

4

10

15

19

26

Joint Technical Architecture: Impact on Department of Defense Programs
Here is what you need to know to begin understanding Joint Technical Architecture in system
development, including compliance and achieving system interoperability.
by Judy Kerner

The DII COE: Basic Principles and Future Challenges
This article describes how the four basic principles of the Common Operating Environment
(COE) are addressed in its development process as it responds to past successes and evolving open
frameworks.
by Doug Gardner

The DII COE: An Enterprise Framework
For those new to Defense Information Infrastructure (DII), here is an overview of its prominent
features and how to use its common operating environment to build a computing system with
reusable software components.
by Dr. Gregory Frazier

DII COE for Real Time: Becoming Reality
This article describes products, processes, tools, and techniques that have been developed to
meet the integrators’ needs for Defense Information Infrastructure Common Operating
Environment-compliant real-time systems.
by Lt. Col. Lucie M.J. Robillard, Dr. H. Rebecca Callison, Marilynn B. Goo, and John Maurer

Mission–Based Incremental Development of C2 Systems for More Efficient Business
Support
This article is an introduction to dominant battlefield awareness (DBA), and how it is used to define a “Build
DBA” mission, including how abilities are connected to mission completion.
by Ingmar Ögren

Open Open and and CommonCommon Software SystemsSoftware Systems

SoftwareSoftware EngineeringEngineering TechnologyTechnology

2 CROSSTALK The Journal of Defense Software Engineering October 2001

Kent Bingham,
Digital Illustration
and Design, is a

self-taught graphic
artist/designer
who freelances
print and Web

design projects.
Robot design
concepts by

Drew Bingham.

ON THE COVER

3 From the Publisher

8 Call for Articles

25 Coming Events

30 Web Sites

31 BackTalk

DepartmentsDepartments CrossTalk Article Submissions: We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please
follow the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis -
sions. Articles published in CROSSTALK remain the property
of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department
of Defense. Contents of CROSSTALK are not necessarily
the official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this
issue are trademarks of their companies.
Coming Events: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is
no fee for this service, but we must receive the informa-
tion at least 90 days before registration. Send an
announcement to the CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call: (801) 777-7026, E-mail: randy.schreifels@hill.af.mil
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was estab-
lished at Ogden Air Logistics Center (AFMC) by
Headquarters U.S. Air Force to help Air Force software
organizations identify, evaluate, and adopt technologies to
improve the quality of their software products, efficiency
in producing them, and their ability to accurately predict
the cost and schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pam Bowers

Benjamin Facer

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk/crostalk.html

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning sub-
scriptions and changes of address to the following
address. You may e-mail or use the form on p. 9.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

From the Publisher

How Wide Open Should ‘Open Systems’ Be?

October 2001 www.stsc.hill.af.mil 3

In the early 90s, the concept of open systems became prominent. In 1995, the Software
Engineering Institute conducted the conference “Open Systems: Promises and the

Pitfalls,” where basic definitions, elements of an open-systems approach, and reference
models and architectures were presented. After six years, study and debate continues in
Department of Defense (DoD) circles on implementation of open systems and the road
ahead.

From a philosophical standpoint, one can see the origins of a natural tension
between those promoting open systems and those who demand interoperability. The open-sys-
tems mindset group dreams of using commercial-based components and standard interfaces com-
mon across platforms with plug-and-play ability. This model is certainly consistent with DoD’s
drive for a single industrial base and acquisition reform initiatives aimed at affordability. However,
interoperability has historically been achieved by imposing standards for products. Programs
must weld these sometimes competing initiatives to both achieve affordability through open sys-
tems, and to comply with interface standards and conventions necessary for interoperability. This
issue provides a topical primer for the uninitiated and some updates and references for those
already in the briar patch of defining software architectures for real-time defense systems.

In Joint Technical Architecture: Impact on DoD Programs, Judy Kerner of The Aerospace
Corporation discusses the motivation for the Joint Technical Architecture (JTA) and the role of
interface standards and open-systems architectures in achieving interoperability. She contrasts the
JTA to the Defense Information Infrastructure (DII) Common Operating Environment (COE),
a related initiative with which it is often confused.

Doug Gardner of Defense Information Systems Agency in The DII COE: Basic Principles and
Future Challenges describes the advantages and challenges of using the DII COE along the lines
of its four basic principles: interoperability, security, customer focus, and best value. He also
describes challenges for DII COE in the future and describes the widening expectations gap by
users who see new capabilities in the commercial marketplace that are still years away from being
systematically deployed in the DoD.

In The DII COE: An Enterprise Framework, Dr. Gregory Frazier describes the history and
architecture of DII COE. He observes that the commonality of the COE rests on the fact that
mission applications use it to provide common functionality. When segments provide their own
implementation of functions already in the COE, no savings due to reduced maintenance, reuse,
or technology insertion are achieved. He also describes how systems’ compliance with the COE
is measured, and outlines the challenges for programs adopting COE.

In DII COE for Real-Time: Becoming Reality, members of the DII COE Real-Time Team pro-
vide a status on their work to develop a set of extensions to the existing DII COE capabilities. Lt.
Col. Lucie M.J. Robillard, U. S. Air Force; Dr. H. Rebecca Callison and Marilynn B. Goo, The
Boeing Company; and John Maurer, The MITRE Corporation provide updates on the several
real-time products available for use in 2001 that are part of DII COE. These include a config-
urable real-time kernel that is hosted on operating systems that have scheduling capabilities and
services required for real-time applications.

I’ve heard that most people read magazines from back to front. That may be a good choice
in this month’s issue. Ingmar Ögren, partner and chairman of the board for Tofs Inc. and Romet,
in Sweden, reminds us of the importance of requirements development starting from a systems
mission and capabilities. His article, Mission-Based Incremental Development of C2 Systems for
More Efficient Business Support, describes how to use modeling for incremental development of
C2 systems and maintain consistency between system simulations and product design.

We hope this issue of CrossTalk benefits you by capturing the recent history and cur-
rent state of open and common systems within DoD. We know the future direction is still being
charted. The prestigious National Research Council is slated to deliver their findings and recom-
mendations later this year, and the Office of the Secretary of Defense Joint Task Force on Open
Systems has several pilot programs and demonstration efforts underway. Look for an article from
DoD leadership on future directions for open systems later this year.

Lt Col Glenn A. Palmer
Director, Computer Resources Support Improvement Program

4 CROSSTALK The Journal of Defense Software Engineering October 2001

Open and Common Software Systems

Joint Technical Architecture:
Impact on Department of Defense Programs

Judy Kerner
The Aerospace Corporation

The Department of Defense (DoD) Joint Technical Architecture (JTA) is intended to help achieve weapon systems
interoperability and an open systems approach to weapons-system design. This article provides information a DoD
program manager, development contractor, system architect, or other JTA stakeholder will need to know to begin
applying JTA in system development. This article describes the organization and content of the JTA very briefly, and
contrasts it with the Defense Information Infrastructure (DII) Common Operating Environment (COE), a related
initiative with which it is often confused. Finally, it describes some of the actions DoD programs must take in order
to comply with the mandate for JTA and identifies a few of the additional actions necessary to achieve system inter-
operability.

In today’s increasingly dynamic bat-
tlespace, systems that were never intend-

ed to work together are often involved in
aspects of the same mission, sometimes
even deployed in the same tent. In this
environment, interoperability (i.e., the
ability of systems to exchange information
and use common information) is at a pre-
mium, but it rarely happens by accident.
The Department of Defense (DoD) has
begun a number of initiatives to address
aspects of this problem.

In the information technology (IT)
arena, the DoD Joint Technical
Architecture (JTA) [1] is intended to help
achieve weapon systems interoperability
and to support affordability and an open
systems approach to weapon-system
design. To accomplish this, the JTA speci-
fies a set of primarily commercial specifica-
tions, standards, and guidelines in the areas
of information processing, information
transfer, modeling, message format, user
interface, and security. DoD requires these
standards and guidelines to be applied to
all new and all changes to DoD informa-
tion technology and national security sys-
tems.

There is a great deal to be said about
the JTA, its development and context,
related initiatives, and the role of interface
standards and open system architectures in
achieving interoperability; far too much to
cover in one article. The scope of this arti-
cle is limited to information a DoD pro-
gram manager, development contractor,
system architect, or other JTA stakeholder
will need to know to become sufficiently
familiar with the JTA to begin applying it
in system development. This article dis-
cusses the motivation for JTA and quotes
from some of the current DoD policy that
mandates its use. It describes the organiza-
tion and content of the JTA very briefly,

and contrasts it with the Defense
Information Infrastructure (DII)
Common Operating Environment (COE),
a related initiative with which it is often
confused. Finally, it describes some of the
actions DoD program personnel must take
in order to comply with the mandate for
JTA, and identifies a few of the additional
actions necessary to achieve system inter-
operability.

“It is no longer
possible to identify in

advance all the systems
with which a new

system will need to
interoperate even in

the near term.”
Motivation for JTA
The battlefield environment has changed;
today, task forces are formed and dissolved
in real time to meet dynamic requirements.
It is no longer possible to identify in
advance all the systems with which a new
system will need to interoperate even in the
near term. The interfaces between two or
more systems have traditionally been
defined in Interface Control Documents
agreed to by all involved parties. But when
the specific combinations of interoperating
systems are not known a priori, this
approach can become unworkable. The
rapid pace of change in the commercial
world complicates the situation still fur-
ther, since increasingly many of the com-

ponents of DoD systems are of commercial
origin. This dynamic environment favors
systems that can evolve most easily to meet
changing requirements and environments,
systems whose interfaces facilitate this
rapid flexibility and adaptability.

Both in industry and in DoD, inter-
face standardization and open systems are
being used to facilitate this flexibility. The
concept is that if a system is implemented
with a standard interface, then it should be
able to interface at least with other (per-
haps unspecified) systems built to use the
same standard interface. This approach is
well understood for hardware interfaces, as
for example, with electrical sockets and
plugs. The DoD is moving toward inter-
face standardization and open systems to
help achieve the necessary battlefield inter-
operability.

According to the DoD Open Systems
Joint Task Force (OS-JTF) [2], an open
system is a “system that implements suffi-
cient open standards for interfaces, ser-
vices, and supporting formats to enable
properly engineered components to be uti-
lized across a wide range of systems with
minimal changes, to interoperate with
other components on local and remote sys-
tems, and to interact with users in a style
that facilitates portability.” A key charac-
teristic of an open system is that it has stan-
dard interfaces that facilitate portability
and interoperability of system compo-
nents, as well as user portability. The JTA
and the DII COE are two of the initiatives
aimed at increasing this standardization
and commonality within the DoD.

JTA Scope and Evolution
Since August 1996 when JTA Version 1.0
[3] was released, JTA’s scope of applicabili-
ty has broadened considerably. Corres-
ponding to the release of JTA Version 1.0,

October 2001 www.stsc.hill.af.mil 5

Joint Technical Architecture: Impact on Department of Defense Programs

the Office of the Secretary of Defense
(OSD) mandated the JTA for all com-
mand, control, communications, comput-
ers, and intelligence (C4I) systems and the
interfaces of other key assets with C4I sys-
tems [4]. JTA Version 2.0 [5] was released
in May 1998, and with its implementation
memo in November 1998 [6], the scope of
application broadened.

The memo said, in part: “JTA, that is
the use of applicable JTA standards, is
required for all emerging or changes to an
existing capability that produces, uses, or
exchanges information in any form elec-
tronically; crosses a functional or DoD
Component1 boundary; and gives the
warfighter or DoD decision maker an
operational capability.” Waivers from com-
pliance with JTA standards were possible
for cost, schedule, or performance impacts,
but required approval of the DoD
Component Acquisition Executive (CAE)
or cognizant OSD authority. Each individ-
ual DoD Component was made responsi-
ble for implementing the JTA mandate,
including compliance assurance, program-
ming and budgeting of resources, and
scheduling.

JTA Version 3.0 [7] was released in
November 1999; the memo implementing
it [8] included the JTA Version 2.0 imple-
mentation memo as an attachment, and
indicated that the key paragraphs, includ-
ing those described above, continue to
apply. A concern arose that the long time
between releases of the JTA might not
allow it to keep pace with rapidly changing
technology and program needs. So it was
decided to allow interim versions of the
JTA to be released without new implemen-
tation memos, under the condition that
the only differences involve movement of
standards within the document, from
"emerging" status to "mandated" status. A
change of this sort precipitated the release
of JTA Version 3.1 in March 2000 [9]; the
only significant difference between the ver-
sions was that in Version 3.1, Gigabit
Ethernet was listed as a mandated stan-
dard, while in Version 3.0 it had been clas-
sified as an emerging standard.

DoD has begun incorporating JTA
compliance in major policy documents,
which have further broadened its scope of
applicability. For example, in May 2000,
the chairman of the Joint Chiefs of Staff
(CJCS) issued CJCS Instruction 6212.01B
[10], which stated the following: “National
Security Systems and Information
Technology Systems must comply with
applicable IT standards contained in the
current DoD JTA Service and Agency-spe-
cific implementation.” DoD Regulation

5000.2-R [11], dated June 2001, stated
that “JTA is required for all new or changes
to existing IT, including [National Security
Systems] NSS,” and that “if the use of a
JTA mandated standard will negatively
impact cost, schedule, or performance, a
DoD CAE or cognizant OSD [Principal
Staff Assistant] PSA may grant a waiver
from use.” For mission critical or mission
essential programs, all granted waivers
must be submitted for review to still high-
er levels in OSD. All waiver requests are
required to detail the cost, schedule, and
performance impacts if the waiver is not
granted.

Policy statements such as these clearly
indicate DoD’s intent for JTA to be imple-
mented; waivers are allowed if justified, but
have to be approved at a very high level.
JTA continues to evolve: A “final” JTA
Version 4.0 became available April 2001,
and the multi-phase review process for JTA
Version 5.0 is already in progress.

What is JTA?
The Command, Control, Communi-
cations, Computers, Intelligence, Surveil-
lance, and Reconnaissance (C4ISR)
Architecture Framework Version 2.0 [12]
defines three kinds of architecture views for
DoD systems. The three views defined are
operational architecture (OA), systems
architecture (SA), and technical architec-
ture (TA) views. A technical architecture is
defined as “the minimal set of rules gov-
erning the arrangement, interaction, and
interdependence of system parts or ele-
ments, whose purpose is to ensure that a
conformant system satisfies a specified set
of requirements.” The DoD JTA is such a
technical architecture; it achieves its pur-
pose by identifying the interface standards
and conventions necessary for DoD to

facilitate information technology interop-
erability. These standards and conventions
facilitate interoperable implementation of
the system capabilities described in the SA
view, within the operational context
described in the OA view.

The structure of the JTA document
includes a core, four domain annexes, and a
number of subdomain annexes. Figure 1,
taken from DoD JTA Version 4.0 [1],
shows the hierarchical structure of the JTA
and identifies the JTA core, domains, and
subdomains.

The JTA core contains common inter-
faces and standards considered to be appli-
cable to all DoD systems to support inter-
operability. Domains are intended to iden-
tify families of systems. To further support
interoperability among the systems of each
JTA domain, the corresponding JTA
domain annex contains domain-specific
JTA standards that are applicable (in addi-
tion to those in the JTA core) to the sys-
tems of the domain. Similarly, subdomains
identify smaller groupings of similar or
related systems within a domain; systems
within a subdomain must comply with all
relevant standards in the JTA core, in the
annex for the parent domain, and in the
relevant subdomain.

JTA Version 4.0 Structure
The JTA core is divided into sections that
contain different kinds of IT standards and
guidelines. All of the specifications that are
cited as “mandated” in the JTA must en-
hance interoperability, be technically ma-
ture, implementable, and publicly avail-
able. The JTA also lists additional stan-
dards as “emerging;” their criteria for inclu-
sion are less strict, and they are considered
either for elevation to mandated status or
for deletion each time the JTA is revised.

Figure 1: Joint Technical Architecture Version 4.0 Hierarchy Model

Figure 2 shows graphically the structure of
the JTA core, with examples of the kinds of
standards in each section.

JTA Version 4.0 Section 1 contains an
overview of the document and describes a
number of related initiatives, including the
C4ISR Architecture Framework [12]
referred to earlier and the DoD Technical
Reference Model (TRM) [13]. It also con-
tains the only policy statements in the JTA
itself. In JTA Version 4.0, a new subsection
called Policy was introduced into Section 1.
One subsection under Policy identifies four
key documents2 applicable for Combined
and Coalition Standardization and/or
Interoperability, and another subsection
mandates use of the DII COE. The remain-
der of the JTA specifies mandated and
emerging information technology stan-
dards that are to be complied with whenev-
er applicable.

Compliance with the DII COE is man-
dated in JTA Section 1 for Command and
Control (C2), Combat Support (CS), and
Intelligence Systems supporting the Joint

Task Forces (JTFs) and Combatant
Commands. DII COE is implemented by a
set of modular software that provides gener-
ic functions or services that are accessed by
other software through standard applica-
tion program interfaces (APIs). DII COE
and the levels of DII COE compliance are
defined in the DII COE Integration and
Runtime Specification (I&RTS) [14],
which is identified as one of the mandated
standards in the JTA. The JTA further
requires that all applications of a system
that must be integrated into a DII platform
be at least DII COE I&RTS Level 5 com-
pliant with a goal of achieving Level 8. The
levels of DII COE compliance are beyond
the scope of this article, but as a quick ref-
erence, for Level 5 compliance, the system’s
software would need to be segmented, use
the DII COE Kernel, and be installed via
COE tools. A brief comparison of JTA and
DII COE is presented later in this article.
Additional information about DII COE is
available in the I&RTS and on the DII
COE Web site3.

