

CrossTalk

On the Cover:
Kent Bingham,

Digital Illustration
and Design, is a

self-taught graphic
artist/designer
who freelances
print and Web

design projects.

3
8

14
17
21
21
28

31

4

9

12

15

18

22

29

2 CROSSTALK The Journal of Defense Software Engineering August 2001

A Foundation for Coalition Interoperability Using NATO’s C3
Technical Architecture
The structural foundation laid by this architectural approach allows information sharing
among diverse C3 systems – the key to successful joint military operations.
by Dr. Frederick I. Moxley, Lucien Simon, and Elbert J. Wells

The State of Software Development in India
This author sheds some light on the status of India’s software industry after participating in
a technology tour.
by Chellam Embar

Can Australia Improve Its Software Processes?
The majority of Australia's software development organizations are small- to medium-sized
businesses that need education and training to understand that best practices bring increased
returns.
by Alastair James

Software Maintainability Metrics Model: An Improvement in the
Coleman–Oman Model
This article proposes changing the number-of-comments parameter of the Coleman–Oman
model, as well as the evaluation of the parameter.
by Aldo Liso

The Software Maintainability Index Revisited
After nearly a decade of successful application, the practical use of the Maintainability Index in
determining software maintainability remains strong.
by Kurt D. Welker

Proposal on Library-Centered Software Process Assessment
These authors explain how to compose specific Software Process Assessment and Improvement
(SPAIM) methods adapted to an assessed organization by selecting and customizing technologies
included in SPAIM libraries.
by Toshihiro Komiyama, Toshihiko Sunazuka, and Shinji Koyama

Lessons Learned in Attempting to Achieve Software CMM Level 4
This article examines the obstacles one company encountered in trying to gain Software Capability
Maturity Model® Level 4 vs. Level 3.
by Al Florence

Software Software Around theAround the WorldWorld

Software Software EngineeringEngineering TechnologyTechnology

DepartmentsDepartments Article Submissions:We welcome articles of interest to the
defense software community.Articles must be approved by
the CROSSTALK editorial board prior to publication. Please
follow the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property
of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department
of Defense. Contents of CROSSTALK are not necessarily
the official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this
issue are trademarks of their companies.
Coming Events:We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers.There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an
announcement to the CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, E-mail: randy.schreifels@hill.af.mil
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was estab-
lished at Ogden Air Logistics Center (AFMC) by
Headquarters U.S. Air Force to help Air Force software
organizations identify, evaluate, and adopt technologies to
improve the quality of their software products, efficiency
in producing them, and their ability to accurately predict
the cost and schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pam Bowers

Benjamin Facer

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk/crostalk.html

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning sub-
scriptions and changes of address to the following
address.You may e-mail or use the form on p. 11.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, Utah 84056-5205

From the Publisher

Call for Articles

Letter to the Editor

STC 2002 Call for
Speakers
Letter to the Editor

Coming Events

Web Sites

BackTalk

Open Forum

August 2001 www.stsc.hill.af.mil 3

From the Publisher

SSooffttwwaarree:: AAnn IInntteerrnnaattiioonnaall TTiiee ttoo bbee GGrraatteeffuull FFoorr

Ihave been extremely fortunate in my lifetime to travel abroad. Europe, Australia, and
New Zealand were my destinations. I can remember these trips as if they happened

yesterday. From getting my passport to making sure my hair dryer worked overseas,
what a thrill it was to prepare for these trips. And from the food, to the people, to the
cultures, my experiences on land and sea (i.e., the Great Barrier Reef) were unforget-
table.

I also realize that traveling abroad isn’t as convenient or even possible without software.
Software was an aid to the travel agent that booked my airline, hotel, and tour reservations, and
it was an aid to the 747 pilot that flew me halfway around the world. We all know that software
is everywhere; it is global. Reflecting on my travels makes me very thankful for this important
international tie among countries.

From a defense software community standpoint, software around the world is a critical
offensive and defensive element to a country’s wartime and peacetime stature. As Americans
involved in defense software projects, we work hard to ensure that our armed forces’ software
intensive systems work worldwide in an effort to outsmart and beat the enemy. But what about
our allies, and how they “do” software? All the better if we are interoperable. In this month’s
issue, Dr. Frederick I. Moxley, Lucien Simon, and Elbert J. Wells present an architectural
approach for laying a structural foundation for information interoperability between diverse mil-
itary information systems, and they discuss why this has been proposed for use throughout
NATO.

Just as important as a country’s strong defense is their industrial power. Take a look at
Australia’s information industry in Alastair James’ article Can Australia Improve Its Software
Processes? This country understands the benefits of employing software engineering best prac-
tices and processes, but just like any other entity it is hard to put change in place. We know how
hard it is for one project or for one organization to embrace change. Is it even possible for a
nation to embrace software process improvement all at once?

Also included in this month’s issue is a look at India’s software industry status. This country
has a very strong commitment to software quality as well as to the education and training of soft-
ware professionals. As Chellam Embar writes in The State of Software Development in India,
information technology professionals in this country are highly desirable and have more earning
power than physicians. Unfortunately, I doubt that this will ever be the case in the United States.

It is refreshing to see that the software best practices that have been created, tried, and proven
here in the states are in use throughout the world. It is also very rewarding to be a part of
CrossTalk and to disseminate information on software technologies and best practices world-
wide. I encourage our international, on-line readers to send in a letter to the editor or to submit
an article. Help us share your software lessons learned and best practices worldwide.

I hope you enjoy this month’s issue and bon voyage to wherever your travels may take you.

Tracy L. Stauder
Publisher

AA FFoouunnddaattiioonn ffoorr CCooaalliittiioonn IInntteerrooppeerraabbiilliittyy UUssiinngg
NNAATTOO’’ss CC33 TTeecchhnniiccaall AArrcchhiitteeccttuurree

Software Around the World

The North Atlantic Treaty Organization
(NATO) has recognized that future

military information systems will need to
interoperate with one another more effec-
tively than ever before1. The number of
unforeseen contingencies and international
conflicts have elevated the need to provide
accurate information to the warfighter upon
demand, i.e., wherever and whenever it is
needed.

However in order to make this a reality,
it is obvious that future coalition informa-
tion system services will need to be fused
together, having the ability to retain their
own national identities and operational
independence, as well as interoperate with
one another in a more effective and seamless
manner.

Unfortunately, achieving and sustaining
interoperability among diverse systems is
not, nor has it ever been an easily attainable
objective. As indicated in [1], historically
speaking, interoperability has been one of
the most difficult areas with which to deal.
Interoperability is a broad and complex area
of endeavor that cuts across many function-
al domain areas and applications. Often
deemed elusive due to the level of complex-
ity entailed when integrating diverse system
components together, the real challenge lies
in the overall scope and extent of the system,
as well as the level of interoperability and
integration desired [2].

Nevertheless, integrating diverse mili-
tary system components together cohesively
within a coalition environment can add sig-
nificantly to the level of complexity entailed.
For instance, when different parts of a sys-
tem are built separately by independent
developers, the end results often vary great-
ly. This may be attributed to flaws in the
design specification and/or how it has been
interpreted during various system develop-
ment stages.

The term used synonymously with
design specification today is architectural
design. The architectural design is con-
cerned with determining the architectural
style of the system as opposed to the detailed
design of individual algorithms and data
stores. Architectural design also involves the
high-level decomposition of the system into
components and the relationships and inter-
actions of these components, which usually
determines the specific architecture of the
system [3]. If misinterpreted or designed
poorly, chances are the system(s) once field-
ed will function improperly, or more than
likely, in a limited capacity.

When put in the context of a coalition
environment, the ratio for failure increases
significantly due to the sheer number of
diverse factors that must be taken into
account and reckoned with accordingly
(e.g., language differences, level of training,
number of system developers and integra-
tors involved, type of experience, etc.).

AArrcchhiitteeccttuurraall VViieewwss aanndd
IInntteerrooppeerraabbiilliittyy
In 1996, the U.S. Department of Defense
(DoD) first introduced the concept of archi-
tectural views under the guise of a C4ISR
Architecture Framework2. Known inde-
pendently as the Operational, System, and
Technical Architectural Views, all three
views, when logically combined together,
expanded on the de facto definition pertain-
ing to architecture within the realm of
information technology3. Until that time,
there had been no common approach for
architectural development throughout the
DoD.

As a combined effort, NATO in turn
refined each one of these architectural views
and incorporated them into what is now
known as the NATO Policy for C34

Interoperability. All three views as defined
below, are considered critical elements of the
NATO C3 Interoperability Environment
(NIE):
• Operational View: This view describes

the tasks and activities, organizational and
operational elements, and information
flows required to accomplish or to sup-
port military or consultation function.

• System View: This view is generated from
the Operational View by the responsible
host nation or design authority. It
describes and identifies the system(s),
both internal and external, and intercon-
nections required to accomplish or to
support the military or consultation func-
tion. This view maps information flows,
hardware, and applications to user loca-
tions and specifies the connectivity, per-
formance, and other constraints.

• Technical View: This view, generated by
the host nation or equivalent authority,
describes the arrangement, interaction,
and interdependence of the elements of
the system and takes into account the
technical constraints imposed by the
Systems View. It provides the minimal set
of rules governing the selection of the
appropriate standards and products from
the implementation domain.

The NIE encompasses the standards, prod-
ucts, and agreements adopted by the
Alliance to ensure C3 interoperability. It
serves as the basis for the development and
evolution of C3 Systems.

OOrrggaanniizzaattiioonnaall SSttrruuccttuurree
NATO has defined interoperability organi-
zationally as the ability of systems, units, or
forces to provide services to, and accept serv-
ices from other systems, units, or forces, and
to use the services so exchanged to enable
them to operate effectively [4].

4 CROSSTALK The Journal of Defense Software Engineering August 2001

Dr. Frederick I. Moxley
Defense Information Systems Agency

Lucien Simon
NATO C3 Agency

Elbert J. Wells
U.S. Mission to NATO

Current projections indicate that in the future, the ability to share information between military systems will ulti-
mately determine whether or not a mission will be a successful. Based on the probability that conflicts will contin-
ue to occur involving allied command structures that utilize diverse information systems, information interoper-
ability will be the crucial factor for success when conducting future combined and joint military operations. This
paper describes an architectural approach that lays the structural foundation necessary to attain interoperability
between diverse C3 systems and provides the rationale on why this approach has been proposed for use throughout
NATO.

The primary organization within
NATO that addresses interoperability policy
and procedures is the NATO Consultation,
Command, and Control Board (NC3B).
Structurally, the NC3B consists of eight
sub-committees, two of which play an
important role in the context of this
paper. The first, the Interoperability Sub-
Committee is responsible for establishing
C3 systems interoperability policy and
implementing C3 standardization objec-
tives deemed necessary for improving inter-
operability. Underneath the Interoperability
Sub-Committee are four working groups.
Each in their own right helps to perpetuate
interoperability policy and standardization
initiatives throughout the alliance.

The second, known as the Information
Systems Sub-Committee (ISSC) is, at the
moment, comprised of eight working
groups that primarily address and support
information system implementation
throughout all of NATO.

When examining NATO’s overall inter-
operability structure collectively, we see that
NATO has an interoperability framework
(NIF) that can be divided into three distinct
categories (see Figure 1):
1. Policy: The NATO Policy for C3 inter-

operability represents the policy layer. It
is a policy that addresses all overarching
and essential C3 interoperability issues,
identifies each of the respective authori-
ties and associated responsibilities, links
existing interoperability documents,
defines the relationship with the NATO
Standardization Organization, and
other relevant organizations.

2. Execution: The NATO Interoperab-
ility Management Plan and the five year
Rolling Interoperability Program com-
prise this layer.

3. Products: The NIE comprises this layer
[5].
In 1997, the NC3B identified several

goals and objectives that were considered
necessary to attain interoperability between
NATO common funded C3 systems. In
response to these goals and objectives, the
NC3B ISSC formed the NATO Open
Systems Working Group (NOSWG), task-
ing them to develop a technical architecture
on behalf of NATO. The technical architec-
ture would become known as the NATO
C3 Technical Architecture (NC3TA) [6].

Upon completion, the NC3TA would
provide the structural foundation necessary

to attain information interoperability
between NATO C3 systems and national
systems, as well as address interoperability
concerns for all NATO common funded
systems. Furthermore, the NC3TA would
perpetuate the development of a common
core for the Bi-SC5 Automated Information
System (AIS).

NNAATTOO CC33 TTeecchhnniiccaall
AArrcchhiitteeccttuurree
To facilitate the creation of the NC3TA, the
NOSWG first assessed the merits of each
national architectural effort early on, glean-
ing from each as much as practically possi-
ble. Each had technical merit but differed in
overall content and composition. As a result,
the NOSWG decided to develop the
NC3TA in accordance with the definition
for a technical architectural view6 as much
as feasibly possible. By definition, this
meant that it would provide the minimal set
of rules governing the selection of appropri-
ate standards and products from the imple-

mentation domain. Moreover, the NC3TA
would also extrapolate, as well as improve
upon existing approaches from each one of

the contributing national technical archi-
tectural efforts.

A look at the overall structure and
content shows that in contrast to nation-
al technical architectural efforts, the
NC3TA is unique in that it is comprised
of a five-volume set that consists of the

following7:
• Volume 1–Management: This volume

provides the management framework for
the development, as well as the configura-
tion control of the NC3TA. It includes
the general management procedures for
the application of the NC3TA in NATO
C3 systems development.

• Volume 2–Architectural Models and
Description: This volume principally sup-
ports a NATO technical framework to
provide a common basis for the establish-
ment of the architecture for NATO infor-
mation system projects. It also offers a
vision on the use of emerging off-the-
shelf technologies.

• Volume 3–Base Standards and Profiles:
This volume contains all of the current
open system and communication stan-
dards applicable to NATO information
systems, as well as guidance for their use.

• Volume 4–NATO C3 Common
Standards Profile (NCSP): This volume
mandates the subset of standards that are
critical to interoperability. It provides the
link between degrees of interoperability as
described in the NATO policy for inter-
operability of C3 systems, and standards
selection.

• Volume 5–NATO C3 Common
Operating Environment (NCOE): This

August 2001 www.stsc.hill.af.mil 5

Figure 1: NATO's Interoperability Framework

“Unfortunately,
achieving and

sustaining interoperability
among diverse systems is
not, nor has it ever been

an easily attainable
objective.”

A Foundation for Coalition Interoperability Using NATO’s C3 Technical Architecture

“Unfortunately,
achieving and

sustaining interoperability
among diverse systems is
not, nor has it ever been

an easily attainable
objective.”

volume is the NCSP standards-based
computing and communication infra-
structure.

The chairman of the NOSWG meets
regularly with other NC3B working groups
to ensure that all areas of technical concern
(e.g., security, data, communications, etc.)
are taken into account by the appropriate
working group bodies [7]. This simple cross
evaluation and coordination procedure
serves as only one of the preliminary fail-safe
steps that is required as a part of the overall
NC3TA management process described in
Volume 1.

Consistently updated, Volume 2 reflects
various architectural models such as the
Technical Reference Model, the NATO
Component Model, as well as definitive
descriptions or reference pointers to new
and emerging technologies such as JAVA
and the eXtensible Markup Language. The
descriptions provided are primarily derived
from the NATO Open Systems
Environment and NATO Open Systems
Interconnectivity Profile that essentially
serve as reference material to the system
developer, implementor, and end-user.
Editorial updates are made primarily
through the NC3 Agency.

The encyclopedic nature of Volume 3
serves as another reference document. It too
is derived from the NATO Open Systems
Environment and NATO Open Systems
Interconnectivity Profile and contains all of
the current references on communication
and information standards. This volume
will also be maintained in an HTML ver-
sion on the web8.

Due to their impact on the systems
design, development, and implementation
for all NATO common funded systems, the

two remaining Volumes 4 and 5 of the
NC3TA are considered extremely impor-
tant (see Figure 2).

Volume 4, although considered to be
quite mature, will undergo periodic updates
in order to ensure that the evolution in stan-
dards are incorporated to benefit the devel-
oper/end-user community on a regular
basis. The definitive process for submitting
and incorporating candidate standards for
consideration into the NCSP is outlined
through the “change proposal” section of
Volume 1. Volume 4 also has focused on
attaining degrees of interoperability through
an interoperability profiling procedure that
is being worked in coordination with other
affiliated sub-committee working groups.

