
10 CROSSTALK The Journal of Defense Software Engineering October 2002

Being agile is a declaration of prioritiz-
ing for project maneuverability with

respect to shifting requirements, shifting
technology, and a shifting understanding
of the situation. Other priorities that
might override agility include predictabili-
ty, cost, schedule, process-accreditation, or
use of specific tools.

Most managers run a portfolio of
projects having a mix of those priorities.
They need to prioritize agility, predictabil-
ity, and cost sensitivity in varying amounts
and therefore need to mix strategies. This
article focuses on borrowing ideas from
the agile suite to fit the needs of plan-driv-
en and cost-sensitive programs.

Our industry now has enough infor-
mation to sensibly discuss such blending.
The agile voices have been heard [1, 2, 3,
4, 5, 6, 7], the engineering voices have
been heard [8, 9, 10], two articles in this
issue [11, 12] illustrate the differences in
world view, and some authors have dis-
cussed the question of their coexistence
and principles underlying successful devel-
opment strategies [3, 8, 13].

Buy Information or Flexibility
Many project strategies revolve around
spending money for either information or
flexibility [3, 14].

In a money-for-information (MFI) propo-
sition, the team can choose to expend
resources now to gain information earlier.
If the information is not considered valu-
able enough, the resources are applied to
other work. The question is how much the
team is willing to expend in exchange for
that information.

In a money-for-flexibility (MFF) proposi-
tion, the team may opt to expend re-
sources to preserve later flexibility. If the
future is quite certain, the resources are
better spent pursuing the most probable
outcome, or on MFI issues.

Different project strategies are made
by deciding which issues are predictable,
unpredictable but resolvable, or unresolv-
able, deciding which of those are MFI or

MFF propositions, and how best to allo-
cate resources for each.

Predictable issues can be investigated
using breakdown techniques. Such an
issue might be creating a schedule for
work similar to that successfully per-
formed in the past.

Unpredictable but resolvable issues can be
investigated through study techniques
such as prototypes and simulators. Such
issues include system performance limits.
These are also MFI propositions. Agile
and plan-driven teams are likely to use
similar strategies for these issues as part of
basic project risk management.

Unresolvable issues tend to be sociolog-
ical, such as which upcoming standard will
gain market acceptance, or how long key
employees will stay around. These issues
cannot be resolved in advance, and so are
not MFI propositions, but are MFF
propositions. Agile and plan-driven teams
are intrinsically likely to use different
strategies for these issues. Agile teams will
set up to absorb these changes, while plan-
driven project teams must, by definition,
create plans for them.

Teams will differ on which issues are
resolvable, and how much money should
be spent in advance on predictable issues.
A plan-driven team is more likely to
decide that creating the project plan is
basically a predictable issue, and that a
good MFI strategy is to spend resources

early to make those predictions.
In contrast, an agile team might decide

that the project plan is fundamentally un-
resolvable past a very simple approxima-
tion. There being no effective MFI strat-
egy, it adopts an MFF approach, making
an approximate plan early and allocating
resources for regular re-planning over the
course of the project.

Both agile and plan-driven developers
might agree that the question of system
performance under load is an important
MFI issue, and so both might agree to
spend money early to build a simple sys-
tem simulator and load generator to
stress-test the design.

They are likely to spend money differ-
ently on design issues. The plan-driven
team, viewing it as a sensible MFI propo-
sition, will spend money early to reduce
uncertainty about the future of the design.
Agile teams are more likely to view design
as either being inexpensive to change (a
poor MFI candidate) or unresolvable
(making it an MFF proposition). They are
therefore more likely to choose a design
early and allocate money to adjust it over
time. This difference on design issues is
fundamental, since the two groups view
the matter from different decision arenas.

Ten Principles
The following 10 principles have shown
themselves useful in setting up and run-
ning projects. Most of these are known in
the literature [3, 4, 8, 21]. My phrasing of
them may be slightly different.
1. Different projects need different

methodology trade-offs.
2. A little methodology does a lot of

good; after that, weight is costly.
3. Larger teams need more communica-

tion elements.
4. Projects dealing with greater potential

damage need more validation ele-
ments.