JTA core Sections 2 through 6, and the
domain and subdomain annexes, contain
mandated and emerging information tech-
nology standards with brief descriptions
and some guidance on when each would
apply. Following is an abbreviated discus-
sion of the kinds of standards in each core
section, and a very few examples of the
standards in the domain annexes. The JTA
is available on the Web

4
, and the reader is

encouraged to browse through the JTA for
more information and to look for standards
of interest. The standards in these sections
of JTA are organized loosely according to
the service areas and services defined in the
DoD TRM [13].

JTA Section 2 contains standards in a
category called Information Processing.
These are common software and informa-
tion technology interface standards such as
Portable Operating System Interface
(POSIX), Motif, Structured Query
Language (SQL), and Common Object
Request Broker Architecture (CORBA);
some data interchange standards, such as
Graphics Interchange Format (GIF), Joint
Photographic Experts Group (JPEG), and
National Imagery Transmission Format
(NITF); as well as some of the more widely
used markup language standards, such as
Hypertext Markup Language (HTML) and
eXtensible Markup Language (XML).
Many of the standards in this section are so
prevalent it is hard to find a commercial
product to which one of these standards
applies that does not comply with that stan-
dard.

JTA Section 3 standards are categorized
as Information Transfer Standards. These
standards include Internet protocols, e-
mail, and networking standards. The stan-
dards in this section include Simple Mail
Transfer Protocol (SMTP), Multipurpose
Internet Mail Extension (MIME), File
Transfer Protocol (FTP), Hypertext
Transfer Protocol (HTTP), Uniform
Resource Locator (URL), and Transmission
Control Protocol (TCP)/Internet Protocol
(IP). Again, many of these standards are vir-
tually ubiquitous, especially among com-
mercial products. Also in this section are a
small number of military standards for
which there is no commercial alternative,
such as Global Positioning System (GPS)
and Military Satellite Communications
(MILSATCOM) standards. But as for all of
the mandated standards in JTA, these are
included only if they are publicly available
and widely implemented.

JTA Section 4 is titled Information
Modeling, Metadata, and Information
Exchange Standards. It includes standards
in all three categories. There are modeling

Open and Common Software Systems

6 CROSSTALK The Journal of Defense Software Engineering October 2001

Figure 2: Structure of the Joint Technical Architecture Core

standards like Integration Definition
(IDEF0), IDEF1X, and Unified Modeling
Language (UML); data definition standards
such as Defense Data Dictionary System
(DDDS); and message formats for infor-
mation exchange, like Tactical Digital
Information Link (TADIL-J) and United
States Message Text Format (USMTF).

JTA Section 5 contains Human-
Computer Interface (HCI) Standards,
including DoD, Motif, and Windows style
guides; human-centered design processes;
and military symbology standards.

The final section in the JTA core is
Section 6, which contains Information
Security Standards for various means of
protecting confidentiality and integrity of
information. Examples include the
FORTEZZA Cryptologic Standard; Secure
Sockets Layer (SSL) protocol; secure ver-
sions of standards that appear in other sec-
tions, such as Secure MIME (S/MIME) for
encrypted e-mail; and the Common
Criteria for evaluation of the strength and
functional correctness of Information
Assurance products.

The domain and subdomain annexes
contain standards that are considered to
apply only to specific families of systems so
that, for example, the C4ISR Domain
includes NITF Extensions, the Modeling
& Simulation Domain includes High-Level
Architecture (HLA), and the Combat
Support domain includes Continuous
Acquisition and Life Cycle Support
(CALS).

High-Level Comparison
of JTA and DII COE
Confusion about the relationship between
JTA and DII COE often provokes ques-
tions: Is JTA a superset or a subset of DII
COE? Can the mandated compliance with
JTA be achieved by implementing a system
using DII COE? Is selecting a platform that
does not support DII COE sufficient
grounds for a JTA waiver? To respond sim-
ply, the answer to all these questions is
“No.” JTA mandates the use of DII COE

for certain systems, but complying with
JTA means complying with all applicable
JTA standards; DII COE implementation
does not imply JTA compliance (although
it may help, since most DII COE products
are also JTA-compliant). Table 1 above con-
trasts JTA and DII COE.

Program personnel must understand
the difference between requirements for
JTA compliance and for DII COE compli-
ance. Here are some important points to
remember:
• JTA and DII COE compliance are not

the same. If a program is required to
comply with JTA, then implementing
DII COE may also be necessary (i.e.,
for command and control, combat sup-
port, and intelligence systems).
However, the relevant JTA standards
must still be identified, and the system
assessed for compliance with them.

• The scope and application are broader
for JTA. DoD policy mandates JTA for
all national security systems and IT sys-
tems. JTA mandates DII COE compli-
ance only for command and control,
combat support, and intelligence sys-
tems.

• The impact on program architecture
may be greater for DII COE, because it
contains software that must be incorpo-
rated into the system architecture. But
JTA standards may also drive some
aspects of the system architecture – it is
important to develop a JTA profile
while the architectural impact can be
minimized.

Complying with JTA
OSD mandates that compliance with all
applicable JTA standards must be consid-
ered for all new programs and changes to
existing programs. What does this mean for
a program? JTA contains many industry
standards that will be implemented regard-
less of the mandate, so for those parts of a
system, there will be no impact at all. For
many other parts of the system, if the JTA
standards are kept in mind during the ini-

tial design of the system, then when there
are architectural decisions to be made that
could make JTA compliance either trivial or
difficult to accomplish, the decision can be
made to go towards JTA compliance with-
out additional cost. As was mentioned ear-
lier, it is important to remember that DII
COE compliance at any level is not suffi-
cient to ensure JTA compliance, even
though DII COE compliance is also
required for many programs.

The applicable mandated standards in
the JTA are expected to be used as the start-
ing set of standards for a system. In a JTA-
compliant system, a mandated standard in
JTA is intended to be implemented only by
systems that have a need for the informa-
tion technology services specified by that
standard. This means both that the service
area is one that is required by the program
and also that the guidance in the JTA for
applicability of the specific standard indi-
cates that it is appropriate for the program’s
needs. Additional standards (outside of
JTA) may be used to meet requirements,
but only if they are not in conflict with
mandated standards in the JTA.

Implementing JTA on a
Program
To implement JTA on a program, the first
step is to develop a JTA profile for the sys-
tem. This will provide the information that
is needed either to assess JTA compliance of
an existing program or to plan for JTA
compliance in a developing program. A
simple process for developing a JTA profile
is suggested here, but other approaches
could be followed:
1. Create a table from the List of

Mandated and Emerging Standards
(LMES) (called Appendix B in earlier
versions of JTA). Include all standards
from the JTA core sections, and all
standards from any relevant service
areas in domain and subdomain annex-
es. It is important to check all annexes
for relevant service areas, even in
domains to which the system does not
belong.

Joint Technical Architecture: Impact on Department of Defense Programs

October 2001 www.stsc.hill.af.mil 7

Table 1: Joint Technical Architecture and Defense Information Infrastructure Common Operating Environment Compared

2. For each service area, determine
whether the service area is applicable to
the system.

3. For each applicable service area, identi-
fy the standards that are appropriate to
the system’s needs, using the standard-
specific guidance in the JTA. (Note that
a standard classified as emerging should
not be used if an appropriate mandated
standard is available.) Then determine
whether the system is/will be compliant
with the standards identified.

4. If not, then determine migration plans
or justification for non-compliance.

An excerpt from a JTA profile is shown in
Table 2 .

The JTA standards profile can be used
as a starting point in cases such as these:
• To familiarize designers of a system with

relevant standards before design deci-
sions are made.

• To use JTA standards as references for
implementers as the system is being
developed.

• To develop compliance criteria for test-
ing to ensure that the relevant JTA stan-
dards are implemented on the program.

• To establish customers’ acceptance cri-
teria.

• To generate migration plans showing
JTA standards that will be implemented
in later releases of a system, or creating
waiver requests if a particular standard
cannot be implemented on a system
even in the future.
For new programs and changes to exist-

ing programs, JTA compliance, and DII
COE compliance if applicable, must be in
Requests for Proposal and in all relevant
contractual documents. The DoD JTA
User Guide and Component JTA
Management Plan [15] should provide
some help with contractual language.

Conclusions
Each DoD Component is responsible for
JTA implementation within the
Component. Each has unique policies, and
additional funding for JTA compliance is
often not provided. The OSD direction is
clear – JTA is essential to meeting the future
requirements for interoperable systems.
Getting to this vision of interoperability
will be a long-term effort, since JTA com-
pliance is only mandated for new systems
and those being upgraded. It is important
to realize also that compliance with JTA by

itself will not guarantee interoperability
between systems. Common data, selection
of common options, and sometimes com-
mon software, such as the DII COE, will
also be necessary to achieve true interoper-
ability. There are likely to be growing pains
in the interim, but the overall goal is vital
for the future of our military.u

References
1. Joint Technical Architecture Version

4.0, Department of Defense, 2 April
2001.

2. Terms and Definitions, DoD Open
Systems Joint Task Force (OS-JTF),
<www.acq.osd.mil/osjtf/html/approach
_terms.html>, 23 April 1999.

3. Joint Technical Architecture Version
1.0, Department of Defense, 22 Aug.
1996.

4. Kaminski, Paul G. and Emmett Paige.
Implementation of the DoD Joint
Technical Architecture, 22 Aug. 1996.

5. Joint Technical Architecture Version
2.0, Department of Defense, 26 May
1998.

6. Buchholz, Douglas D., Jacques S.
Gansler, and Arthur L. Money. DoD
Joint Technical Architecture (JTA)
Version 2.0, 30 Nov. 1998.

7. Joint Technical Architecture Version
3.0, Department of Defense, 15 Nov.
1999.

8. Gansler, Jacques S., Arthur L. Money,
and John L. Woodward Jr. DoD Joint
Technical Architecture (JTA) Version
3.0, 29 Nov. 1999.

9. Joint Technical Architecture Version
3.1, Department of Defense, 31 March
2000.

10. CJCSI 6212.01B: Interoperability and
Supportability of National Security
Systems, and Information Technology
Systems, Chairman of the Joint Chiefs

Open and Common Software Systems

8 CROSSTALK The Journal of Defense Software Engineering October 2001

Table 2: Example Joint Technical Architecture Standards Profile Entries

October 2001 www.stsc.hill.af.mil 9

of Staff, 8 May 2000.
11. DoD Regulation 5000.2-R: Man-

datory Procedures for Major Defense
Acquisition Programs and Major
Automated Information System
Acquisition Programs, Department of
Defense, June 2001.

12. Command, Control, Communications,
Computers, Intelligence, Surveillance,
and Reconnaissance (C4ISR) Architec-
ture Framework Version 2.0, Depart-
ment of Defense, 18 Dec. 1997.

13. DoD Technical Reference Model Version
2.0, Department of Defense, 9 April
2001.

14. Defense Information Infrastructure
(DII) Common Operating Environment
(COE) Integration and Runtime
Specification (I&RTS) Version 4.1,
Department of Defense, 3 Oct. 2000.

15. JTA User Guide and Component JTA
Management Plan Version 1.0, Draft,
Department of Defense, 2001.

Notes
1. The term “DoD Components,” as

defined in DoD Regulation 5000.2-R
[11], refers collectively to “the Office of
the Secretary of Defense, the Military
Departments, the Chairman of the Joint
Chiefs of Staff, the Combatant Comm-
ands, the Defense Agencies, and DoD
Field Activities.”

2. The documents identified in JTA
Version 4.0 Section 1.6.2 Combined
and Coalition Standardization and/or
Interoperability are the following:
• Department of Defense, Directive

2010.6: Standardization and
Interoperability of Weapons Systems
and Equipment Within the North
Atlantic Treaty Organization, 5
March1980.

• Chairman of the Joint Chiefs of Staff,
CJCSI 2700.01: International Military
Rationaslization, Standardization, and
Interoperability Between the United
States and Its Allies and Other Friendly
Nations, 30 Jan. 1995.

• North Atlantic Treaty Organization
(NATO), Consultation, Command and
Control (C3) Technical Architecture
(TA) (NC3TA), 15 Dec. 2000.

• Allied Communications Publication
(ACP) 140, Combined Interoperability
Technical Architecture (CITA), 3 May
1999.

3. The DII COE Web site contains such
information about DII COE as current
implementation status, requirements for
changes, future plans, meeting dates for
the oversight group and working groups,
and links to other relevant Web sites.

Information about DII COE changes
regularly, since it involves releases of soft-
ware that may be updated. For current
information, check the DII COE Web
site: <http://diicoe.disa.mil/coe>.

4. The DoD JTA Web site contains a great
deal of information about JTA, including
previous and current versions of the JTA
document, recent news regarding JTA,
and information on how to participate in
the JTA development process. The Web
site also contains a list of all the organiza-
tions participating in the JTA
Development Group, with contact info
for the representatives from each DoD
Component. Following are URLs for the
DoD JTA Web site and the JTA Web
sites of the Military Services:
• DoD JTA:

<www.jta.itsi.disa.mil>.
• USAF JTA:
<www.afca.scott.af.mil/jta-af>.

• USA JTA:
<http://arch-odisc4.army.mil>.

• USN JTA:
<www.acq-ref.navy.mil>.

About the Author
Judy Kerner is a
senior project leader
at The Aerospace
Corporation in El Se-
gundo, Calif., where
she leads activities for
the Department of

Defense Joint Technical Architecture
and related initiatives. Kerner has
more than 25 years of experience in
software architecture, software engi-
neering, standards, and open systems.
She has worked for TRW, Norden
Systems, and previously for several
commercial organizations. Her as-
signments have included project man-
agement and responsibilities in all
phases of the software life cycle, as
well as research. Kerner holds a mas-
ter’s degree in computer science from
the Polytechnic Institute of New York.

The Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 90009
Phone: (310) 336-6555
Fax: (310) 336-8266
E-mail: judy.kerner@aero.org

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056

Fax: (801) 777-8069 DSN: 777-8069
Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:_____________________________

RANK/GRADE:_____________________

POSITION/TITLE:___________________

ORGANIZATION:_____________________

ADDRESS:__________________________

BASE/CITY:________________________

STATE:_________ ZIP:________________

PHONE:(_____)_____________________

FAX:(_____)________________________

E-MAIL:________________@___________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2000 c LESSONS LEARNED

FEB2000 c RISK MANAGEMENT

MAY2000 c THE F-22

JUN2000 c PSP & TSP

JAN2001 c MODELINGAND SIMULATION

FEB2001 c SOFTWARE MEASUREMENT

APR2001 c WEB-BASED APPS

MAY2001 c SOFTWARE ODYSSEY

JUL2001 c TESTING AND CM

AUG2001 c SW AROUND THE WORLD

SEPT2001c AVIONICS MODERNIZATION

Joint Technical Architecture: Impact on Department of Defense Programs

10 CROSSTALK The Journal of Defense Software Engineering October 2001

The DII COE:
Basic Principles and Future Challenges

Doug Gardner
Defense Information Systems Agency

While not a silver bullet, the Defense Information Infrastructure (DII) Common Operating Environment (COE)
is a measured, pragmatic approach to software development and integration that is tailored to the Department of
Defense. The four basic principles of COE – interoperability, security, customer focus, and best value – are what
drives the COE as it responds to past successes and seeks to embrace evolving open frameworks and object technolo-
gy. This article entails a description of how these principles are addressed in the COE development process. This is
critical to understanding the goals of the COE environment: How it is used. How it should be used. Also discussed
are the challenges facing the COE as a result of decreasing commercial product life cycles, rising customer expecta-
tions, and increased demand to support new communities.

The Defense Information Infrastru-
cture (DII) Common Operating

Environment (COE) was created to pro-
vide the Department of Defense (DoD)
with software processes and products that
accommodate the unique corporate char-
acteristics of the DoD. Since its inception,
the COE has been embraced by all the
major service Command and Control sys-
tems and the intelligence community as
the basis for combined joint interoperabil-
ity from the National Command
Authority through the commanders-in-
chief to the joint task force.

As embodied in the Global Command
and Control System (GCCS) and its service
variants, COE has been employed in all
major theater operations. These include the
U.S. Central Command operations
SOUTHERN WATCH (no fly-zone
enforcement) and DETERMINED RES-
PONSE (USS COLE aftermath), U.S.
European Command operations DELIB-
ERATE FORGE (NATO Air Operations),
JOINT FORGE (Stabilization Forces), and
SILENT PROMISE (South African relief).

As COE embraces evolving open
frameworks and object technology, such as
the Web, publish-and-subscribe data
sources, portals, and component software,
hundreds of new system integrators have
moved to the COE.

What drives the COE as it responds to
these past successes and seeks to support a
broader application base? The answer to
this question is encompassed in the COE’s
four basic principles: interoperability, secu-
rity, customer focus, and best value. A
description of how these principles are
addressed in the COE development pro-
cess is critical to understanding the goals
of the COE environment, how it is built,
and how it should be used.

Interoperability
Interoperability of joint systems is critical

to success on the modern battlefield.
However, interoperability is about making
limiting choices. The DoD has tried many
initiatives to make joint systems interopera-
ble, most of them based on developing and
mandating standards (such as Ada, POSIX

1
,

and the Joint Technical Architecture). While
these efforts have had some success, the
COE goes beyond interoperability through
standards and provides interoperability

through products. Common products make
for common software behavior and reduce
the number of avenues that developers can
use to move away from a common, interop-
erable implementation.

