII COE capabili-
ties. In the spring of 1997, Air Force,
Army, and Navy representatives met to
discuss the high correlation of real-time
requirements across the services. In July
1997, the Air Force, Army, Navy, and
Marine Corps jointly petitioned the
Defense Information Systems Agency
(DISA) to charter a DII COE real-time
technical working group (TWG) aimed at
developing common requirements and
recommendations for potential products
to provide real-time capabilities to the DII
COE. DISA approved the services’
request, and the real-time TWG began
meeting in August 1997.

Initial studies, conducted at ESC,
highlighted numerous, relevant character-
istics of real-time systems, subsequently
suggesting that a piece-part approach to
assembling real-time components would
not be effective. In late 1997, the Air
Force designated the Airborne Warning
and Control System (AWACS) Program
Office as executive agent for the DII
COE real-time extensions. The DII COE
real-time integrated product team (DII
COE RT IPT) embodies that executive
authority. Because their missions are so
closely related, the real-time TWG and
IPT are in continuous coordination, con-
duct joint meetings, and share data. Both

the TWG and IPT enjoy the benefits
from the active support and participation
of Army, Air Force, Navy, and intelli-
gence community representatives.

The concepts described here are the
product of these two groups, working in
collaboration with DISA.

Understanding Real-Time
Real-time process is where the computa-
tion’s validity depends on logical correct-
ness and time-sensitive completion. In a
real-time system, the time that an
activity1 takes to complete and deliver
results is as important to correctness as,
for example, the computation’s precision
or accuracy. What is important is not
how fast the system responds but that it
responds predictably at appropriate times.
For example, a protocol for synchronizing
clocks across a communication network
(distributed time service) is required to be
accurate, not fast.

Hard real-time applies to activities
that must be deterministic; critical activi-
ties have deadlines. When this processing
fails to meet a deadline, the system has
failed. For example, a missile-warning
radar fails if the radar processor com-
pletes its computation, but is unable to
deliver target reports before an incoming
missile passes through a designated inter-
cept envelope. The design emphasis when
building systems with hard deadlines is to
guarantee that all deadlines will be met.

Soft real-time is nondeterministic to
the extent that an occasional missed
deadline can be tolerated as acceptable
degraded performance, not a system fail-
ure. The value of completing a soft real-

Extending the DII COE for Real-Time

Lt. Col. Lucie M.J. Robillard
ESC/AWW

Dr. H. Rebecca Callison
The Boeing Company

John Maurer
The MITRE Corp.

The Defense Information Infrastructure Common Operating Environment (DII COE) provides an environ-
ment in which common reusable infrastructure and applications across information systems help achieve goals
for interoperability. The Department of Defense (DoD) has a vision for extending these ideas for reuse and com-
monality to improve the effectiveness of systems performing real-time command and control (C2) missions. This
article outlines the need and proposed approaches for extending the DII COE with real-time capabilities.

September 1999 CROSSTALK The Journal of Defense Software Engineering 7

time activity decreases after its deadline
has passed, but the rate at which the
value decreases differs between activities.
The operational procedures for dealing
with missed deadlines also vary. For
example, systems may:

• choose to complete a late action
anyway

• abandon an ongoing computation in
favor of beginning the next cycle

• attempt a less complex computation
instead, and/or

• begin to shed low priority, non-
critical functions in an effort to
correct the overload problem in
future cycles.

The RT TWG recognizes a require-
ment for real-time extensions to the DII
COE to support systems with both hard
and soft real-time requirements.

Three fundamental properties are
often cited as keys to building systems in
which required events occur on time,
every time: priority, pre-emption, and
predictability. Tasks are assigned priorities
according to a real-time scheduling algo-
rithm under which theoretical scheduling
guarantees can be made2. A pre-emptive
real-time scheduler then grants system
resources to the highest priority task that
is ready to run, even if it must interrupt
— or even starve — lower priority tasks.
This real-time scheduler will often use
some form of priority inheritance to limit
the length of time that low priority tasks
can hold shared resources and block high-
er priority tasks waiting for resource
access. These techniques differ from pri-
ority assignments and scheduling algo-
rithms used in general purpose comput-
ing where fairness to all users and good
average response times are the objectives.

