
October 1999 CROSSTALK The Journal of Defense Software Engineering 23

Introduction

The organization described in this paper
was a 12-year-old company, formed out
of two startups. It created and sold graph-
ics products. We will call this organiza-
tion “ExtendIt.” ExtendIt employed
about 150 people worldwide. The prod-
uct development staff was split into two
locations: about 50 people in the Boston
area office, and about 20 people in a
European office.

ExtendIt was in a typical chaotic
state — most of senior management did
not understand the software product
development process. Engineering man-
agement did not know where or how to
begin, project management and product
management were nonexistent, and engi-
neering processes were completely inade-
quate for product development and test-
ing. Projects were planned for four to
eight months, but typically took 13-18
months. Even at the end of the extended
development time, ship decisions were
generally based on emotional reasons to
ship, not objective reasons. For example,
management made the decision to ship a
major release because the developers were
too tired to continue the 80-hour weeks,
not because the project met the ship cri-
teria. In fact, that particular project did
not have all the expected features, so the
developers continued to work long hours
to get the features into the follow-on
release.

Approach to Process

Improvement
A new CEO started at ExtendIt and
changed the product strategic vision and

sales model. Based on the new goals, it
was clear that the organization had to
change how it developed products. It was
not possible for this geographically dis-
persed engineering organization to meet
the new goals without changing their
practices.

Senior management had already
agreed to decouple releases from project
development, which is a typical concur-
rent engineering approach to product
development. This would be known as
the “release train,” a quarterly plan to
ship products1. Projects at a certain point
in their development would be eligible to
be loaded on the train and be shipped.
Projects would not be shipped unless
ready. To meet the release train goals,
ExtendIt formed small independent proj-
ects.

A software engineering process group
(SEPG) [3] was formed in May 1997,
with the original plan that the process
definition and design could be completed
by the end of July 1997, a total of eight
weeks. The SEPG consisted of engineer-
ing management such as the vice presi-
dent (VP) of engineering, the documen-
tation manager, development, and release
engineering managers; the director of
program management, and an outside
consultant — a total of seven people. The
initial roles of the people on the SEPG
were:

• The VP of engineering was the
facilitator between the SEPG and
organization at large.

• The documentation manager served
as the chairman of the SEPG and
provided expertise about documenta-
tion processes.

• The two development managers and
the release engineering manager
provided expertise about current
processes and how they could be
changed.

• The program management director
provided specific engineering
expertise and general organizational
expertise about product develop-
ment.

• The consultant provided planning
and facilitation for the SEPG
meetings in addition to process and
product development expertise
during the process design.

Like many organizations, the SEPG
planned to roll out the process definition
and templates to the organization à la the
hole-in-the-floor model of change [5]2.
The rollout milestone was planned for
August 1997. After the initial SEPG
effort, engineering management was to
carry out ongoing process change.
This SEPG forgot one thing — change is
not successfully rolled out to organiza-
tions [5]. People have to integrate the
changes into their daily lives for the
change to be successful. Although this
SEPG did not anticipate this, changes
were introduced and integrated into the
organization in a most fortunate and suc-
cessful way.

Problem Statement
The SEPG began by discussing what had
to change. Using brainstorming, they
identified 29 issues. Then they used affin-
ity grouping to sort the 29 issues into
nine “buckets”3. Each SEPG member cast
three votes, and voted on their top three

Field Report

A Problem-Based Approach to Software Process
Improvement: A Case Study

Johanna Rothman
Rothman Consulting Group, Inc.

Organizations struggle [1] with their process improvement efforts for a variety of reasons. Perhaps the most
common struggle pattern is to take a long time developing a general understanding of their processes and then
trying to define all possible alternatives in the product development process. This pattern leads to large, unman-
ageable, unreadable, and incomplete [2] process documentation.

This paper is a case study of one organization that minimized the struggle by taking a different approach
to the development of their product development process.

24 CROSSTALK The Journal of Defense Software Engineering October 1999

issues. They took the top 80 percent of
the problems and threw away the lower
20 percent. The result of this analysis
were the following six problem state-
ments:

1. The product development process
was not documented. The process
was not uniform among projects.

2. The functional specs/design specs
were not separated. Because the
functional description and the design
was intertwined, some parts of the
system were not well-defined and the
test planning effort was insufficient.