The DII COE is based on the thesis
that having the exact same software on
both sides of an interface is the most effec-
tive way to ensure consistent behavior
across the interface. Thus interoperability
between systems can be measured by how
much of the exact same software is shared
between the systems. Interoperability in
the COE is a spectrum: its minimal level
of interoperability being federation (the
ability to run two applications on the same
platform without stepping on each other),
and the maximum level of interoperability
being two systems that are entirely identi-
cal except for domain or functionally spe-

cific mission applications.
There are some practical advantages to

high levels of interoperability as defined by
the COE, some of which are particularly
important in the DoD environment. For
example, we expect that in future contin-
gencies a military user will need to run a
functionally specific application on a sys-
tem supplied by another service (e.g., the
Army logistician who needs to run an
Army application while assigned aboard a
Navy ship as part of a joint task force).
High levels of interoperability, as defined
by the COE, will make this easier by
ensuring that the underlying infrastruc-
ture of both the originating Army system
and the receiving Navy system use the
same software.

It is a continual challenge for the COE
to balance the need to build common soft-
ware with the legitimate requirements of
system developers for specialized or
unique services. In each of these cases, the
potential for providing services in the
COE that could reduce interoperability
(for example, multiple products that pro-
vide the same service) must be weighed
against the specialized requirement. This
approach is designed to help the commu-
nity make limiting choices together, and
while it has resulted in a substantial
amount of community agreement, it is an
approach that is not very popular with
developers and users who are accustomed
to having complete control of functional
and system design decisions.

A common statement from a program
exploring using the COE is, “I can’t use
the COE because it doesn’t have or do
____________ (fill in the blank).” If the
COE can be expanded to handle that
blank space, then every effort is made to
address the issue in the COE software
baseline. If the request is incompatible or
would introduce new opportunities for
COE customers to make conflicting deci-
sions, then the requested capability is not

“ The COE, as the
primary vehicle for
providing controlled

infusion of new
technology across a

large number of
systems, is squarely in
the crosshairs of the
expectations gap.”

included in the COE. If the program then
chooses to not use the COE, the program
should clearly understand that they have
just prioritized their missing desire above
joint interoperability, or at least the level
of joint interoperability you get from the
COE. In some cases, this is an under-
standable trade-off for a program to make
(their need really is more important than
the gains afforded by the COE). However,
in most cases, the decision to not use the
COE will make the integration of that
program’s software into a joint system con-
siderably more difficult.

Security
Security is an important factor in the
COE, and as might be expected, has been
growing in importance over the past few
years. Since the COE is not a system, it
does not go through the formal security
accreditation required of DoD systems.
Instead, components being included in
the COE are assessed against a stringent
set of security guidelines, and are occa-
sionally rejected if their acceptance would
create an unacceptable level of risk in end
systems. The COE provides recommenda-
tions, in the form of default software con-
figuration settings, for how COE cus-
tomer systems should use COE compo-
nents to maximize security. Ultimately,
however, and this is a very important
point, the security posture and level of
acceptable risk are the decision of the
developers of the systems that use the
COE.

Aside from the secure components
and configuration guidance, the COE
provides additional security-related ser-
vices to developers of COE-based systems
and applications. First, by using the COE,
a customer system inherits a basic amount
of security that serves as a community-
wide, common level of reasonable basic
security. This basic security serves as a
starting point for developers and allows
them to increase the security of their sys-
tems to meet specialized security require-
ments.

The second primary security service
provided as part of the COE process is a
watchdog organization (the COE Security
Team) that continuously monitors threats
to COE software, informs the community
of potential concerns, and ensures that
appropriate patches or configuration
advice are made available as quickly as pos-
sible. The COE Security Team monitors
DoD security initiatives (such as
Information Alert Vulnerability Assess-
ments), as well as security publications and

commercial product announcements, to
identify security issues that are relevant to
the COE customer community. This focus
on security issues associated with COE
components is designed to reduce the
amount of vulnerability research required
by COE-based system developers and
administrators.

A third focus of the COE security sup-
port effort is to provide tools that system
integrators and application developers can
use to enhance the security of their prod-
ucts. One tool is a configuration-based
tool that examines a machine and identi-
fies potential security vulnerabilities such
as file permissions on UNIX that are too
permissive or scripting conventions that
can be readily exploited. Another tool is a
set of interfaces that allow application and
system developers to embed secure
authentication and data transport into
their software. These tools can be used by
developers to build security into systems,
and they will make it easier to build sys-
tems with consistent security implementa-
tions. The tools will be expanded over

time to support new security mechanisms
and services.

Customer Focus
Ultimately, the DII COE is about build-
ing systems. In the DoD “system-building
universe,” there are four primary COE
customers: system integrators, application
developers, system administrators, and
functional users. This diverse set of cus-
tomers has very different requirements.
The COE’s success depends on our ability
to balance the capabilities provided in the
COE across these four groups.

System Integrators
System integrators are those DoD devel-
opment organizations that are responsible
for providing integrated, full-service sys-
tem solutions that include both general
purpose capabilities (such as office

automation and Web browsers), as well as
functionally specific capabilities (such as
situational awareness, transportation man-
agement, or financial services). For the mil-
itary command and control community, the
primary systems that use the COE are the
Global Command and Control System
(GCCS), GCCS-Maritime, GCCS-Army,
Theater Battle Management Core Systems,
and the Army Battle Command System.

System integrators rely on the DII
COE to provide a common integration
methodology that supports widespread
sharing of applications across systems and
ensures that applications developed
according to COE guidelines will peace-
fully coexist in an integrated system. The
COE allows system integrators to view the
integrated system as a series of compo-
nents that can be packaged together or
flexibly deployed to meet specific needs of
system users.

This component-based view of system
development encourages system integra-
tors to meet system requirements by look-
ing for existing components, either pro-
vided by the COE or built by another
COE-compliant developer in the DoD.
This leveraging of other development
efforts allows the system integrator to
focus resources on the new or functionally
unique portions of the system rather than
on general purpose tools and components.

The COE has two key rules designed
specifically to support system integrators:
software services provided by the COE are
not retired except through a process of
community agreement, and services in the
COE are upgraded with an eye toward full
backward compatibility. This ensures that
applications built using the old services
continue to run in the upgraded environ-
ment without any modification. These
goals allow system integrators to use COE
services or COE-based applications know-
ing that services in the COE will not dis-
appear without warning, and that all cus-
tomers will have a say in the retirement
schedule. For a large system that includes
hundreds of functional components, these
guarantees allow the system integrator
considerable flexibility in upgrading indi-
vidual components of the system over
time, instead of having to reengineer all
capabilities before any new infrastructure
features can be fielded.

System integrators can choose to
include in their systems software devel-
oped by the COE. The COE provides the
standard implementation for key com-
mand and control functionality, specifical-
ly the data management, dissemination,

The DII COE: Basic Principles and Future Challenges

October 2001 www.stsc.hill.af.mil 11

“ This
component-based view
of system development

encourages system
integrators to meet
system requirements
by looking for existing

components ...”

Open and Common Software Systems

and visualization components that make
up the Common Operational Picture
(COP). The COP is a framework and a set
of standard capabilities built against that
framework that provide a common set of
data, an integrated display capability, and
a robust data replication mechanism in
support of situational awareness across the
joint community. Also, the COE provides
a set of government-built services that are
not supported by commercial products
(such as profiles, which extend a user’s
account definition to support shift work
and multiple duties, and cross-platform
account management, which includes a
single tool for creating accounts that work
across all COE-supported platforms).

Application Developers
Application developers are those DoD
development organizations that build soft-
ware to address a particular functional area
such as weather, intelligence, or logistics.
While applications are usually built to be
part of a particular system, some are built
to be fielded as components of multiple
systems. Two current examples of joint
mission applications are the Integrated
Imagery and Intelligence application suite
and the Air Tasking Order Exchange capa-
bility.

Primarily, the COE supports applica-
tion developers by allowing them to focus
their resources on developing mission-spe-
cific functionality instead of infrastruc-
ture. Before the acceptance of the COE,
functional applications were usually not
built to be part of a larger system. Each
application required its own account man-
agement tools, map package, data manage-
ment engine, etc. For many applications,
these components could eat up well over
half of the development budget without
ever providing the end user any specific
functionality. By using the COE, the
money allocated to develop infrastructure
components can instead be reprogrammed
toward meeting more of the end user’s
functional requirements.

In addition, reliance on COE infra-
structure components also helps the appli-
cation developer ensure that the applica-
tion can be integrated into multiple sys-
tems with minimal effort. For example,
community acceptance of a standard map-
ping package means that separate versions
of the application for different map
engines are not required. The application
developer has a clear idea of the target
environment during development and
therefore can make appropriate decisions
without a great deal of coordination.

The COE also provides application
developers with a public clearinghouse for
requirement and product information.
The DII COE has chartered 19 technical-
ly focused working groups to document
requirements, incorporate technical advice,
and recommend products for inclusion in
the COE. These working groups conduct a
significant amount of research, both in
terms of what is commercially available and
how well various products fulfill communi-
ty requirements. These are public forums
that include experts from across the DoD
community. Participation in these groups,

or at least monitoring their progress, is a
good way to reduce the amount of
resources that a development organization
has to spend to research both industry and
the rest of the DoD.

System Administrators
System administrators are the people
tasked with making DoD systems run in
the field. They are usually military special-
ists and are almost never the same people
who develop the applications or integrate
the systems to be operated and main-
tained. To do their job properly, they need
clear system documentation, automated
installation and upgrade tools, and pre-
dictable system environments.

The COE supports system adminis-
trators by forcing application developers
and system integrators to consider, as part
of the development process, the impact of
design decisions on the workforce that will
make the systems run in the field. As part
of the overall COE philosophy, it attempts
to minimize the effort required to main-
tain and upgrade COE-based systems
while providing enough flexibility to allow
operational sites to adequately control
their local information technology
resources (e.g., to install the software they
need to accomplish their mission).

The COE tool supporting these goals

is the COE Installer, which provides a
point-and-click interface for loading,
updating, and configuring software on
COE-based systems. The COE Installer
performs specialty features like installa-
tions from a network server, dependency
checking to ensure required components
are loaded in the proper order, and version
checking to ensure that applications have
access to the proper versions of commer-
cial and government-built infrastructure
components. COE rules about separate
directories for each component ensure a
predictable “laydown” of software on each
machine, and that the installation of a new
component will not remove or overwrite
software required by an already loaded
component.

Functional Users
Functional users are the military operators
who use the systems built on the COE.
They use their computer systems to per-
form practically all aspects of their day-to-
day duties, as well as to prosecute joint
military operations. Systems built on the
COE support users across the spectrum of
military operations from routine adminis-
trative users to those conducting opera-
tional planning and execution. COE-
based systems also provide support to
users at all echelons of the command
structure hierarchy (from the National
Command Authority to the foxhole).

The functional users are the ultimate
customers of the COE, but what the COE
provides is largely invisible to them.
Although concepts such as component
installation, system integration, and soft-
ware resource management are outside the
functional users’ scope (and interest), these
concepts provide the processes and soft-
ware framework for joint cooperation and
integration that make it possible to exe-
cute modern joint operations. The COE
provides the mechanism to bring together
applications from a variety of systems,
quickly and under less than ideal condi-
tions, to automate a joint task force. One
immediate pay off of the COE in this area
is that it has almost completely ended the
practice of each new functional capability
being delivered to the end user as a new
system with new hardware, training, and
administration requirements. New func-
tionality is now commonly delivered into
a system, so users do not have to manage
multiple workstations each providing only
a portion of the necessary information in
order to do their jobs. Systems like GCCS,
and their service counterparts, now serve
as the host systems for new functionality

12 CROSSTALK The Journal of Defense Software Engineering October 2001

“ ... the COE
supports application

developers by
allowing them to focus

their resources on
developing

mission-specific
functionality instead of

infrastructure.”

being offered to users.
Another key benefit to the functional

users is that, for the same amount of fund-
ing across the DoD, the COE allows less
to be spent building duplicative (and often
non-interoperable) infrastructure compo-
nents. This frees up more money to be
focused on the functional requirements
that directly support mission accomplish-
ment. This redirection of resources is
already starting to become evident in some
functional domains within the DoD and is
likely to become more obvious over the
next few years as current service and joint
systems upgrade their infrastructure to the
latest version of the COE.

In the area of the COP, the COE pro-
vides functional users a situational aware-
ness capability that can expand and
change as new sources, sensors, and deci-
sion tools become available. The challenge
from the COE perspective is to make
dozens of COP applications and decision
tools, built by a wide variety of govern-
ment and commercial organizations,
appear to the end user as if they were built
as part of a single, integrated suite of appli-
cations. By providing just such a frame-
work, the COP has become the primary
integration mechanism for command,
control, and intelligence data across the
DoD. It will continue to evolve to allow
the broadest amount of flexibility for con-
tributing applications to bring additional
information to the common display and
to facilitate the secure distribution of data
needed by decision-makers at all levels.

Best Value
Although not the primary focus of the
COE, an extremely important byproduct
of achieving system and application inter-
operability through common software is
cost savings. The key aspect of cost savings
in the COE is the use of commercial prod-
ucts, which make up about 85 percent of
the COE. In almost every case, COTS
products are less expensive for the govern-
ment to acquire, modify, and enhance
than government-built components.

As for the government-built products
in the COE, they are developed either
because available COTS products would
make the COE less interoperable or
because the required functionality does
not exist in any commercial product.
Although it seems axiomatic that using an
existing government-built product rather
than building your own would save
money, the amount of money saved has
been difficult to quantify. This is probably
because most programs don’t track cost

savings, but the fact is that the DoD has
not invested the time and resources
required to quantify costs attributable to
the COE.

However, there are areas where savings
due to community-wide adoption of the
COE can be quantified. A particularly
good example is the Integrated Imagery
and Intelligence set of mission application
capabilities built by the Navy and being
fielded on each of the COE-based major
service command and control systems.
Instead of four different development
efforts, the DoD will pay for only one. As

this model is applied to each of dozens of
functional areas across the military, this
aspect of cost savings will likely represent
the biggest financial advantage of the
COE for the DoD.

However, there are packaging, and at
higher levels of COE compliance, reengi-
neering costs associated with migrating to
the COE. The initial cost to move to min-
imal COE compliance is usually very low,
partly because the COE was designed that
way and partly because minimal COE
compliance is based on adhering to gener-
ally recognized good software develop-
ment practices. Depending on how tightly
an application is integrated with its infras-
tructure, achieving higher levels of COE
compliance can incur moderate to high
costs. The savings in long-term mainte-
nance balance some of these migration
costs, but mostly the costs for migration to
the COE should be viewed as the cost of
becoming joint.

One other cost-saving outcome of the
COE’s role as a repository for common
capabilities is that the COE has become a
single forum that represents service and
agency software requirements to industry.
This allows the COE (usually through
technical working and advisory groups) to
represent a broad range of the DoD in dis-
cussions with industry. It also allows the

COE to arrange COE-wide licenses for
certain key capabilities, such as printing
and Web services.

Future Challenges
The COE faces many challenges in the
future, particularly in the areas of keeping
up with technology, maintaining a collab-
orative atmosphere with our customers,
balancing the use of commercial products
and services with the need to maintain
open software solutions, and expanding
the COE to take advantage of other ser-
vices and technologies.

The “Expectations Gap;” the
Treadmill Keeps Getting Faster
The most significant challenge for DoD
software development in general and the
DII COE in particular is the growing mis-
match between the amount of time it takes
to field a system and how quickly com-
mercial industry is moving. The COE ini-
tially assumed service systems would
upgrade their software and hardware
infrastructure every three years. The reali-
ty, however, is that the current versions of
fielded systems will not be upgraded for
five to seven years, for a variety of reasons:
specialized security requirements, in-depth
functional testing, expense of retraining
users and system administrators, opera-
tional concepts that lag technological
innovation, and scheduling availability for
operationally deployed forces, just to
name a few.

So what DoD software developers face
is a growing expectations gap by users who
see new capabilities in the commercial
marketplace that are still years away from
being systematically deployed in the DoD.
The COE, as the primary vehicle for pro-
viding controlled infusion of new technol-
ogy across a large number of systems, is
squarely in the crosshairs of the expecta-
tions gap. We need to move fast enough to
keep up with the lightning pace of indus-
try while not leaving any legacy systems or
applications behind.

A factor that will increase the expecta-
tions gap is the frequency with which
commercial products are being replaced
and/or retired by their manufacturers.
New and improved products are being
produced much faster than large-scale sys-
tem developers can keep up. With each
new release, the commercial business
mind-set is that an older product becomes
unsupported (both to save the manufactur-
er on the number of baselines to maintain
and to encourage customers who haven’t
upgraded in a while to move to the later

The DII COE: Basic Principles and Future Challenges

October 2001 www.stsc.hill.af.mil 13

“ The COE, as the
primary vehicle for
providing controlled

infusion of new
technology across a

large number of
systems, is squarely in
the crosshairs of the
expectations gap.”

version). For some commercial products,
the release-to-retirement cycle fits inside
the typical DoD system “develop, test, and
field cycle.” That means that in the time
between code freeze for validation, certifi-
cation, training, and fielding, some of the
commercial products in the frozen baseline
are becoming unsupported by vendors.
While the COE guarantees that its gov-
ernment-built interfaces will remain back-
ward compatible and fully supported, it is
not possible to make the same claim for
commercial products.