Achieving predictability depends on
the component parts’ design. Com-
ponents must be designed as independ-
ently schedulable entities (tasks or
processes) whose precise execution sched-
ule may be determined dynamically at
runtime by the real-time scheduler. They
cannot be hard-coded to a particular exe-
cution schedule. To limit priority inver-
sions, each component should minimize
the time it holds any shared resource
and/or disables pre-emption by a higher
priority task. Components must use tech-

niques that can be provably correct and
analyzed for sharing access to resources
such as peripherals, networks, and partic-
ularly shared data.

Each component also needs to be
constructed for inherently predictable
timing behavior. In practical terms, this
restriction means that real-time applica-
tions must avoid the use of programming
features with unpredictable timing. The
list of unpredictable constructs includes
programming approaches such as the use
of dynamic allocation of memory from a
heap, garbage collection, and dynamic
paging of virtual memory3.

Other Characteristics
of the Real-Time Domain
While predictable timing is the defining
characteristic of real-time computing,
there are other characteristics typical of
these systems as well.

Concurrency
To respond effectively to events that
occur asynchronously in the environment
with which the system interacts, real-time
systems are often constructed as collec-
tions of concurrently executing tasks and
processes. In contrast with the concurrent
processing inherent in general purpose
computing, where processes compete for
resources without interacting in other
ways, the tasks and processes of real-time
systems cooperate closely to achieve mis-
sion objectives.

Reliability and Availability
Since military real-time systems perform
activities critical to the success of military
missions, they typically have rigorous reli-
ability and availability requirements.

Operation in Harsh Environments
Real-time systems often must operate in

extreme environments that are far less
accommodating than a typical office or
computer facility. These systems are often
installed on vehicle platforms, e.g., air-
craft, tank, or missile. Environmental
conditions can be expected to exert sig-
nificant space, weight, and power con-
sumption constraints. Also, the hardware
often must be designed to withstand
environmental stresses such as extremes of
temperature, shock, vibration, corrosive

atmospheres, poorly conditioned electri-
cal power, and severe electromagnetic
fields. These considerations significantly
restrict the choice of equipment that can
be packaged with the real-time system. As
such, the impact on the DII COE config-
uration, operating in a real-time environ-
ment, cannot be overstated.

Vision for a Real-Time

Common Operating

Environment
The vision of extending DII COE for
real-time systems, as depicted in Figure 1,
begins with the layered architecture in
place for DII COE today.

The DII COE Kernel provides the
basic interfaces and functions to be used
by standards-based infrastructure compo-
nents and DII COE-compliant applica-
tions to achieve portability between sys-
tems. The planned DII COE Config-
urable RT Kernel4 extends basic DII
COE concepts in two ways:

• to build the foundation of
predictable execution on which
real-time systems depend. The RT
Kernel is hosted only on real-time
operating systems (RTOSs) that
provide real-time scheduling
capabilities, reasonably predictable
operating system performance, and
the services required for timely
execution of real-time tasks and
processes.

• because many real-time systems
operate with limited computing
resources, the RT Kernel is
configurable. RT Kernel services are
selectable, rather than mandatory,
and only those services compatible
with the capabilities of the RTOS are
provided for each platform. For
example, the RT Kernel services for a
small RTOS like VxWorks®, which
supports only single-process, single-
user configurations, would not
include services that manage
concurrent access by multiple users.
The integrator of a DII COE-
compliant system tailors the RT
Kernel by selecting only those
services required for the specific

Extending the DII COE for Real-Time

VxWorks is a registered trademark of Wind River
Systems.

DII COE

8 CROSSTALK The Journal of Defense Software Engineering September 1999

computing configurations of the
target system.

Since real-time applications often
need a very efficient operating system
with small memory footprint for per-
formance reasons, the design philosophy
of the DII COE RT Kernel allows a sys-
tem integrator to tailor the RTOS to
meet system needs5. Portable Operating
System Interface (POSIX®) APIs for
operating system services, including APIs
for threads and real-time extensions speci-
fied in [3], form part of the RT Kernel
API. Each DII COE RTOS will be rated
for its ability to provide key functional
units associated with real-time profiles in
the POSIX.13 standard [4]. The depend-
encies of DII COE RT segments on
other DII COE segments and services
and on RTOS units of functionality will
be documented during the segmentation
of a RT software component for the DII

COE. A designer of a real-time system
can match system requirements to choices
of DII COE applications, infrastructure,
kernel services, and RTOS.