5. Formality, process, and documentation
are not substitutes for discipline, skill,
and understanding.

Learning From Agile Software Development – Part One
Alistair Cockburn

Humans and Technology

This two-part article compares agile, plan-driven, and cost-sensitive software development approaches based on a set of proj-
ect organization principles, extracting from them ideas for pulling agile techniques into cost- and plan-driven projects. Part
one describes how agile and plan-driven teams make different trade-offs of money for information or for flexibility, and pres-
ents the first seven of 10 principles for tuning a project to meet various priorities, including cost, correctness, predictability,
speed, and agility. Part two, which will run in the November issue of CrossTalk, will present the last three principles,
then pull the material together for actions that plan-driven and cost-sensitive project teams can use to improve their strategies
and hedge against surprises.

“This is a MFI [money-
for-information]

situation: It is worth
spending a lot of money

now to discover ...
where those next defects

are located.”

Learning From Agile Software Development – Part One

October 2002 www.stsc.hill.af.mil 11

6. Interactive, face-to-face communica-
tion is the cheapest and fastest channel
for exchanging information.

7. Increased communication and feed-
back reduces the need for intermediate
work products.

8. Concurrent and serial development
exchange development cost for speed
and flexibility.

9. Efficiency is expendable in non-bottle-
neck activities.

10. Sweet spots speed development.
The first seven principles are discussed

in this article, the last three will be
addressed in part two.

1. Different Projects Need Different
Methodology Trade-offs
This should be obvious, but it seems to
need re-stating at frequent intervals [15,
16, 17, 18].

Figure 1, adapted from Boehm and
Port [8], shows one particular aspect of
these differences. In this figure, the two
diminishing curves show the potential
damage to a project from not investing
enough time and effort in planning. The
two rising curves show the potential dam-
age to the project from spending too
much time and effort in planning.

The lines crossing on the left indicate a
project for which potential damage is rela-
tively low with under-planning, and rela-
tively high with over-planning. Much
commercial software, including Web serv-
ices fall into this category. The lines cross-
ing on the right indicate a project for
which potential damage is relatively high
with under-planning, and for which much
more planning would have to be done
before damage would accrue from delays
due to planning. Safety-critical software
projects fall into this category.

The curves should make it clear that
when there is risk associated with taking a
slow, deliberate approach to planning,
then agile techniques are more appropri-
ate. When there is risk associated with
skipping planning or making mistakes
with the plan, then a plan-driven
approach is more appropriate. The curves
illustrate clearly the home territory of
each.

Figure 2 shows a different characteri-
zation of project differences [3]. The
hori-zontal axis captures the number of
people needing to be coordinated, rising
from one on the left to 1,000 on the right.
The idea is that projects need more coor-
dina-tion elements to their methodology
as the number of people increases.

The vertical axis captures the potential
damage caused by undetected defects in
the system, from loss of comfort to loss

of life. The idea is that projects need
more validation elements as the potential
damage increases.

Each box in the grid identifies a set of
projects that might plausibly use the same
combination of coordination and valida-
tion policies. The label in the box indi-
cates the maximum damage and coordi-
nation load common to those projects
(thus, D40 refers to projects with 20-40
people and potential loss of discretionary
monies). Projects landing in different
boxes should use different policies.

The different planes capture the idea
that projects run to different priorities,
some prioritizing for productivity, some
for legal liability, and others for cost, pre-
dictability, agility, and so on.

Any one methodology is likely to be
appropriate for only one of the boxes on
one of the planes. Thus, at least 150 or so
methodologies are needed (Capers Jones
identifies 37,000 project categories [17]).
That number is increased by the fact that
technology shifts change the methodolo-
gies at the same time.