This Only Works if
Everyone Works Together
The DoD consists of hundreds of
autonomous, decentralized software devel-
opment and acquisition organizations,
each of which contributes a portion of the
overall capability required to prosecute
joint operations. With so many agendas
and specific needs that ultimately are
required to come together to support the
decisions of a single commander, it is crit-
ical that there be an open dialogue to rec-
oncile the conflicting demands of systems
contributing to joint operations. The
COE provides a forum for discussing the
technical tradeoffs associated with joint
software development. It can continue to
be a useful part of the overall joint solu-
tion if the services and agencies that par-
ticipate continue to make being joint a
priority.

The Not-So-Hidden
Threat From Industry
The DoD is a highly competitive arena, at

times within the government but certainly
among the defense contractors and com-
mercial vendors who provide government
software services.

From the standpoint of the commer-
cial marketplace, the COE conflicts with
the corporate agendas of most commercial
vendors. The common development and
integration approach of the COE discour-
ages any program to become dependent
on a proprietary approach offered by a
particular vendor. The COE enforces an
anti-monopoly stance by providing ser-
vices in such areas as cross-platform sup-
port and by including multiple commer-
cial products where doing so allows sys-
tems to make cost/feature tradeoffs with-
out sacrificing interoperability.

A related challenge for the DII COE is
trying to balance the DoD’s desire to use
commercial products with corporate busi-
ness models that push for product unique-
ness and proprietary approaches. A perfect

example of this is the DoD goal of cross-
platform consistency. The ideal is that
platforms in the DoD should be inter-
changeable, that is, they should provide a
common set of services invoked the same
way. This would allow applications and
software tools to be more readily shared
across systems, thus saving the DoD mil-
lions (perhaps billions) of dollars and
ensuring consistent behavior for all users.
Instead, commercial industry spends bil-
lions to ensure that the ideal is never
reached – there is no business case for
making a product the same as a competi-
tor’s. Even where standards exist, such as
Structured Query Language for relational
databases, the extensions provided by each
database vendor ensure that applications
built for one product cannot be moved to
another product without significant
reengineering.

Controlled Growth for the COE
There is considerable pressure on the
COE to expand to support new technical
requirements, particularly in the areas of
real time and tactical systems support.

Expansion into the real-time environ-
ment will require support for a much larg-
er set of hardware and operating system
configurations. It will also require funda-
mental reengineering of some COE appli-
cations to both adhere to more stringent
processing requirements and to take
advantage of new services provided by
real-time operating systems. The differ-
ences in system development and integra-
tion philosophies between the real-time
and non-real-time communities have
already challenged some of the core COE
concepts. There is a clear need for the
COE to provide the tools and products
that allow integration between the deci-
sion-making systems that support a joint
task force and their real-time counterparts.
This will be a significant focus area in
future deliveries of the COE.

Providing support to the tactical com-
munity will challenge the COE to operate
on smaller hardware and to support future
developments in wireless technologies,
hand-held Personal Digital Assistants, and
radios. More flexibility in the amount of
bandwidth used, more control over the
flow of data, and more visualization
options will be required. The requirements
in this space are just beginning to be
defined, but this is also clearly an area that
the COE will need to support in future
deliveries.

The challenge to the COE will be to
incorporate these capabilities while main-

taining a stable baseline for current COE
customer systems that are in the field.

Conclusion
The DII COE is a measured, pragmatic
approach to software development and
integration that is tailored to the DoD. It
is a customer-driven and cost-conscious
process that results in products that are
interoperable and secure. The challenges
facing the COE over the next few years are
significant as the trends of decreasing
commercial product life cycles, rising cus-
tomer expectations, and increased demand
to support new communities converge. As
the COE evolves in the future, it is critical
to understand that it is not a silver bullet.
Successful software development in the
DoD still requires good systems engineer-
ing, disciplined development processes,
and detailed coordination among related
applications and systems.◆

Note
1. POSIX is a registered trademark of

The Institute of Electrical and
Electronic Engineers, Inc. (IEEE).

About the Author

Doug Gardner has
worked on practically
every part of the Defense
Information Infrastruc-
ture (DII) Common
Operating Environment
(COE) since he began

with the Defense Information Systems
Agency (DISA) in 1996. After serving as
the Common Support Applications Team
chief for two years, he was named as the
COE chief engineer in April 2001. He
has a master’s degree in defense policy
from The Claremont Graduate School
and a bachelor’s degree in electrical engi-
neering and computer science from Rice
University. Prior to coming to DISA, he
worked for the Jet Propulsion Laboratory
as a software developer on a variety of
command and control, intelligence, and
modeling and simulation systems.
Gardner is also a major in the U.S. Army
Reserves.

Defense Information Systems Agency
Phone: (703) 681-2328
E-mail: gardnerd@ncr.disa.mil

Open and Common Software Systems

14 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 15

In 1994, the Defense Information
Systems Agency (DISA) began develop-

ment of the Global Command and
Control System (GCCS). The goal of
GCCS was to link the commander-in-
chief (CINC) sites into a single planning
and logistics network. It utilized an archi-
tecture that was developed in the Navy
Joint Maritime Command Information
System (JMCIS) program for integrating
software modules developed by multiple
contractors. In 1995, GCCS was opera-
tional and DISA had begun work on the
Defense Information Infrastructure (DII).
In 1998, GCCS version 2.0 was the first
Department of Defense (DoD) system to
utilize the DII Common Operating
Environment (COE) as the basis for its
implementation, being deployed on top of
the DII COE Version 3.1.

Since then, the DII COE has been or
is being used as the framework for more
than 100 DoD computing systems (see
Figure 1). The term “COE” has moved
into common parlance for corporate Chief
Information Officers, and foreign govern-
ments are looking to construct common
operating environments for their comput-
ing enterprises. Although the DII COE
has been in existence for more than three
years and has enjoyed remarkable success,
it is not widely understood. This article
offers insight into the DII COE architec-
ture and the rational for its design.

An Enterprise Focus
The DII COE is a framework for the
development of enterprise computing sys-
tems. In order to understand the decisions
made regarding its design, it is important
to first understand what an enterprise
computing system is, and what it means to
be a framework.

An enterprise is a venture – the act of
an organization working toward a com-
mon goal. Enterprise computing is the
establishment and use of a computing sys-
tem that supports this venture by imple-
menting the business processes of an orga-

nization. The DoD is a grand-scale organi-
zation with approximately 11 million mil-
itary and civilian participants. Its purpose
is equally grand: the defense of the United
States of America. This is, of course, too
large an organization and too complex a
venture to be understood as a single enter-
prise. Thus the DoD is partitioned into
many smaller organizations, each execut-
ing their own enterprise. However, these
are collaborative enterprises – the organi-
zations work together to support common
goals. The DoD enterprise computing sys-
tem is a system of systems in which infor-
mation and services are shared across
enterprise boundaries.

A framework is a software package that
supports the creation of architecture by
guiding developers toward a particular set
of design patterns. If the developers con-
form to the framework and utilize its ser-
vices, then the resulting system will reflect
the desired architecture. It is important to
note that a framework is not itself a sys-
tem. The DII COE is a framework for the
construction of modular, scalable, dis-
tributed Command, Control, Computer,
Communications, Intelligence, Surveill-
ance and Reconnaissance (C4ISR) com-
puter systems. It is a collection of tools for
the creation of these systems; it is a set of

software modules that can be (re-)used to
construct these systems. Or, to quote the
DII COE Integration and Runtime Spec-
ification [1]:

“The DII COE emphasizes both
software reuse and data reuse, and
interoperability for both data and
software. But its principles are
more far-reaching and innovative.
The COE concept encompasses:
• An architecture and approach

for building interoperable sys-
tems.

• A minimal but extensible se-
curity architecture and a set of
security services.

• An environment for sharing
data between applications and
systems.

• An infrastructure for support-
ing mission-area applications.

• A rigorous definition of the
runtime execution environ-
ment.

• A reference implementation on
which systems can be built.

• A collection of reusable soft-
ware components and data.

• A rigorous set of requirements
for achieving DII compliance.

The DII COE: An Enterprise Framework
Dr. Gregory Frazier

SAIC

The Defense Information Infrastructure (DII) Common Operating Environment (COE) is a framework for the cre-
ation of a set of cooperating computing enterprises. Its goals include the elimination of “stove-pipe” systems and cost
reduction via software reuse, reduced need for system administration, and simplified system integration. This arti-
cle describes in brief the salient features of the DII COE. It describes some of the challenges related to migrating sys-
tems to a DII-compliant environment, and concludes by arguing that the key to the successful use of the DII COE
is for all participants to be aware of and work toward building and maintaining an extensible, general-purpose
environment.

• AALPS
• ACGS
• AMBISS
• AMDWS
• AMDPCS
• AMPS
• ANGSC-52
• ASAS
• ASD

• ATCS
• ATLAS

• BCTP
• BMC3
• BSM
• CINC CSA
• CNCMS
• CNPS
• CR/HMS
• CSCE
• CSSCS
• CTIS

• C4IJM
• DCARS

• AFWeather
• AMC BDM
• AMS
• AWACS
• A2IPB
• CSEL
• DCAPES

• Defense IEMATS
• FORTE
• GBS
• GCCS-AF AETC
• GCSS-AF IF
• IMDS
• IMOM
• ISC2S
• MAMS
• Rosetta
• SBMCS

• STRATCAT
• TBMCS

• AFDI
• ARTDF
• GALE
• GCCS
• GCCS-I3
• GCSS
• JCACTD

• JCALS
• JDISS
• JDP
• JMCSID
• JMPS
• JSCGS
• JTAT
• Joint Tactical Term
• Joint Targeting Tool
• JWARN
• MEPED

• MIDB
• TNP
• JMNS

• DTSS
• FATDS
• FAAD C21
• FIRESTORM
• GCCS-A
• GCSS-A
• IBDAS
• IMETS
• ISYSCON

• LW
• MCCCC

• MCS
• MFCS
• PEGEM
• RCAS
• SAS
• TAIS
• TCAIMS
• THAADBMC3I
• TPSOPS
• TSIU

• UAV
• WARSIM

• AADC
• CADRT
• COMDAC
• CCS
• CUB
• CV/TSC
• GCCS-M

• IUSS
• JMPS UPCs
• KSQ-1
• LAMPS
• MEDAL
• METOC
• MPA
• MPAS
• MSBL
• NAVSSI
• NFCS

• NSPF
• NSS
• NSSN
• PTW
• REDS
• SFMPL
• SH60 MPS

• SRMT
• SCCS
• TACLOGS
• TAU
• TEAMS
• TERPES
• TCAC
• TDSS
• TTWCS
• VTC

Army Navy Air Force Marine Corps

Figure 1: Military Systems Operational or Being Developed Using the DII COE 1

• An automated tool set for
enforcing COE principles and
measuring DII compliance.

• An automated process for
softtware integration.

• An approach and methodology
for software and data re-use.

• A set of application program
interfaces (APIs) for accessing
COE components.”

Fighting Stovepipe Systems
A key driver for the DII COE is the fact
that the DoD is composed of multiple
cooperating enterprises. While each of
these enterprises is dedicated to accom-
plishing a specific goal, the data products
of one enterprise are consumed by other
enterprises as they work together to
accomplish the overall goal of defense.
However, most computing systems built
for the DoD are [historically] stovepipe
systems; systems that operate in total isola-
tion from the rest of the computing envi-
ronment. This is in contrast to a system of
systems model, where data flows seamlessly
from one business process to another.

Stovepipe systems do not support
abstract goals such as extensibility or inter-
operability that are central to the DoD’s
ability to field cooperating enterprises. A
computing architecture that is intended to
unify the DoD must be capable of adopting
the configuration appropriate for a partic-
ular enterprise’s mission while maintaining
a commonality that will allow that enter-
prise to interoperate with other DoD com-
puting enterprises.

The DII COE is, first and foremost, a
framework intended to prevent the cre-
ation of stovepipe systems and promote
cooperative enterprises.

Other DII COE Goals
While the principal goal of the DII COE
is to eliminate stovepipe systems, there are
a number of important drivers for the
design of the DII COE architecture:
• Increased software reuse. While each

enterprise within the DoD has a
unique mission and a computing sys-
tem to support that mission, there is
inevitably some functionality that the
enterprise will have in common with
others.

• Reduced need for computer system
administrators. The DoD personnel
using computer systems should be
warfighters whose mission is supported
by the computing system, not system
administrators whose mission is to sup-
port the computing system.

• Improved technology insertion. The

enterprises that comprise the DoD are
long-lived enterprises. Their life span
dwarfs the technology cycle, and thus
there must be an avenue for technolo-
gy insertion in DII COE’s computing
architecture.

• Simplified system integration. Given
the distributed development environ-
ment in which multiple contractors
contribute modules to one or more
integrators, and each integrator deliv-
ers the resulting system to multiple
organizations to field, it becomes
important to push as much integration
responsibility as possible to the devel-
opers and the deployers.
The following section will describe the

DII COE and discuss how it achieves these
goals.

The DII COE Framework
The first DII concept dealt with by a sys-
tem integrator, an administrator, a devel-
oper, or even as a user is the segment. A
segment is a unit of software or data that
has been packaged such that it can be
installed on a DII-compliant computer
using the software installation tool of the
DII COE. All software that is to be
installed on a DII computer must first be
put into segment format.

What is typically done for government
off-the-shelf software (GOTS) is that soft-
ware developers segment it before delivery
to a program engineering office. For com-
mercial off-the-shelf (COTS) software, the
program office typically purchases the
product and then hires contractors to seg-
ment it. However, the model envisioned
for the DII COE was for commercial ven-
dors to put their software into segment
format.

Either way, an engineering office
receives software in segment format,
accompanied by a set of documents that
include installation procedures, a users
manual, test plans and test results, version
description, and specification of the seg-
ment’s compliance level. The compliance
level is the degree with which the segment-
ed software is in compliance with the DII
Integration and Runtime Specification
(I&RTS – discussed in the next section).
The engineering office tests the segment,
and then makes that segment part of its
build list. It is now available to be delivered
to the field, either as part of a standard
build or as an optional segment.

Segmentation is controversial for sev-
eral reasons. First, it is an additional cost.
Program offices dislike having to spend the
money to have software segmented on top
of the cost of developing or purchasing

said software. This is particularly resented
with COTS software, which generally
arrives in an installation package. Second,
there are not extensive tutorials on seg-
mentation, and the software used to sup-
port segmentation can be a bit cranky. The
learning curve can be very steep for new-
comers to segmentation. There are, howev-
er, a number of reasons to utilize a single
software-packaging standard for the DII:
• Segments facilitate configuration man-

agement. All software in segment for-
mat shares a standard versioning sys-
tem, a standard naming system, and
has a standard set of documents associ-
ated with it. With a single program
(the COEInstaller) you can see which
segments are installed on a given
machine, what resources a segment
requires, and what other segments a
given segment depends upon.

• The same installation software is used
to install every segment on every com-
puter. System administrators are not
forced to deal with the vagaries of how
different developers decide to have
their software installed.

• Segments facilitate software reuse.
Segmentation forces the developer to
prepare the software for integration.
Once in segment format, a software
package can easily be transferred
between program offices and used in a
variety of contexts.
When developing a segment, the most

important fact to keep in mind is that a
segment should be of general utility. It is
possible to segment software in such a way
that it is useful only for a very specific pur-
pose. This defeats the reuse goal of seg-
mentation and ensures that the same soft-
ware will have to be re-segmented. A bet-
ter approach is to segment software in as
general a manner as possible, and then
provide a separate configuration segment
that modifies the installation for a specific
need. This is the approach taken for infras-
tructure services in the COE such as the
iPlanet Enterprise Server and the Oracle
Database Management System (DBMS).

The Common Operating
Environment
The common operating environment is
just that; an operating environment that is
common across computing systems and
problem domains. There is a common
misconception that all DII segments are
part of the COE, or that by segmenting an
application one is making it part of the
COE. This is not the case. Segmenting
software makes it available to the DII, but
not all software is common. The I&RTS
refers to segments that are not part of the

Open and Common Software Systems

16 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 17

COE as mission applications.
Mission applications are software

packages that are intended to provide
functionality that corresponds to a specific
problem. While it is important for mission
applications to comply with the I&RTS
and conform to the conventions of the DII
COE, these applications will not be wide-
ly used and thus not part of the COE.

The software that comprises the DII
COE is placed into three categories: the
kernel, the common support applications,
and the infrastructure services. The kernel
is that portion of the DII COE that is
installed upon every computer. It is the
bootstrap portion of the COE, containing
such functionality as the segment installer,
the file permission and disk partition con-
figurations, etc. The common support
applications are desktop applications that
are deemed to be of general use: a word
processor, an email client, a Web client,
and others. The infrastructure services are
services that are deemed to be of general
use: various DBMS products, a Web serv-
er, a directory server, and others.

Every computer that is to be a DII
computer must have the kernel installed
upon it. The rest of the COE – the seg-
ments that comprise the common support
applications and the infrastructure services
– is available for installation, but is not
required to be present on every machine.
What is required is that they be available to
any system. In other words, a segment
developer or system designer can make the
assumption that the segments that are in
the COE are available for use and can
incorporate those segments into his/her
design without knowing anything else
about the deployment environment.