3. Vague marketing requirement
documents (MRDs) told
development how, not what, to do.

4. Development’s intake of market
requirements were not well defined
or controlled. This was really an
organizational problem — getting a
single point of contact for discussing
issues.

5. Too many off-process interruptions.
The engineering staff was interrupt-
ed or dragged off to work on other
issues. There were no organization-
wide rules about how to get
consulting from others.

6. Managing to a schedule was a
problem. People did not know how
to manage their own time, or how to
rank their activities.

Each SEPG member wrote six
descriptive sentences describing each
problem as it appeared to or affected each
person. The SEPG called this their “6x6”
matrix, for six sentences about each of six

problems. Everyone’s sentences were gath-
ered into a concept matrix, with each
major item on the left, and the relevant
issues on the right. The SEPG then
grouped the problems into subcategories,
to organize the issues. (See Table 1 for a
representative portion of the final set of
problem statements.)

The final concept matrix has a gener-
ic problem statement, specific issue, and
examples of how each issue affected the
organization. The SEPG then made a
critical decision — the SEPG decided to
focus its work on just the six problem
statements above: documenting the prod-
uct development process; separation of
functional and design specs; specific
MRDs; how development took in
requirements; managing interruptions;
and managing to a schedule. This focus
provided these main benefits:

• SEPG MODELED PROBLEM-SOLVING

BEHAVIOR — Not every decision was
correct in hindsight, but the
problems were discussed in context
of the problems the SEPG was trying
to solve. The decisions and the
decision-making process were
accessible to the organization.

• SEPG PRACTICED PROBLEM-SOLVING

SKILLS — The managers were on the
SEPG. They had a chance to practice
their problem-solving skills in an
environment of their peers, before
trying them out on a project. This
included practice using the tradition-
al problem-solving skills and tools,
such as brainstorming, affinity
grouping, and facilitating discussions

of diverse ideas.
• FOCUSED SEPG WORK — ExtendIt

was working towards a rational way
of doing business, not towards public
certification or assessment. Using the
business as incentive for the process
improvement activities was under-
standable by the management and
technical staff.

Intermediate Results
The VP of engineering and some SEPG
members felt very strongly that some
aspects of product development could not
be planned. The VP wanted the SEPG to
take an approach to process definition
that facilitated reasonable things for rea-
sonable people to do. The SEPG would
then incorporate management reviews
into the process that were sufficient to
inform management, and enable manage-
ment to take appropriate steps. In addi-
tion, the process documentation would
give general problem-solving guidance.
(Online documents describing useful
meeting techniques and project manage-
ment techniques were part of the final
deliverables.)

The SEPG approached the process
definition work as if it were an engineer-
ing project. The work started with a
strawman five-phase process:

• Concept/Requirements
• Design/Definition
• Coding/Implementation
• Validation/Verification
• Manufacturing/Ship

Starting from its charter, the SEPG
initially refined its concept (Concept/
Requirements phase). The SEPG took the
time to define its requirements and an
initial project plan, to clarify project
completion and success criteria. To clarify
and define SEPG deliverables, the initial
SEPG project plan used the five phases
above.

During the design and definition
phase, the SEPG defined the functional
specification and design. The SEPG made
an initial cut at the phases, figured out
what the necessary documents had to be,
and where the review points were.

The implementation phase consisted
of the detailed design of the process
description, and generating the flow
charts and words to describe it. To get

Product
Dev.
Process
not docu-
mented

A: Central
Reference Required

1. There is no "playbook” which can be given to all employees,
so they know the process for developing software.

2. Missing the "what, when and who" for product development
maintains our current (perhaps our past) operating
procedures (i.e., controlled chaos)

3. Without a documented product development process, there
is no real way to determine where we are in the develop-
ment process (there is no “starts with" or "ends with"
statement or entry or exit criteria).

4. …

B: Common
Terminology

5. Terminology is imprecise, e.g. "Alpha" means something,
 but not the same thing to different people.
6. …

C: Phase
Definition/Criteria

7. There is no current opportunity to define project success
criteria.

8. There is no current opportunity to know when a project is
complete.

9. There are no clear phases, with entry/exit criteria to know
what is done and what is not.

10. …

Table 1. Portion of concept matrix describing problem statements.