In conjunction with Volume 4, Volume
5 is probably the single most important doc-
ument within the NC3TA. To note its rele-
vance, all NATO authorities are required,
and the nations are encouraged to imple-
ment C3 Systems using the mandatory stan-
dards and products as specified in the NCSP
and NCOE, in accordance with the NATO
Policy for C3 Interoperability [8].

Once the NC3B approves future ver-
sions of the NCOE, those products that are
identified for incorporation will be mandat-
ed for all NATO Common Funded
Systems.

NNCCOOEE SSiiggnniiffiiccaanntt FFeeaattuurreess
Volume 5 of the NC3TA is considered evo-
lutionary and therefore a living document.
While it will eventually specify particular
products for incorporation into the NCOE,
at the present time it does not. However
once selected, these products will be prima-
rily chosen from an off-the-shelf -based bas-

ket of products. These products will eventu-
ally populate the various service layers of the
NATO Component Model, which capital-
izes on the top-down layered approach pro-
vided by the Technical Reference Model as
described in Volume 2 of the NC3TA.

Following are the principle components
of the NATO Component Model:
• Network Services: These constitute the

basic transparent interfaces between the
platform and the underlying networking
infrastructure, including the IP layer serv-
ices.

• Kernel Services: These are that subset of
the NCOE component segments that are
required for all workstations and servers
(see Figure 3). At a minimum, this sub-set
would consist of the operating system,
windowing software, security services,
segment installation software, and an
executive manager.

• Infrastructure Services: These services
directly support the flow of information
across NATO systems. Infrastructure
services provide a set of integrated capa-
bilities that the applications will access to
evoke NCOE services.

• Common Support Application Services:
These services are necessary to view data
in a common way (share data) across the
network. They essentially promote inter-

Software Around the World

6 CROSSTALK The Journal of Defense Software Engineering August 2001

M
anagem

ent

B
ase Standards

&
 P

rofiles

Architectural M
odels

&
 Descriptions

Figure 2: Relative Structure of the NC3TA

CCooaalliittiioonn IInntteerrooppeerraabbiilliittyy
AAccrroonnyymm GGuuiiddee

C3 Consultation, Command and
Control.

C4ISR Command, Control,
Computers, Intelligence,
Surveillance, and
Reconnaissance.

ISSC International Social Sciences
Council

NATO North Atlantic Treaty
Organization.

NIE NATO C3 Interoperability
Environment.

NC3B NATO Consultation,
Command and Control
Board.

NIF NATO Interoperability
Framework.

NOSWG NATO Open Systems
Working Group.

NC3TA NATO C3 Technical
Architecture.

AIS Automated Information
System.

NCSP NATO C3 Common
Standards Profile.

NCOE NATO C3 Common
Operation Environment.

operability among various mission appli-
cations.

• Application Programming Interfaces:
These are integrated into the NCOE
through a common set of application
programming interfaces, which are
invoked by the applications and services
as required.

• Data Component Definition: This refers
to the way in which data is taken into
account in the NCOE and is related to
the main components of the NCOE
(common support application services,
infrastructure services, kernel service) and
even, out of NCOE components stricto
sensu, to mission applications.

• Support Services: These include methods
and tools, information repository, train-
ing services, system management, and
security.

Segmentation is one of the most debat-
ed and often discussed features of the
NCOE. Segmentation can be defined in
terms of the functionality that is seen from
the end-user’s perspective. It allows the
user(s) to easily add only those required
modules that are deemed necessary by the
end-user community. This way, the end user
may view the NCOE as a set of building
blocks in which a system is built. Since the
NCOE is not a system in and by itself, it
can be more easily understood as the foun-
dation for building open systems through
such inherent features as segmentation. The
overall concept for segmentation is predicat-
ed on national9 as well as commercially
viable efforts.

As noted previously, one of the goals
and objectives of the NC3TA is the devel-
opment of a common core. In direct

response to this need, the Bi-SC AIS core
will eventually be implemented utilizing
those standards and products stipulated by
the NCSP and NCOE. However, to do so
will require that the basket of products be
populated in the NCOE. The initial version
of the NCOE was released in July of 1999
as Volume 5 of the NC3TA. The latest
NC3TA version 2.0 was approved in May
2001 by the NC3 board. Version 2.0 pro-
vides an outline of the basket of products, as
well as the set of interoperability standards
profiles to be used by the Bi-SCs.

CCoonncclluussiioonn
Interoperability has long been an elusive
and sought after goal. Especially, within the
realm of coalition information systems.
However, a well defined architectural
approach can lay the structural foundation
necessary to attain interoperability for
diverse military information systems in the
future (see Figure 4).

When all five volumes of the NC3TA
are finalized, it is anticipated that the struc-
tural foundation will be in place for future
coalition systems to build systems upon for
years to come.u

RReeffeerreenncceess
1. Wentz, Larry, Lessons From Bosnia: The

IFOR Experience, National Defense
University Press, Washington, D.C.,
1997, p. 434.

2. Moxley, Frederick I., Interoperability
and the DII COE, Proceedings of the
International CIS Interoperability
Conference, London, March 2000.

3. Moxley, Frederick I., On the
Specification of Complex Software
Systems, Proceedings of the Second
IEEE International Conference on
Engineering of Complex Computer
Systems, Oct. 1996.

4. Joint Publication 1-02, Joint Chiefs of
Staff, Washington, D.C., 1994.

5. Vogt, Bernd (Col., GE), An Outline of
NATO C3 Standardization Interop-
erability Policy Issues, Proceedings of
the International CIS Interoperability
Conference, London, March 2000.

6. NATO C3 Technical Architecture
(NC3TA), Version 1.0, July 30, 1999.
NATO HQ, B-1140 Brussels, Belgium.

7. Simon, Lucien (Lt. Col., FR), NOSWG
Briefing on the NATO C3 Technical

August 2001 www.stsc.hill.af.mil 7

A Foundation for Coalition Interoperability Using NATO’s C3 Technical Architecture

Figure 3: NCOE Component Model

Figure 4: Interoperability and the NC3TA

FFrreedd MMooxxlleeyy,, PPhh..DD..,, is a
senior technical advisor
within the Defense Infor-
mation Systems Agency.
He has several years of expe-
rience designing, develop-

ing, implementing, and managing a variety of
software systems for the Department of
Defense, as well as other agencies throughout
the federal government. Dr. Moxley is present-
ly the principal U.S. representative to NATO
for open systems. His research interests include
distributed software system architectures, arti-
ficial intelligence, and software design
methodologies. Dr. Moxley holds advanced
degrees in both telecommunications and com-
puter information systems and sciences.

DDeeffeennssee IInnffoorrmmaattiioonn SSyysstteemmss AAggeennccyy
55660000 CCoolluummbbiiaa PPiikkee
FFaallllss CChhuurrcchh,, VVAA 2222004411
EE--mmaaiill:: mmooxxlleeyyff@@nnccrr..ddiissaa..mmiill

LLtt.. CCooll.. ((AArrmmaammeenntt))
LLuucciieenn SSiimmoonn is chairman
of the NATO Open
Systems Working Group of
the NATO C3 Board’s
Information Systems Sub-

Committee. He joined the NATO C3 agency
in September 1997 as a French National
Expert. From 1993 to 1996 he was program
manager for the French Army Command,
Control Information System (CCIS) after
having been responsible for various activities
within the French CCIS domain. He graduat-
ed in the field of armament engineering and
holds a post-graduate degree in computer sci-
ence. In 1997 Simon graduated from the
French Joint Defense Staff College.

NNAATTOO CC33AAggeennccyy
RRuuee ddee GGeenneevvee 88
BB--11114400 BBrruusssseellss,, BBEE
EE--mmaaiill:: lluucciieenn..ssiimmoonn@@nncc33aa..nnaattoo..iinntt

EEllbbeerrtt JJ.. WWeellllss has more
than 20 years experience
in the development and
implementation of U.S.
national and NATO C3
systems. He is currently

at the U.S. Mission to NATO where he
is responsible for information system
matters. Previous NATO assignments
included tours at the former STC and
NACISA. Previous U.S. national assign-
ments included the position as project
manager of the U.S. Navy Research &
Design Distributed C2. Wells holds
master’s degrees in both electrical engi-
neering and computer science.

UU..SS.. MMiissssiioonn ttoo NNAATTOO
AAuuttoorroouuttee ddee ZZaavveenntteemm
11111100 BBrruusssseellss,, BBEE
EE--mmaaiill:: eewweellllss@@mmiittrree..oorrgg

Architecture, Chairman’s Report to the
NC3B ISSC, NATO HQ, Brussels,
Belgium, Oct. 1999.

8. Wells, Elbert J., The NCOE: Keystone
to NATO Interoperability, Proceedings
of the London AFCEATechnet
Conference, Oct. 1999.

1. Item 4 of the Defense Capabilities

Initiative issued during the Washington
Summit on April 23-24, 1999.

2. C4ISR Architecture Framework, Version
1.0.

3. IEEE Std 610.12 lists complete defini-
tion.

4. Within NATO, C3 refers to “Consul -
tation, Command, and Control.”

5. The two Major NATO Commands, i.e.,
Supreme Headquarters Allied Powers

Europe (SHAPE) and Supreme Allied
Commander Atlantic (SACL-ANT).

6. For more details, see the NATO C3
Interoperability Environment (NIE).

7. For a complete description, see NC3TA
Vol. 1.

8. The NC3TA is accessible at
http://194.7.79.15

9. For more details see DII COE at
www.disa.mil

8 CR O S S TA L K The Journal of Defense Software Engineering August 2001

Software Around the World

We accept article submissions on all software-related topics at any time;
issues will not focus exclusively on the featured theme.

Please follow the Author Guidelines for , available on the Internet at
www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf

August 2001 www.stsc.hill.af.mil 9

Micro Electronics and Computer
Technology Corporation (MCC)

organized a Strategic Technology Tour
(STT) of India. The reasons for the tour
were twofold:
1. To get an understanding of the state of

software development in India.
2. To understand opportunities for part-

nering with Indian organizations.
Several North American and European
companies were represented on the STT
team, as was the Center for Information
Systems Engineering, Carnegie Mellon
University. This author was one of the rep-
resentatives of that university.

During this two-week tour, the STT
team made site visits to Indian-owned
software firms, Indian software develop-
ment centers of North American firms,
and joint ventures. Also, team members
met with several governmental and quasi-
governmental organizations related to the
Indian software industry, and participated
in four industry roundtables organized by
the Software Technology Parks of India
(STPI).

GGoovveerrnnmmeenntt IInnvvoollvveemmeenntt
In recent years, the government of India
has strongly encouraged the development
and export of software by Indian firms.
The STPI is a quasi-public organization
established by the government of India,
Department of Electronics. It plays an
important part in providing the infrastruc-
ture for the development of the Indian
software industry.

STPI provides physical facilities by
making office space available on favorable
terms to software firms, which conduct a
high proportion of export work. In addi-
tion, STPI has created an innovative data
communications network that employs
microwave communications between soft-
ware development facilities and a local

STPI node, and satellite links for long-
haul segments (including international).
Also, software firms that function under
the STPI are able to import computer and
telecommunications gear for use in their
development centers without paying
import duty.

Additionally, state governments are
strongly involved in software development
activities. The state of Andhra Pradesh for
example, is very actively working on estab-
lishing state-of-the-art facilities and infra-
structures in Hyderabad, the capital. The
STT team visited with the chief minister
of Hyderabad, who firmly believes in the
important role information technology
would play in the development of his state
as well as the entire country.

TTeecchhnniiccaall CCaappaabbiilliittiieess aanndd
MMeetthhooddss
Indian software firms are leaders in soft-
ware quality and managing quality
processes, although they are typically fol-
lowers in the software development tech-
nology domain. The firms the team visited
focus on using current-generation tools to
maintain and develop software for paying
customers, rather than on developing the
next generation of tools and techniques.

Most Indian software firms use a vari-
ety of software development models –
waterfall, spiral, and rapid application
development – with the choice driven by
the requirements of a particular project
such as maintenance or development.
Several Indian firms have developed
impressive in-house systems for software
development support and project manage-
ment. Most firms have their process docu-
ments and manuals on the Intranet or
other in-house information system for
easy online access.

Contrary to our initial assumptions,
many Indian companies are no longer sat-

isfied with “just writing code.” Most com-
panies the team visited expressed an inter-
est in moving up the value chain in their
relationship with their Western customers.
Some companies are already exhibiting
increasing capabilities in architecture and
whole systems design, systems integration,
and systems migration. Favored applica-
tion domains include banking and
finance, electronic commerce, health-care
information systems, electronic com-
merce, and telecommunications and net-
work management.

The STT team, overall, was very
impressed with the competence of Indian
companies. Most of the companies who
had undergone a formal Capability
Maturity Model®-based assessment were
at a Level 3 or 4. The team had the gener-
al impression that even the companies that
had not gone through a formal assessment
were at a high maturity level. It is to be
noted that unlike U.S. companies, Indian
companies are reluctant to go through an
assessment until they are absolutely sure
that they will be assessed at least a Level 3.

EEdduuccaattiioonn aanndd TTrraaiinniinngg
It is estimated that India has about
150,000 information technology (IT) pro-
fessionals. This number can be broken
down into roughly 60,000 software engi-
neers, 15,000 graduates in computer sci-
ence and related disciplines, and 75,000
from other engineering disciplines. In
contrast to the wimp factor sometimes
attached to it in the United States, an IT
career is highly desirable in India, and cur-
rently has earning power even greater than
physicians.

A key piece of infrastructure for the
Indian software industry is the country’s

TThhee SSttaattee ooff SSooffttwwaarree DDeevveellooppmmeenntt iinn IInnddiiaa
Chellam Embar

ChangeShop, Inc.

Recently software development costs in this country have skyrocketed and qualified talent has been difficult to find.
An increasing number of organizations have been exploring ways to get developmental help from other countries.
This article is the result of the author’s participation in a Strategic Technology Tour of India and will try to shed
some light on the status of the software industry in that country and how it can benefit the software development
needs in the United States.

® The Capability Maturity Model and CMM are
registered in the U.S. Patent and Trademark Office.

educational system. There are some 210
universities in operation in India. These
universities currently graduate more
than 25,000 students in computer sci-
ence and related disciplines each year,
and initiatives are under way to dou-
ble this number. The Indian Institutes
of Technology and the Indian Institute
of Science are widely acknowledged to
be excellent. The Indian Institutes of
Technology have strict admissions crite-
ria, and attract the very best of students.
As a result, their graduates are much cov-
eted by the top software companies such
as Hughes Software Systems, Citicorp
Information Technology Industries,
Motorola India Electronics, Infosys,
Wipro Systems, and HCL Consulting.

Despite many new entrants to the soft-
ware engineering ranks, India is now faced
with a labor shortage with regard to the
highly talented professionals who leave to
seek employment in the United States and
other Western countries.

Training after hiring is also a high pri-
ority for Indian software organizations.
Across the sites the team visited, each tech-
nical employee receives between 1.5 and
3.5 weeks of training each year. One com-
pany has three months of classroom train-
ing and an additional three months of on-
the-job training for each new employee.
Areas emphasized for training included
information system technologies, applica-
tion domains, design/development
processes, quality assurance methods, and
tools. The most pressing skill needed in
the industry is for project managers, and
most companies are developing programs
to train (some to certify as well) their
promising technical personnel for those
positions. Several companies have their
own training institutes to develop and
manage the delivery of the training mate-
rial.

MMaannaaggiinngg HHuummaann RReessoouurrcceess
Companies used various recruitment
methods, including newspaper advertise-
ments, working with placement consult-
ants, and recruiting on university and col-
lege campuses (quoted as the main
source). Some companies claimed to have
very stringent recruitment criteria. Only
top of the class were invited for the initial
interviews and the companies also admin-
istered several internal tests before the hir-

ing decisions were made. Most companies
preferred graduates with computer science
degrees. One company hired graduates
from any engineering discipline, but con
ducted a mandatory 12-week initial train-
ing before commencing regular work.

Even though highly qualified talent is
more readily available in India than in the
United States, retention seems to be a
large issue. The attrition rate quoted var-
ied between 12 percent to 30 percent.
Main reasons cited were the IT profession-
als’ desire to emigrate to the United States,
or their being hired away by other large
companies. Indian software engineers can
now frequently find positions in North
America or Europe with the employer
willing to make arrangements for a work
visa.

Indian software companies are seeking
to counter this problem by creating
opportunities for young software engi-
neers to work abroad, and by wooing mid-
dle-aged technical managers who may
want to return to India to raise their chil-
dren. Nevertheless, this brain drain is so
severe that several of the firms we met with
avoid recruiting from the six Indian
Institutes of Technology because as many
as 95 percent of their graduates go abroad
for jobs or further education.