2.A Little Methodology Does a Lot
of Good;After That,Weight is Costly
Figure 3 (see page 12) relates three quan-
tities: the weight of the methodology
being used, the size of the problem being
attacked, and the size of the team.
(Problem size is a relative term only. The
problem size can drop as soon as some-
one has an insight about the problem.
Even though problem size is highly sub-
jective, some problems are clearly harder
for a team to handle than others.) This
figure illustrates that adding elements to a
team's methodology first helps then hin-
ders their progress [3].

The dashed line shows that a small

team, using a minimal methodology, can
successfully attack a certain size of prob-
lem. Adding a few carefully chosen ele-
ments to the methodology allows them to
work more effectively and attack a larger
problem. As they continue to add to the
methodology, they increase the bureau-
cratic load they put on themselves and,
being only a small team, start expending
more energy in feeding the methodology
than solving the problem. The size of the
problem they can successfully attack
diminishes.

The curve is similar for a large team
(the solid line), but not as abrupt. The
large team needs more coordination ele-
ments to work optimally, and has more
people to feed the methodology as it
expands. Eventually, even the larger team
starts being less productive as the
methodology size grows and solves the
larger problems less successfully.

3. Larger Teams Need More
Communication Elements
Six people in a room can simply talk
amongst themselves and write on white
boards. If 200 people were to try that,
they would get in each other’s way, miss
tasks, and repeat each other’s work. The
larger team benefits from coordination.
This is the slower rise in the large-team
curve in Figure 3. The smaller team needs

Figure 1: Balancing Discipline and Flexibility
with the Spiral Model and MBASE

Figure 2: Projects by Communication, Criticality, and Priorities [3]

Agile Software Development

12 CROSSTALK The Journal of Defense Software Engineering October 2002

fewer coordination mechanisms and can
treat them with less ceremony than can
the larger team.

Although this principle should be
obvious, many process designers try to
find a single set of coordination elements
to fit all projects.

4. Projects Dealing with Greater
Potential Damage Need More
Validation Elements
A team of developers charged with creat-
ing a proof-of-concept system does not
have to worry about the damage caused
by a system malfunction in the same way
that a team charged with developing a
final production system to be produced in
vast quantities does. Atomic power plants,
automated weapons systems, even cell
phones or automobiles produced in the
millions have such economic conse-
quences that it is well worthwhile spend-
ing a great deal more time locating and
eliminating each additional remaining
defect. This is an MFI situation: It is
worth spending a lot of money now to
discover information about where those
next defects are located.

For a system in which remaining
defects have lower economic conse-
quences (such as ordering food online
from the company cafeteria), it is not
worth spending as much money to dis-
cover that information. The team will
consequently find it appropriate to use
fewer and lighter validation techniques on
the project

5. Formality, Process, and
Documentation Are Not
Substitutes for Discipline,
Skill, and Understanding
Highsmith [4] points to the difference
between discipline and formality, skill and
process, understanding and documenta-
tion.

Discipline is an internal quality of
behavior; formality is an externally visible
result. Many of the best developers are
very disciplined in their actions without
using formal methods or documents.

Skill is an internal quality of action,
typically of a single person, while process
is an externally declared agreement, usual-
ly between several people. Individuals op-
erating at high levels of skill often cannot
say what process they follow. Processes are
most useful in coordinating the flow of
work between people.

Understanding is an internal realiza-
tion; documentation is external. Only a
small part of what people know can be put
into external documentation, and that
small part takes a lot of time.

Process designers often forget these
differences, thinking that enough formality
will impart discipline, enough process will
impart skill, and enough documentation
will impart understanding. An agile project
manager relies on discipline, skill, and
understanding, while requiring less formal-
ity, process, and documentation (Figure 4).
This allows the team to move and change
directions faster.

6. Interactive, Face-to-Face
Communication Is the
Cheapest and Fastest Channel
for Exchanging Information
Understanding passes from person to per-
son more rapidly when two people are
standing next to each other, as when they
are discussing at a white board. At that
white board, they can use gestures, facial
expressions, proximity cues, vocal inflec-
tion and timing, cross-modality (aural-

visual) timing, and real-time feedback
along modalities to discover what each
knows, needs to know, and how to convey
it [3, 19]. They use the white board as an
external-marking device not just to draw,
but also to hold some of their discussion
points in place so they can refer back to
them later.