The Integration and
Runtime Specification
The COE and segmentation are specified
in the I&RTS; it describes how a comput-
er is configured such that it is DII compli-
ant, and how to build software segments
that are DII compliant. It describes the
various types of segments, including soft-
ware segments, COTS segments, data seg-
ments, database segments, Web segments
and others. In its own words:

“This document is an engineering
specification that describes how
modules must interact in the tar-
get system. System architects and
software developers retain free-
dom in building the system, but
runtime environmental conflicts
and data conflicts are identified
and resolved through automated

tools that enforce COE principles
[1].”

It is required reading for anybody who
aspires to build, test, or integrate segments,
or anybody who wishes simply to under-
stand the DII COE. It is available at
<http://dod-ead.mont.disa.mil/cm/geneal.
html>.

Compliance Levels
The commonality of the COE rests on the
fact that mission applications use the COE
to provide common functionality. If seg-
ments provide their own implementations
of the COE functionality, then the benefits
described above are not observed: no cost
savings through reuse, no cost savings due
to reduced system maintenance, no facili-
tation of technology insertion, and no
interoperability enabled via shared infras-
tructure services. Instead, we would see a
retreat to stovepipe systems delivered as
segments.

The purpose of compliance levels is to
provide a metric of how well a segment
makes use of the COE. This provides a
quantitative measure both of how well a
segment is integrated with the COE and
the progress that a segment makes over
successive deliveries. The I&RTS specifies
eight levels of compliance. At lower levels,
we are dealing with the basic structure of
segmented software:

Level 3
Platform Compliance: The application is
well behaved in the platform context. It
runs on a version of the standard operating
system that is supported by the DII. It
does not utilize hard-coded port assign-
ments. It does not bypass the standard
GUI APIs for the platform. It can safely
execute alongside DII-compliant applica-
tions, etc.

Level 4
Bootstrap Compliance: The application is
packaged in segment format (i.e. it can be
installed and deinstalled using the
COEInstaller).

Level 5
Minimal DII Compliance: The segment
conforms to the I&RTS to the extent that
it does not represent a security risk and
does not negatively impact system config-
uration when installed.

In levels 6-8, the compliance levels
measure how well the segment makes use
of the COE. Appendix B of the I&RTS
provides questionnaires that allow devel-
opers to evaluate the compliance level of

their segments.

DII Adoption Challenges
In this section, barriers to DII adoption are
discussed. These barriers are organized in
three categories: cost, platform availability
and knowledge.

Cost
One of the major obstacles to adoption of
the DII is the expense of migrating a given
system to use of the DII COE and/or
achieving a given compliance level. There
are two types of systems that experience
significant cost penalties when pursuing
DII integration: legacy and leading edge.

Legacy systems experience high costs
due to the need to reengineer portions of
the system to achieve a given level of DII
compliance. This cost can be prohibitive,
particularly if it means replacing a con-
stituent product (e.g., replacing the
database). When dealing with legacy sys-
tems, it is important to understand when
to enforce the DII compliance directives
and when to relax them. These directives
do not make sense for many legacy sys-
tems, particularly those that are at the
middle or toward the end of their life
cycles and will never observe the mainte-
nance cost reductions potentially available
from the COE.

Leading-edge systems experience high
integration costs due to the lack of support
provided by the COE. The DII realizes
cost savings via the reuse that segmenta-
tion promotes. A system that is utilizing a
leading-edge technology may be ahead of
the COE and will bear the brunt of the
design and segmentation costs without
receiving the benefits of reuse. For a small
program that anticipated obtaining the
majority of its functionality from a COTS
product, the relative cost of segmenting
that product can be prohibitive.

Worse, a leading-edge system that
makes use of a not-yet-adopted technology
runs the risk that the DII COE will at
some point incorporate the technology but
in a way that is incompatible with how the
system used it. This risk can be alleviated
by active participation in the DII COE
Technical Working Group (TWG) pro-
cess2 – but the program must then dedicate
manpower to track or participate in the
TWG and [possibly] experience schedule
delays awaiting clear direction from the
TWG and/or Architecture Oversight
Group (AOG). Also, program manage-
ment offices that are new to DII may be
unaware of the TWGs’ existence or not
know how to contact their service or agen-
cy AOG representative3. Leading-edge pro-

The DII COE: An Enterprise Framework

grams should be blazing the trail, showing
DISA how (or how not) to integrate new
technologies. Their participation in the DII
COE TWGs must be encouraged and sup-
ported, in order to reduce costs both for
those programs and for the DII COE.

Platform Availability
The DII COE (Version 4.x) currently sup-
ports three platforms: Microsoft Windows,
Sun Solaris running on Sun workstations,
and Hewlett-Packard HP-UX. All other
platforms are unavailable if one is required
to be DII compliant. There is a Kernel
Platform Compliance (KPC) Program4, but
only two computing systems have success-
fully gone through the KPC, and both did
so on version 3.3 P1 of the DII COE ker-
nel5. Since the version 4.0 kernel had an
almost entirely different kernel code base-
line from the 3.x version, neither platform
has been recertified for the current version
of the kernel.

Even among the three core COE plat-
forms, the kernel is not the same. The
paucity of platforms supporting the DII
COE and the variance among the DII
COE platforms are the result of the kernel
being specified by its source code. To quote
the Defense Information Infrastructure
(DII) Common Operating Environment
(COE) Kernel Platform Compliance
(KPC) Program Document for DII COE
Kernel Version 4.200 [2], the KPC
Program certifies that a platform “executes
the Government Supplied Kernel Source
code with the same behavior as the current
‘Reference Platforms’.” In other words, a
KPC-certified computer is one that runs
the kernel source code that it receives from
the DII COE Engineering Office. This has
three ramifications.

First, for platforms that cannot share
the code base (e.g. Windows NT and
Unix/Motif), the kernels differ in unspeci-
fied ways. Second, for platforms that desire
to support DII, their only recourse is to
port each version of the kernel to their plat-
form, which is logistically untenable. Third,
there is no mechanism for non-traditional
platforms (non-uniform multi-computers,
for example) to achieve DII certification via
the KPC Program. While the KPC
Program does include a test suite to evalu-
ate the kernel port, this test suite does not
comprise a specification of the kernel. It is
the reference implementation source code
that acts as the specification6, so any plat-
form that cannot compile that source code
cannot be in the DII.

Getting the Word Out
The final and most significant impediment
to DII COE adoption is the general lack of

knowledge regarding what the DII is, what
the COE is, and how a program can lever-
age the DII to facilitate the development of
their system. The cost and platform support
issues discussed in the previous sections can
be addressed by the thoughtful requesting
and granting of waivers to allow systems to
conform to the intent of the I&RTS with-
out being hamstrung by its rules. To do
this, however, requires that both the pro-
gram management office and the contrac-
tors executing the contract have a thorough
understanding of the DII.

While there is a great deal of data avail-
able regarding DII and the DII COE, it can
be challenging for newcomers to discover
the information that they need. The princi-
pal source of information is the I&RTS.
This is required reading for anybody who
intends to develop an application for use in
DII, integrate a DII system, manage a DII-
related project, or deploy a DII system.
However, the I&RTS is not a how-to man-
ual or a tutorial – it is a specification of the
DII runtime. The DISA and DII COE
Web sites also provide a great deal of infor-
mation. It is incumbent upon the DII par-
ticipant to find the information that they
require from these sources.

Conclusion
The ongoing success of the DII and its
COE depends upon a number of factors.
First, the DII must maintain its relevance.
This means continuing to support technol-
ogy insertion efforts. It also means that the
organizations that are deploying DII-com-
pliant computing systems must understand
not only the letter of the I&RTS, but also
its intent. They must execute their system
development such that the result fits with
the spirit of the DII. This can be captured
in words such as extensible, open, and
reusable. Wherever possible, avoid one-of-
kind solutions.

If a program requires a common service
established with a particular configuration,
deliver two segments: one that contains the
common service, and a separate segment
that configures that service. Do not view
the I&RTS segment compliance criteria as
roadblocks, but rather as guidelines. And
never think in terms of a final delivery.u

References
1. Defense Information Infrastructure

(DII) Common Operating Environ-
ment (COE) Integration and Runtime
Specification (I&RTS), Version 4.1, 3
Oct. 2000,<http://dod-ead.mont.disa.
mil/cm/general.html>.

2. Defense Information Infrastructure
(DII) Common Operating Environ-
ment (COE) Kernel Platform Comp-

liance (KPC) Program Document for
DII COE Kernel Version 4.2, p. 4, 31
May 2001, Version 1.1 (draft),<http://
diicoe.disa.mil/coe/kpc/kpc_pro -
gram_doc.doc>.

Notes
1. Information provided by the DII COE

Engineering Office.
2. See <http://diicoe.disa.mil/coe/aog_

twg /aog_twg_page.html> for a listing
of TWGs and their home pages.

3. See <http://diicoe.disa.mil/coe/aog_
twg/aog/members.htm> for a listing of
AOG members.

4. See <http://diicoe.disa.mil/coe/kpc/
KernelPlatformProgram.htm>.

5. The Compaq certificate is at
<http://diicoe.disa.mil/coe/kpc/Compa
q/19990831certNoSig.png> and the
SGI certificate is at <http://diicoe.disa.
mil/coe/kpc/sgi_cert.jpg>.

6. There is the dilemma that if any of the
kernel source code was modified in
order to get it to compile on the plat-
form, then the specification has been
modified and the platform is no longer
running the government supplied
source code.

About the Author
Gregory Frazier, Ph.D.,
has worked at Science
Applications Internatio-
nal Corporation (SAIC)
since December of
1984. He was the inte-
grator for Internet

applications (the Web, newsgroups,
Internet relay chat) for the Global
Command and Control System and
spent a year as the chief engineer as the
DII Integration Contract for SAIC. For
the last several years he has focused on
research of enterprise computing for
SAIC and is currently the software archi-
tect for the Joint Network Management
System. He received a bachelor’s degree
in computer science and engineering
from Massachusetts Institute of
Technology and a doctorate in computer
science from the University of California
at Los Angeles.

8301 Greensboro
Mail Stop E-2-5
McLean, VA 22102
Phone: (703) 676-6459
Fax: (703) 676-7123
E-mail: gregory.frazier@saic.com

Open and Common Software Systems

18 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 19

The following opening statement from
a September 1999 CrossTalk article

began a presentation on the motivation for
and objectives of an effort to extend DII
COE to real-time systems:

“The Defense Information
Infrastructure (DII) Common
Operating Environment (COE)
originated with a simple observa-
tion about command and control
systems: Certain functions (map-
ping, track management, commu-
nication interfaces, etc.) are so fun-
damental that they are required for
virtually every command and con-
trol system. Yet these functions are
built over and over again in incom-
patible ways even when the
requirements are the same or vary
only slightly between systems. If
these common functions could be
extracted, implemented as a set of
extensible building blocks, and
made readily available to system
designers, development schedules

could be accelerated and substan-
tial savings could be achieved
through software reuse. Moreover,
interoperability would be signifi-
cantly improved if common soft-
ware were used across systems for
common functions [1].”

In this article we report on the status
of those activities. Real-time processing is
defined as a computation whose correct-
ness depends on being logically correct
and complete by a designated time. In a
real-time system, the time that a process
completes its computation and delivers its
results is as important to correctness as, for
example, the precision or accuracy of the
answer. What is important is not only how
fast the system responds but that it
responds at the appropriate time. A proto-
col for synchronizing clocks across a com-
munication network (distributed time ser-
vice) is required to be accurate and timely,
not just fast. The next generation of real-
time systems will be so complex that more
technical sophistication, not raw speed,

will be the critical factor.

Extending DII COE for
Real Time
In 1996 at the U.S. Air Force Electronic
Systems Center, Hanscom AFB, Mass., all
command and control programs were
asked to develop a set of requirements for
real-time extensions to existing DII COE
capabilities. In the spring of 1997, repre-
sentatives from the Air Force, Army, and
Navy met to discuss the high correlation
of real-time requirements across the ser-
vices. In July 1997 these three services
along with the Marine Corps jointly peti-
tioned the Defense Information Systems
Agency (DISA) to charter a DII COE
Real-Time Technical Working Group (RT,
TWG), with an aim of developing a set of
common requirements and recommenda-
tions for potential products to provide
real-time capabilities to the DII COE.
DISA approved the services’ request, and
the Real-Time TWG began meeting in
August 1997.

Initial studies conducted at Electronic

DII COE for Real Time: Becoming Reality

The Defense Information Infrastructure (DII) Common Operating Environment (COE) provides an environment
in which common reusable infrastructure and applications across information systems help achieve goals for inter-
operability. The Department of Defense has been working for the past three years toward realization of a vision for
extending these reuse and commonality initiatives to improve the effectiveness of systems performing real-time mis-
sions. This article describes the products, processes, tools, and techniques that have been developed to meet the needs
of the integrator of DII COE-compliant real-time systems.

John Maurer
MITRE Corporation

Lt. Col. Lucie M.J. Robillard
U.S. Air Force

MISSION
APPLICATIONS

Business
Applications

Functional
Applications

JOINT/CINC
Applications

Service C2
Applications

Intelligence
Applications

C
O
E

Standard Application Program Interfaces

Standards:
- I&RTS
- Style Guide
- POSIX
- TAFIM

- JTA

COMMON SUPPORT APPLICATIONS

Alerts CorrelationMCG&I Msg ProcOffice Automation Logistics AnalysisOnline Help

Management
Services Comms Distributed

Computing
Presentation

Services
Workflow

Management
Web

Server

INFRASTRUCTURE SERVICES

Operating System Services (Unix, NT) and Windowing (X, Motif, NT)

Network Svcs
(NIS+, DNS)

System Mgmt
Services

COE
Tools

Executive
Manager

Print
Services

Security Mgmt
Services

K
E
R
N
E
L

S

H
A
D
E

Data Access

Data
Mgmt

Global Data
Management

Databases

Other
Files

Intel
DB

Combat
Support

DB’s

Strategic
Specific
C2 DB’s

Tactical
Specific

DB’s

Emphasizes
interoperability
via common view

of the data

Emphasizes
movement of
data through
the network

Developer’s
Toolkit

Needs RT COE
Augmentation/
Extension

Key:

Figure 1: Architectural Vision For DII COE Real-Time Extensions, August 1997

Dr. H. Rebecca Callison and Marilynn B. Goo
The Boeing Company

Systems Center highlighted numerous,
relevant characteristics of real-time sys-
tems and suggested that a non-orchestrat-
ed approach to assembling real-time com-
ponents would not be effective. In late
1997, the Air Force designated the
Airborne Warning and Control System
(AWACS) Program Office as Executive
Agent for DII COE Real-Time Extensions.
The DII COE Joint Real-Time Integrated
Product Team (Joint RT IPT) embodies
that executive authority. Because their mis-
sions are so closely related, the RT TWG
and IPT have worked in continuous coor-
dination, conducting joint meetings and
sharing data. Both the TWG and IPT enjoy
the active support and participation of
Army, Air Force, Navy, and intelligence
community representatives, all focused on
the vision that is captured in Figure 1 (see
page 19). The products, processes, tools,
and techniques described in this article are
the result of the activities of these two
groups working in collaboration with
DISA.

Real-Time Extensions
As depicted in the timeline of Figure 2, the

anticipated release of a DII COE with
real-time extensions represents the culmi-
nation of nearly four years of effort on the
part of DISA, the RT TWG, and the Joint
RT IPT.

Initially, the activity of the RT TWG
focused on collecting requirements from
the RT community and consolidating
them in software requirements specifica-
tions. As an understanding of these
requirements matured, the TWG engaged
the DISA DII COE engineering office in
translating the requirements into beta
implementations of a DII COE kernel and
segment development tools with real-time
extensions. The RT TWG also worked
with DISA to modify its processes to sup-
port inclusion of real-time components in
the DII COE. In parallel, the RT IPT
focused on finding and packaging compo-
nents required by the real-time communi-
ty to provide capability above the DII
COE kernel.

The specifications developed by the
RT TWG and submitted to DISA became
the basis for the real-time kernel and real-
time extensions to the segment develop-
ment tools. In 2001, DISA’s DII COE-
wide kernel TWG assumed control of the
RT TWG specifications for real-time ker-
nel services and real-time extensions to the
segment development tools. The RT
TWG also specified requirements for tools
to aid the real-time systems integrator.
DISA’s Toolkit TWG assumed responsibil-
ity for the real-time extensions to the inte-
gration tools specification.

Evolution of DII COE
Real-Time Extensions
Segmentation Concepts
Segmentation concepts encompass both

the packaging constraints and the tools
provided by DISA to ensure compatibility
and peaceful coexistence among applica-
tions installed in a runtime (mission) envi-
ronment. DISA’s original segmentation
concepts focused on executable binary
applications and dynamically linkable
libraries, i.e., the component formats that
are used directly in the runtime environ-
ment of an operational system. This con-
cept has been extended to support distri-
bution of statistically linkable object
libraries that may be combined with other
components to produce tailored exe-
cutable application images for the DII
COE runtime environment.

Extended Toolkit Segments vs.
Runtime Segments
Relating real-time requirements to the
concept of segmentation resulted in a
modified definition of segment, shown in
Figure 3. Segment is defined by DISA in
Interim Guidance for DII COE Realtime
Extensions [2] as a “collection of one or
more software and/or data units most con-
veniently managed as a unit of functional-
ity.” A runtime segment is a “segment that
has been stripped of extraneous files and
directories that are not required for a run-
time target system.”