A real-time infrastructure lies above
the RT Kernel to provide services for
information handling. To support pre-
dictable end-to-end execution of system
real-time activities, the RT infrastructure
must be aware of priority and timing
constraints. In the near term, the vision
architecture includes a Common Object
Request Broker Architecture (CORBA)-
based distributed computing infrastruc-
ture for real-time. Common implementa-
tions of military communications proto-
cols, now available in the DII COE, also
must be ported or adapted as necessary
for the real-time mission.

It also is envisioned that real-time
data management, multi-level trust, and
real-time management services will
emerge as infrastructure capabilities.
Therefore, the infrastructure must be
real-time and standards-based to promote

interoperability between computing con-
figurations and reuse of applications
across systems.

Interoperability and flexibility are
key issues at the level of common support
applications. Real-time exchange of the-
ater situational awareness is a keystone of
emerging concepts for network-centric
warfare. The DII COE vision for real-
time embraces a common interpretation
of information communicated. Beyond
the infrastructure components required
for basic communication between com-
puters and systems, DII COE is expected
to include other applications that con-
tribute to a common understanding of
and response to the operational situation:
track management, correlation, combat
identification, and fusion of sensor data
across systems.

Where feasible, components of
today’s DII COE will migrate to real-
time platforms. In other cases, the real-
time environment will provide standard
access mechanisms through which real-
time components may “reach back” to
access nonreal-time functions executing
on nonreal-time platforms. In other cir-
cumstances, new capabilities may be
added for the real-time domain.

The Domain of DII COE

for Real-Time
The range of real-time systems runs from
small, tightly coupled embedded con-
trollers to large-scale data-intensive track-
ing and control systems. It is reasonable
to ask which of these systems should use
DII COE for real-time. The overriding
requirement for C2 interoperability in
real-time drives the initial definition of
the domain of DII COE for real-time.
Anytime a real-time system needs to
interoperate with other computing sys-
tems for effective execution of C2, it
becomes a candidate for DII COE com-
pliance assessment. When the system’s
interactions involve time-critical calcula-
tions or the exchange of time-critical data
(activities that have real-time constraints),
DII COE for real-time is a concern.

DII COE compliance in real-time
systems, however, does not imply that
every computer of a real-time system
must achieve compliance in the samePOSIX is a registered trademark of the Institute of

Electrical and Electronics Engineers.

RT
Distributed
Computing

Infra-
structure

RT Data
Manage-

ment

Tactical
Data
Link

Proto-
cols

DII COE Kernel for RT Common API, Portability I/F

Common Distributed Computing API
Interoperable Products

Common Data Management API
Common data items

Application Program Interfaces

User
Interface
Services

T
r
a
c
k

ID

F
u
s
i
o
n

M
g
m
t

Common Support Applications,
including example applications for
common understanding

Common Implementation
for interoperability,
easy, consistent upgrade

Common API’s
and algorithms;
Common implementation
were coordinated upgrades
essential?

Application Program Interfaces
Style Guides

Adaptation

Common Labels, Data Items, and
Symbology

Common Controls and Display
Formats

Common, Adaptable Look and Feel

Application Program Interfaces

Infrastructure

Figure 1. Vision architecture of DII COE for real-time.

September 1999 CROSSTALK The Journal of Defense Software Engineering 9

way. DII COE-compliant real-time sys-
tems will often be comprised of a distrib-
uted computing system in which some
computers execute the existing nonreal-
time DII COE, others are DII COE RT
platforms, and exceptions from DII COE
compliance are made for others.

Exceptions to DII COE compliance
will be made for computing nodes that
perform specialized tasks such as signal
processing, which typically use specialized
hardware and operating systems to
achieve their goal. Likewise, DII COE-
compliance requirements will not be
applied to computer processing units
embedded in hardware line replaceable
units like network interface cards, con-
troller cards for other computing periph-
erals, and other controllers that are tight-
ly integrated with commercial or military
hardware devices.