The most successful companies seem
to be those that have been the most inno-
vative in managing this issue. These com-
panies are stepping up their attention to
employee quality-of-life issues such as
choice of assignments and locations,
working hours, and training. Several tac-
tics used to retain employees include free
or subsidized housing, stock options,
opportunities to work abroad, free or sub-
sidized meals, assistance in buying cars,
and free transportation. Providing job sat-

isfaction was also mentioned as a key
retention factor.

The STT team was consistently
impressed with the focused attention
paid to retention issues by the human
resources departments of most Indian
companies. Several attribute this focus
to their use of formal models. One uses
the Software Engineering Institute’s

People Capability Maturity Model (P-
CMM), while another uses its own organ-
ization maturity model. Like the Software
Capability Maturity Model (SW-CMM),
the P-CMM helps an organization self-
assess its capability in key process areas
associated with each of five levels of matu-
rity, and guides an organization in improv-
ing its level of maturity.

PPrroojjeecctt MMaannaaggeemmeenntt
The Indian software industry’s approach
to managing IT projects has evolved sig-
nificantly during the past decade. It is
rooted in the industry’s experience with
customers in North America and reflects a
number of standard U.S. approaches to
project management. Under the influence
of ISO 9000 and the SW-CMM, their
approach has evolved to be more focused
on quantitative process management and
in-process quality. Today, people, process,
and quality considerations primarily drive
it.

The project manager is involved with
the project planning exercise right from
the beginning. The projects are controlled
tightly with the help of separate execution
plans, quality plans, and configuration
management plans. They assess status by
using quantitative data (metrics) collected
with in-house developed tools. Many
companies use a process guide containing
the entry criteria, task identification, veri-
fication methods, and exit criteria for each
process element to plan and manage their
projects. Typically, the guides contain
about 20 to 25 process elements (six to
eight management, 10 to 12 development,
and four to six support) and are available
on-line to all their employees.

GGlloobbaall CCoommppeettiittiivveenneessss
Some companies such as Digital and Sun
Microsystems have formed partnerships
with North American and European com-
panies in joint software development.

10 CROSSTALK The Journal of Defense Software Engineering August 2001

Software Around the World

“It is
estimated that
India has about

150,000 information
technology

professionals.”

“It is
estimated that
India has about

150,000 information
technology

professionals.”

August 2001 www.stsc.hill.af.mil 11

The State of Software Development in India

Other companies have dedicated market-
ing organizations overseas. Even though
the software development companies cur-
rently enjoy a pricing advantage (develop-
mental costs in India are about one-third
of those in the United States), they expect
to lose that advantage in the next three to
five years and at that time, they expect to
compete solely on the basis of quality.

CCoonncclluussiioonn
Even though the STT team was aware of
increased software development activity in
India, some members had assumed that
most of it consisted of writing code for
systems designed by North American and
European companies. It was also assumed
that developmental costs in India were
considerably cheaper and therefore desir-
able to North American and European
companies. As mentioned earlier though,
this price advantage is likely to dwindle as
the premier software companies, which
take pride in their products and processes,
hope to compete strictly on the basis of
quality.

This writer’s general observation was
that the work ethic in the organizations
the team visited in India was very high.
Even though some of the organizations we
visited had not gone through a CMM-
based assessment as yet, they were strin-
gently following all of the key processes in
anticipation of reaching Level 3 or 4.
Unlike the individualistic culture in many
U.S. organizations, which resists following
processes, Indian companies expect
processes to be followed and there are no
questions asked. Also, a high value is
placed on collecting and tracking metrics
and project management.

At the conclusion of the tour, the STT
team certainly had a better understanding
and appreciation for software develop-
ment capabilities in India. Some of the
companies on the tour that already had
operations in India have greatly expanded
their investment. Other companies such as
American Express and Oracle have opened
up new operations. According to the
Software Technology Parks of India, which
has 19 centers throughout the country,
software export has shown an increase of
95 percent during the past five years.

Indian software companies place great
value in understanding and meeting their
customers’ requirements and providing

the highest quality products and services.
Language is not a barrier since English is
the language of business in India. The
United States has much to gain in associating
with Indian companies in terms of working
with a highly disciplined workforce with a
view toward obtaining timely, cost-effective
software of the highest quality.u

AAcckknnoowwlleeddggeemmeenntt
The author wants to acknowledge and
thank Micro Electronics and Computer
Technology Corporation and Global
Technology Services for organizing the
Strategic Technology Tour of India.

AAbboouutt tthhee AAuutthhoorr

CChheellllaamm EEmmbbaarr is the
principal of ChangeShop,
Inc., a consulting firm
that offers services in
Technology Introduction

and Transition. He is also a visiting scien-
tist with the Software Engineering
Institute, of Carnegie Mellon University.
Embar has more than 20 years of change
management experience with technology
intensive organizations in private industry,
military, government, and non-profit sec-
tors. He has helped organizations in the
areas of process improvement, transition
and change management, strategic vision-
ing, culture change and values identifica-
tion, productivity, profitability, and quali-
ty improvement efforts, employee involve-
ment programs, communication skills
training, team building, conflict resolu-
tion, performance management, manage-
ment development, and career develop-
ment. Embar recently participated in a
Strategic Technology Tour of India, and
keeps current with the state software
development in that country. Embar
received an MA degree in Human
Development from Governors State
University, University Park, Illinois. He is
the author of several books and publica-
tions.

CChhaannggeeSShhoopp,, IInncc..
1100881199 PPiippiinngg RRoocckk CCiirrccllee
OOrrllaannddoo,, FFLL 3322881177
EE--mmaaiill ccee@@cchhaannggeesshhoopp..ccoomm
PPhhoonnee:: ((440077))--338844--44993399
FFAAXX:: ((660033))--884433--00006644

Get Your CROSSTALK

Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-

5555

Or request online at www.stsc.hill.af.mil

NAME:_______________________________

RANK/GRADE:_______________________

POSITION/TITLE:_____________________

ORGANIZATION:_______________________

ADDRESS:____________________________

BASE/CITY:__________________________

STATE:______ ZIP:____________________

PHONE: _____________________________

FAX:_________________________________

E-MAIL: _____________@_______________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

FEB 2000 RISK MANAGEMENT

APR 2000 COST ESTIMATION

MAY 2000 THE F-22

JUN 2000 PSP & TSP

NOV 2000 SOFTWARE ACQUISITION

DEC 2000 PROJECT MANAGEMENT

JAN 2001 MODELING & SIMULATION

APR 2001 WEB-BASED APPS

MAY 2001 SOFTWARE ODYSSEY

JUN 2001 SOFTWAREDEVELOPEMENT

JUL 2001 TESTING& CM

What is the current status in quality
and process improvement of

Australia’s software industry? The consen-
sus is that Australia needs to move quickly
to adapt and deploy the tools available in
order for its software industry to have the
best opportunity for future global compet-
itiveness. This view is based on discussions
with key players in the field – acquirers,
research institutes, and consultants – and
on additional desk research.

Almost all information industries’
products involve software, whether it is
explicit software systems or software
embedded in electronic products or sys-
tems. A recent report published by the
Information Industries and Online
Taskforce, The Stocktake of Australia’s
Information Industries3 had this conclu-
sion:

… Australia could become a significant
global player in a range of information
industries segments and, arguably, has a
strategic imperative to do so. Australia’s
performance to date has shown substan-
tial promise of our ability to achieve this
goal … Australia has world class
strengths in many aspects of the infor-
mation industries. We are advanced
users of IT&T, with most measures put-
ting us amongst the highest per capita in
the world … Our information indus-
tries have advanced and demanding
clients in sectors such as finance, retail,
air transport, government, energy, agri-
culture and mining, for which the
industry has designed world-class solu-
tions.

It is clear, then, that for the global
potential of Australia’s information indus-
try to be achieved, Australia’s software
industry must be among the world’s lead-
ers in employing appropriate technologies.
That includes employing best practices in
all its business aspects.

QQuuaalliittyy aanndd PPrroocceessss
IImmpprroovveemmeenntt BBeenneeffiittss
The British Standards Institution (BSI)4,
which has been active in the development
of software quality standards, admits that
it is generally accepted that the costs of
poor software quality are much easier to
quantify than some of the benefits of
implementing quality systems and process

“Despite the
benefits of

software quality
and process

improvement being
demonstrated, why

have smaller
developers been slow

to adopt
technologies which

will have clear
benefits on their
bottom line …”

improvement. The costs to the developer
of rework and after-sales support, and to
customers associated with system non-
availability and maintenance charges, are
more clearly visible.

The benefits of using a quality system
lie in improvement in quality and repeata-
bility reflected in increased customer satis-
faction, higher process efficiencies, and a
reduction in failure costs. Failure costs

typically comprise costs of correcting
defects, cost of overruns against time and
budget, unnecessarily high maintenance
costs, and loss of business due to poor rep-
utation.

The BSI quotes typical failure costs of
up to 20 percent of turnover for develop-
ers without a quality system, and that up
to half these costs could be saved by imple-
mentation of a quality system.

Case studies of Australian and overseas
software projects also highlight the bene-
fits to both developers and acquirers of
adoption of software quality and process
improvement technologies. Benefits for
developers include higher quality and pro-
ductivity, faster delivery and time to mar-
ket, lower costs, and higher profitability;
for acquirers, greater predictability of
scheduling, quality and cost, and thus
lower risk and happier customers/users.

Several initiatives in software process
improvement are underway or being
developed in Europe. It appears to be a
common characteristic of software indus-
tries that awareness of the benefits of qual-
ity and process improvement are greatest
in larger organizations, and therefore
many programs focus on addressing the
needs of smaller developers.

In a paper to the Software Engineering
Australia 2000 Conference in Canberra,
Australia, Fran O’Hara, principal consult-
ant at Insight Consulting Ltd, Dublin,
reported that uptake of software process
improvement (SPI) “has not yet become
ingrained into the culture of the software
industry in the manner that it now is in
the U.S.” Other commentators suggest
that, while awareness of SPI is greater in
the United States than elsewhere, adop-
tion has been principally among the larger
firms.

The Software Process Improvement in
Regions of Europe (SPIRE) program is an

12 CROSSTALK The Journal of Defense Software Engineering August 2001

CCaann AAuussttrraalliiaa IImmpprroovvee IIttss SSooffttwwaarree PPrroocceesssseess??
Alastair James1

STM Consulting

It is critical to the competitiveness of Australia’s information industry that the software industry maintains world-
class performance by employing best practices in all its business aspects, but most particularly in software develop-
ment and acquisition. Software Engineering Australia (National) commissioned research on the key quality and
process improvement issues being faced by Australia’s software industry2. This article examines the current quality
and processes improvement status of Australia’s software industry.

example of an initiative aimed at the small
and medium enterprise market. SPIRE is a
European Systems and Software Initiative
project financially supported by the
European Commission. The Centre for
Software Engineering in Dublin under-
took the project in Ireland and coordi-
nated activities with partners in Austria,
Italy, and Sweden.

SPIRE targets the needs of software
development groups with up to 50 staff
(either in small software companies or small
software units in larger organizations). It
has been piloted in more than 70 organiza-
tions. A key feature of the work has been
the analysis and dissemination of the results
through a Web database so that others can
learn from the pilot’s experience.

The results showed measurable
improvements across participants in all the
countries where the project was run. The
project was undertaken at no charge to par-
ticipants, who record high levels of satisfac-
tion with the results. Clear evidence of suc-
cess is demonstrated by the fact that more
than three-quarters of participants felt that
they would definitely continue improve-
ment projects without any form of external
funding.

Although a range of SPI approaches
have been deployed in overseas markets, the
majority are based on Software Process
Improvement and Capability Determi-
nation (SPICE) or the Capability Maturity
Model® (CMM®) approaches, in some
cases locally adapted to suit the needs of
smaller companies. SPICE is an interna-
tional initiative to develop a widely accept-
ed standard for software process assessment
involving groups in many countries around
the world. Sponsored by the U.S.
Department of Defense (DoD), CMM has
been developed at the Software
Engineering Institute at Carnegie Mellon
University.

Despite the demonstrated benefits of
software quality and process improvement,
why have smaller software developers over-
seas and in Australia been slow to adopt
technologies that will have clear short-term
benefits on their bottom line, and in the
longer term may be crucial to the industry’s
international competitive survival?

AAccttiivviittiieess iinn AAuussttrraalliiaa
In Australia, there is no definitive current
information on the levels of adoption of
quality software assurance and process
improvement methods among developers.
Nevertheless, anecdotal evidence suggests

awareness and adoption among small-to-
medium enterprises is very low.

According to Geoff Bowker, a software
engineer and former executive director of
SEA in New South Wales, Australia, there
are several potential factors affecting take-
up of software quality and process improve-
ment technologies. While awareness of
such technologies may be high among larg-
er acquirers and developers, the level of
general awareness of both the availability of
solutions and indeed of the problem is an
issue.

Many acquirers, including systems
integrators and consultants advising acquir-
ers are not aware that approaches are avail-
able to improve their confidence in on-
time, on-budget, on-quality delivery, and
thus create happy customers. Equally, while
some developers have adopted quality stan-
dards (for example ISO 9000 series), par-
ticularly among small-to-medium enter-
prises, there is no widespread recognition
that technologies are available to address
the specific software development and
acquisition processes.

Among those with some awareness of
process improvement technologies, there
is often a perception that they are suitable
only for large organizations, that they are
costly and time consuming to implement,
that their benefits are not proven, and that
they require a major commitment of
resources. This suggests that many organi-
zations have not been able to link these
technologies with the business objectives
of reduced cost and improved productivi-
ty and customer satisfaction.

A chicken and egg situation in the
market for SPI may partly explain low lev-
els of awareness and adoption. Although
ongoing work has been proceeding for sev-
eral years within institutions such as the
Software Quality Institute (SQI) at

Griffith University and the Australian
Software Engineering Institute (ASEI) in
South Australia among others, commer-
cial products and services have only
recently begun to emerge in the
Australian market. Those that have
been available have mainly been U.S.
developed, and have proven unsuited in
their original form to the needs of the

typical Australian software company. On
the other hand, had there been greater
demand, local organizations would
undoubtedly have responded earlier with
adaptations more suited to local needs.

The DoD, as a major acquirer of soft-
ware intensive systems, has been in the
forefront of investigation of approaches
aimed to reduce risk in software acquisi-
tion. Within the Defense Materiel
Organization, a Software Acquisition
Reform Program has been established to
review approaches, conduct trials, and
develop strategies to achieve this aim.
These will need to embrace people,
processes, and technologies, on the part of
both acquirer and developer, to reduce risk
and improve software quality.

So far, one benefit from the U.S.
industry’s experience is an emphasis on
SEI’s CMM programs at Carnegie Mellon
University (a body sponsored by the
DoD). Other initiatives include sponsor-
ship of work with SQI on Capability
Maturity Model IntegrationSM and SPICE
methodologies, with the results being fed
back to SEI, and liaison with the UK
Ministry of Defense.

Some might dismiss such programs as
being aimed at large defense contractors
with little relevance for Australian small-
to-medium enterprises. However, as many
larger defense contractors in Australia sub-
contract work to small-to-medium enter-
prises, there are obvious benefits if both
prime- and sub-contractors are working
within the same quality framework. Also,
many of the quality improvement ele-
ments of these programs are generic, with
potential impact throughout the software
industry. CMM programs have been
adapted to the needs of smaller organiza-
tions, too.

In collaboration with SEA2, SQI has
recognized the need for approaches that
can generate incremental improvements to
demonstrate business benefits, particularly

Can Australia Improve Its Software Processes?

August 2001 www.stsc.hill.af.mil 13

“The BSI
quotes typical

failure costs of up to
20 percent of turn
over . . . without a
quality system . . .”

“The BSI
quotes typical

failure costs of up to
20 percent of turn
over . . . without a
quality system . . .”

for smaller developers. According to
Professor Geoff Dromey, director of the
institute, a new Rapid Assessment
Program (based on SPICE technology)
has been developed. About 30
Queensland software developers have
successfully completed trials. Companies
such as these typically do not appreciate
the strategic benefits of SPI programs.
They are too busy running hard to com-
plete projects to be able to justify dedi-
cating the required resources, so quick
results are required.

The program provides a relatively
low-cost combination of assessment,
mentoring, and training during about six
months to deliver a structured framework
for the developer to implement ongoing
improvements. SQI was founded in
1991, and has worked extensively with
overseas institutes, including SEI, on
SPICE and CMM programs among oth-
ers.