A runtime segment corresponds
roughly to the classic definition of a DII
COE segment: software, data, and config-
uration information that will become part
of and are used in the DII COE runtime
environment. An extended toolkit is a
“segment that contains documentation,
shared libraries or those able to be linked,
data, and other items required for use in
an integration, development, and/or run-
time environment.”

The extended toolkit includes the run-
time segment plus additional information
needed to produce a runtime executable
application. The extended toolkit enables
DII COE software to be efficiently inte-
grated into complex weapon systems in an
integration environment prior to installing
the software for operational use. This
allows engineers to optimize DII COE
compliant software for peak performance,
a step that the existing DII COE did not
previously support.

Extended toolkits and runtime seg-
ments are both segments. In general, a run-
time segment is a proper subset of an
extended toolkit segment. The classic DII
COE runtime segment is delivered to a
system integrator in the format accepted
by the DII COE Installer tool. An extend-
ed toolkit is delivered in tar format and is
loaded into the integrator’s development

Nov 1999:
RT CORBA
products
recommended
by IPT

Dec 1997:
AF launches
Joint RT IPT
initiative

May 1998:
AF funds
IPT for DII
COE RT
extensions
(initial)

July 1998:
RT TWG, IPT,
DISA begin
discussions
on needs of
RT integrators

Nov 1998:
RT domain
and kernel
services
briefing to
DISA

Jan 1999:
Initial kernel
services /
tools TIM
based on
preliminary
specs

April 1999:
Release
of 1.0
specifications
for kernel
and tools

Dec 1999:
4th kernel
services TIM

Jan 2000:
Initial
kernel
services
defined
by DISA

Jan 2000:
RT CORBA
product
nomination
approved by
TWG

Aug 2000:
RT CORBA
design
review
completed,
approved by
TWG

Oct 1998 -
Dec 1999:
RT CORBA
Trade
Study

July 1997:
DISA
charters
RT TWG

Feb 2000:
1st Tools
and
terminology
TIM

May 2000:
I&RTS
review
TIM

April 1999:
2nd kernel
services
TIM

Sept 1999:
3rd kernel
services TIM

Apr 2000:
2nd Tools and
terminology
TIM

April 2000:
Initial kernel
Services beta
release

Oct 2000:
Final
SRS
review

Jan 2001:
VerifySeg RT
Extensions

April 2001:
Kernel
Services
release
1.0.0.0

Dec 2000:
RT
Interim
Guidance
issued
by DISA

Organization Requirements
consolidation

Product identification
and process definition

Product packaging

Dec 2000:
Compliance
Checklist
Issues
Discussion

Mar 2001:
Compliance
Checklist
Test
Strategy

 April 1997:
Grassroots
formation of
RT DII COE
“community
of interest”

Runtime
Segment

Extended
Toolkit

Runtime
Segment

Extended
Toolkit

Runtime
Segment

Extended
Toolkit

Segment

Figure 2: Evolution Of DII COE Real-Time Extensions

Figure3:ExtendedToolkitvs. Runtime Segment

Open and Common Software Systems

20 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 21

and/or integration environment using
simple operating system utilities. It is
important to note that the definitions of
extended toolkit segment and runtime
segment apply across the DII COE and
are not unique to real time.

Figure 4 provides the directory struc-
ture of a generic extended toolkit segment.
In this figure, a dotted line box contains
the items that are also applicable to a run-
time segment. The parts of the extended
toolkit that are used in the integration
environment are marked with diagonal
lines. Similarly, the light colored boxes
show directories that are used in the devel-
opment environment and the darker boxes
show directories that are used in the run-
time environment.

As an aid in the configuration of full
systems from DII COE components, the
dependencies of DII COE real-time seg-
ments on other DII COE segments, ker-
nel services, and real-time operating sys-
tem (RTOS) Portable Operating System
Interface (POSIX)

1
units of functionality

are documented in the segment descrip-
tors provided by the segment supplier. A
designer of a real-time system can then
match system requirements to choices of
DII COE applications, infrastructure, ker-
nel services, and RTOS.

Additions Motivated by
Real Time
A more in depth look at the segment con-
tents uncovers additions, in Figure 5, that
were motivated by the inclusion of real-
time segments. Extensions to the SegInfo
file in the SegDescrip directory describe
additional hardware dependencies (e.g.,
shared memory and special hardware
devices) and software dependencies (e.g.,
POSIX Units of Functionality) that may
limit the execution environments in which
segments can run. Beyond the addition of
specific keywords to SegInfo, the attribute
<:restricted>, when appended to $CPU or
$OS identifiers, tells the integrator that
the segment may place unusual restrictions
on the operating environment. These
restrictions must be fully documented in
the IntgNotes file that is included in the
Integ directory.

The IntgNotes file has been extended
significantly to include items of key inter-
est to integrators of real-time systems.
Enhancements have two principal forms:
freestanding additions and additions that
explain or elaborate conditions noted in
the extended SegInfo file. Examples of the
former include IntgNotes entries under
which real-time scheduling policies and
restrictions, scheduling frequencies, jitter

tolerance, CPU utilization, and other
aspects of real-time behavior may be
described. Examples of the additions
which explain SegInfo entries include 1)
entries under which <:restricted> nota-
tions applied to $CPU or $OS keywords
are fully described and 2) entries in which
the rationale for CPU, memory, and disk
resource requirements are documented.
The IntgNotes file remains a free-format
text file into which the segment developer
may insert any information deemed of
potential interest to the system integrator
using the segment.

As with the basic segmentation con-
cepts, it is important to remember that
none of the SegInfo or IntgNotes exten-
sions are real-time specific. Some of this
information is required in conjunction
with real-time segments. For other seg-
ments, use of the extensions is optional.

Real-Time Products
Several products will be available for use in
2001 that provide real-time performance
and are part of DII COE. Figure 6 (see page
22) shows how each of the products relates
to Figure 1 (see page 19).

DII COE Real-Time Kernel
and Platforms
The DII COE kernel provides the basic
interfaces and functions to be used by
standards-based infrastructure compo-
nents and DII COE-compliant applica-
tions to achieve portability between sys-
tems. The DII COE configurable real-
time kernel

2
extends basic DII COE con-

cepts in two ways. First, the RT Kernel is
hosted only on operating systems that pro-
vide real-time scheduling capabilities, rea-
sonably predictable operating system per-
formance, and the services required for
timely execution of real-time tasks and

processes. RT Kernel services are select-
able, rather than mandatory.

Second, since real-time applications
often need a very efficient operating sys-
tem with small memory footprint for per-
formance reasons, the design philosophy
of the DII COE RT Kernel allows a sys-
tem integrator to tailor the RTOS itself to
meet system needs.3 The RT Kernel is con-
figurable and the integrator of a DII

Used in Development Env.

Used in Integration Env.

Used in Runtime Env.

Application
Executable

and/or Shared
Object Library
Software Files

[bin]

Man Pages Files

[man]

Library Files for
Public APIs

(includes static
libs)
[lib]

Integration &
Test Files**

[Integ]

Assigned Directory

Installation
Script/Exec

Files
[install]

Source
Code

[src]

Data Files:
• Fonts
• Menus
• Icons
• App Defaults

[data]

Header Files
for Public APIs

[include]

Segment-
Specific Tools
[[dev_]tools]

Segment
Descriptor

Files**

[SegDescrip]

Runtime Segment

DB segments
 only [DBS_files]

Legend

DII COE Segmentation with
Extended Toolkits

• Guidance Documentation
F Augmented I & RTS
F Interim Guidance for RT

• Example Segments
V Add example RT segments

• Segment Descriptor Files
F Enhanced SegInfo
F Enhanced IntgNotes

• Segmentation Tools
F Extended VerifySeg for new

descriptions
V Extended VerifySeg for RT

attribute checks
• Dependencies defined in

SegInfo descriptors
F Segments/Toolkits
V Real Time Operating System
• New HW Platforms
• Disk Space
• Memory
F POSIX Units of Functionality
F Custom Hardware Devices
F Shared Memory

• Installation Process
F Installation in Integration

Environment (Not Runtime)
• Segment Repository

V Port some DII COE Segments to
RT COE

Figure 4: Extended Toolkit Segment Directory Structure

Figure 5: Process and Information Extensions

DII COE For Real Time: Becoming Reality

V=extension used uniquely by RT segments
F=extension motivated by real-time requirements

COE-compliant system tailors the RT
Kernel by selecting only those services
required for the specific computing con-
figurations of the target system. POSIX
Application Program Interface (APIs) for
operating system services, including APIs
for threads and real-time extensions speci-
fied in [3], form part of the RT Kernel
API. Each RTOS being considered for use
in the DII COE will be assessed for its
ability to provide key functional units
associated with real-time profiles in the
POSIX 1003.13 standard [4]. LynxOS4

Version 3.1.0a running on PowerPC was
selected as the reference (i.e. first) imple-
mentation. Sun Solaris5 Version 8 is the
second real-time capable operating system
on which the RT Kernel is hosted.

As noted earlier, the RT Kernel has
two parts: 1) a RTOS with POSIX appli-
cation program interfaces and 2) selectable
DII COE kernel services for real time. The
RT Kernel services are provided by DISA.
DII COE for real time includes X, Motif,
and Domain Name Server, all of which are
commercial off-the-shelf products, plus
government off-the-shelf services for sys-
tem startup and shutdown, setting system
time, and starting and stopping DII COE
processes. Requirements for the RT Kernel
services are documented in [5].

CORBA Infrastructure
for Real Time
Common Object Request Broker Architec-
ture (CORBA) is an international standard
[6] for distributed computing that is gov-
erned by the Object Management Group.
The CORBA standard provides for flexible
interconnection of objects in a client-server
model for distributed computing. Four key
objectives of CORBA are support for loca-

tion independence, operating system inde -
pendence, hardware independence, and lan-
guage independence in the design of soft-
ware components.

Additions to the CORBA standard to
enable real-time computing with end-to-
end predictability are documented in the
CORBA specification revision 2.4 [6],
which was formalized by the Object
Management Group in October 2000.
These additions allow for the association of
real-time priorities with tasks and requests,
the passing of priority information between
communicating components, and the capa-
bility to express and monitor timing con-
straints for requests. These additions also
define a scheduling service that provides a
consistent real-time scheduling model
across a CORBA-based system.

In 1999, a real-time CORBA trade
study was performed by the Joint RT IPT
to assess products being considered for use
by the real-time community. The goal of
the study was to determine whether or not
any or all of these products would be suit-
able for use in the real-time extensions of
the DII COE. The study included five
assessments. The technical assessments
addressed three areas: standards compli-
ance, basic performance, and interoper-
ability with other object request brokers
(ORBs). The other assessments included a
user survey of product usability and a cur-
sory examination of the business viability
of each vendor and product. At the time of
the assessments, the real-time additions to
the OMG CORBA standard were still in
development and none of the vendors had
implemented them. The study can be
obtained from <www.hanscom.af.mil/
foia/misclist.asp?contractid=3&descrip
tion=Other+Documents>.

Based on recommendations from the
real-time CORBA trade study, the RT
TWG nominated two real-time ORBs for
inclusion in the DII COE infrastructure.
The real-time ORBs are ORBexpress RT

6

,
a product of Objective Interface Systems,
Herndon, Va., and The ACE ORB
(TAO)

7

, an open source product of
Washington University, St. Louis, Mo.,
that is commercially supported by Object
Computing, Inc., also in St. Louis.
ORBexpress RT supports both Ada and
C++ and includes extensions for real-time
performance. TAO supports C++ and also
includes extensions for real-time perfor-
mance. Both are cognizant of real-time
request priorities and provide the capabili-
ty to associate deadlines with requests.
Vendor packaging of these products as
extended toolkit segments began in 2000
and was completed in mid-2001.

Real-Time Mission Applications: A real-
time mapping product is available as a DII
COE-compliant AF mission application
during 2001: InterMAPhics

8
, a product of

Gallium Software, Inc., Nepean, Ontario,
Canada. This product may someday be in
the DII COE Common Support Applic-
ations layer. The decision to proceed in
this direction depends on the capabilities
of the product selected by the National
Imagery and Mapping Agency under the
Commercial Joint Mapping Toolkit pro-
curement. In the meantime, the real-time
community can use this high performance
product as a real time alternative to the
Joint Mapping Visualization part of Joint
Mapping Toolkit.

The Army is developing a software
programmable exciter/receiver called the
Joint Tactical Terminal/Common Integra-
ted Broadcast Service-Modules (JTT/
CIBS-M) under contract with Raytheon,
St. Petersburg, Fla. This software is being
packaged as a DII COE-compliant Army
mission application during 2001.
JTT/CIB-M supports a variety of intelli-
gence broadcast protocols such as TDDS,
TADIX-B, TIBS and TRIXS.

DII COE Real-Time Tools
Based on the RT TWG specification for
real-time extensions to segment develop-
ment tools, DISA has modified its
VerifySeg tool to check the additions to
the SegInfo file segment descriptor infor-
mation described earlier in Figure 5 (see
page 21). This version of VerifySeg is used
by developers of runtime segments as well
as by developers of extended toolkit seg-
ments. The output from VerifySeg
becomes part of the segment. VerifySeg
and the requirements for its use are

Figure 6: Products Projected as DII COE Compliant Real-Time Segments

Open and Common Software Systems

22 CROSSTALK The Journal of Defense Software Engineering October 2001

DII COE Kernel for RT

Comms
Mgmt

T
r
a
c
k

I
D

F
u
s
i
o
n

M
g
m
t

Applications for
Common Understanding
(example only)

Application Program Interfaces

RT
Distributed
Computing

Infra-
structure

RT Data

Manage
ment

Tactica
l Data
Link

Proto-
cols

Application Program Interfaces

Application Program Interfaces

RT Operating System

IBS Radio
RT

Mapping

Configurable DII COE RT Kernel
• Selectable Kernel Services
• POSIX APIs for Real-time OS
• LynxOS in reference implementation

IBS Receiver/Exciter (Mission Application - Army)
• Joint Tactical Terminal/Common
Integrated Broadcast Service-Modules

• Precursor to Joint Tactical Radio Sys
• Modular, RT CORBA based, GOTS

RT Mapping (Mission Application - Air Force)
• Gallium InterMAPhics

• Available for Solaris
• Goal to become COE Component

RT CORBA for Distributed Computing
• ORBexpress RT and The ACE ORB

• RT extensions
• IIOP interface to non-RT orbs
• Available for LynxOS, Solaris

Integration Tools RT Extension
• Developed by Joint RT IPT. Available from RT TWG

Integ Tools RT Ext

Seg Dev Tools RT Ext
Segment Development Tools RT Extension
• DISA GOTS Product

October 2001 www.stsc.hill.af.mil 23

described in DISA’s Integration and
Runtime Specification (I&RTS) [7].

In the fall off 2000, the Joint RT IPT
began developing the real-time integration
tools to prototype the integration process
associated with developing a DII COE
compliant real-time system. These tools
are intended for use by software system
integrators in the integration environ-
ment. Since the COE installer tool cannot
be used to install runtime segments in
many real-time runtime (target) environ-
ments, some automated assistance is need-
ed for ensuring a proper configuration of
DII COE segments. The real-time integra-
tion tools provide this assistance by ana-
lyzing the intended segment configuration
for inter-segment dependencies and con-
flicts. For embedded systems, they also
assist the integrator in configuring (scaling
down) the operating system (OS) to
include only those OS functions needed to
support the target application software
load.

The integrator supplies a list of the
capabilities to be configured on a target
system by selecting from a list of available
segments. The primary output of the real-
time integration tools is a real-time config-
uration (RTConfig) file that lists all seg-
ments, including kernel services that must
be loaded on the target platform in order
for the selected segments to run. Using
information contained in segment
SegDescrip directories, the real-time inte-
gration tools expand the list of selected
functions based on the dependencies of
runtime and extended toolkit segments on
other segments. For example, if segment A
depends on segment B, and segment B
depends on segment K, then the
RTConfig file will include segments A, B,
and K. The real-time integration tools also
produce a list of POSIX capabilities (e.g.,
POSIX units of functionality) required by
these segments in the OS configuration. If
any of the segments have conflicts noted
in their SegInfo files, this information is
included in the RTConfig file.

The real-time integration tools were
completed in June 2001. Acceptance of
these tools by DISA depends on the cus-
tomer demand for the tool and the value
added seen by DISA. In the meantime, the
RT TWG makes the tools available to inter-
ested users upon request via the RT TWG
Web page <www.dii-af.hanscom.af.mil
/infrastructure/COE/TWG/COE/TWG/rt
coe/NewTWG/index.htm>.

DISA Process
Real-Time Interim Guidance
The new capabilities that are available

with the DII COE real-time extensions
have required that the rules governing the
development of DII COE segments be
modified. These new capabilities include
extensions to exploit the features of a real-
time platform, the configurable kernel,
and development of extended toolkit seg-
ments intended for delivery to an integra-
tion environment. The existing rules are
documented in DISA’s Integration and
Runtime Specification (I&RTS) [7]. The
modifications to these rules have been
published in the Interim Guidance for
Defense Information Infrastructure Comm-
on Operating Environment (COE) Realtime
Extension [2], which will be refined
through initial practical experience and
incorporated into Version 5.0 of the
I&RTS.