Guidelines for assessing how DII
COE compliance requirements should be

applied in a system are available in [5].
Using this procedure, each computer in a
system is uniquely classified as DII COE
(non-RT), DII COE RT, or exempt.
Figure 2 depicts the allocation that might
result in a typical weapons C2 system with
external interfaces to other C2 and
weapons systems.

Real-Time Capabilities

in DII COE 5.0
In DISA Release 5.0, scheduled for
October 2000, the following real-time
capabilities will be available for incorpo-
ration into military C2 platforms:

1. a configurable DII COE RT Kernel
for Lynx Operating System
(LynxOS™) and Sun Solaris™;

2. a CORBA product with extensions
for real-time; and

3. support tools to aid users in
developing DII COE RT segments
and building customized DII COE-

compliant configurations for real-
time.

Configurable RT Kernel
As noted earlier, the DII COE Config-
urable RT Kernel has two parts: an
RTOS with POSIX application program
interfaces and selectable DII COE Kernel
services for real-time.

LynxOS was chosen for the reference
implementation for real-time. It provides
determinism for hard real-time execution,
supports the full range of units of func-
tionality defined in the POSIX.13 stan-
dard for real-time profiles, and has the
sponsorship of system program offices for
several current weapon system develop-
ment programs. LynxOS provides a solid
foundation to support real-time software
applications in the DII COE.

Extending the DII COE for Real-Time

Weapons
Control
•Ultrahigh
frequency
compute cycle
for weapons
control

Intel and
Planning:
•Local data
base subsets
•Nonreal-time
interaction
with offboard
systems

DII COE Not applicable

Mission:
targets,
intel,
other asset
data

Mission
results;
reach-back
requests

ATO,
Intel,
Planning
db updates

Mission
results;
db
updates

Tactical data links:
Tracks,
Sensor reports,
RT Coordination

Target
cues

Engage-
ment
status

Update rates in seconds to
minutes; best effort
scheduling okay;
interoperability key

Update rates in milliseconds to
low seconds; deadlines crucial to
correctness; RT interoperability
key

Update rates in
microseconds;
internal i/f only

Weapon
Commands

Weapon
Status

Tactical C2:
•Situation
awareness
•High
frequency
track update
•Real-time ex-
change with
sensors and
weapons

RT DII COE

Legend:
 Areas in w hich DII CO E enhances interoperabi lity

Figure 2. Breakdown for typical weapons C2 system: DII COE (non-RT), DII COE RT, and exempt.

LynxOS is a trademark of Lynx Real-time Systems
Inc. Sun and Solaris are trademarks of Sun
Microsystems Inc.

10 CROSSTALK The Journal of Defense Software Engineering September 1999

The RT Kernel services to be provid-
ed in the initial release 5.0 of DII COE
for real-time are 1) commercial off-the-
shelf products for X, Motif, and Domain
Name Server, and 2) government off-the-
shelf services for system startup and shut-
down, setting system time, and starting
and stopping DII COE processes. These
services are documented in [6]. Figure 3
depicts a representative tailoring of the
RT Kernel through selection of kernel
services and operating system capabilities.

CORBA Infrastructure

for Real-Time
CORBA is an international standard [7]
for distributed computing that is gov-
erned by the object management group
(OMG). The CORBA standard provides
for flexible interconnection of objects in a
client/server model for distributed com-
puting. Four of CORBA’s key objectives
are support for location independence,
operating system independence, hardware
independence, and language independ-
ence in the design of software compo-
nents. Figure 4 shows the role that an
object request broker (ORB), appropriate-
ly extended for real-time, plays in inte-

grating independently developed compo-
nents into a flexible real-time architecture.

Additions to the CORBA standard
to enable real-time computing with end-
to-end predictability are documented in
the Real-Time CORBA Joint Revised
Submission [8], which the OMG is con-
sidering adopting. These extensions allow
for associating real-time priorities with
tasks and requests, passing priority infor-
mation between communicating compo-
nents, and the expressing and monitoring
of timing constraints for requests. The
proposed RT CORBA specification also
defines a scheduling service that will pro-
vide a consistent real-time scheduling
model across a CORBA-based system.