The ASEI in Adelaide has also
responded to a similar need for afford-
able, bite-sized, easily digestible programs
suited to small-to-medium enterprises.
Founded in 1995, ASEI is a cooperative
enterprise between the software industry
and academic and research institutions in
South Australia and is supported by the
South Australian Government.

Apart from a few larger branches of
defense contractors, all software develop-
ers in South Australia are small-to-medi-
um enterprises. ASEI is developing a
suite of services called Sound Software
Engineering Practices for small-to-medi-
um enterprises tailored to their needs as
identified in research. In phase one of
these services2, emphasis is on configura-
tion management, which the research
highlighted as a major issue in more than
60 percent of small-to-medium enterpris-
es. ASEI also has plans to roll out other
modules addressing further SPI areas.

The phase-one service includes a high
proportion of customized assessment and
mentoring time that provides consider-
able flexibility and adaptability.
Therefore it depends on the availability
of trained and experienced staff for
implementation. Trials have been success-
fully completed with 15 small-to-medi-
um enterprises (mostly South Australian,
but one each from Victoria and Northern
Territory).

CCoonncclluussiioonn
There appears to be much good work in
software quality and process improve-
ment taking place in Australia. Increased
activity to publicize that there is a better
way to build and acquire software will
result in higher awareness and create
demand for the programs becoming
available. This then raises the issue of
how to ensure adequate resources with
appropriate experience and training to
support a national rollout.

If deployed more widely, programs
tailored to the needs of small-to-medium
enterprises, can assist in promoting the
concept that worthwhile returns can be
achieved on modest investments of time,
resources, and money. u

NNootteess
1. Alastair James, director of STM

Consulting, undertook research for
this report on behalf of SEA.

2. These research programs were funded
through the Department of
Communications, Information Tech-
nology and the Arts via Software
Engineering Australia’s (National)
(SEA) project funding.

3. Stocktake of Australia’s Information
Industries, A report by STM
Consulting Pty Ltd for the
Information Industries and Online
Taskforce, DIST, Canberra, 1998

4. www.tickit.org/quality.htm

14 CROSSTALK The Journal of Defense Software Engineering August 2001

Software Around the World

SSEEAA PPrrooffiillee
This article is reprinted with editing from
the Software Engineering Australia
(National) (SEA) Software Journal,
November 2000. SEA is an industry-led
body with the charter of improving the
quality and reliability of software in
Australia. SEA is supported by the
Commonwealth through the
Department of Communications,
Information Techno- logy, and the Arts.

To achieve this Charter SEA focuses
on these three core mission statements:
• Provision of information and services

to assist entrepreneurs and managers to
build evermore robust software busi-
nesses focused on exceeding customer
expectations (business development).

• Provision of services for both develop-
ers and acquirers of software and soft-
ware systems support for the continu-
ous but rapid improvement of produc-
tivity, timeliness, and quality levels.

• Smoothing the path to new technology
awareness, understanding, and adop-
tion.

SEA works collaboratively with
domestic and global alliances, with gov-
ernment departments, organizations, and
professional bodies to drive its mission.
SEA serves as an information network to
all those in the software industry involved
in the research, development, produc-
tion, acquisition, and use of software in
Australia.

EE--mmaaiill:: iinnffoo@@sseeaannaattiioonnaall..ccoomm..aauu
wwwwww..sseeaannaattiioonnaall..ccoomm..aauu

Dear CrossTalk:

Theron Leishman’s June 2001 article,
Extreme Methodologies for an Extreme
World, is a nice introduction to the agile-
methods world. However, Figure 4,
“Evolutionary/Spiral Model,” is not the
version of this model being endorsed by
the DoD 5000 series of regulations. It is
instead an Incremental Waterfall process,
an example of the “Hazardous Spiral
Look-Alikes” that Fred Hansen and I dis-
cussed in our May 2001 CrossTalk arti-
cle, The Spiral Model as a Tool for
Evolutionary Acquisition. Assuming that a
point-solution design for the require-
ments in increment 1 can be scaled up to
the requirements of future increments
may work well for small projects

done by refactoring experts, but will gen-
erally be a disaster for larger-scale and
embedded systems.

One way to fix Leishman’s Figure 4 is
to replace the “Requirements Analysis,
Preliminary Design, ...” segments of the
spiral by “Inception, Elaboration, Const-
ruction and Transition.” These phases,
used by the Rational Unified Process and
MBASE, use risk considerations to deter-
mine under what conditions an extreme
method or a more heavyweight method
will best fit the system’s needs.

Sincerely,
Barry Boehm
University of Southern California

LL ee tt tt ee rr tt oo tt hh ee EE dd ii tt oo rr

Among the various metrics used to
measure software system maintain-

ability, the class of regression models
defined by Coleman–Oman and others
[1] have raised particular interest in the
academic, industrial, and public adminis-
tration circles. These models are based on
a combination of variables (independent
metrics) in a polynomial expression that
allow calculation of the maintainability
index. The studies documented by sever-
al software laboratories, the University of
Idaho, and Hewlett Packard have shown
the high significance, in the software sys-
tem maintainability evaluation, of the
regression models based on Halstead
metrics, McCabe's Cyclomatic
Complexity, Lines of Code, and Number
of Comments.

It is known that the software system
maintainability is of the utmost impor-
tance, since through it the following is
possible:
• Monitor changes to the software sys-

tem and its quality characteristic.
• Make decisions about the most appro-

priate maintenance strategy for soft-
ware procedures by locating the source
code that could cause the greatest risks.

• Compare the quality of various soft-
ware systems and supply information
for the best choice among these sys-
tems.

TThhee CCoolleemmaann--OOmmaann MMooddeell
The most used model for determining the
maintainability index (MI) of a software
system is the Coleman-Oman model
described in [2]:

Model 1:

where:
• aveV is the average Halstead Volume per

module.
• aveV(g') is the average extended cyclo-

matic complexity per module.
• aveLOC is the average lines of code per

module.
• perCM is the average percent of lines of

comment per module.
It is known that the first version of

Model 1 contained the aveCM variable
(average lines of comment per module)
rather than the perCM variable (average
percent of lines of comment per module)
[2]. However, this first version was not sat-
isfactory because it was too sensitive to the
presence of a large number of comments.
This means that the presence of large com-
ment blocks, especially inside small mod-
ules, results in an increase of the maintain-
ability values. In order to correct such a
behavior, the aveCM variable was replaced
with the perCM variable and a threshold
value of 50 for this variable was deter-
mined and applied [2].

Welker and Oman suggested choos-
ing between Model 1 and the following
Model 2:

which is derived from Model 1 by remov-
ing the comments variable due to the con-
siderations on the comments arising from
code reading. They suggested using Model

2 when the following hypotheses are veri-
fied:
• The comments are not closely related to

the code. In such situations the com-
ments can become out-of-sync with the
code and therefore make the code less
maintainable.

• At the beginning of each module there
are large blocks of comments (compa-
ny-standard comments, for example)
that bring a negligible benefit to the
maintainability of the software. In such
situations biased estimates of the main-
tainability are highly probable.

• There are large sections of code that
have been commented out, which cre-
ates maintenance difficulties.

In short, the choice between the two
regression models depends on the evalua-
tion of the contribution of the comment
variable to the software maintainability.
Only when this contribution has been
demonstrated is it advisable to introduce
the number-of-comments variable in the
model. In a major research effort due to
Hewlett Packard [3], the following thresh-
olds for the evaluation of the maintain-
ability index, calculated by means of the
previous models, have been determined:

MI < 65 poor maintainability

65 < MI < 85 fair maintainability

85 < MI excellent maintainability

CCoommmmeennttss CCoommppoonneenntt
AAnnaallyyssiiss
If we analyze the contribution of the

August 2001 www.stsc.hill.af.mil 15

SSooffttwwaarree MMaaiinnttaaiinnaabbiilliittyy MMeettrriiccss MMooddeell::
AAnn IImmpprroovveemmeenntt iinn tthhee CCoolleemmaann--OOmmaann MMooddeell

Aldo Liso
AIPA

This article analyzes the contribution of the number-of-comments parameter used in the Coleman-Oman regression
model, a model aimed at determining the maintainability index of a software system. Some characteristics of this
parameter can prove to be unsuitable for application to many software systems. A change to the number-of-com-
ments parameter of the Coleman-Oman model will therefore be proposed, as well as a change of the way to obtain
the evaluation of the parameter. These changes do not touch the structure of the parameter and are likely to give
better results, which can be widely used. This article does not include research that results in a new parameter, but
is intended to stimulate thought within the software community that results in the required research and new
parameter.

Software Engineering Technology

16 CROSSTALK The Journal of Defense Software Engineering August 2001

perCM factor as indicated in Model 1

we can notice a sinusoidal path with max-
imum height equal to 50. The function
must be considered in the [0, 100] inter-
val, closed on the left and opened to right,
therefore excluding "100" value. In fact,
while it is possible to consider a module
without comments, it is senseless to con-
sider a module made up by comments
only.

By analyzing the path of this function
in relation to the maintainability metric,
we can notice that there are some draw-
backs to this function:
• The function has three peaks at 1 per-

cent, 25 percent, and 81 percent. Now,
while it is commonly accepted that a
normal value for the comment variable
is around 25 percent, the other two val-
ues are not justified.

• The decreasing path of the function in
the interval from the 1 percent to 9 per-
cent is inexplicable, since the trend
would have to be positive in this inter-
val.

• It is difficult to explain the function
path in the interval to the right of the

49 percent perCM value.
It is also important to make the fol-

lowing remarks. If the comments are sig-
nificant, as required by the Oman model,
the function must be increasing between 0
percent and a fixed maximum value (for
example 20 percent); then it must decrease
gradually for the successive values. Also we
believe that a situation in which the com-
ment value is around 80 percent is to be
preferred to the total absence of com-
ments. Therefore the value of the func-
tion, there, must be positive, even if its
contribution is insignificant. In conclu-
sion it is important to search a function
with a new path similar to the following
one in Figure 2.

TThhee PPrrooppoosseedd MMooddeell
MMooddiiffiiccaattiioonn
There are various solutions to this prob-
lem. In this article, a modification to the
model of Coleman-Oman is proposed
that leaves the structure of the original
metric unchanged.

The change is made by means of the fol-

lowing procedure. First of all it is neces-
sary to determine the multiplicative coef-
ficient K that better represents the contri-
bution to the maintainability of the com-
ment variable in the specific software sys-
tem to be evaluated. Then, once the set of
the values of the variable

has been calculated, it is possible to deter-
mine the parameter A = β5 by Equation 3:

The problem of the parameters esti-
mation consists in obtaining numerical
values for the coefficients, i.e., values for
the parameters multiplying each of the
variables of the Equation 3, and for the
intercept.

The estimate of β5 (A) parameter must
be obtained through the same calculation
process used to determine the estimates of
the other parameters of the model: the
intercept, the parameters of ln(aveV),
aveV(g'), and ln(aveLOC).

As for the determination of the coeffi-
cient K in the hypothesis, we neglect the
open reengineering criterion1; various
remarks can be made, and a great number
of different factors can influence its calcu-
lation (language, programming support
environment, etc.). We believe that the
parameter K is mainly dependent on the
used language. High-level languages gen-
erally require a greater percentage of com-
ments with an equal number of developed
lines of code. The diagram in Figure 3
shows the value of the component

for values of K = 2.46, K = 0.12, K = 0.16,
K = 0.20, in the case that the value of the
parameter β5 (amplitude) is equal to 50,
which is the value set by Coleman-Oman
in their model. Every language has its own
characteristic curve; the curves shown in
the diagram are obviously given by way of
example, because investigation in this
direction has not been carried out yet.

The main characteristics of these
curves are that they differ slightly in the
optimal value of the percentage of the
comments; however, they differ greatly
regarding the different values of comment
percentage for which it is assumed that to
exceed such threshold would have a nega-
tive influence on the maintainability.

Figure 1: Values of the Function:

Figure 2: Ideal Path of Comments Contribution

Software Engineering Technology

August 2001 www.stsc.hill.af.mil 17

CCoonncclluussiioonn
A method has been proposed to improve
the Coleman-Oman model by modifying
the contribution given by the comment
component. The contribution to the
improvement of the model of the β5

parameter calculation is particularly signif-
icant since this parameter, with the new
method proposed, will no longer be set
from the outside. Instead it will be deter-
mined simultaneously by means of the
same process of estimation adopted to
determine the estimates of the other
parameters of the model.

Future developments will therefore
have to regard the estimation of the coeffi-
cient K, the estimation of the parameters
of the modified Coleman-Oman model,

and the experimentation of such model in
industrial and public administration soft-
ware systems.

RReeffeerreenncceess
1. Welker, K.D. and Oman, P., Software

Maintainability Metrics Models in
Practice, Crosstalk, Vol. 8, pp. 19-23
Nov./Dec. 1995, www.stsc.hill.af.mil
/crosstalk/1995/nov/maintain.asp

2. Coleman, D.; Lowther, B.; and
Oman, P.; Using Metrics to Evaluate
Software System Maintainability,
IEEE Computer, Vol. 27(8), pp. 44-49,
Aug. 1994.

3. Coleman, D.; Lowther, B.; and Oman,
P.; The Application of Software
Maintainability Models on Industrial
Software Systems, University of Idaho,

Software Engineering Test Lab, Report
No. 93-03 TR, Nov. 1993.

4. Watson, A. and McCabe, T.,
Structured Testing: A Testing
Methodology Using the Cyclomatic
Complexity Metric, NIST, Sept.
1996, www.itl.nist.gov/div897/sqg/pu
bs/publications.htm

NNoottee
1. The open reengineering concept is

similar in that the abstract models
used to represent software systems
should be as independent as possible
of implementation characteristics such
as source code formatting and pro-
gramming languages. The objective is
to be able to set model standards and
interpret the resultant numbers uni-
formly across software systems [4].

AAddddiittiioonnaall RReeaaddiinngg
1. Coleman, D., Assessing Maintainability,

1992 Software Engineering Productivity
Conference Proceedings, Hewlett-
Packard, pp. 525-532, 1992.

2. Oman, P. and Hagemeister, J.,
Constructing and Testing of Polynomials
Predicting Software Maintainability,
Journal of Systems and Software, Vol.
24(3), March 1994.

Figure 3: Values of the Function:

AAbboouutt tthhee AAuutthhoorr

AAllddoo LLiissoo received the
Laurea degree in
Physics from the
University of Bari. He
is a senior member of
the technical staff of

Autorità per l’informatica nella Publica
Amministrazione (AIPA) the Authority
for I.T. in the Italy Public
Administration. Liso has 20 years of
experience working on software devel-
opment projects and he is Professor of
information systems at the DUSIT -
University of Rome “La Sapienza.”

AAIIPPAA
VViiaa IIssoonnzzoo,, 2211
0000119988 RRoommaa,, IIttaallyy
PPhhoonnee:: ++3399 66 8855226644 330055
FFaaxx:: ++3399 66 8855226644 225555
EE--mmaaiill:: lliissoo@@aaiippaa..iitt

Software Maintainability Metrics Model:An Improvement in the Coleman - Oman Model

v i s i t w w w . s t c - o n l i n e . o r g v i s i t w w w . s t c - o n l i n e . o r g
Software Technology Conference is the premier software conference within the Department of Defense

Call For Speakers and Exhibitors

Presentation Abstract Submittal
August 1 – Sept. 7, 2001

Exhibitor Registration Opens August 1, 2001

We invite you to submit a one-page abstract describing
your proposed presentation/tutorial/panel discussion,
to register to be an exhibitor, and to take part in next
year’s conference.

Participants and Exhibitors at STC have access to over
2500 attendees including leaders and decision-makers
working in software development.

For many years now, software practi-
tioners have been collecting metrics

from source code in an effort to better
understand the software they are develop-
ing or changing. Maintainability Index
(MI) is a composite metric that incorpo-
rates a number of traditional source code
metrics into a single number that indicates
relative maintainability. As originally pro-
posed by Oman and Hagemeister, the MI
is comprised of weighted Halstead metrics
(effort or volume), McCabe’s Cyclomatic
Complexity, lines of code (LOC), and
number of comments [1, 2]. Two equa-
tions were presented: one that considered
comments and one that did not.

The original polynimial equations
defining MI are as follows:
33--MMeettrriicc:: MI=171-3.42ln(aveE)-
0.23aveV(g’) - 16.2ln(aveLOC)

where aveE is the average Halstead
Effort per module, aveV(g’) is the aver-
age extended cyclomatic complexity per
module, and aveLOC is the average lines
of code per module.