Field Report

October 1999 CROSSTALK The Journal of Defense Software Engineering 25

early testing, and to get engineering buy-
in, the SEPG held focus groups to discuss
each phase. Getting early engineering
input had these benefits:

1. The SEPG’s work was visible to the
organization. In fact, parts of the
organization were able to test the
process by using pieces of it on
ongoing projects. Doing this early
testing has some ramifications:

• The SEPG could see if the
people who were supposed to
use the process would actually
use it.

• A number of issues arose during
these focus groups. The discus-
sion around these issues allowed
the SEPG to change and
simplify the process.

2. The SEPG was able to gain substan-
tial experience in presenting the
process to the organization. When
the focus group was confused, the
SEPG could test how the focus
group understood different descrip-
tions.

3. The SEPG walked the talk of “early
and often” review and testing. By
having their work held up for review
and verification, it was easier for the
engineering staff to buy into frequent
reviews and early testing.

4. Using an evolutionary process design
meant the SEPG did not have to get
everything right the first time. The
engineering organization could see
this, and see the relevance to their
work.

At the end of the implementation
phase, the five-phase product develop-
ment process had evolved into:

• Concept/Requirements
• Design/Definition
• Coding/Implementation
• Validation/Verification
• Product Qualification

Disadvantages

of this Approach
The SEPG worked very quickly, so it was
hard for some people to integrate the
changes to how they thought. Although
the SEPG members did not have trouble
with the concept of iteration, some had
trouble with their ability to iterate their

thoughts quickly. These SEPG members
were thrown into chaos [5] with almost
every meeting, and had a difficult time
adjusting to the pace of change. Change
can be painful to the people involved.

During the SEPG’s work every mem-
ber had to closely examine and change or
give up closely held ideas about product
development. Changing your mind about
something when you do not have direct
experience with its potential for success can
be very hard. Some of the SEPG members
were quite reluctant to change how they
worked, even when they admitted their
current patterns were not working.

For example, the SEPG intellectually
understood that inserting a milestone at
the beginning of the Coding/
Implementation phase to verify the
release criteria against each project’s crite-
ria made sense to everyone. Some SEPG
members were concerned that these
release criteria would be fixed too soon
and would be nonnegotiable. They were
concerned that they would be forced to
develop the wrong product. The rest of
the SEPG, from experience, realized that
clarifying release criteria before the code
is finished is one easy way to make sure
that the product under development is
the correct product. The reluctant SEPG
members were concerned because they
had no experience with the success of
release criteria. They knew their current
methods were inadequate, but were reluc-
tant to agree to something they had no
direct knowledge of. As an SEPG, we
agreed to conduct mini-retrospectives
during the first few projects, to check on
this and other points in the process.

Some of the SEPG members also had
trouble changing their meeting behavior.
Some team members were stuck in legacy
behavior, using the same assumptions
that had created the problems. One
assumption was that all decisions were
open to more discussion and change after
the decision was made. It was impossible
to make progress when all decisions could
be revisited at any time by anyone.
Consequently, the SEPG remained stuck
in the “storming phase” of team develop-
ment [4]. After discussing these problems
with the SEPG chairman, the consultant
requested the VP of engineering attend
some team meetings. The presence of the
VP acted as an inhibitor to “business as

usual,” and allowed the team to make
appropriate decisions and move forward.
In the case of the SEPG’s decision-mak-
ing, the VP verbalized the SEPG’s
responsibilities and the time to deliver on
those responsibilities.

Results of Using the Process
SEPG Results
The original dates were very aggressive
(an eight-week schedule), and were not
met. Missing the original dates created
these results:

• The SEPG was able to practice
iteratively replanning its schedule.
This experience was directly applica-
ble to normal engineering projects.

• After the first milestone was missed,
the SEPG practiced testing its
work focus. Were members working
on the most time critical and
valuable item?

• The SEPG clarified its tradeoff
decisions and decision-making
process. It created a “Pending
Bin” to place ideas and issues that
were relevant to address, but not
now.

All these issues emulated typical chal-
lenges of a product engineering project.
The SEPG gained the understanding that
its work was a process development
process. The end result was not a saleable
product, but it was a process where simi-
lar tools and ideas were useful.

Product Development Results
Initially, the engineering staff was con-
cerned about changes to how it was
expected to do product development. At
the initial overview presentation of the
release train, the engineering staff was
confused by terminology and how to do
what, because the specific changes to the
process were not rolled out. The SEPG
started its work after this initial presenta-
tion.