HARDPack by Lockheed-Martin
Federal Systems (LMFS) is the leading
candidate as the initial RT ORB.
HARDPack is a commercial ORB that
supports Ada, C, and C++ and includes
extensions for real-time performance.
HARDPack is cognizant of real-time
request priorities and provides the capa-
bility to associate deadlines with requests.
It extends the CORBA standard with reli-
able and unreliable broadcast and multi-
cast capabilities, features commonly used
for efficient communications in real-time

C2 systems. HARDPack also implements
the Encapsulated Scheduler to assist in
implementing real-time scheduling.

HARDPack is used on at least two
Air Force C2 programs: AWACS and
Region/Sector Air Operations Center
(R/SAOC). Because the RT CORBA
standard has not yet been formalized, the
real-time extensions to HARDPack are
proprietary. LMFS actively participates in
standardization and is committed to align
its product with the commercial standard
within a year of its adoption.

Including CORBA in the DII COE
infrastructure for real-time enables the
construction of components that can be
used in a variety of configurations in dif-
ferent systems. However, it is imperative
that components are properly designed to
take advantage of this flexibility. When it
is reasonable to expect that a given appli-
cation component will not always execute
on the same central processing unit with
another component with which it inter-
acts, the component(s) should be
designed in such a way that introducing a
network between the components can be
tolerated6. In general, this consideration
will drive designs toward relatively large-
grained components with coarse-grained

DII COE

RT
Infrast ruct ure

Segm ent

O ptional I/O
Servi ces

O ptional Run
Tim e Tools

M
o

n
ito

r

..
.

O ptional Net
Servi ces

T
C

P
/IP

N
F

S

F
T

P

S
o

ck
et

s

Optional HW Platform Specific Device Drivers ...

O S Core Servi ces (e.g. Interrupt Handling,
RT M ulti Threaded Schedul ing,

Thread/ Task Creat ion/Delet ion, etc. ..)

Configurabl e #'s of threads & processes,
cache si zes, #'s of port s, etc.

..
.

Optional
Network
Comms

D
N

S

S
M

T
P

S
tre

am
 I

/O

...

... . ..

RT Com m on
Support App

Segm ent
... . ..

S
ta

rt
 U

p
...

PO SIX API's Support ed by underl yi ng conf igurabl e RTO S (G rouped By Units of Funct ional ity)

...

T
im

e
S

et

X

M
o

tif

T
B

D

T
B

D

T
B

D

S
h

u
t

D
o

w
n

S
ys

te
m

 In
it

T
B

D

T
B

D

Singl e
Process

M ulti
Process

Signal s
User

G roups
File

Syst em
Async

IO
Tim ers Si gnal s Pri ori tized

IO
M essage
Passi ng

Thread Pri o
Prot ect

Thread Proc
Shared

Thread
Attr

StackAddr

Thread Safe
Funcs...

RT M issi on
Applicat ion

Segm ent
... . ..

*Actual OS configuration depends on packaging options provided by RTOS vendor

RT Mission
Applications

RT Common Support
Applications

RT Infrastructure
Services

RT M issi on
Applicat ion

Segm ent

RT M issi on
Applicat ion

Segm ent

RT Com m on
Support App

Segm ent

RT Com m on
Support App

Segm ent

RT
Infrast ruct ure

Segm ent

RT
Infrast ruct ure

Segm ent

Configurable RT
Kernel

Selectable RT
Kernel Services

Configurable
RTOS* with POSIX

APIs

Optional
GUI Stack

O ptional
Runtim e
Servi ces

O ptional
Syst em
M gm t

O ptional
Securi ty
M anager

F
il
e

I/
O

Figure 3. Reference architecture for configurable RT Kernel.

Extending the DII COE for Real-Time

September 1999 CROSSTALK The Journal of Defense Software Engineering 11

interactions rather than designs involving
fine-grained interactions between distrib-
uted objects.