44--MMeettrriicc:: MI=171-3.42ln(aveE)-
0.23aveV(g’)-16.2ln(aveLOC)
+0.99aveCM

where aveE is the average Halstead
Effort per module, aveV(g’) is the aver-
age extended cyclomatic complexity
per module, aveLOC is the average
lines of code per module, and aveCM
is the average number of lines of com-
ments per module.
The rationale behind this selection of

metrics was to construct a rough order,
composite metric that incorporated quan-
tifiable measurements for the following:
• Density of operators and operands

(how many variables and how they are
used).

• Logic complexity (how many execution
paths are in the code).

• Size (how much code is there).

• Human insight (comments in the code).
Other variants of the MI have evolved
using slightly different metrics, metric
combinations, and weights [3, 4, 5]. Each
has the general flavor of the basic MI
equation and underlying rationale.

“Subjective measures
applied via human code

reviews still play an
extremely important role

in assessing software
maintainability.”

Reasonable success has been achieved
in using MI to quantify and improve soft-
ware maintainability both during develop-
ment and maintenance activities [4, 6, 7,
8, 9, 10, 11,].

Practically speaking though, the MI is
only one piece in understanding the main-
tainability puzzle. Furthermore, it should
not be interpreted in a vacuum. Rather it
should be used as an indicator to direct
human investigation and review. The fol-
lowing sections discuss some practical
insight in applying MI to typical software
systems.

DDiissccuussssiioonn ooff MMII EEqquuaattiioonnss
Several variants of the MI equations have
evolved over time. Some academic opinion
places more confidence in Halstead’s
Volume Metric than his Effort Metric so
the MI equations were adjusted to incor-
porate the use of Halstead’s Volume.
Additionally, studies have shown that the
MI model was often overly sensitive to the
comment metric in the 4-Metric equation
and thus that portion of the equation was
modified to limit the contribution of com-

ments in MI [11, 12].
The typical modified MI equations

look similar to the following:
33--MMeettrriicc:: MI = 171 -5.2ln(aveV)
-0.23aveV(g’) - 16.2ln(aveLOC)

where aveV is the average Halstead
Volume per module, aveV(g’) is the
average extended cyclomatic complex-
ity per module, and aveLOC is the
average lines of code per module.

44--MMeettrriicc:: MI = 171 -5.2ln(aveV)
-0.23aveV(g’) -16.2ln(aveLOC)
+50.0sin

where aveV is the average Halstead
Volume per module, aveV(g’) is the
average extended cyclomatic complex-
ity per module, aveLOC is the average
lines of code per module, and perCM
is the average percent of lines of com-
ments per module.
Examination of these equations indi-

cates that picking the appropriate MI
equation is still a subject for discussion1.
The consideration of comments in the MI
is a big discussion point. First, if a human
assessment of the software concludes that
the majority of the comments in the soft-
ware are correct and appropriate, then the
4-Metric MI is potentially appropriate.
Otherwise, the 3-Metric equation is prob-
ably a better fit. Second, if the 4-Metric
equation is selected, it is still possible that
the comments may inappropriately skew
the MI. New research has been performed
and additional modifications have been
proposed to further refine the MI [13].
These refinements appear to add stability
to the behavior of the MI for assessing spe-
cific types of software systems.

OObbsseerrvvaattiioonnss
As mentioned earlier, numerous papers
have been written describing the successful
application of MI as part of the software
development process or within a software

TThhee SSooffttwwaarree MMaaiinnttaaiinnaabbiilliittyy IInnddeexx RReevviissiitteedd
Kurt D. Welker

Idaho National Engineering and Environmental Laboratory

In 1991 Oman and Hagemeister introduced a composite metric for quantifying software maintainability. This
Maintainability Index (MI) has evolved into numerous variants and has been successfully applied to a number of
industrial strength software systems. After nearly a decade of use, MI continues to provide valuable insight into soft-
ware maintainability issues. This article presents some of the author’s observations about the practical use of MI in
determining software maintainability.

18 CROSSTALK The Journal of Defense Software Engineering August 2001

maintenance assessment. What is often
not discussed are some simple, common
sense guidelines that should be considered
when using an objective metric such as
MI. Presented in the next few paragraphs
are some general observations the author
has gathered from applying MI to a vari-
ety of software systems.

CCoommmmeennttss iinn tthhee CCooddee:: Comments in
the source code are a two-edged sword
when it comes to considering their role in
software maintenance. Accurate, up-to-
date comments that provide additional
insight not already obvious from the
source code are generally quite helpful
when it comes to making changes later on.
However, comments that have not contin-
ued to evolve with their associated soft-
ware can actually be a maintenance hin-
drance.

Comments, just like source code, will
degrade over time as maintenance activi-
ties are performed unless specific actions
are taken to keep them from becoming
inaccurate. Comments are not executed at
run-time; they are usually for people.
Only people can tell if the comments in
the code are helpful or not. Just because
there are comments in the code does not
mean that the code is more maintainable.

Furthermore, not all real comments
are detectable by automated tools. For
instance, when writing self-documenting
code, some software developers put engi-
neering units in the variable names
(distanceFt or effectivePowerW). These
types of comments are quite helpful to the
human developer, ignored by the compil-
er and also most metrics extraction tools,
yet certainly make the software more
maintainable.

When determining how an automated
tool will credit maintainability for com-
ments in the code, a human must first
determine the quality and usefulness of
the comments. A variant MI equation
could be developed that penalizes main-
tainability based on the poor quality of the
comments. Current 4-Metric MI equa-
tions that include a metric for comments,
must be applied with some human
insight. Comparisons between the 3-
Metric MI and the 4-Metric MI are also
helpful in flagging source code with inap-
propriate comments. One guideline is that
when there is more than a 15-point delta
between the 3-Metric MI and the 4-

Metric MI, comments in the associated
source code should be manually examined
for appropriateness.

Here is the bottom line on MI and
comments: A man in the maintainability
assessment loop is essential both in decid-
ing how to measure comments in the
source code (which MI equations) and
then in determining the meaning of the
results (do the comments make the soft-
ware easier to maintain).

“Comments in the
source code are a
two-edged sword ...”

IInntteerrpprreettaattiioonn ooff RReessuullttss:: Source code
metrics provide only an objective measure.
MI works the same. Subjective measures
applied via human code reviews still play
an extremely important role in assessing
software maintainability. After all people
maintain the software. Automated main-
tenance is not a reality yet. Therefore, it
only makes sense that there are some char-
acteristics of software construction that
take a person to quantify for attributes
such as maintainability. Determining
maintainability purely by objective meas-
ures can be deceiving. Take for instance
the following simplistic example.
Consider two versions of a program that
print the words to “The Twelve Days of
Christmas” (see Figure 1, page 20). Sorry
but I don’t remember whom to credit for
writing Example 1. A few metrics for the
two versions are as follows in Figure 2,
page 20.

Possible interpretations might include:
Based on the 3-Metric MI alone, Example
1 is slightly more maintainable; based on
cyclomatic complexity alone, Example 1 is
more maintainable; based on lines of code,
Example 1 is more maintainable, i.e. less
code to maintain? Based on the 4-Metric
MI, Example 2 is more maintainable, but
did the comments really make the differ-
ence? No, the comments are okay but they
are not the driving factor for judging
maintainability. Based on effort alone,
Example 2 is more maintainable than
Example 1.

What made your decision regarding
which source was more maintainable? It

was probably the human examination of
the source code. Which version of the
source would you want to maintain?
Especially when you learn that Example 1
contains a bug as the word eighth is mis-
spelled in the output. This example may
be extreme, but it illustrates the point.
The metrics for real-world software can
present similar difficulties.
OObbjjeecctt OOrriieenntteedd DDeeccoommppoossiittiioonn aanndd
FFrraaccttuurriinngg:: Software languages, architec-
tures, and decomposition techniques have
evolved since the original development
and validation of the MI equations.
Object-oriented analysis and design have
influenced the structure of today’s soft-
ware systems. Typical object-oriented soft-
ware tends to be decomposed into smaller
modules than software systems that were
decomposed using other techniques.
Consider all the get and set methods in a
typical object class. What impact does
having a large number of smaller modules
play in the MI?

Object-oriented software is funda-
mentally composed of operators and
operands and has a number of executable
paths through the code. The lines of code
may still be counted and commented.
From this perspective, MI still provides a
good fit [11]. But additionally, there are
constructs such as classes and inheritance
that could be considered in tailoring MI
for an object-oriented system.

Discussion of these types of MI
enhancements will be postponed for
another time. It appears, though, that
object-oriented systems by nature have a
fairly high MI due to the typical smaller
module size. Naturally, smaller modules
contain less operators and operands, less
executable paths, and less lines of com-
ments and code; therefore, the MI tends
to be higher. It is the author’s opinion that
even so, the MI is still applicable for
object-oriented systems, but that maybe
the maintainability classification thresh-
olds should be raised when interpreting
MI’s from object-oriented systems. MI is
still great for identifying overly complex
(and therefore difficult to maintain) mod-
ules in object-oriented systems.

Is it possible to decompose a software
system into modules that are too small?
Yes, software fracturing can occur and
when that happens, modules loose cohe-
sion and the coupling between modules

August 2001 www.stsc.hill.af.mil 19

The Software Maintainability Index Revisited

20 CROSSTALK The Journal of Defense Software Engineering August 2001

increases. When fracturing occurs, the
maintainability of the system (from a
human perspective) actually decreases, and
metrics such as MI are not necessarily a
realistic measure of the actual maintain-
ability. Controlled software development
processes, good software engineering prac-
tices, and code reviews again become key
in assuring and assessing maintainability.
Thus it is evident that high MI does not

guarantee the code is maintainable. A man
in the loop is still essential.

CCoonncclluussiioonn
Using the MI to assess source code and
thereby identify and quantify maintain-
ability is an effective approach. The MI
provides one small perspective into the
highly complex issues of software mainte-
nance. The MI provides an excellent guide
to direct human investigation. Hopefully,
this paper provides some insight to the
practical use of MI. To recap, continue to
comment source code but do not put too
much faith in comments to improve
maintainability. Continue to measure
maintainability using MI but do not

interpret the results in a vacuum. Be aware
of the limitations of objective metrics such
as MI. Changing technologies will require
changing metrics.u

RReeffeerreenncceess
1. Oman, P.W.; Hagemeister, J.; and

Ash, D., A Definition and Taxonomy
for Software Maintainability, Tech-
nical Report #91-08-TR, Software
Engineering Test Laboratory, Univ-
ersity of Idaho, Moscow, ID, 1991.

2. Oman, P.W. and Hagemeister, J.,
(1992) Metrics for Assessing a
Software System’s Maintainability,
Proceedings of the Conference on
Software Maintenance, IEEE
Computer Society Press, Los
Alamitos, CA, 1992, pp. 337-344.

3. Coleman, D., Assessing Maintainab-
ility, Proceedings of the Software
Engineering Productivity Conference
1992, Hewlett-Packard, Palo Alto,
CA, 1992, pp. 525-532.

4. Coleman, D.; Ash, D.; Lowther, B.;
and Oman, P.W., Using Metrics to
Evaluate Software System Maintainab-
ility, IEEE Computer, 1994, 27(8), pp.
44-49.

5. Oman, P.W. and Hagemeister, J.,
Constructing and Testing of Poly-
nomials Predicting Software Maintai-
nability, Journal of Systems and
Software, 1994, 24(3), pp. 251-266.

6. Ash, D.; Alderete, J.; Yao, L.; Oman,
P.W.; and Lowther, B., Using Software
Maintainability Models to Track Code
Health, Proceedings of the Interna-
tional Conference on Software
Maintenance, IEEE Computer
Society Press, Los Alamitos, CA,
1994, pp. 154-160.

7. Coleman, D.; Lowther, B.; and
Oman, P.W., The Application of
Software Maintainability Models on
Industrial Software Systems, Journal of
Systems and Software, 1995, 29(1), pp.
3-16.

8. Oman, P.W., Applications of an
Automated Source Code Maintain-
ability Index, Technical Report #95-
08-SL, Software Engineering Test
Laboratory, University of Idaho,
Moscow, ID, presented at the 1995
Software Technology Conference, Salt
Lake City, UT.

9. Pearse, T. and Oman, P.W., Maintain-

Software Engineering Technology

Figure 1: The Twelve Days of Christmas - Sample Code

Figure 2: The Twelve Days of Christmas - Metrics

August 2001 www.stsc.hill.af.mil 21

ability Measurements on Industrial
Source Code Maintenance Activities,
Proceedings of the International
Conference on Software Maintenance,
IEEE Computer Society Press, Los
Alamitos, CA, 1995, pp. 295-303.

10. Welker, K. and Oman, P.W., Software
Maintainability Metrics Models in
Practice, CrossTalk, Nov./Dec.
1995, pp. 19-23 and 32.

11. Welker, K.; Oman, P.W.; and
Atkinson, G., Development and
Application of an Automated Source
Code Maintainability Index, Journal of
Software Maintenance, 1997,
May/June, pp. 127-159.

12. Lowther, B., The Application of
Software Maintainability Metric
Models on Industrial Software
Systems, master’s thesis, Department
of Computer Science, University of
Idaho, Moscow, ID, 1993.

13. Liso, A., Software Maintainability
Metrics Model: An Improvement in
the Coleman-Oman Model,”
Crosstalk, Aug. 2001, pp. 15-17.

NNoottee
1. The discussions in this article can

apply to either set of MI definitions.
The majority of people use the latter
set of MI definitions. I still use the
original MI equations for some appli-
cations. If used to track software over
its life, it is important not to change
equations mid-stream. There are other
variants of the MI equations that
organizations have tailored for specific
interests (both the 3- and 4-metric
versions). The discussion in the paper
generally applies to most of these as
well.

The Software Maintainability Index Revisited

CCoommiinngg EEvveennttss

August 27-30
Software Test Automation Conference

www.sqe.com/testautomation

August 27-31
5th IEEE International Symposium on

Requirements Engineering
www.re01.org

Sept. 10-14
Joint 8th European Software

Engineering Conference and 9th ACM
SIGSOFT International Symposium on
the Foundations of Software Engineering

www.esec.ocg.at

Oct. 15-18
16th Annual SEI Symposium

www.asq.org/ed/conferences

Oct. 15-19
21st International Conference on
Software Testing and EXPO 2001
www.qaiusa.com/conferences

Oct. 22-24
11th International Conference

On Software Quality
www.asq.org/ed/conferences

Oct. 29-Nov. 2
Software Testing Analysis and Review

www.sqe.com/starwest

Nov. 4-7
Amplifying Your Effectiveness (AYE)

www.ayeconference.com

Feb. 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

At the Heart of the Revolution
www.iccbss.org

April 28 - May 3, 2002
STC 2002

“Forging the Future of Defense
Through Technology”
www.stc-online.org

AAbboouutt tthhee AAuutthhoorr
KKuurrtt DD.. WWeellkkeerr is an advisory engineer at the Idaho National Engineering
and Environmental Laboratory with 14 years experience in software develop-
ment, systems integration, and software measurement. He is a technical lead
on the Electronic Combat System Integration Project performing reengi-
neering, integration, and software maintenance on several electronic combat
analysis models for the Air Force Information Warfare Center that simulate
radar detection, weapon lethality envelopes, electronic counter-measures,

reconnaissance, passive detection, and communications jamming. He functioned as the princi-
ple investigator for the development of a general-purpose lexical scanner/parser tool called the
Data Stream Analyzer that provides data format integration. He also functioned as the princi-
ple investigator on a software measurement/process-improvement research initiative. He has
been using MI to assess and track software maintainability for about eight years. Welker has a
bachelor’s of science degree in computer science from Brigham Young University and a master’s
of science degree in computer science from the University of Idaho.

IIddaahhoo NNaattiioonnaall EEnnggiinneeeerriinngg
aanndd EEnnvviirroonnmmeennttaall LLaabboorraattoorryy
IIddaahhoo FFaallllss,, IIddaahhoo
EE--mmaaiill:: wwddkk@@iinneell..ggoovv

Dear Crosstalk,

I was reading the new June 2001 issue
Vol. 14 No. 6 yesterday and was non-
plussed to read in three different places
(From the Publisher, the abstract to the
first article Extending UML to Enable the
Definition and Design of Real-Time
Embedded Systems, and the text of The
Quality of Requirements in Extreme
Programming), references to Universal
Markup Language (UML).