To get buy-in from the engineering
staff, the SEPG started focus groups to
discuss the process steps and then the
templates in group meetings. The SEPG
chose one SEPG member to present each
life cycle phase to the focus group. The
focus group would ask questions, and the
designated SEPG member answered the

A Problem-Based Approach to Software Process Improvement: A Case Study

26 CROSSTALK The Journal of Defense Software Engineering October 1999

Field Report

questions. The rest of the SEPG staff
took notes about the presentation and the
questions. When there were many ques-
tions, the SEPG generally redesigned the
process to make it easier to understand,
easier to implement, and more stream-
lined.

After the process was reviewed in the
focus groups, the templates (plans and
specification documents) were reviewed
in focus groups. The SEPG used the
same process: one SEPG member pre-
sented the material, and the focus group
commented on the material.

By the end of the focus group activi-
ty, all the senior staff in engineering had
seen parts of the process and the tem-
plates. Because the engineering staff
helped create and review the process and
the templates, the senior staff led the rest
of the technical staff to adopt the process.
At the next general presentation, the
overall process was discussed. The engi-
neering staff understood the process and
the templates and it had been made clear
what they had to do and when.

Lessons Learned
ExtendIt employees learned a tremendous
amount from these steps to process
improvement: a process improvement
process. They were able to avoid some
typical process improvement problems
shown in Table 2.

Conclusions

This process improvement process was

very effective. It consisted of first deter-
mining the problems that needed solving,
then developing a process that illustrated
the way to do the general case, and a set
of problem-solving skills. About eight
weeks after the SEPG formation, the
SEPG members began to work different-
ly. The SEPG thought about their deliv-
erables to each other in a more complete
way, i.e. how people could use what they
developed, and the effects of their deliver-
ables on other deliverables.

The biggest organizational change
was that the managers and technical staff
thought differently about how to do their
work. They started to plan for the reason-
able case, and created a risk assessment
and management plan. This had the
desired effects of creating simpler project
plans, and pushing risk assessment into
the organization.

A small process description seems to
be adequate for the present for this
organization. The process description
contains five pages of flowcharts, about
four pages of definitions, and about five
pages describing the process and general
problem-solving techniques. In addition,
there are templates for each document
the engineering staff produces.

ExtendIt has been using this process
for almost a year. It has successfully pro-
duced three quarterly release trains. The
technical and management staff has test-
ed the process, and for now, it works.

ExtendIt has had a difficult time
escaping from its startup phase. The new
CEO and senior management are deter-

mined to make the company a success.
From a product development perspective,
the organization can now deliver products
on time and within budget, with the
requested features. Using the release train
to chunk the features into smaller inde-
pendent projects, and by creating the
expectation that the organization would
deliver multiple products over the course
of the year, ExtendIt is operationally
poised to succeed. ◆

About the Author
Johanna Rothman
speaks, writes, and con-
sults on managing high
technology product
development. She works
with her clients to
increase the effectiveness
of their managers, help-

ing them ship the right product at the right
time, and hire and retain the best people.
She has more than 20 years experience in
software engineering and management and
is part of the clinical faculty of The Gordon
Institute at Tufts University. Rothman holds
two American Society for Quality certifica-
tions: Certified Quality Auditor and
Certified Software Quality Engineer.

38 Bonad Rd.
Arlington, Mass. 02476
Voice: 781-641-4046
Fax: 781-641-2764
E-mail: jr@jrothman.com
Internet: http://www.jrothman.com

Acknowledgements
In addition to the anonymous reviewers, I
thank the following reviewers for their help
and substantive comments: Don Gray,
Brian Lawrence, Sue McGrath, and Jerry
Weinberg.

References
1. Hayes, Will and Dave Zubrow, Moving

on Up: Data and Experience Doing
CMM-Based Software Process
Improvement, CMU/SEI-95-TR-008,
1995.

2. Murphy’s Law. Specifically, “Whatever
can go wrong will, at the worst
possible time.”

3. Humphrey, Watts, Managing the
Software Process, Addison-Wesley,
Reading, Mass., 1989.

4. Scholtes, Peter R. Joiner and Streibel,

Typical problem Avoidance

Process improvement effort takes a long
time.