Build-Time Integration

and Supporting Tools
With a goal of constructing a real-time
system with predictable performance and
reliable behavior, the integration of real-
time segments will take place in the inte-
gration laboratory using build-time tools
rather than run-time plug-and-play
installation. The functions of configura-
tion, link, load, and test in the laboratory
will need to be performed using new
tools with the DII COE inventory. These
Build-Time Tools assist the systems engi-
neer to accomplish several functions in
series:

1. select the complete list of DII COE
real-time segments for the target
environment

2. analyze the inter-segment
dependencies

3. choose the selectable RT Kernel
Services required by the segments

4. analyze the inter-kernel
dependencies

5. and select the required POSIX units
of functionality to be provided by
the RTOS. The product of the tools

is a list of components that must be
configured to provide the required
functional capabilities. The RT
Kernel can then be configured using
commercial development tools. The
specification for the Build-Time
Tools appears in [9].

The Future of DII COE

for Real-Time
This effort is on the ground floor to pro-
vide a solid foundation on which to build
future real-time capabilities in the DII
COE. A great deal of work remains to
enable widespread reuse of DII COE RT
application software; most critical is the
establishment of an architecture at the
application program interface level. In
addition, further requirements analysis
and real-time product nominations will
be done in the following DII COE func-
tional areas: management services, multi-
level trust, mapping, alerts, correlation,
message processing, data management,
track management, combat identification,
and communications. System program
offices are being sought out which already
utilize software products built with an
open architecture and POSIX confor-
mance approach that meet the real-time
requirements for C2 interoperability. The

goal is to improve C2 interoperability for
weapon platforms as the DoD reaches
toward the goal of Joint Vision 2010. ◆

About the Authors
Lt. Col. Lucie
Robillard is the Air
Force Executive Agent
for Real-Time DII
COE at Hanscom AFB,
Mass. She is chair-
woman for the DII
COE real-time integrat-

ed product team (IPT) that has the charter
to make real-time extension to DII COE a
reality for all services. She is a Level 3 certi-
fied acquisition professional. She has joint
assignment experience. A majority of her
assignments have dealt with software acqui-
sition and engineering. She has a bachelor’s
degree in electrical engineering from the
University of Vermont and a master’s degree
in systems management from University of
Southern California.

ESC/AWW
3 Eglin St.
Hanscom AFB, Mass. 01730
Voice: 781-377-2679
Fax: 781-377-1069
E-mail: robillardl@hanscom.af.mil
Internet: http://spider.osfl.disa.mil/dii/
aog_twg/twg/DISAWEB.HTML

Dr. H. Rebecca Callison
leads the Boeing team
supporting Lt. Col.
Robillard and the DII
COE real-time IPT. She
has 25 years of experi-
ence in the design and
implementation of real-

time systems, principally in the area of
defense systems. She has a bachelor’s degree
from the University of South Carolina, a
master’s degree in computer science/systems
analysis/design from the University of
Pennsylvania, and a doctorate degree from
the University of Washington. She has served
on the faculty of Oregon State University.
She has research interests in the areas of soft-
ware architectures for real-time systems and
concurrency control for real-time.

The Boeing Co.
20403 68th Avenue S.
Kent,Wash. 98032
Voice: 253-657-3952
Fax: 253-657-0505
E-mail: rebecca.callison@boeing.com

Scheduler

Application Software

Function
1

Function
2

Function
3

Function
4

Object
Request
Broker

RTDB

Message Passing Shared Memory

Hardware

Real-Time POSIX Operating System (e.g., LynxOS)

• Event-driven
• Priority-based
• Rate Monotonic
• Real-time
• Encapsulates OS
• Easily upgraded

• No component communicates
directly with any other component
• Independent of scheduling policy
• Independent of information mgt.
• No direct access to hardware
• Many small, isolated components

• Common Object Request
 Broker Architecture (CORBA)
• Isolates objects from each other
• Handles data dependencies

• Enforced IDL interfaces
• Real-time Extensions

• COTS
• Rugged

• Priority Based

• Deterministic
• Hard Real-time

Figure 4. RT CORBA infrastructure.