All three of the contexts refer to the
Unified Modeling Language created by
Booch, Rumbaugh, and Jacobson of
Rational Software Corporation. There is
no real-time software design methodolo-
gy called Universal Markup Language to
my knowledge.

Thanks for an excellent publication.

Regards,
Karl Woelfer
Seattle, WA

LL ee tt tt ee rr tt oo tt hh ee EE dd ii tt oo rr

22 CROSSTALK The Journal of Defense Software Engineering August 2001

Software Process Assessment (SPA) is an
effective method used to understand

software organizations’ process quality and
to identify issues to be resolved to achieve
higher maturity. During the past 10 years,
various SPA methods have been devel-
oped, proposed, and adopted. The first
one was proposed by W. Humphrey,
Software Engineering Institute at
Carnegie Mellon University in 1987,
called Process Maturity Model (PMM) [1,
2]. Then came the Capability Maturity
Model® (CMM®) Ver.1.1, the Software
Process Improvement and Capability
determination (SPICE), Trillium, and
others [3, 4, 5]. Recently, a series of inter-
national standards for SPA have been
developed by International Organization
for Standardization/International Electr-
otechnical Commission (ISO/IEC) JTC1
SC7/WG10 and published as technical
reports in 1998 [6].

Since 1990 various SPA-related activi-
ties have been conducted at NEC. In 1990
the SPA Working Group was organized to
study the PMM. Core members studied
Managing the Software Process [2] translat-
ed into Japanese. Then in 1992, the work-
ing group developed a SPA guidebook that
contains questions, criteria, and guidelines
for a PMM-based assessment [7]. In 1997
the base method was changed from the
PMM to the CMM 1.1, and an overall
revision was completed. In parallel, the
working group members promoted SPA
and acted as assessors to gain experience.

Our research group members have
joined and led the SPA-working group
activities. Additionally, to seek a more
effective and efficient SPA method suited
to NEC’s organizational properties, we

customized and applied several methods
apart from the working group’s activities
[8, 9]. We also developed and applied
original SPA methods, which are called
SPICE9000 and Software Lifecycle
Processes (SLCP)-based SPA. These incor-
porate the technical trend of SPA, or con-
tinuous model-based assessment, and an
in-house opinion, i.e., synchronization of
SPA and ISO 9000 internal audit. Also
several tools have been developed for ana-
lyzing assessment data and enabling
remote assessment using the network.

To date more than 30 in-house organ-
izations have been assessed using various
methods. More than 50 percent have
taken multiple assessments periodically,
and SPA has been getting diffused. Table 1
shows the history of SPA application that
our research group members joined as lead
assessors.

OOrriiggiinnaall MMeetthhooddss aanndd TToooollss
Here we introduce two methods and one
tool that we originally developed.

SSPPIICCEE99000000:: The SPICE9000 makes it pos-
sible to conduct a SPA and an ISO 9000
internal audit simultaneously. SPICE9000
is an integration of the first version of
SPICE and ISO 9001 [10]. The assessment
framework, the PMM, and the CMM are
succeeded by SPICE9000. Relationships
between elementary provisions of ISO9001
and practices of SPICE are clarified in Table
2. By using the relationship table both
process assessment results such as capability
level and ISO 9001 conformance can be
obtained from assessment data.
SSLLCCPP--BBaasseedd SSPPAA:: There was a discussion
whether international standard software
process (i.e., ISO/IEC 12207: SLCP) is or
is not applicable to SPA in ISO/IEC JTC1
SC7/WG10, which is in charge of stan-
dardization of SPA. SLCP-based SPA
answers this question and determines its
possibilities. The standardized process
model is also expected to suit broader
types of organizations. SLCP-based SPA
has a process model in compliance with
the SLCP. To compose an assessment

PPrrooppoossaall oonn LLiibbrraarryy––CCeenntteerreedd SSooffttwwaarree PPrroocceessss AAsssseessssmmeenntt
Toshihiro Komiyama, Toshihiko Sunazuka, and Shinji Koyama

NEC Corporation

This paper proposes a framework for Software Process Assessment and Improvement (SPAIM) and its performance
measurement. The main purpose of this framework is to make SPAIM-related technologies adaptable to the features
of an assessed organization such as organizational goals, future products, etc. The key to enact this framework is con-
struction of SPAIM libraries containing various technologies for assessing, improving, and measuring software
processes. Then, we can compose a specific SPAIM method adapted to the assessed organization by selecting and cus-
tomizing technologies included in the libraries. This concept has been developed through more than 10 years of soft-
ware process improvement experience in our company. In this paper, we first introduce our software process-related
activities. Next we describe requirements to SPAIM that we perceived through the experience. Lastly, the proposed
framework is explained.

Table 1: History of SPA Application

August 2001 www.stsc.hill.af.mil 23

Proposal On Library-Centered Software Process Assessment

model from SLCP, the definition of
tasks in SLCP is decomposed into
sub-tasks and linked to capability lev-
els.
WWeebb--BBaasseedd SSPPAA SSuuppppoorrtt TTooooll:: A sup-
port tool for self-assessment was developed
to conduct SPA efficiently [11]. This tool
works on the World Wide Web and is
mainly used for self-assessment, which is
to be done prior to on-site interview.
Participants can obtain their self-assess-
ment results interactively in the form of a
table or graph.

SSPPAA RReeqquuiirreemmeennttss
Various methods we applied are character-
ized in Table 2. Generally SPA methods
are categorized into three types by the
model shown in Figure 1. We gathered
and analyzed assessments then drafted a
report of the results for the organizations
using different types of methods. Through
these experiences we realized the benefits
of each SPA method. However, we are still
unable to decide which is the best method.
One conclusion is that which SPA method
is used is not as important as knowing
how to use the selected method. We also
concluded that the same requirements for
conducting successful assessments are

common to all SPA methods. These com-
mon requirements of assessment proce-
dure, method, and tool are listed below.
PPrroocceedduurree::
Self - Assessment
• Specific questions should be devel-

oped prior to the interview to obtain
consistently interpreted process fea-
tures. If not, assessment data will not
be reliable.

• In order to reduce the assessment load,
there should not be too many ques-
tions. It is helpful to categorize ques-
tions by process domain, and ask each
process domain’s owners to answer the
questions related to their domain.

On-Site Assessment
• Reserve a minimum of two hours for

the interview to obtain a detailed
process status, but do not go beyond
one full day of questioning.

• If there are too many questions, they
should be prioritized in order of
importance, highest ranking questions
listed first. Otherwise, they should be
categorized by process domain, and all
persons in charge of a process domain
should be interviewed.

• A surveillance and interview of gener-
ic project’s status during on-site assess-

ment is helpful to obtain the informa-
tion to prioritize questions and to
draft process improvement proposals.

• Before interviewing, review documen-
tation such as the development plan,
progress report, and specifications to
flag any interview questions and allow
quick retrieval of any documents in
question during the interview.

Reporting
• An assessment report is composed of

two parts. One part can be drafted sys-
tematically, e.g., assessment data
analysis. The other part is a descrip-

improvement proposals.
• Support tools to analyze and visualize

assessment data are useful for the for-
mer, and libraries to store and share
assessment know-how aid the latter.

Method
• There is no best SPA method.

Methods should be easy to customize
for each organizations’ goals, needs, or
properties.

• SPA methods should be usable for
both self-assessment and on-site
assessment. Also, it is desirable that
the collected data are compatible
between methods.

• The number of questions for one
interview should be no more than
150, ideally less than 100. The wider
coverage and the finer granularity, the
better, but it makes a greater number
of questions. They should be bal-
anced.

• A well-structured questionnaire makes
it easier to find correlations and get
answers with fewer questions. It takes
effect on saving interview time.

• The role or position of the interviewee
should be clarified to get reliable and
correct answers.

• A roadmap along with milestones for
process improvement should be provid-
ed that prioritizes the established issues.

• A means to indicate the effects of
process assessment and improvement
quantitatively and objectively should be
provided.

• The relationship between product qual-
ity or project results and process quality
should be clarified based on analysis of
project data and assessment results. It is
helpful to prioritize the process
improvement actions to be taken.

Table 2: Features of SPA Methods

Figure 1: Types of Assessment Frameworks (*PD= Process Domain)

24 CROSSTALK The Journal of Defense Software Engineering August 2001

Support Tool
To conduct SPA effectively and efficiently,
supporting tools are necessary. Required
functions are as follow:
• Assessment data collection and analy-

sis.
• On-line assessment support.
• Analysis and visualization of assess-

ment data.
• Database of historical SPA data.
• (Semi-) Automatic assessment-report

generation.
• Library of knowledge and experience

on process assessment and improve-
ment.

Reviewing the requirements above and
looking back to the actual assessment situ-
ation, we concluded that the urgent and
important requirements are summarized
into the following:
• Adaptability: The possibility to adapt

SPA methods to organizational needs,
goals, and properties.

• Concreteness: The possibility to reach
effective and concrete solutions based
on assessment results.

• Validity: The possibility to validate the
effects of process assessment and
improvement activities.

We propose a framework that satisfies the
above requirements hereafter.

TThhee FFrraammeewwoorrkk
The SPA objectives differ by organiza-
tions, so one assessment method cannot
suit all types of organizations. Therefore, it
should offer selection and customization.

Also, effective and concrete proposed solu-
tions must be based on the assessment
results in order to make them meaningful.
Furthermore, the effects of process assess-
ment and improvement must be indicated
quantitatively and validated objectively.
Here, we propose a software process
assessment and improvement (SPAIM)
framework to resolve these issues. A key
strategy to implement the above require-
ments is to construct three libraries, i.e.,
one each for SPA, software process
improvement (SPI), and software process
performance measurement (SPM).
OOvveerrvviieeww ooff SSPPAAIIMM FFrraammeewwoorrkk
An image of SPAIM framework shown in
Figure 1 shows that technical information
for SPA, SPI, and SPM are stored in
SPAIM libraries. They are researched
inside and outside of the organization and
acquired. Then, they are reorganized into
the structure shown in Figure 2 and stored
in the libraries as record. When a new
record is stored, consistency of terms and
wording between records are coordinated
to reach required records successfully.

Before starting SPA, organizational
requirements for it are clarified. Then,
process assessment methods and tools suit-
able for the organization are selected from
the SPA library and appropriately cus-
tomized. Any customized methods are
added into the library for preparing for the
next assessment, or for reusing it to the
same type of organizations.

When an assessment has been com-
pleted, the data obtained is analyzed, and
some primary process issues are identified.

Practices, methods, and tools useful in
resolving the issues are then extracted from
the SPI library, and their concrete solu-
tions are settled. If new improvement
methods are developed, they are added
into the library.

On the other hand, metrics used to
measure the effects of process improve-
ment are either developed new or selected
from the SPM library accordingly consid-
ering the organizational goals for SPA and
SPI. If new metrics are developed, they are
added into the library for reuse. Selection
of metrics and data collection should
begin as early as possible.

In order to validate the effects of
process improvement, it is necessary to
measure not only the performance of
improved processes but also that of current
processes. Data required for calculating
metrics should be continuously collected
in parallel with process assessment and
improvement. The collected data is aggre-
gated into measures. Measures on current
and improved process are compared, and
the effects of SPI are validated objectively.
AArrcchhiitteeccttuurree ooff SSPPAAIIMM LLiibbrraarriieess
Figure 2 shows the architecture of the
SPAIM libraries, which contain informa-
tion useful for SPA, SPI, and SPM. These
libraries can be implemented as well-struc-
tured electronic files according to good
naming convention or hyper-linked files.
Structures of the SPAIM libraries follow.

Software Engineering Technology

Figure 1: SPAIM Framework

Figure 2: Architecture of SPAIM Libraries

SSPPAA LLiibbrraarryy
Generally, the SPA method is composed of
a SPA model and rules. A SPA model is
composed of a process capability model
and a process model. The former is a
model that breaks down process quality
into ordered capability levels, and further
divides each level into features. For exam-
ple, the process capability model of CMM
Ver.1.1 is composed of five capability lev-
els and five common features. The latter is
a model breaking down whole software
processes into several classes of process
domains and work elements, e.g., the
process model of CMM Ver.1.1 is com-
posed of 18 key process areas and 316 key
practices. The SPA method also includes
some assessment rules.

There is never one best SPA method
suited to all the assessment cases. This
library contains various SPA methods,
such as CMM Ver.1.1, SPICE and SLCP-
based SPA, and also a method customized
for an organization. This library makes it
possible to select a SPA method from the
variations. Elements of each method are
structured and stored in this library. The
following is the template to store this type
of library information:
NNaammee:: The title of the SPA method such
as CMM Ver.1.1 and SPICE are
described. In organizationally customized
methods, the organization name should be
attached with the method name such as
CMM Ver.1.1 for ABC Division.
PPrroocceessss CCaappaabbiilliittyy MMooddeell:: Sets of identi-
fier, title, and definition of process capa-
bility model components are described.
Identifiers are assigned as showing classes
of components. In the case of SPICE
Ver.1.0, there are three classes of compo-
nents, i.e., capability level, common fea-
ture, and generic practice.
PPrroocceessss MMooddeell:: Sets of identifier, title,
and definition of process model compo-
nents are described. Identifiers are
assigned as showing classes of compo-
nents. In the case of SPICE Ver.1.0, there
are three classes of components, i.e.,
process category, process, and base prac-
tice.
RRuullee:: Assessment rules are described such
as the rating for each question and a deci-
sion of process capability. In the case of
CMM Ver.1.1, two levels of rating, i.e.,
Yes, No, Does not apply, or Don’t know is

adopted.
QQuueessttiioonnnnaaiirree:: A series of questions to be
used for assessment are described.
TTooooll:: Information of tools to be used for
assessment is described. Assessment data
collection, analysis, and visualization tools
are necessary for each method. Data struc-
ture and algorithm of the tools depend on
the model and rules of the method.
RReeffeerreennccee:: References related to the
method are listed. They may be books,
papers, reports, and Web addresses, which
detail the method itself, its application
results, and so on. Also, assessment reports
using the method should be included.

“ ...the effects of
process assessment

and improvement must
be indicated

quantitatively and
validated objectively. ”

SSPPII LLiibbrraarryy
A SPI library contains technical informa-
tion to be used for the process improve-
ment proposal, plan, and action. They are
categorized into practice, method, and
tool then stored with the same format in
the library. Here, practice is a series of
tasks to do some software-related job well.
It can be expressed by workflow in con-
junction with some additional informa-
tion such as examples of standards, plans,
forms, and checklists. Method and tool
may be a research result, commercial prod-
uct, or originally developed product.
Process domain, on which a practice,
method, or tool will have an effect, is
attached with each record. This makes it
possible to extract useful formats for
resolving an identified process issue. By
using this library, a more concrete process
improvement proposal is possible. The fol-
lowing is the template to store information
in this library:
NNaammee:: Title of practice, method, and tool
for SPI such as Project Planning
Procedure, COCOMO, and MS-Project

are described. They should be uniquely
identifiable. To do so, it may be necessary
to attach an organization name or devel-
oper name such as Project Planning
Procedure of XYZ Corporation.
TTyyppee:: Type of the information is clarified,
i.e., practice, method, or tool. To make it
more specific, additional information like
the technology area should be attached,
for example Method for Cost Estimation.
DDoommaaiinn:: Process domain, which is
improved by the practice method, and
tool, is described as Software Project
Planning and Software Configuration
Management.
EExxppllaannaattiioonn:: Description, figure, and for-
mula that explain the practice, method, or
tool are described. For example, workflow
may explain practices well. A literal expla-
nation with figures and formulas may suit
some methods. Basic functions and opera-
tional environment should be used to
explain least used tools.
RReeffeerreennccee:: References related to the prac-
tice, method, and tool are listed. They may
be books, papers, reports, and Web sites,
which address the practice, method, or
tool itself, its application results, and so
on. In case of tools, contact points of
developers may be useful. Also, assessment
reports using the practice, method, and
tool should be included.

SSPPMM LLiibbrraarryy
A SPM library contains metrics to be used
for measuring process performance.
Typically, it is measured from the view of
quality, cost, delivery, and customer satis-
faction, but not limited to these. By com-
paring process performances before and
after process improvement, effects of the
improvement can be validated. Also, met-
rics can be used to set goals for a series of
SPA and SPI activities in conjunction with
the target values. Furthermore, action items
for process improvement can be prioritized
by the strength of relevance to the achieve-
ment of goals. The following is the template
to store information in this library:
NNaammee:: Title of metric such as Mean Time
Between Failure and Average Cost
Overrun, is described. As for metrics, there
may be different metrics with the same
name, e.g., fault densities with different size
counts. This is not a problem because users
will select a suitable one for his or her
organization from the alternatives.