As characteristics of that situation are
removed, the communication effectiveness
between the two people drops (Figure 5).
On the phone, they lose the entire visual
channel and cross-modality timing. With e-
mail or instant messaging, they lose vocal
inflection, vocal timing, and real-time
question and answer. On videotape, they
have visuals, but lose the ability to get
questions answered. On audiotape, they
again lose visuals and cross-modality tim-
ing. Finally, communi-cating through doc-
uments, they attempt to communicate
without the benefit of gestures, vocal
inflection and timing, cross-modality tim-
ing, proximity cues, or question-and-
answer.

This principle suggests that for cost
and efficiency improvements, a project
team employ personal, face-to-face com-
munication wherever possible. A decade-
long study at MIT's Sloan School of
Management in the 1970s and a recent
research compilation both concluded that
physical distance matters a great deal [20,
21].

The cost of imposing distances
between people can be seen with a simple
calculation. Suppose that a developer earns
$2 per minute, and two people working
side-by-side on the same problem
exchange questions and answers at the rate
of 100 questions each per week. Thus, for
each minute on average that gets inter-
posed between thinking the question and
hearing the answer adds $200 of salary
cost to the project per person per week, or
about $10,000 per year. For a 10-person
project, that one-minute average delay
costs the organization $100,000 per year.
Two offices being a few meters apart cre-
ates a one-minute delay. For offices around
the corner or up a flight of stairs, the aver-
age delay is more on the order of five min-
utes ($500,000 per year).

The salary cost is actually the smaller
cost. The larger cost is that when two peo-
ple are more than about half a minute's
travel apart, they simply do not ask each
other many of those questions. Instead,
they guess at the answers. Some percent-
age of those guesses are wrong, and those
mistakes end up as defects in the system
that must be found through debugging,
external test, integration test, or even
through system use.

Figure 3: A Little Methodology Goes a Long
Way

Figure 4: Differences Between Adapting and
Optimizing Approaches

“An agile project
manager relies on
discipline, skill, and

understanding, while
requiring less formality,

process, and
documentation.”

Learning From Agile Software Development – Part One

October 2002 www.stsc.hill.af.mil 13

7. Increased Communication and
Feedback Reduces the Need for
Intermediate Work Products
Intermediate work products – those not
required by the final users of the system
or the next team of developers -– tend to
have two forms: a) promises as to what
will eventually be constructed, and b)
intermediate snapshots of the develop-
ers' knowledge (design descriptions).

This understanding, as we have
already seen, moves faster through inter-
active than paper-based communication.
Increasing the use of interactive commu-
nications will never entirely eliminate the
need for archivable design documenta-
tion, but it can reduce it, particularly dur-
ing the design and development stages of
the project. Eventually, external docu-
mentation will be needed when none of
the original designers are around, but
that does not count as intermediate docu-
mentation.

Users who regularly get to see the
developing system stop needing elabo-
rate promises of what they will be given.
This is an MFI issue. If the users are not
going to get to see the result for a year or
two, then it is worth a lot to create the
most accurate promise possible. If on
the other hand, the users get to see
results every few days or weeks, then a
better use of the project's money is to
simply build the system and show it to
the users.

There is, however, a MFF issue at play
here as well since there are diminishing
returns on the MFI issue of creating that
promise. No amount of care in crafting a
detailed promise can capture the unpre-
dictable reaction of the users on seeing
the final product in their own environ-
ment as they perform their work assign-
ments. The time and money spent on
guessing at the users' response to the
delivered system would be better allocat-
ed to deal with their response on seeing
the real system.

Mock-ups, prototypes, and simula-
tions deal with the MFI aspects of the
situation. They are an expenditure of
resources to discover information soon-
er. The MFF aspects of the situation are
handled through incremental delivery
with iterative re-work, allocating resour-
ces for the inevitable surprises resulting
from real delivery.