12 CROSSTALK The Journal of Defense Software Engineering September 1999

John Maurer leads
MITRE’s real-time and
performance engineer-
ing section. Maurer also
chairs the DII COE
real-time technical
working group. He has a
bachelor’s degree in

mechanical engineering from MIT and 24
years experience implementing software-
intensive DoD systems. His work experi-
ence includes real-time system development
for airborne surveillance systems and Army
vehicle systems.

The MITRE Corp.
202 Burlington Road
Bedford, Mass. 01730
Voice: 781-271-2985
Fax: 781-271-4686
E-mail: johnm@mitre.org
Internet: http://spider.osfl.disa.mil/dii/

aog_twg/twg/rttwg/rttwg_page.html

References
1. DISA, Defense Information

Infrastructure (DII) Common
Operating Environment (COE)
Baseline Specification, version 3.1,
April 29, 1997, DISA Joint
Interoperability and Engineering
Organization, Reston, Va.

2. Klein, Mark H. et al., A Practitioner’s
Handbook for Real Time Analysis,
Kluwer Academic, ISBN
0-7923-9361-9.

3. Information Technology — Portable
Operating System Interface (POSIX)
Part 1 — System Application Program
Interface (API) [C Language], ISO/

IEC 9945-1:1996 (E) ANSI/IEEE Std.
1003.1.

4. Draft Standard for Information
Technology — Standard Application
Environment Profile — POSIX
Realtime Application Support (AEP),
P1003.13 Draft 9, September 1997.

5. DII COE RT TWG, “DII COE Real-
time Decision Tree & Assessment
Process: Deciding What’s in the
Domain,” Jan. 20, 1999, http://spider.
osfl.disa.mil/dii/aog_twg/twg/
RTASSESS.html.

6. DII COE RT TWG, Software
Requirements Specification for
Kernel Services for the Real-Time
Defense Information Infrastructure
Common Operating Environment (RT
DII COE), (Draft) Revision 1.0, Jan.
8, 1999.

7. Object Management Group, The
Common Object Request Broker:
Architecture and Specification,
Revision 2.2, February 1998. (http://
www.omg.org/corba/corbaiiop. html)

8. Object Management Group, Real-
Time CORBA 1.0: Joint Revised
Submission, Dec.10, 1998. (http://www
.omg.org/techprocess/meetings/
schedule/Realtime_CORBA1.0_RFP.html)

9. DII COE RT TWG, Build Time Tools
Use Case Specification for Real-Time
Extensions to the Defense Information
Infrastructure Common Operating
Environment (RT DII COE), (Draft)
Revision 1.0, Jan. 15, 1999.

Notes
1. We use the term “activity” to capture

the notion that a time-constrained

operation of the system may include
computation, communication, and
other input/output and may traverse
multiple computing nodes.

2. A discussion of real-time scheduling
algorithms is outside the scope of this
paper. The interested reader is referred
to [2] for an overview of available
scheduling techniques.

3. The degree to which these techniques
must be avoided depends somewhat on
the type of real-time system for which
the component is intended and the
situation in which the feature will be
used. If it must perform acceptably in
hard real-time systems, the ban on
features with loosely bound
performance must be strict. If soft real-
time is the objective; the restrictions
may be relaxed with caution.

4. In the rest of this paper, we will use
the term “RT Kernel” as an
abbreviation for “DII COE
Configurable RT Kernel.”

5. Commercial-off-the-shelf (COTS)
tools provided by the operating system
(OS) vendor are used to configure the
OS, not DII COE unique software.
The degree to which a specific RTOS
can be configured depends on the
flexibility the RTOS vendor provides.

6. As in all other situations in which a
component is asked to adapt to a new
computing environment, it is assumed
that developers will not attempt to use
the component in any way that violates
the laws of physics.

DII COE

We welcome reader comments regarding CROSSTALK articles or matters pertaining to software engineering. Please send your com-
ments and Letters to the Editor to crosstalk@stsc1.hill.af.mil or mail to

OO-ALC/TISE
Attn: CROSSTALK staff
7278 Fourth Street

Hill AFB, UT 84056-5205

Please limit letters to less than 250 words. Include your name, phone number, and e-mail address with any letter. We will with-
hold your name if you desire.

CROSSTALK Wants to Hear from You