August 2001 www.stsc.hill.af.mil 25

Proposal On Library-Centered Software Process Assessment

DDoommaaiinn:: Process domain and/or type of
process performance, which is evaluated
by the metric, is described. There may be
multiple domains to be evaluated with one
metric. For example, in case of “Detected
Fault Density of Design Review,” both
“Quality of Designing Work” and
“Efficiency of Design Review” will be list-
ed.
FFoorrmmuullaa:: Formula of metric is described.
EExxppllaannaattiioonn:: This includes but is not lim-
ited to definition of data elements used in
the formula, a means to collect the data,
and interpretation of calculated values. It
should be described precisely so as to be
able to obtain an identical value independ-
ent of evaluators.
EExxpprreessssiioonn:: Visual expressions of a set of
measured values using the metric are illus-
trated. Typical expressions may be bar
chart, reader chart, and line chart.
RReeffeerreennccee:: References related to the met-
ric are listed. They may be books, papers,
reports, and Web sites, which address the
metric itself, its application results, and so
on. Also, assessment reports using the
metric should be included.

SSPPAAIIMM LLiibbrraarryy PPrroocceedduurree
The SPAIM procedure based on the
framework is shown in Figure 3. SPAIM
must be conducted continuously and
recursively to pursue upper levels of
process and catch up with software tech-
nology evolution or changing user needs.
Each step of the procedure is explained
below.
((11)) RReeqquuiirreemmeennttss SSppeecciiffiiccaattiioonnss ffoorr

SSPPAA aanndd SSPPII
Requirements for SPA and SPI are speci-
fied and SPA method and SPM methods
are settled. Requirements are identified
from the following viewpoints.
P Pu ur rp po os se e: :Purpose of SPA and SPI is spec-
ified. Typical purposes are to grasp current
capability level, to identify and resolve
issues on processes, and to improve process
capability performance. There may be
additional purposes such as to evaluate the
effect of ISO 9001 certification.
R Re es st tr ri ic ct ti io on n: :Limitations of resources for
assessment are specified. Resources involve
personnel, funds, and time.
S Sc co op pe e: :Scope of SPA and SPI is specified.
Organizational domain, process domain,
and capability level can limit it. Even
though a whole organization is assessed,
not all the divisions and projects may be
assessed. Also, some process domains may
not be as important, not applicable to the
organization, or out of scope. For exam-
ple, if the organization develops software
by itself, no acquisition process can exist.
Furthermore, the capability range may be
limited considering the current level of
process capability, for example no higher
than Level 3 for Level 1 organization.
P Pr ro oc ce es ss s C Ca ap pa ab bi il li it ty y G Go oa al l: :Goals on
process capability are specified. Before set-
ting them, it should be decided which SPA
method to adopt for the assessment, con-
sidering both the requirements of the
organization and the features of candidate
methods. Goals are set using the selected
SPA model. There are a variety of goal set-
tings such as single goal on capability level
for an entire software process or multiple

goals on satisfactory level for each process
domain. For example CMM Ver.1.1, the
former can be expressed as “Level 3” and
the latter as “satisfaction of goals on
requirement management key process
areas (KPA) and software project planning
KPA.”
P Pr ro oc ce es ss s P Pe er rf fo or rm ma an nc ce e G Go oa al l: : Goals to achieve
process performance are specified. Goals
may relate to process effectiveness, prod-
uct quality, project results, customer satis-
faction, and so on. They are broken into
factors such as reliability for product qual-
ity. They can be further divided into lower
factors and lastly into metrics. Finally,
goals are shown quantitatively by the met-
rics attached with the target values.
((22)) SSooffttwwaarree PPrroocceessss MMeeaassuurreemmeenntt
Just after the previous step, data collection
for the selected metrics begins for evaluat-
ing current process performance. As for
selected metrics, some data may have been
collected. This data is gathered and made
usable. All the necessary data is collected
thereafter. Process performance is quanti-
fied by calculating the metrics using the
above data. It will be done at a minimum
when the assessment has been completed
and analyzed in conjunction with assess-
ment data. Measurement is conducted
constantly in parallel with process assess-
ment and improvement. All the measure-
ment results are included in the submitted
assessment report.
((33)) SSooffttwwaarree PPrroocceessss AAsssseessssmmeenntt
Assessment is conducted by the selected
SPA method. At first, self-assessment is
conducted. Personnel within the organiza-
tion to be assessed answer the question-
naire themselves. The answer is a rated
value such as Yes or No. Rating rules vary
by method. After that, on-site assessment
is conducted by interviews, and all the
self-assessment results are confirmed and
corrected if necessary. Both assessments
refer to a SPA model. They indicate soft-
ware process and illustrate the desirable
practices level by level.

Confirmed rated values are aggregated
into values for process domains, process fea-
tures, and capability level. Those values are
visualized in the form of graphs. Issues on
processes are identified with these graphs
and values, and also interview results. Issues
are raised from the views of process
domains and process features. Basic pat-
terns to perceive issues are as follows:

26 CROSSTALK The Journal of Defense Software Engineering August 2001

Software Engineering Technology

Figure 3: SPAIM Procedure

August 2001 www.stsc.hill.af.mil 27

• Compare capability goals with the
actual assessment results.

• Find process domains and features
interfering to achieve the next level of
capability.

• Compare values of the process
domains and features with each other
and find relatively lower ones.

All the assessment results are included in
the submitted assessment report.
((44)) SSooffttwwaarree PPrroocceessss IImmpprroovveemmeenntt
If too many issues are raised as a result of
the assessment, they need to be prioritized.
Criteria for the prioritization are as follow:
• Criticality to the current and subse-

quent projects’ success.
• Harmfulness to process performance.
• An appropriate level of capability.

When primary issues are selected,
effective practices, methods, and tools for
resolving the issues are searched from the
SPI library. The name of the process
domain and feature are used as key search
words for required information. Concrete
proposals for process improvement are
drafted using the disclosed information.
All the proposals are included in the sub-
mitted assessment report.

All the findings and proposals written
in the assessment report are explained to
the personnel and management of the
assessed organization in a meeting. They
are discussed and consensus is reached.
Once the consensus is made, an action
plan is developed, and process improve-
ment is carried out accordingly.
((55)) VVaalliiddaattiioonn ooff SSPPAA aanndd SSPPII EEffffeeccttss
After planned improvement has been done
and improved processes may have settled
in the organization, the effects of improve-
ment are measured and validated by the
process performance metrics. A compari-
son is made between measured values on
process before and after improvement. If
the values of the metrics have been moving
in a preferable direction, then the effects of
SPA and SPI are validated. If not, the cause
is analyzed, and a new action plan is draft-
ed. Findings here are included in the assess-
ment report at the appropriate time, or
drafted separately in the improvement
report.
((66)) PPoossttmmoorrtteemm
Looking back through a series of SPAIM
activities, modified, acquired or newly

developed practices, methods and tools for
SPAIM are identified. Information about
them is structured according to the archi-
tecture of SPAIM libraries and stored in
the libraries. As for practices, methods, and
tools used in a series of SPAIM activities,
reference to the assessment or improve-
ment reports are added.

BBeenneeffiittss ooff SSPPAAIIMM FFrraammeewwoorrkk
By using the SPAIM framework, the fol-
lowing benefits are expected:
• The SPA method is suited for specific

organizational goals and needs, and fea-
tures can be adapted. This improves the
accuracy of SPA results.

• More concrete action can be planned for
process improvement by using stored
knowledge and experience on practices,
methods, and tools for SPAIM. This
makes it sure to initiate process improve-
ment.

• The goals and effects of SPA and SPI can
be shown quantitatively and objectively
using process performance metrics. This
makes SPA and SPI goal-oriented activi-
ties, and makes it possible to check the
adequacy of these activities and adjust
them.

CCuurrrreenntt SSttaattuuss aanndd
FFuuttuurree WWoorrkkss
A prototype SPAIM support tool that
partially implements a SPA library was
already developed and presented [12]. It is
a PC-based tool named Software Process
Assessment supporT System (SPATS). It
involves the components of SPICE and
makes them customizable. The first ver-
sion was developed on EXCEL and the
second version on ACCESS. In order to
make the SPAIM framework concept
more effective and practical, enrichment
of records in the SPAIM libraries is the
most important issue. The following is
the status of construction of SPAIM
libraries.
SSPPAA LLiibbrraarryy:: The following information
has been gathered, but structuring is
underway.
• SPA methods: PMM, CMM Ver.1.1,

Trillium, SPICE, SPICE9000, and
SLCP-based SPA.

• Standards: ISO 9001, ISO/IEC 12207,

and ISO/IEC TR 15504 series.
• The others: P-CMM, SE-CMM, and

Malcolm Baldrige National Quality
Award Criteria [15].

SSPPII LLiibbrraarryy:: The following information
has been gathered; structuring is under-
way.
• Process assessment reports (18 cases in

Table 1).
• QC activity reports (more then 2,000

cases).
SSPPMM LLiibbrraarryy:: Investigation of process per-
formance metrics is completed. Gathered
metrics were categorized and tabled.
Structuring is underway.

The first future direction this research
will take is that the process domain of
SPAIM libraries shall be expanded to sys-
tem, people, and so on [13, 14, 15]. This
makes it possible to treat a greater variety
of process issues with the libraries.
Secondly, the architecture of SPAIM
libraries will be more precisely specified.
This formalization will make it possible to
store SPAIM-related information into a
database and make better use of stored
information. Hopefully, this architecture
will be standardized, and the internation-
al public SPAIM database will be con-
structed. This will enhance sharing and
exchanging knowledge and experience on
SPAIM across organizations. Then the
assets of software engineering will become
more beneficial to the software industry.
Finally, a relationship between process
quality, product quality, and project
results shall be clarified based on analysis
of rich experimental data. This makes it
possible to prioritize process domains to
achieve SPAIM goals and to predict the
effects of process improvement.

SSuummmmaarryy
This paper introduced software process
assessment and improvement activities in
NEC. First, research products and an
overview of assessment activities are intro-
duced. Second, findings on SPAIM are
listed. They are then summarized into pri-
mary features required for SPAIM. Third,
the SPAIM framework having those fea-
tures is proposed. The architectural and
operational procedures of SPAIM are
explained. Finally, future works on
SPAIM are described.u

Proposal On Library-Centered Software Process Assessment

28 CROSSTALK The Journal of Defense Software Engineering August 2001

Software Engineering Technology

AAcckknnoowwlleeddggmmeennttss
We gratefully appreciate in-house col-
leagues who cooperated with our process
assessment and improvement activities.

RReeffeerreenncceess
1. Humphrey W. S. and Sweet W. L., A

Method for Assessing the Software
Engineering Capability of Contra-
ctors, CMU/SEI-87-TR-23, 1987.

2. Humphrey W. S., Managing the
Software Process, Addison Wesley,
1989.

3. Northern Telecom, Trillium Release3 -
Model For Telecom Product Develop -
ment and Support Process Capability,
1995.

4. Paulk M. et al., The Capability
Maturity Model – Guidelines for
Improving the Software Process,
Addison Wesley, 1995.

5. ISO/IEC, ISO/IEC: Information
Technology – Software Process
Assessment – Part2: A Model for
Process Management, Working Draft
V1.00, 1995.

6. ISO/IEC, ISO/IEC TR 15504 Series:
Information Technology – Software
Process Assessment, 1998.13.

7. Nishimura T. et al., A Software Process
Assessment Method Based on the
Capability Maturity Model in NEC,
Proceedings of IPSJ 52nd National
Conference (in Japanese), 1996.

8. Honda, K. et al., Software Process
Innovation Methodology – Multiple

Approach Including ISO9001,
Maturity Model and QC Techniques,
NEC R&D, 1997, Vol.38, No.1,
pp.96-104

9. Koyama, S., et al., Construction of
Software Process Diagnosis Method –
Software Process Assessment and
Improvement Considering the
Viewpoints of Management Quality,
Proceedings of JUSE 18th Software
Quality Management Symposium (in
Japanese), 1998.

10. Koyama S. et al., Evaluation of
ISO9001 Conformance Based on
Software Process Maturity Model,
IPSJ SIG Notes, 1996-SE-110, pp.17-
24 (in Japanese)

11. Komiyama T. et al., WWW-Based
Software Process Assessment Support
Tools, 17th Software Reliability
Symposium (in Japanese) 1997.

12. Omoto N. et al., Software Process
Assessment Support System, IPSJ SIG
Notes, 1995-SE-102, pp.159-164 (in
Japanese).

13. Curtis, B. et al., People Capability
Maturity Model, CMU/SEI-95-MM-
02, 1995.

14. Kuhn D. A. et al., A Description of
the Systems Engineering Capability
Maturity Model Appraisal Method
Version 1.1, CMU/SEI-96-HB-004,
1996.

15. United States Department of Comm-
erce, Malcolm Baldrige National
Quality Award – 1997 Criteria for
Performance Excellence.

WW ee bb SS ii tt ee ss

IInnddiiaa SSooffttwwaarree NNeettwwoorrkk
www.e-isn.com
The India Software Network is a network
of leading IT companies and software
technology parks in India that has been in
operation since 1998. It offers the IT
services of companies in its network,
which is a selective list of Indian software
companies that have highly skilled man-
power and excellent infrastructure. India
Software Network maintains a database of
each of these companies with regard to
their specialization, manpower, infra-
structure, finance, past projects, manage-
ment, etc. Some of the companies in the
network have SEI CMM Level 5 certifi-
cation.

NNeeww ZZeeaallaanndd SSooffttwwaarree
AAssssoocciiaattiioonn
www.nzsa.org.nz
Members get support in management and
marketing, export and education, finance
and funding. Through conferences,
courses, seminars, and visiting overseas
experts, members learn more about these
and other important subjects related
specifically to the software industry. There
are regular opportunities to meet infor-
mally, share knowledge, pool resources
and simply get to know each other. The
site features news, events lists, education-
al opportunities, a resource center, and
more.

AAbboouutt tthhee AAuutthhoorrss
TToosshhiihhiirroo KKoommiiyyaammaa is a
manager of E-Learning
Division at NEC
Corporation He is a spe-
cialist of software product
and process evaluation,
and currently engaged in

consultation of software process improve-
ment as a SEI authorized Lead Assessor. He
is also a secretariat of ISO/IEC JTC1
SC7/WG6. He has a bachelor’s degree in
mathematical science from Keio University
and a master’s defree in information sys-
tems from the University of Electro-
Communications. He is a member of the
IEEE and the IPSJ.

EE--LLeeaarrnniinngg DDiivviissiioonn
NNEECC CCoorrppoorraattiioonn
77--1177,, SShhiibbaa 22--cchhoommee,, MMiinnaattoo--kkuu
TTookkyyoo 110055--00001144,, JJaappaann
PPhhoonnee:: ((++8811--33))--55223322--33008800
FFAAXX:: ((++8811--33))--55223322--33008899
EE--mmaaiill:: kkoommiiyyaammaa@@mmvvee..bbiigglloobbee..nnee..jjpp

TToosshhiihhiikkoo SSuunnaazzuukkaa is a
manager of E-Learning
Division at NEC
Corporation. He is cur-
rently engaged in consul-
tation of software process
assessment and improve-

ment, and training of relative courses and
personal software process. He has bache-
lor’s and master’s degrees in industrial engi-
neering from Waseda University. He is a
member of the IPSJ and the JSQC.

EE--LLeeaarrnniinngg DDiivviissiioonn
NNEECC CCoorrppoorraattiioonn
77--1177,, SShhiibbaa 22--cchhoommee,, MMiinnaattoo--kkuu
TTookkyyoo 110055--00001144,, JJaappaann
PPhhoonnee:: ((++8811--33))--55223322--33008800
FFAAXX:: ((++8811--33))--55223322--33008899
EE--mmaaiill:: ssuunnaazzuukkaa@@mmvvii..bbiigglloobbee..nnee..jjpp

SShhiinnjjii KKooyyaammaa is a senior
engineer of E-Learning
Division at NEC
Corporation with 10 years
experience in research and
development of software
engineering. He is cur-

rently engaged in consultation of software
process assessment and improvement to
software organizations. He has a bachelor’s
degree in industrial engineering from
Waseda University.