Focus the SEPG's efforts on the problems that
need to be solved now. The engineering staff was
not only willing to use the process; it demanded it
on projects.

Define all possible steps in the process. The process provides reasonable guidance and
specific criteria for escalation to management.
Project participants use the process as a guide.
They use their judgement about how to deal with
problems, until the problems need to be escalated
to management.

"Big Honking Binder" syndrome: the size of
the documentation overtakes the process
definition.

One-page process flows with one-page
descriptions. One- and two-page document
templates are part of the process definition. The
whole process document is 20 pages.

Technical staff is suspicious of process
development process and reluctant to adopt
outcome.

Test the process with staff as it is developed.

Table 2. Lessons learned by ExtendIt.

The Team Handbook, Joiner Associates,
Madison, Wis., 1996.

5. Weinberg, Gerald, Quality Software
Management: Volume 4: Anticipating
Change, Dorset House Publishing,
New York, 1997.

Notes
1. Companies who have the need for

parallel development of multiple
releases use this concept. Although Sun
has implemented this differently, the

release train idea described in
http://solaris.license.virginia.edu/sun_
microsystems/workshop4.2_docs/
teamware/solutions_guide/casestudy.
doc.html No. 8868 is similar in con-
cept.

2. The hole-in-the-floor model of
change: Some set of people upstairs
develops the perfect system. The
change plan consists of drilling a hole

in the floor. The system is dropped
through to the people below.

Supposedly people instantly change to
the new system. Unfortunately, people
generally cannot change without inte-
gration and practice.

3. Affinity grouping is the activity of
creating sets of similar ideas together
under one theme. In this case, we
wrote each problem on a sticky note,
silently organized the sticky notes into
groups, and then named each group.

October 1999 CROSSTALK The Journal of Defense Software Engineering 27

A Problem-Based Approach to Software Process Improvement: A Case Study

Management. This identifies and describes in detail the 16
Critical Software Best Practices. SPMN, in coordination with
the Airlie Council, also developed a related implementation
handbook and compact disc, that is in beta testing, and that is
being enriched through a review process by a tri-service group
of program managers. These materials, along with related brief-
ings, video clips, and other material are available without charge
from the Software Program Managers Network at
www.spmn.com. ◆

About the Author
Norm Brown is the change agent for more than
200 Army, Navy, Air Force, and other defense
programs. He founded the SPMN, which con-
ducts benchmarking of commercial best man-
agement and technical practices, and provides
technical and management consulting support
to these programs, and which has some 10,000
members. He founded the Airlie Software

Council, led the Defense Department’s Software Acquisition Best
Practices Initiative, and was a member of the DoD Software
Management Review Board. He chaired the Joint Logistics
Commanders Group on Technical Data and Computer Software
and the group that drafted the Federal Acquisition regulations on

Technical Data and Computer Software, and numerous other
groups and committees. He was responsible for the review of more
than 300 defense software acquisition projects. He served in numer-
ous acquisition selection boards and advisory positions to the
Secretary of the Navy, Deputy Secretary of Defense, and other
defense officials. Brown was the software manager for a number of
real-time Navy weapons systems and was a commercial software
developer.

Software Program Managers Network
P.O. Box 2523
Arlington,Va. 22202
Voice: 703-521-5231
Fax: 703-521-2603
E-mail: spmn@aol.com

References
1. News Release, Office of Assistant Secretary of Defense (Public

Affairs), Washington, D.C., July 13, 1994.
2. House Armed Services Committee Report 106-162, pp. 198.
3. Senate Armed Services Committee Report 106-50, pp. 340-

341, May 17, 1999.

Note
1. The Software Engineering Institute has developed the

Capability Maturity Model, which identifies where a company
lies along a continuum of software development maturity.

“High Leverage Best Practices...” continued from page 14.

We welcome reader comments regarding CROSSTALK articles or matters pertaining to software engineering. Please send your com-
ments and Letters to the Editor to crosstalk@stsc1.hill.af.mil or mail to

OO-ALC/TISE
Attn: CROSSTALK staff
7278 Fourth Street

Hill AFB, UT 84056-5205

Please limit letters to less than 250 words. Include your name, phone number, and e-mail address with any letter. We will with-
hold your name if you desire.

CROSSTALK Wants to Hear from You