The interim guidance document pro-
vides detailed information that a segment
supplier needs to develop segments intended
to run on the RT Kernel. In addition, the
interim guidance document provides a pre-
view of how the rules may be applied in the
next major release, DII COE Version 5.0.
The interim guidance document provides a
discussion of definitions and concepts, as
well as an updated version of the compliance
checklist criteria (aka, Appendix B) as it
applies to the real-time platform. It is avail-
able in the technical baseline section of the
RT TWG Web site <www.dii-af.
hanscom.af.mil/infrastructure/COE/TWG/
COE/TWG/rtcoe/NewTWG/Baseline/DII
COERTEInterimGuidance.PDF>.

Toolkit Compliance Evaluation
Compliance evaluation for an extended
toolkit requires a different perspective
than for a classic DII COE runtime seg-
ment. The latter is installed directly in the
runtime (target) environment, whereas the
former is not – it is loaded first into an
integration environment. In both cases
(runtime segments and extended toolkit
segments), compliance evaluation is
intended to ensure correct runtime behav-
ior. For runtime segments, the evaluation
can be performed in the target (runtime)
environment. However, in the case of
extended toolkits, the compliance evalua-
tion must, in general, be performed in a
development or integration environment
with an eye toward how a runtime segment
built from the extended toolkit will behave

in the runtime environment.
When extended toolkits contain static

libraries only, there is no clearly identifi-
able runtime segment subset of the toolkit
that will ever be installed directly into the
runtime environment. Rather the integra-
tor will always link the libraries of these
toolkits with other applications and tool-
kits to produce the target system executa-
bles. However, in order to ensure that the
integrator’s customized executables satisfy
the constraints of the DII COE environ-
ment, the behavior of the delivered
libraries, as contributors to that behavior,
must be scrutinized. For example, a num-
ber of compliance criteria address con-
straints on the creation of files outside the
DII COE directory structure. If an appli-
cation links to a library that creates files in
a non-compliant location, the application
executable can never be compliant. Since
each compliance criterion that affects the
application executable must be flowed
down to the library in the extended tool-
kit as well, the problem becomes one of
defining the details of how to evaluate
compliance for toolkits.

After the release of [2], the RT TWG
was asked to determine for each item in
the interim guidance whether or not that
Appendix B compliance checklist item
applies to an extended toolkit segment.
The RT TWG was also asked to determine
the test strategy for each applicable item.
This action was completed in early 2001.
The resulting document, which is available
at <www.dii-af.hanscom.af.mil/infrastruc-
ture/COE/TWG/COE/TWG/rtcoe/New
TWG/baseline.htm>, is the RT TWG’s
recommendation for ensuring correct run-
time behavior while performing compli-
ance evaluation of extended toolkits in an
integration environment.

A Turnkey Segmentation
Process
Segmenting software for the DII COE is a
recurring task where attention to detail
can prevent rework. The RT IPT has been
working with various services, agencies,
DISA, and segment suppliers to define the
steps necessary to enable real-time prod-
ucts to become DII COE compliant.
Lessons learned as a result of this effort are
being recorded in the form of tutorials and
templates. Table 1 is a partial list of prod-

DII COE For Real Time: Becoming Reality

Tutorials Templates
Segmentation Overview DISA Design Review Questions
Segmentation Segmentation Plan
Prefix & Segment Registration IntgNotes
Table 1: Turnkey Segmentation Products

ucts available from the RT TWG for use
by those who need to prepare extended
toolkit segments for the DII COE.

DII COE Real-Time’s Future
In 2001, several changes have occurred
regarding the future of this effort. DISA
has changed the name of the RT TWG to
the Real-Time Advisory Group (RTAG).
There will be slight modifications to the
charter for this group. In addition, the
Joint RT IPT has completed its tasks and
transitioned its remaining responsibilities
to the RTAG (as of 30 June 2001). So the
RTAG will be the main point of contact
for the real-time community regarding
DII COE capabilities and requirements.

The RTAG remains under the
umbrella responsibility of the DISA DII
COE Chief Engineer Office. The chair-
man of the RTAG remains on the DII-
Air Force Office staff at Hanscom AFB,
Mass., and continues to serve all services
and agencies.

Based on the work of the Joint RT
IPT and RTAG in the last four years, it is
envisioned that the future products need-
ed by the real-time community in the
DII COE include real-time data access,
Link 16, Joint Variable Message Format
(JVMF) Parser, Data Correlator, and
Alerts. It is the responsibility of each sys-
tem program office and their sponsoring
service or agency to work with the RTAG
to sponsor appropriate government or
commercial off-the-shelf products into
the DII COE. This responsibility will
often include performing the work need-
ed to create a segmented product accord-
ing to DISA’s I&RTS [7]. The turnkey
segmentation package created by the
Joint RT IPT is a valuable resource in
accomplishing this task.

Conclusion
In four years, a small contracted engi-
neering effort supplemented by a strong
team of engineers working on donated
funding have accomplished key tasks that

make it possible for real-time weapon sys-
tems to pursue increased command and
control interoperability via DII COE
compliance. The basic vision has been
accomplished.

The Joint RT IPT provided solid,
reliable technical leadership and support
for a fast-paced, dynamic program
fraught with technical challenges. The
real-time community can now directly
utilize the lessons learned from this effort
to bring more software products into the
DII COE. The foundation has been set
for more work to be done in support of
the real-time community by working
with the RTAG. As the real-time effort is
normalized into the mainstream of ser-
vice acquisition agencies, the future
enhancements of DII COE for real time
lie in the hands the real-time weapon sys-
tem builders and their customers, and the
services and agencies with real-time com-
mand and control missions.u

References
1. Robillard, Lt. Col. Lucie M.J., Dr. H.

Rebecca Callison and John Maurer.
“Extending the DII COE for Real-
Time,” CrossTalk, Sept. 1999.

2. Interim Guidance for Defense
Information Infrastructure Common
Operating Environment (COE)
Realtime Extension, Version 1.0,
Defense Information Systems Agency,
Dec. 2000.

3. “Portable Operating System Interface
(POSIX) Part 1 – System Application
Program Interface (API) [C
Language],” Information Technology,
ISO/IEC 9945-1:1996 (E)
ANSI/IEEE Std. 1003.1.

4. Portable Operating Systems Interface
(POSIX) 1003.13-1998, IEEE
Standard for Information Technology
Standardized Application Environ-
ment Profile (AEP)–POSIX Realtime
Application Support.

5. Software Requirements Specification
for Kernel Services for the Real-Time

Defense Information Infrastructure
Common Operating Environment
(RT DII COE), Revision 1.5, DII
COE RT TWG, 30 Jan. 2001,
<www.dii-af.hanscom.af.mil/infrastr
ucture/COE/TWG/COE/TWG/rtco
e/NewTWG/baseline.htm>.

6. The Common Object Request Broker:
Architecture and Specification,
Revision 2.4, Object Management
Group, Inc., Oct. 2000, <http://cgi.
omg.org/cgiin/doc?formal/00-10-01>.

7. Defense Information Infrastructure
(DII) Common Operating Environ-
ment (COE) Integration and Runtime
Specification, Version 4.1, DISA,
DISA Joint Interoperability and
Engineering Organization, Reston,
Va., Aug. 2000.

Notes
1. POSIX is a registered trademark of The

Institute of Electrical and Electronic
Engineers, Inc. (IEEE).

2. In the rest of this paper, we will use the
term “RT Kernel” as an abbreviation
for “DII COE Configurable RT
Kernel.”

3. COTS tools provided by the OS ven-
dor are used to configure the OS, not
DII COE unique software. The degree
to which a specific RTOS can be con-
figured depends on the flexibility pro-
vided by the RTOS vendor.

4. LynxOS is a trademark of LynuxWorks,
Inc. <http://www.lynuxworks.com>.

5. Sun and Solaris are trademarks of Sun
Microsystems, Inc. <http://www.sun
.com>.

6. ORBexpress RT is a trademark of
Objective Interface Systems <http://
www.ois.com>.

7. The ACE ORB is a trademark of
Douglas Schmidt, Washington Univ-
ersity, and the University of California,
Irvine <http://www.cs.wustl.edu/~sch
midt/TAO.html>.

8. InterMAPhics is a trademark of Gallium
Software, Inc. <http://www.gallium.com>.

Open and Common Software Systems

24 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 25

DII COE For Real Time: Becoming Reality

Lt. Col. Lucie M.J.
Robillard is the Air Force
executive agent for Real -
Time DII COE at
Hanscom AFB, Mass.
She is the chair for the

DII COE Joint Real-Time Integrated
Product Team that has the charter to make
real-time extension to DII COE a reality
for all services. She is a Level III certified
acquisition professional with Joint assign-
ment experience. A majority of her assign-
ments have dealt with software acquisition
and engineering. She has a bachelor’s
degree in electrical engineering from the
University of Vermont and a master’s of
science degree in systems management
from University of Southern California. As
of July 1, 2001, she has moved on to
another assignment.

ESC/AWPD
3 Eglin Street
Hanscom AFB, MA 01730

Phone: (781) 377-2679
E-mail: lucie.robillard@hanscom.af.mil

Marilynn B. Goo is the
program manager for
the Boeing team sup-
porting Lt. Col. Robill-
ard and the DII COE
Joint Real-Time Integ-

rated Product Team. Goo has 26 years
of experience in design and implemen-
tation of complex systems, principally in
the area of defense systems. She has a
bachelor’s of science in mathematics
from the University of Washington and
an master’s of business administration
from Stanford University.

The Boeing Company
P.O. Box 3999, MS 82-84

Seattle, WA 98124
Phone: (253) 773-9867
Fax: (253) 657-2892

E-mail: marilynn.b.goo@boeing.com

H. Rebecca Callison,
Ph.D., is the software
architect for the U.S.
Airborne Warning and
Control System (AWA
CS) Block 40/45 Prog-

ram. Previously, she was the lead for the
Boeing team supporting Lt. Col.
Robillard and the DII COE Joint Real-
Time Integrated Product Team. Dr.
Callison has 25 years of experience in
the design and implementation of real-
time systems, principally in the area of
defense systems. She has a bachelor’s of
science degree from the University of
South Carolina, a master’s of science
engineering from the University of
Pennsylvania, and a doctorate from the
University of Washington. Her research
interests focus on concurrency control
in real-time systems.

The Boeing Company
P. O. Box 3999, MS 81-75
Seattle, WA 98124

Phone: (253) 657-3952
Fax: (253) 657-4269
E-mail: rebecca.callison@boeing.com

John Maurer leads
MITRE’s Real-Time
and Performance Engi-
neering Section. Maurer
is also the chairperson of
the DII COE Real-Time

Advisory Group. He has a bachelor’s of
science in mechanical engineering from
Massachusetts Institute of Technology
and 24 years experience implementing
software-intensive Department of
Defense systems. His work experience
includes real-time system development
for airborne surveillance systems and
Army vehicle systems.

MITRE Corporation
202 Burlington Road
Bedford, MA 01730

Phone: (781) 271-2985
Fax: (781) 271-4686
E-mail: johnm@mitre.org

About the Authors COMING EVENTS
November 4-7

Amplifying Your Effectiveness
Conference 2001

Phoenix, AZ
www.ayeconference.com

November 4-8
ASIS 2001 Annual Conference

Washington, D.C.
www.asis.org

November 6-8
TechNet Asia-Pacific 2001

Honolulu, HI
www.afcea.org

November 12-16
5th International Software and Internet

Quality Week - Europe 2001
Brussels, Belgium

www.qualityweek.com

November 13-15
1st Annual CMMI Technology
Conference and User Group

Denver, CO
djenks@ndia.org

January 27-31, 2002
2002 Western Multiconference

San Antonio, TX
www.scs.org

February 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

Lake Buena Vista, FL
www.iccbss.org

February 25-27, 2002
15th Conference on Software Engineering
Education and Training (CSEE & T)

Covington, KY
www.spsu.edu/oce/cseet2001

March 19-21, 2002
Federal Office Systems Exposition 2002

Washington D.C.
www.fose.com

April 28 - May 2, 2002
Software Technology Conference 2002

“Forging the Future of Defense
Through Technology”
Salt Lake City, UT

www.stc-online.org

The development and evolution of
Command and Control (C2) systems have
suffered from problems, some great
enough to cause project failures. Two erro-
neous assumptions have contributed to
this situation:
• That contracts can be based on the

premise that a C2 system can be suffi-
ciently known prior to development to
produce complete and high quality
requirements specification.

• That a C2 system is identical to the
automated (computerized) support for
such a system.

What is wrong with these assumptions?
We know from experience that new

knowledge will be gained during C2 sys-
tem development that will cause changes
to the original specification. Areas affected
include system usage, system environ-
ment, system features usefulness, new mis-
sion completion possibilities, etc.

The goal of every C2 system is to com-
plete one or more missions through a
combination of human operator tasks and
automated support. Consequently it is

important to understand how the system
completes its missions and how to manage
human and automated systems in the
same context.

With this in mind, two better assump-
tions would be the following:
• Prior to developing a C2 system, iden-

tify its missions and expect the detailed
requirements to surface during devel-
opment.

• To complete their missions, a C2 sys-
tem requires operators and cooperating
software and hardware.

To fully understand these assumptions, we
need an example.

Dominant Battlefield
Awareness
Dominant battlefield awareness (DBA)
means that a commander in a C2 system
builds an awareness of the battlefield situ-
ation by using many information sources
such as agents, sensors, reports from other
C2 centers, etc. Since DBA is an impor-
tant part of the ongoing revolution in mil-
itary affairs, the mission Build DBA is

selected as an example to study system
management.

Figure 1 shows that if all the informa-
tion required to establish DBA in a real
battle situation is linked directly to the
commander two problems may surface:
• Confusion as a result of depending on

data of different ages, from different
origins, of differing quality, etc.

• Information overload through presen-
tation of more data than is humanly
possible to overview and understand.

The conclusion is that there is more to
building DBA than to present all available
information to the commander.

Connectabilities to the
Mission
Completion of the mission Build DBA
requires a set of abilities. An approach
defining the necessary abilities in connec-
tion with the mission object Build DBA is
shown in Figure 2. The abilities listed are:
• Analyze the situation, including inter-

preting the data in the context of
known behavioral patterns, for units in
the battlefield.

• Collect data from hostile units, includ-
ing sensor, agent, report, and other
data about hostile units.

• Control data processing in building
DBA to support the commander’s
objectives.

• Control presentation(s) of commander
and others involved to support build-
ing necessary awareness.

• Fuse data to avoid double presentation
and enhance information validity.

• Maintain communication ensuring
that all other friendly units’ informa-
tion remains available.

• Present information database for the
commander and others in a C2 unit.

Mission–Based Incremental Development of C2
Systems for More Efficient Business Support

Ingmar Ögren
Tofs Inc.

It is not possible to ever know enough about requirements before developing a Command and Control (C2) system.
Also, a C2 system is never identical to its automated (computerized) parts. This article will introduce you to dom-
inant battlefield awareness (DBA), how it is used to define a mission “Build DBA,” and how abilities are con-
nected to mission completion. Mission supports such as operator role, software, and hardware are used to model a
complete C2 system, including four system levels: reality, computer information, presentation, and mental. The
model is a useful basis for various simulations required during system development and evolution, as well as for
acquisition of system components. Lastly, the possibility of extending the model to cover the domain of C2 systems is
presented along with how that extension can become a basis for more rational production of C2 systems within the
domain.

Figure 1: Dominant Battlefield Awareness Requires Large Amounts of Information

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering October 2001

Confusion
Information
Overload?

October 2001 www.stsc.hill.af.mil 27

• Survey individual unit so that informa-
tion is presented in the battlefield con-
text keeping the commander aware of
the situation.
What is important is that the abilities

required for mission Build DBA can be
seen as actions offered by a mission object,
and consequently drawn in an object
graph as shown in Figure 1.

Support Abilities with
System Components
Now that we have defined a set of abilities,
we need to create a system of components
that actually has these abilities. In Figure
3, the mission object Build DBA is sup-
ported by a set of objects needed to build
the abilities listed above. The support
objects categories are operator (role), soft-
ware, and hardware with examples:
• The “Commander” is an operator role

object.
• The “Person-Machine Interface” and

the “information base manager” are
examples of software objects.

• “Data processing resources” is an
example of a hardware object.
The diagram in Figure 3 is called a tree

graph. It shows the need-lines between the
objects in a system model. The version of
the tree graph shown is drawn in the Tofs
software tool, which also shows comple-
tion status for the different objects as little
clocks.

The Four Knowledge Levels
After building a system outline, you must
consider what really constitutes DBA. The
basic prerequisite is that the commander’s
mental awareness must comply with the
actual battlefield situation.

Figure 4 (see page 28) shows the four
knowledge levels necessary to understand-
ing Build DBA, and which can be seen in
a structured system model as shown above.
The levels from the bottom are:
• The reality level representing battle-

field reality or God’s view.
• The computer information level repre-

senting all the data about the battle-
field situation available in the C2 unit’s
computer system.

• The presentation level representing the
information presented to the comman-
der after data processing and selection.

• The mental level representing the com-
mander’s awareness after the presented
information is combined with his per-
sonal experience and intuition.

It is obvious that the mental level must
comply with the reality level to achieve
DBA. The prerequisites for the required

compliance can be studied in a system
model built as a dependency structure as
shown above.

Incremental Development
with Simulation-Based
Acquisition
As stated above, it is not really possible to
build a qualified C2 system from frozen
requirements specification. Knowledge
will inevitably grow during development,
and some of this new knowledge will
influence the requirements. Experience
supports this insight since all non-trivial
real C2 systems needed updates during
development and repeated updates after
the first delivery.