EE--LLeeaarrnniinngg DDiivviissiioonn
NNEECC CCoorrppoorraattiioonn
77--1177,, SShhiibbaa 22--cchhoommee,, MMiinnaattoo--kkuu
TTookkyyoo 110055--00001144,, JJaappaann
PPhhoonnee:: ((++8811--33))--55223322--33008800
FFAAXX:: ((++8811--33))--55223322--33008899
EE--mmaaiill:: ss--kkooyyaammaa@@mmuuii..bbiigglloobbee..nnee..jjpp

August 2001 www.stsc.hill.af.mil 29

This article is based on an organiza-
tion2 that had achieved Software

Capability Maturity Model (CMM) Level
3 and was working toward Level 4 [1].
Table 1 shows the Software Engineering
Institute’s CMM levels while Table 2
shows the key process areas (KPAs) within
each level [2]. In order to be compliant
with any level, an organization must be
compliant with all KPAs at that level and
all lower levels [2].

This author was the software manager
and software engineering process group
(SEPG) lead on project X when Level 3
was achieved3. Later, as SEPG lead at the
next higher organizational level, he devel-
oped and executed Level 4 and Level 5
processes for project X. The projects in the
organizations were geographically dis-
persed between both coasts and involved
in diversified applications.

An organizational standard process
(OSP) existed at the corporate level that
only had processes for Level 2 and Level 3.
The OSP was adapted and tailored to the
projects as projects’ defined process
(PDP). SEPGs existed at various levels,
and the corporation had a software-
process training program that supported
Level 2 and Level 3. All employees
engaged in software development were
required to take process training appropri-
ate to their software tasks.

While pursuing Level 3 all projects within
the organization were committed and
cooperated. The corporate SEPG had
membership from the organizations’
SEPGs and met monthly. The organiza-
tion’s SEPG met weekly and had member-
ship from the projects. The projects’
SEPGs meet weekly. The SEPGs coordi-
nated on the OSP and the PDP and

ensured that they were applied in a consis-
tent and repeatable fashion across the
organization.

Project X was required to follow
Department of Defense (DoD)-STD-
2165A, Standard for Software
Development, along with supporting
DoD standards, which provide for all
processes and artifacts required for Level 2
and many for Level 3.

Processes for all Level 2 and Level 3
KPAs were installed and executed on the
projects. Individuals received process
training for both levels. Extensive Level 2
and Level 3 artifacts were collected.
Several dry run assessments were conduct-
ed and supported with various govern-
ment CMM Software Capability
Evaluations for procurements.

The organization achieved Level 3 in
27 months after being awarded the con-
tract for project X, which was never
assessed at Level 2. The assessment was a
Software Engineering Institute (SEI)
CMM-based appraisal for internal process
improvement (CBA-IPI). The lead asses-
sor was from an external vendor while the
rest of the assessment team was internal.

Executive management mandated that the
organization achieve Level 4. Unfortunately,
while senior management was somewhat
committed and cooperative, project X
management was not. They stated that
Level 3 was good enough, and that they
did not sign up for Level 4. Project X per-
sonnel were also neither committed, coop-
erative, or involved except for the project
SEPG lead and the project Software
Quality Assurance manager. Project X’s
customer may not have even been aware of
the Level 4 efforts.

Funding from the corporation, the
organization, and the projects remained
the same as for Level 3, which was insuffi-
cient for Level 4. Process staff did not
increase more than what was provided for
Level 3. Both funding and staff should
have increased since new processes and
training had to be developed and installed
on the projects, and standards did not pro-
vide for process or artifacts like they did
for Level 2 and Level 3.

The corporate SEPG was not involved
with Level 4 activities at the time. The cor-
poration did not have processes or training

Al Florence
The MITRE Corp1.

Open Forum

Getting to the Software Engineering Institute’s Software Capability Maturity Model® Level 3 may be quite dif-
ferent than getting to Level 4. The forces, dynamics, commitments, and resources may be quite different for Level
3 than for Level 4. This article focuses on those differences and provides valuable lessons learned gathered on an
organization that had achieved Level 3 but failed to achieve Level 4.

Table 2: KPA’s of the CMM

Table 1: SEI SW CMM

Lessons Learned in Attempting to Acheive
Software CMM Level 4

Getting to Level 3

Not Getting to Level 4

30 CROSSTALK The Journal of Defense Software Engineering August 2001

for Level 4 or Level 5. The organization
SEPG had membership from the projects’
SEPGs, and they coordinated weekly. Level
4 coordination was very difficult between
physically separate locations due to new
processes being developed and difficulties
encountered in their consistent application.
Level 4 was not applied in a consistent or
repeatable fashion across the organization.

The projects conducted insufficient
Level 4 training, which lacked Level 4 cor-
porate training material. The Level 4 and
Level 5 training for project X was developed
and provided by this author with little
cooperation from project personnel. Project
personnel were reluctant to attend training
sessions. There were other hindrances:
• Software development standards on con-

tract provided for all Level 2 processes
and artifacts and many for Level 3, but
not for Level 4 or Level 5. Software
development standards do not address
such things as quantitative analysis and
continuous improvement.

• There was limited industry literature on
Level 4 and Level 5 and few examples
from which to draw.

• The organization conducted only one
dry run for the level 4 assessment that
surfaced some problems.

Although project X executed all KPA
processes and collected extensive Level 2,
Level 3 and Level 4 artifacts, the organiza-
tion failed to achieve Level 4. The assess-
ment performed was a SEI CMM CBA-
IPI, with an external lead assessor and the
rest of the assessment team internal to the
corporation. There were few assessors that
had conducted Level 4 and Level 5 assess-
ments at that time. When assessors do not
have appropriate experience with specific
KPAs, it becomes difficult to arrive at con-
sistent conclusions.

RReeaassoonnss LLeevveell 33 AAcchhiieevveedd bbuutt
nnoott LLeevveell 44
Here are some reasons the organization did
not achieve Level 4:
• Commitment, funding, and cooperation

existed at Level 3, but were not adequate
for Level 4.

• Standards on contract provided for
processes and artifacts at Level 3 but not
for Level 4.

• All were involved with process improve-
ment at Level 3; only SEPG members on

project X were involved at Level 4.
• Level 3 was based on business goals, but

Level 4 was done for process sake.
• There were many published examples for

Level 3 but few for Level 4.
• There were many experienced assessors

for Level 3 but not for Level 4.
Additionally Level 4 is a drastic paradigm
shift from Level 3, however, this paradigm
shift is not always recognized:
• Level 2 and Level 3 activities are com-

mon sense “things to do” in order to
develop good software. Level 4 goes
beyond this and is for organizations that
really want to go the extra mile along the
road to process improvement [3].

• Level 3 relies on existing software engi-
neering and project management skills;
new quantitative and statistical skills
must be acquired for Level 4 [4].

• Level 3’s main focus is on the organiza-
tion, while Level 4’s main focus is on the
projects [4].

• At Level 3 measurements are used to sta-
tus activities and correct problems. Level
4 requires measurements be quantitative-
ly analyzed and that immediate actions
be taken to remedy issues [2].

• Level 3 requires that process capability be
institutionalized, while Level 4 requires
that it be understood and controlled
quantitatively [2].

• Level 3 requires that quality assurance be
institutionalized. Level 4 requires that
plans for quality goals are established and
that progress towards achieving those
goals be quantitatively managed [2].

CCoonncclluussiioonnss
Getting to CMM level 3 can be quite dif-
ferent than achieving Level 4. The forces,
commitments, dynamics, and resources can
be quite different, meaning possible success
at Level 3 and perhaps failure at Level 4.
Process improvement only works if every-
one is committed, cooperative, and
involved; and if proper resources are avail-
able, and improvement is based on business
goals. Level 4 is a drastic paradigm shift
from Level 3. New and additional skills are
required at Level 4 (quantitative and statis-
tical). Process improvement is not the sole
responsibility of the SEPG. As with all
CMM levels, the entire organization needs
to be involved. It cannot be accomplished
from outside the organization and the proj-
ects; it needs to be everyone’s responsibility.

RReeffeerreenncceess
1. Florence, Al CMM Level 4 and Level

5 Approaches, 1999 SEPG
Proceedings, Atlanta, Ga., Mar 1999.

2. Paulk, Mark C.; Curtis, Bill; Chrissis,
Mary Beth; and Weber, Charles V.,
Capability Maturity Model for
Software, V1.1, Software Engineering
Institute, Feb.1993.

3. Florence, Al, Success at SW CMM
Level 3 But Not at Level 4, Lessons
Learned, 2001 Software technology
Conference Proceedings, Salt Lake
City, May 2001.

4. Perdue, Jeff, Why is Level 4 So Hard?
Washington D.C., Software process
Improvement Network, Nov. 2000.

NNootteess
1. This article is not based on work done

at or by MITRE. Any implications in
this article should not be associated
with MITRE.

2. When used, organizations and projects
refer to the process at the organiza-
tional level.

3. When project X is used, the reference
is only to that one project.

AAbboouutt tthhee AAuutthhoorr

AAll FFlloorreennccee has worked
at many high technology
and aerospace companies
and is currently at the
MITRE Corporation.
He has been involved in

all phases of the life cycle as a developer
and as a manager. He has developed
processes for all CMM key process areas
at all CMM levels and is a trained evalu-
ator and assessor. He has a bachelor’s
degree in mathematics and physics from
the University of New Mexico and did
graduate work in computer science at the
University of California in Los Angeles
and at the University of Southern
California.

TThhee MMIITTRREE CCoorrppoorraattiioonn
77551155 CCoollsshhiirree DDrriivvee
MMccLLeeaann,, VVAA 2222110022--33448811
PPhhoonnee:: 770033--888833--77447766
FFaaxx:: 770033--888833--11888899
EE--mmaaiill:: fflloorreennccee@@mmiittrree..oorrgg

Let’s face it folks, these days software is a
lot like oxygen, we don’t think about it

a whole lot, but it pretty much keeps
everything running. Perhaps a better anal-
ogy might be the electric power grid – with
apologies to our California readers – of
something that runs just about everything,
but no one thinks about it. Until, of
course, it breaks down; then not only do
we think about it, we realize how much we
depend on it. Then we inevitably get angry
and a bit irrational. We do odd things like
buy mail order windmills and photocells
and listen to engineers on the radio. This is
a frightening prospect for any community;
but what if it affected all of us, and instead
of the lights, it was the software that went
south?

Do I hear a chorus of, “been there,
done that”? True enough, the software-ini-
tiated have learned to live with the equiva-
lent of rolling blackouts, but it can still get
under your skin. Take my father-in-law’s
car for example. When purchased, it was a
nice sort of upscale sporty model that had
the requisite number of gizmos.
Everything was electronic. It featured one
of those on-board computers that could
tell you everything about your drive to the
grocery store. I thrilled my wife with the
news that the stop sign at 49th Street and
my lead foot had combined to produce an
instantaneous gas mileage of .01 miles per
gallon!

Of course the automakers have yet to
take a lesson from the F-16 and add a
heads-up display to this little number. So
every time I felt the deep-seated urge to
check my instantaneous vs. trip mileage, or
see what the DTE was (I never did figure
out what that meant), it was time to pray
for a straight road. Fortunately, my wife’s
early warning system always seemed to dis-
tract me from the computer in time to
avoid a total system crash. But even she
could not save the operator from a feature
called service monitoring.

I never got to see this service feature in
action. That’s because my father-in-law Jim
did. It went like this: On a drive to work

one day the service monitor announced to
a surprised but grateful Jim that it was time
to service the car. It did this with the usual
visual warnings and a beep. This was good
for Jim, who didn’t know his car needed
attention. It was soon bad for everyone else
on the road because the beep never quit,
and Jim became a heads down button-
pusher – without the benefit of my wife.

One could understand this if the
wheels were about to fall off, or if the
engine was red-zoned. But this computer
was pulling out all the stops for a check-
the-fluids drill. Jim was reminded of his
delinquent checkup all the way home, and
therefore dutifully complied with his car’s
software demands at the earliest opportu-
nity. After that, all was right with the soft-
ware – and Jim’s driving – for a few days.
Then the demands started again – time for
another service call. I believe it was on the
third service visit that Jim took back con-
trol of his life from his car’s software.
Taking a cue from the classic 2001, A Space
Odyssey, he asked the mechanic, “Can’t you
just disconnect the @#%$# thing?” Jim
has been driving happily with his neutered
software ever since.

AAnnootthheerr DDeettoouurr
Irritating beeps in the car are one thing,
but the really important software is much
better than what is under the hood. Take
the code that runs your bank; when it
comes to money, the stuff has got to be
bullet proof. That’s what I thought until
one afternoon when my wife’s laughter
caught my attention. She was opening the
mail and had just happened upon an
innocuous envelope from the bank with
our new credit cards. These were those
nifty new cards that include your picture
on the front to help make your transac-
tions more secure.

Thinking this a great idea, I had duti-
fully visited my local branch and had my
picture taken. The lady at the bank was
very nice and agreed that a second picture
was warranted in my case, as the first expo-
sure was sure to embarrass the kids at

checkout time. Now I knew the second
photo was nothing to post on the Internet,
but neither did I think it merited the obvi-
ous entertainment my wife was enjoying. It
was a gem of a photo, although not quite
as I remembered it at the bank. I was now
a woman in her thirties with nicely set hair.

Sure enough it was my credit card
number and my digitized signature on the
back, but a photo that would forever sepa-
rate me from my children at the checkout
counter. Embarrassing? Hey, this could
drive the kids into therapy. I imagined my
clergyman dropping by to see what he
could do. I agonized over my next “may I
see TWO forms of ID,” experience.

Faced with such horrors, I called the
bank hotline to see if I could get my face
back. They explained that their system had
now assigned this, well, rather attractive
face to my account, and there was no way
they could find my old digitized face. So
the only thing to do was visit the nice lady
in the bank again and hope for a more
true-to-life exposure.

Now I realize that I may be denigrating
my bank’s software without due cause,
after all, this may be how that nice lady
gets through a long afternoon. But digi-
tized pictures and databases gave cause for
guilt, and software got the blame.

Now I could go on as there are more
tales to tell, including my favorite of when
one of my service providers upgraded their
computer system then started giving me
months of free service – despite my protes-
tations. But really, despite my occasional
crashes with software, things are well. Jim’s
car is still on the road, and the kids will-
ingly let me use my credit card (with the
old face). And I must admit that life is a bit
nicer because of all that software doing
such a great job. But then, once in a while
I wonder, if my picture didn’t get on my
credit card, where did it go?

–Tony Henderson
Software Technology Support Center

August 2001 www.stsc.hill.af.mil 31

BACKTALK

WWhhoo’’ss DDrriivviinngg tthhee SSooffttwwaarree WWoorrlldd AAnnyywwaayy??

CrossTalk / TISE
5851 F Ave.
Bldg. 849, Rm B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)You feel as though your process is out of control, but
you cannot identify the problem. You need to fix
something. You are over budget and behind schedule and

your employees are over worked. What do you do? Where do you
begin?

Call us. The Software Technology Support Center can pro-
vide capability appraisals at any level. We will bring the tools to
tailor an appraisal to your exact needs, whether it’s the Capability
Maturity Model® (CBA-IPI, snapshot/quick look, or Independent
Expert Program Review), the Capability Maturity Model
IntegratedSM (SCAMPI®), program evaluation, or desk audit.

We get to the root of your problem and provide a solution
that best fits your organization. You will receive an accurate

baseline of how your organization measures up to the desired ref-
erence model, and what you need to do to improve your process-
es. Don’t attempt a capability appraisal without a team of experts
to support it and provide follow-up aid.

The STSC is a transition partner with the Software
Engineering Institute and part of the product development team
for CMMISM. When problems begin, call us first. Whether your
organization is big or small, just starting a project or embattled in
difficulties, we can help.

CAPABILITY
APPRAISAL

k n o w y o u r
CAPABILITIES
b e f o r e i t
c o u n t s

OO-ALC/TISE 7278 4th Street Hill AFB, UT 84056 801 775 5555 FAX 801 777 8069 www.stsc.hill.af.mil

	Cover
	Index
	From the Publisher
	A Foundation for Coalition Interoperability
	The State of Software Development in India
	Can Australia Improve Its Software Processes?
	Letter to the Editor
	Software Maintainability Metrics Model
	STC2002 Call for Speakers and Exhibitors
	The Software Maintainability Index Revisited
	Coming Events
	Letter to the Editor
	Proposal on Library-Centered Software Process Assessment
	Web Sites
	Lessons Learned in Attempting to Achieve Software CMM Level 4
	BackTalk
	Back Cover