Interim Summary
The natural tension between agility-
focused, plan-driven, and cost-sensitive
project teams is explained in part by their
interpretations of what counts as a money-

for-information proposition, what counts as
a money-for-flexibility proposition, and how
much money to spend on each. We have
seen how people with various priorities
use those economic strategies differently.

It is particularly important, in work-
ing with the first seven principles, that
each be used to tune a project's running
rules, of particular importance is that
each project team declares its priorities as
well as its communication and validation
requirements. With those in place, the
team can orient itself to the amount of
face-to-face communication it can man-
age, and the extra methodology weight it
should appropriately set in place.

The principles are intended to be
used as slider scales. Too much toward
each end of the sliding scale brings its
own sort of damage.

The second part of this article will
present the final three principles, then
pull from the collected information to
suggest specific actions that leaders of
plan-driven and cost-sensitive projects
can take to either improve their strate-
gies, or at least hedge their bets against
future surprises.◆

References
1. Beck, Kent. eXtreme Programming

Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

2. Coad, P., E. Lefebvre, and J. De Luca.
Java Modeling In Color With UML:
Enterprise Components and Process.
Upper Saddle River: Prentice Hall,
1999.

3. Cockburn, Alistair. Agile Software
Development. Boston: Addison-
Wesley, 2001.

4. Highsmith, Jim. Agile Software Deve-
lopment Ecosystems. Boston: Add-
ison-Wesley, 2002.

5. Schwaber, K., and M. Beedle. Agile
Software Development with Scrum.
Upper Saddle River: Prentice Hall,
2001.

6. Highsmith, Jim, and Alistair
Cockburn. “Agile Software
Development: The Business of
Innovation.” IEEE Software 34.9
(2001): 120-122.

7. Cockburn, Alistair, and Jim
Highsmith. “Agile Software
Development: The People Factor.”
IEEE Software 34:11 (2001): 131-133.

8. Boehm, Barry, and D. Port. “Balancing
Discipline and Flexibility with the
Spiral Model and MBASE.”
CrossTalk Dec. 2001: 23-30.
Available at: <www.stsc.hill.af.mil/
crosstalk/2001/dec/boehm.pdf>.

9. Software Engineering Institute.
Capability Maturity Model® Integra-
tionSM V1.1 (CMMISM). Pittsburgh:
SEI, 2002. Available at: <www.sei.
cmu.edu/cmmi>.

10. Humphrey, Watts. A Discipline for
Software Engineering. Boston:
Addison-Wesley, 1997.

11. Paulk, Mark C. “Agile Methodologies
and Process Discipline.” CrossTalk

Oct. 2002: 15-18.
12. Highsmith, Jim. “What Is Agile

Software Development?” Cross-

Talk Oct. 2002: 4-9.
13. Cockburn, Alistair. “Agile Software

Development Joins the Would-Be
Crowd.” Cutter IT Journal Jan. 2002:
6-12.

14. Sullivan, K., P. Chalasani, S. Jha, and V.

Figure 5: Increasing Communication Effectiveness from Richer Communication Channels

Sazawal. “Software Design as an
Investment Activity: A Real Options
Perspective,” in Real Options and
Business Strategy: Applications to
Decision Making. L. Trigeorgis, ed.
London: Risk Books. Dec. 1999.

15. Mathiassen, L. “Reflective Systems
Development.” Scandinavian Journal
of Information Systems. Vol. 10, No.
1, 2. Gothenburg, Sweden: The IRIS
Association, 1998: 67-117.

16. Hohmann, L. Journey of the Software
Professional. Upper Saddle River:
Prentice-Hall, 1997.

17. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston: Addison-Wesley, 2000.

18. Cockburn, Alistair. “Selecting a
Project's Methodology.” IEEE
Software 17.4 (2000): 64-71.

19. McCarthy, J., and A. Monk. “Channels,
Conversation, Cooperation and

Relevance: All You Wanted to Know
About Communication But Were
Afraid to Ask.” Collaborative
Computing 1.1 (Mar. 1994): 35-61.

