
BACKTALK

June 2002 www.stsc.hill.af.mil 31

The room is full of tension. White
boards are plastered with convolut-

ed notes etched in multi-colored dry
erase ink. Walls are awash with diagrams
(affinity, fishbone, entity relationship,
and state), charts (flow, Pareto, PERT,
and GANTT), structures (breakdown,
data, and control), and lists (personnel,
resource, and equipment). Coffee is
cold, tempers hot, discussion long, for-
bearance short, donuts fresh, and ideas
stale.

This quotidian scene subsists in soft-
ware war rooms far and wide. At the
advent of a new customer, project, or
requirement, managers marshal troops
to answer two very elusive questions:
how long and how much? These simple
questions set in motion conjecture,
machination, negotiation, and arm
wrestling that would nauseate Johnny
Cochran. For all our vaunted powers of
ratiocination, software engineers tend to
be a fickle lot when it comes to estima-
tion. Why?

Being masters of our domain and
desiring to be worthy of the vaunted
title of engineer, we ignore the fact that
our estimates are inherently subjective.
For the past decade, software’s leitmotif
is that software development is analo-
gous to industrial manufacturing. The
analogy hints that software construction
can be shaped into a repeatable process
where programmers are cogs in a
Fredrick Taylor production line. While
similarities exist in some areas of soft-
ware development, estimation is not
one. The theory cloaks the software
estimation process with a farrago of
formal notation and hints at objectivity.

In manufacturing, repeatable and
codified processes lead to objective
measures and estimates. Software devel-
opment, on the other hand, is an intrin-
sically creative activity that differs each
time code is manufactured. What you
composed on your last project rarely
translates objectively to your subse-
quent project. It resembles Bob Fosse’s
chorus line more than Fredrick Taylor’s
production line.

Before the maturity pundits kvetch
like contumacious sports stars to
impugn my opinion, let me explain. I
concur that mature organizations are

using repeatable processes, but I con-
tend that the complexity of each project
varies. In developing software for the F-
16 Head-Up-Display, I used the same
process and techniques to construct the
“Altitude Low Warning” module and
the “Enhanced Envelop Gun Site”
module. Yet the complexities involved
in constructing those two components
were about as close as Bill Gates and
Larry Ellison. Bollinger elaborates this
point in his IEEE Computer article “The
Interplay of Art and Science.”1

Variation in complexity, which is dif-
ficult to objectively measure, dominates
a software project estimate. Con-
sequently, estimating software is
unavoidably subjective. Therefore, as we
estimate our projects, instead of emerg-
ing as the professor of estimation we
end up more like Gilligan.

Second, we prefer precision to accu-
racy. Software engineers favor specific
single-value estimates, which are certain
to be wrong, over a range of values that
have a high probability of enclosing the
correct estimate. This concept should
not be foreign; we use it all the time.
When a spouse asks what time we will
be home, we always give a range
because we know that if we answer 4:12
p.m. and waltz in at 4:15 p.m., we are
sleeping on the couch.

Then there is the Pygmalion effect?
From Greek mythology, Pygmalion was
a king of Cyprus who carved and then
fell in love with a statue of a woman.
Psychologists Robert Rosenthal and
Leonore Jacobson attached Pygmalion’s
name to the observation that when eval-
uating something, the evaluator is hard-
ly neutral, and the evaluator’s expecta-
tions influence the evaluation.

This was personified eloquently in
Bernard Shaw’s play “Pygmalion” in
which phonetics professor Henry
Higgins tutors a Cockney flower girl,
Eliza Doolittle, in the refinement of
speech and manners. For those who
avoid the theatre you may have caught
the story in the musical “My Fair Lady?”
If you are still not with me, join the the-
atrically impaired and visualize “Pretty
Woman” with interesting dialogue and
wit.

In this yarn, the project at hand is
the transformation of Eliza into a lady.

Participants in this transformation are:
Professor Higgins who, despite his love
of Eliza, can never truly commit him-
self fully; Freddy Hill who is naively
infatuated with Eliza; and Colonel
Pickering who seems aloof of the antics
but always seems to be there at the right
time with the right words.

How does this apply to estimation?
Stakeholders are about as focused on
estimation accuracy as my son is on
picking up after himself. They provide
specious estimates to impress clients
and, like my son, are improvident to the
mess they leave behind. Stakeholders
are more callow than a freshman engi-
neer at a fraternity party. They, like
young Freddy Hill, are in love with a
project’s prospects with little concern
for the consequence of their credulous
desires.

Software engineers, like Professor
Higgins, are more than willing to
demonstrate their knowledge, wisdom,
and prowess but are short of commit-
ting to the minutiae of the project’s
long haul. We are prone to embellish the
estimate to assure that our reputation,
health, and marriage remain in tact.

Estimations involving human inter-
vention are prone to the Pygmalion
effect, and software estimation is no
exception. Exuberant stakeholder
expectations counter engineers who, if
the truth were known, fervently wish
they could get home from the office
earlier and come in less on weekends.
The fact is no one is a good (impartial)
judge of one’s capability because our
perception of the problem causes bias.

That’s where Colonel Pickering
comes in – a prudent counselor who
mixes analysis with common sense. A
sage that applies experience, intuition,
and judgment to obviate subjectivity,
employ flexibility, and temper bias. A
team needs a Pickering to mediate
between stakeholders and engineers and
swing back the estimation pendulum
from fallacious exactitude to viable
accuracy.

Higgins forewarns, “… you can
come back or go to the devil: which you
please.”

— Gary Petersen,
Shim Enterprise, Inc.

My Fair Estimate

1. T. Bollinger. “The Interplay of Art and Science in
Software .” IEEE Computer Oct. 1997.