We conclude the need for an orderly
way to manage changing requirements, to
build and save new knowledge, and to
change the system incrementally, especial-

ly as requirements insight grows and as the
changing environmental situation intro-
duces new requirements.

One way to do this is to use a model,
as outlined above, as a system backbone.
Use simulations to verify the model and
investigate requirements, then let the
model evolve incrementally. It will then be
the system reference and a basis for both
simulations and system component acqui-
sitions.

Figure 5 (see page 28) shows a model
used as a system reference, and how the
model evolves through system increments.
It illustrates how the project starts with an
idea, how documentation can be connected
to the model, and how the model is used as
a basis for both simulations and system
products (acquired components). Note that
not only the system concerned needs to be
simulated, but also its environment.

Figure 2: Military Systems Operational or Being Developed Using the DII COE

Figure 3: A Model Outlined From the Mission Object “Build Dominant Battlefield
Awareness” to Show the Components Needed

The Mission to build “Dominant Battlefield
Awareness” requires a set of abilities, some
of which are listed in the object graph.
At this stage the abilities are only identified
for further discussion and analysis.

The model is built from
the assumption that
systems are best modeled
using the relationship
“depends on”.
The components are of
categories:
• Mission
• Operator (role)
• Software
• Hardware
The “clocks” indicate
completeness status for
each component (object).

Mission-Based Incremental Development of C2 Systems for More Efficient Business Support

Formalize the Model
For a model to be a firm basis for multiple
simulations and various system compo-
nent acquisitions, it is essential that differ-
ent system parts comply with each other
and that the simulations comply with the
system built. For example if the C2 system
is of a non-trivial size, it must be possible
to use a computer to check the model’s
consistency. The conclusion is that the
model must be expressed in a formal syn-
tax. Furthermore, this formal syntax must
be readily understood by all those involved
– developers, end-users, quality people,
etc.

One way to achieve the required for-
mality is to express the model in formal
English using a limited language that
includes:
• Reserved words to express control con-

structs.
• Variables of defined types.
• Comments that are used as explana-

tions and to describe parts of the
model that are not yet formalized.
The interaction between a comman-

der and his Person-Machine Interface

(PMI) to manage surveillance resources
can be modeled as two concurrent pro-
cesses. The commander’s manual process
interacts with the concurrent PMI soft-
ware process through sending and receiv-
ing messages. An example of such a mes-
sage is a presentation of a screen image
that means the PMI has sent a message to
the commander.

Generalize the Model to the
Domain Level
We have discussed how to use a model as
a backbone for incremental development
of C2 systems, and how it obtains compli-
ance between system simulations and sys-
tem implementations. Since the history of
C2 systems includes some reinventing of
the wheel, you may wonder: Can the
modeling technique be used to avoid such
reinvention? Models can be used in com-
bination with so-called domain engineer-
ing to minimize reinvention. A possible
principle is:
• A similar set of C2 systems are ana-

lyzed and used as a basis for a generic
architectural model for the C2 applica-

tion domain. The architectural model
can then be formalized as described
above.

• The analysis result is further used to
identify reusable assets from the exist-
ing C2 systems. These assets are con-
nected to the relevant objects in the
architectural model to prepare for
reuse. Assets may then be, for example,
software modules, requirements, man-
uals, specifications, hardware products,
etc.

• For each new or modified C2 system,
you begin by combining the original
requirements specification with the
domain architecture to create a tailored
version of the domain architecture to
satisfy the specification (possibly mod-
ified after the analysis work).

• As far as possible, the new system is
implemented using assets connected to
the domain architecture. Some com-
ponents will normally have to be devel-
oped anew. These new components
may then be turned into reusable
assets.
The result is an orderly development

process that, provided a number of C2 sys-
tems with some similarities are to be pro-
duced, will decrease cost and development
time and increase quality.

Possible Objections
The principles described above may seem
foreign and objectionable. However, if you
take the Swedish Air Defense C2 system
Stril 60, for example, it evolved from the
early sixties into the nineties. This evolu-
tion was possible through cooperation
within a group of technical and tactical
experts with a good understanding of the
system’s missions, abilities, and structure.
This suggests simply that the well-proven
informal work, based on the informal
understanding within a small expert
group, can be supported by a formalized
and commonly accepted system model.

There may still be objections to the
model-based principle, but these are not
too well founded:
• We use specifications, not models for

acquisitions. Fine, but when you need
more information than can be man-
aged in a textual specification, why not
supplement the written specification
with a computer-based model?

• You cannot model intuition, and our C2
systems depend on the experienced com-
mander’s intuition. This may be true,
but it can still be worthwhile to model
all the routine details of the comman-
der’s interaction with systems for com-

Own forces Enemy forces Reality level

Computer
information
level

Presentation
level

Mental level

These two
must comply
for efficient C2
Total system
modeling can
assist to
achieve the
necessary
compliance

Environment
Simulation

Research
Simulation

Documenta-
tion

(Attribute)

Model

towards new increments

Idea

Prototype
Simulation

System
product

Training
Simulation

with
Environment

Model-based updates of products in each increment

Model and simulation-based acquisition

Figure 5: Using a Model for Iterative Development and Acquisition of C2 Systems

Figure 4: The Four Knowledge Levels and the Necessary Compliance

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 29

puting and communicating in order to
simplify such interaction. The result
may be that the commander pays less
attention to the support systems, con-
sequently getting more time for his
essential creative tasks.

• You must separate tactical application
development from technical acquisition.
Yes, this is traditionally what is done
and may be one reason for experienc-
ing problems with C2 system develop-
ment. A working C2 system requires
smooth cooperation between manual
and automated parts. This smooth
cooperation is best achieved through
modeling the complete system as a sin-
gle structure.

• Computer-based modeling is just an
expensive way to replace documentation.
The computer-based model will be a
good basis for documentation and help
make sure the documentation pro-
duced is really compliant with the sys-
tem built or simulated. Using the
model as a basis for documentation
may consequently decrease documen-
tation costs.

Conclusions
Obviously C2 system evolution should
start from a system’s missions and abilities.
It has been shown that model-based incre-
mental technique for C2 development
work has some advantages:
• Computer-based models can be used

as a common base for simulations,
acquisitions, recruitment, and train-
ing. While each system is too large for
one person to overview, the model will
help ensure that everyone involved
knows his or her work is interconnect-
ed with the rest of the project through
the common model.

• Models can help manage and structure
large amounts of information that are

traditionally stored as paper docu-
ments. This reduces cost and ensures
that available documentation complies
with the current system version or sim-
ulator. Using a model with good con-
figuration management makes manag-
ing that information easier; relevant
information for the current system ver-
sion or simulator is extractable from
the model.

• Models can be used to create a back
bone in incremental development of
C2 systems. Since the model lies
behind each system version and simu
lator built to support development and
training, it is a backbone for the devel
opment and reengineering work. This
will help ensure that different system
versions and simulators really comply
with each other.

In summary, model-based develop-
ment and evolution means that well-
proven principles are formalized and
extended to cover larger systems with less
dependence on expert groups.u

Figure 7: Principles for Creating and Using a Domain Model

PMI software behavior

Commander’s behavior
begin

send Get_map(current_area)
receive Present_map(current_area)
receive Present_surveillance_resources(available_resources)
for resource in 1..total_resource loop

send Select_resource(resource_id)
receive Present_adjustment(possible_adjustment)
send Adjust(current_adjustment)

end loop
end

begin
while Commander_messages_received loop

receive Get_map(area)
Support_software.Get_area_map
send Present_map(area)
send Present_surveillance_resources(area)
{The map information collected from the support software includes
information about surveillance resources availabe in the area selected}
receive Select_resource(Resource_id)
send Present_adjustment(Possible_adjustment)
{For each surveillance resource possible adjustment is received together
with the map information}
receive Adjust(Current_adjustment)
Data_collection_own.Adjust_data_collection
{The surveilance resource concerned is adjusted as required}

end loop
end

Figure 6: Formalization of the Interaction Between a Commander and His
Person-Machine Interface to Manage Surveillance Resources

C2 system
C2 systemC2 system

Architectural
model for the
Command &
Control
domain

Reusable asset
Reusable assetReusable asset

Requirements
for new C2
system

Tailored
system
architecture

New asset
development

Mission-Based Incremental Development of C2 Systems for More Efficient Business Support

About the Author
Ingmar Ögren has a mas-
ter’s of science in elec-
tronics from the Royal
University of Technology
in Stockholm. He has
worked with the Swedish
Defense Material Admi-

nistration and various consulting compa-
nies in systems engineering tasks associat-
ed with communications, aircraft, and
command and control. He is currently
partner and chairman of the board for
Tofs Inc. and Romet, a systems engineer-
ing consulting company mainly utilizing
method O4S. He also teaches systems and
software engineering. Ögren is a member
of Modeling and Simulation in Sweden
and International Council Of Systems
Engineering.

Tofs AB
Fridhem 2
S-76040 Veddoe, Sweden
Phone: (+46) 176-54580,
Fax: (+46) 176-54441
E-mail: iog@toolforsystems.com

WEB SITES

30 CROSSTALK The Journal of Defense Software Engineering October 2001

Defense Information Infrastructure Common
Operating Environment
http://diicoe.disa.mil/coe
The Defense Information Infrastructure (DII) Common
Operating Environment (COE) is the Defense Information
Systems Agency's home page for all DII COE information and
operations. It includes documentation, on-line databases that
promote information sharing, interoperability and software
reuse, Kernel Platform Compliance information, security docu-
mentation and tools, links to 28 newsgroups to help exchange
information, and much more.

SEI Defense Information Infrastructure
Common Operating Environment
www.sei.cmu.edu/activities/str/descriptions/diicoe body.html
The Software Engineering Institute's Defense Information
Infrastructure (DII) Common Operating Environment (COE)
is a software technology review. It includes the purpose and ori-
gin of DII COE, technical detail, usage considerations, maturi-
ty, costs and limitations, and more.

DOD Integrated Digital Environment Web Site
http://ide.dsmc.dsm.mil/default.htm
The DoD Integrated Digital Environment (IDE) Web site was
developed to help program managers establish “a data manage-
ment system and appropriate digital environment that allows
every activity involved with the program throughout its total
life-cycle to exchange data digitally...” according to a 2 July
1997 memo from Deputy Secretary of Defense White. It

includes OSD and Tri-Service Information, IDE resources,
information, and pilots.

Open Source Software
www.computerbits.com/gateway/opensource/htm
The Open Source Software site is a listing of open source links
to applications, BSD Unices, file archives, Linux, and news and
views resources. It is a part of Computer Bits, an Oregon com-
puter information magazine.

TechWeb
www.techweb.com/tech/net mgt
TechWeb provides a look at news and information created by
InformationWeek, InternetWeek, and Network Computing,
the three main print and online properties in CMP Media's
Business Technology Group. The site contextually links related
news, reviews, analysis, opinion, research, and conference offer-
ings from all its sites. Mini-home pages cover each of seven key
categories: E-business, Business Applications, Mobile &
Wireless, Networking, Security, Network & Systems
Management, and Services & Outsourcing.

Global Command and Control System
http://gccs.disa.mil/gccs
The Global Command & Control System (GCCS) is the
nation's premier system for the command and control of joint
and coalition forces. It incorporates the force planning and
readiness assessment applications required by battlefield com-
manders to effectively plan and execute military operations. Its
Common Operational Picture correlates and fuses data from
multiple sensors and intelligence sources to provide warfighters
the situational awareness needed to be able to act and react deci-
sively. It also provides an extensive suite of integrated office
automation, messaging, and collaborative applications. This
Defernse Information Systems Agency's Web site features
GCCS topics on developer guidance checklist and tools, fre-
quently asked questions, documentation template, reference
material, training and more.

EETIMES
www.eetimes.com
EETIMES claims to be the technology site for engineers and
technical management. This on-line news center reports on the
latest headlines in semiconductors, systems and software, design
automation, and technology. It also includes departments, spe-
cial reports, calendar of events, a product of the week, and
more.

October 2001 www.stsc.hill.af.mil 31

BACKTALK

Irecently attended a pre-solicitation meeting for the acquisition of a new combat support system.
The system was to be integrated into the Global Combat Support System (GCSS). The phrase

that caught my eye on the slide was “GCSS – Any Box, Anywhere.” As the briefer described GCSS
as the panacea for all combat support communication, a cynic next to me explained that there was
no way that it would be fielded. For every salient point the briefer provided, the cynic had a counter snipe.

I sensed that I had heard this conversation before. The pitch followed by resistance. A counter pitch, met
with increased defiance. I was transformed back to my childhood and Dr. Seuss:

This is not exclusive to GCSS, nor does it diminish the hard work of those who have designed and implemented GCSS. It is
indicative of all massive, common, global, implementations unique to the Defense Department and the government as a whole. You
can replace GCSS in this story with Defense Information Infrastructure (DII) Common Operating Environment (COE), Global
Command and Control System (GCCS), Defense Message System (DMS), Defense Information Support Network (DISN), or Ada
and the story holds true. The ending may not be as copasetic as Dr. Suess, but the struggle is bona fide.

If DISA would only field a Global Reach Electric Energy Network (GREEN) for Eccentric Global Gambling Sites (EGGS) and
Heuristic Award Manipulation (HAM), the parody would come full circle.

1
Local Access Network

2
Combined Intelligence Center — Gary Petersen, Shim Enterprise, Inc.

GCSS on LAN

I am Uncle Sam
Uncle Sam
Uncle Sam I am

That Uncle Sam-I-am!
That Uncle Sam-I-am!
I do not like that Uncle Sam-I-am!

Do you like GCSS on LAN?

I do not like it, Uncle Sam-I-am.
I do not like GCSS on LAN 1.

Would you like this data share?

I would not like that data share.
I would not like it anywhere.
I do not like GCSS on a LAN.
I do not like it, Uncle Sam-I-am.

Would you like it for the Joint Staff?
Would you like it for a laugh?

I do not like it for the Joint Staff.
I do not like it for a laugh.
I do not like that data share.
I do not like it anywhere.
I do not like GCSS on LAN.
I do not like it, Uncle Sam-I-am.

Would you install it on any box?
Would you use it at Fort Knox?

Not on any box.
Not at Fort Knox.
Not for the Joint Staff.
Not for a laugh.
I would not use that data share.
I would not use it anywhere.
I would not use GCSS on LAN.
I do not like it, Uncle Sam-I-am.

Use it! Use it with NT!
Here it is, it is free.

I would not, could not, with NT.
I would not, could not because it’s free.
You let me be.
I do not like it on any box.

I do not like it at Fort Knox.
I do not like it for the Joint Staff.
I do not like it for a laugh.
I do not like that data share.
I do not like it anywhere.
I do not like GCSS on LAN.
I do not like it, Uncle Sam-I-am.

Then train, train - train, train, train!
Could you, would you, if you train?

Not if I train! Not if it’s free!
Not with NT! Uncle Sam! Let me be!
I would not, could not, on any box.
I could not, would not, at Fort Knox.
I will not use it for a laugh.
I will not use it for the Joint Staff.
I will not use that data share.
I will not use it anywhere.
I do not like GCSS on LAN.
I do not like it, Uncle Sam-I-am.

Say! On the Web?
Here on the Web!
Would you, could you, on the Web?

I would not, could not, on the Web.

Would you, could you, if in vain?

I would not, could not, if in vain.
Not on the Web. Not if I train.
Not with NT. Not if it’s free.
I do not like it, Uncle Sam, you see.
Not for the staff. Not on any box.
Not for a laugh. Not at Fort Knox.
I will not use that data share.
I do not like it anywhere!

You do not like GCSS on LAN?

I do not like it, Uncle Sam-I-am.

Could you, would you, for the CINC2?

I would not, could not, for the CINC!

Would you, could you, with a data link?

I could not, would not, with a data link.
I will not, will not, for the CINC.
I will not use it if in vain.
I will not use it if I train.
Not on the Web. Not if it’s free!
Not with NT! You let me be!
I do not like it on any box.
I do not like it at Fort Knox.
I will not use it for the Joint Staff.
I will not use it for a laugh.
I do not like that data share.
I do not like it ANYWHERE!
I do not like GCSS on LAN!
I do not like it, Uncle Sam-I-am.

You do not like it. So you say.
Try it! Try it! And you may.
Try it and you may, I say.

Uncle Sam! If you will let me be,
I will try it. You will see.

…

Say! I like GCSS on LAN!
I do! I like it, Uncle Sam-I-am!
And I would use it for the CINC.
I would use this data link.

I won’t use it if in vain.
So on the Web I will train.
And with NT, because it’s free,
It is so good, so good, you see!

I will install it on any box.
And I will use it at Fort Knox.
And I will use it for the Joint Staff.
And I will use it and not laugh.
And I will use this data share.
Say! I will use it ANYWHERE!

I do so like GCSS on LAN!
Thank you!
Thank you, Uncle Sam-I-am!

T M & © Dr.Seuss Enterprises, L.P. 1960.
All rights reserved. Used by permission.

CrossTalk / TISE
7278 4th Street
Bldg. 100
Hill AFB, UT 84056-5205

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

	Cover
	Index
	From the Publisher
	Joint Technical Architecture
	Call for Articles
	The DII COE: Basic Principles and Future Challenges
	The DII COE: An Enterprise Framework
	DII COE for Real Time: Becoming Reality
	Coming Events
	Mission Based Incremental Development of C2 Systems
	WebSites
	BackTalk
	Back Cover