20. Allen, T.J. Managing the Flow of Tech-

nology. Cambridge, MIT Press, 1977.
21. Olson, G. M., and J. S. Olson.

“Distance Matters.” Human-
Computer Interaction 15 (2001): 139-
179.

About the Author

Agile Software Development

14 CROSSTALK The Journal of Defense Software Engineering October 2002

AgileAlliance
www.agilealliance.org/home
The AgileAlliance is a nonprofit organization dedicated to
promoting the concepts of agile software development, and
helping organizations adopt those concepts, which are out-
lined by the Agile Software Development Manifesto and can
be found on this Web site. The AgileAlliance was designed to
be lightweight, initially consisting of a board of directors, one
administrator, and a set of bylaws. Just like agile processes, all
work and operations within the AgileAlliance is intended to
emerge from subsets of members that self-organize into pro-
grams.

Agile Development Conference
http://agiledevelopmentconference.com
The Agile Development Conference is a conference on deliv-
ering fit-for-purpose software under shifting conditions,
using people as the magic ingredient. A number of tech-
niques, practices, and processes have been identified to do
this, and more will be found in the future. This conference
will discuss people working together to create software, and
the tools, techniques, practices, and issues involved. Come
here to learn, or, even better, to name them. This conference
has recently been funded and is still being organized. Read
the conference vision and structure and the request for par-
ticipation.

Crystal Methodologies
www.alistair.cockburn.us/crystal
Crystal collects together a self-adapting family of “shrink-to-
fit,” human-powered software development methodologies
based on these understandings:

• Every project needs a slightly different set of policies and
conventions, or methodology.

• The workings of the project are sensitive to people issues,
and improve as the people issues improve, individuals get
better, and their teamwork gets better.

• Better communications and frequent deliveries communi-
cation reduce the need for intermediate work products.
This site is a resource for people wanting to understand

those ideas, to find more about improving skills and team-
ing, and to identify some project policies to use as a start-
ing point. This site is set up as a museum of information,
with exhibit halls, exhibit rooms, exhibits with notes, and a
discussion area.

North Carolina State University
www.csc.ncsu.edu
The North Carolina State University's (NCSU’s) Computer
Science Department cites strengths in the areas of software
systems, communications and performance analysis, theory
and algorithms, and computer architecture. Founded in
1967, NCSU’s is one of the oldest computer science depart-
ments in the country and the only one at a state-assisted
Research I University. The university hosts a small workshop,
“Agile Software Development Methodologies: Raising the
Floor or Lowering the Ceiling” at <http://collaboration
.csc.ncsu. edu/agile>.

XBreed
www.xbreed.net/index.html
XBreed is the product of mixing SCRUM, eXtreme
Programming (XP) and Alexanderian ideas. Information
technology is the result of developing multiple applications
and shared components as fast as humanly possible.
Combining Scrum and XP was very natural: Scrum provides
a solid management framework, while XP provides a basic
but complete set of engineering practices. The result is a lean
but very effective way to run software projects. In addition,
Scrum practiced at the application team level – provided a
shared resources team is involved – can lead to re-usability.
XBreed is a free method. This Web site includes everything
you need to know to run XBreed projects.

WEB SITES

Alistair Cockburn, an
internationally recog-
nized expert in object
technology, methodolo-
gy, and project manage-
ment, is a consulting fel-

low at Cockburn and Associates. He is
author of “Surviving Object-Oriented
Projects,” “Writing Effective Use Cases,”
and “Agile Software Development,”
which have won Jolt Productivity Book
Awards. He is one of the original authors
of the Agile Software Development

Manifesto and founders of the
AgileAlliance, and is program director
for the Agile Development Conference
held in Salt Lake City. Cockburn has
more than 20 years experience leading
projects in hardware and software devel-
opment.

1814 Fort Douglas Circle
Salt Lake City, UT 84103
Phone: (801) 582-3162
Fax: (775) 416-6457
E-mail: alistair.cockburn@acm.org

