
4 CROSSTALK The Journal of Defense Software Engineering March 2003

Many factors contribute to an increased
practical interest in managing software

quality. This means treating software quality
as a key dimension of project performance,
equal to cost (effort) and schedule.
Corporate initiatives based on the Capability
Maturity Model® (CMM®) [1], CMM
IntegrationSM (CMMISM) [2], and Six Sigma [3]
provide some examples of forces promoting
an interest in quality as a management con-
cern.

General management activities include
planning, monitoring, and directing. In order
to manage quality, it must be planned;
accomplishment of the plan must be
tracked, and appropriate corrective action
must be taken as necessary. Nearly all proj-
ects establish budgets for effort and/or cost
so that these dimensions can be managed.
These budgets are plans for the expenditures
of labor and/or dollars during the life of the
project. Budgets typically identify planned
total expenditures as well as expenditures
during specific intervals such as life-cycle
phases or months. Managing quality also
requires establishing a budget for quality.

This article presents a simple approach
to measuring and modeling software quality
across the project life cycle so that it can be
made visible to management. Next in the
article are examples of applying this measur-
ing and modeling approach in real industry
settings. Both of the examples presented
come from CMM Level 4 organizations.
Whether or not the CMM or CMMI explic-
itly requires this type of analysis is beyond
the intended scope of this article. More
importantly, the approach has been shown to

be practical and useful to project managers.

Software Quality and the
Defect Profile
There are many views of software quality.
The ISO/IEC 9126 [4] defines six:
• Functionality.
• Efficiency.
• Reliability.
• Usability.
• Maintainability.
• Portability.

Some of these quality factors are difficult
to measure directly. Intuitively, the occur-
rence of defects is negatively related to func-
tionality and reliability. Defects also interfere,
to some degree, with other dimensions of
quality. Both of the approaches discussed
here involve developing a life-cycle defect
profile. This defect profile serves as a quality
budget. It describes planned quality levels at
each phase of development just as a budget
shows planned effort (or cost) levels. Actual
defect levels can be measured and compared
to the plan, just as actual effort (or cost) is
compared to planned effort (or cost).
Investigating departures from the plan leads
to corrective actions that optimize project
performance.

Software development consists of a
series of processes, each of which has some
ability to insert and detect defects. However,
only the number of detected defects in each
phase can be known with any accuracy prior
to project completion. The number of
defects inserted in each phase cannot be
known until all defects have been found.
Confidence in knowing that approximate

number comes only after the system has
been fielded. Consequently, this approach
focuses on defects detected.

The techniques presented here depend
on two key assumptions:
• Size is the easily quantifiable software

attribute that is most closely associated
with the number of defects. The basic
test of the effectiveness of complexity
models and other indicators of defect-
proneness is to ask, “Does this model
show a significantly higher correlation
with defects than just size (e.g., lines of
code) alone?” [5].

• Defect insertion and detection rates tend
to remain relatively constant as long as
the project’s software processes remain
stable. While the rates are not exactly
constant, they perform within a recog-
nized range.
The first assumption appears to be inher-

ent to the nature of software. CMM Level 4
organizations actively work to make the sec-
ond assumption come true. That is, they are
acting to bring their processes under control.

An Empirical Model
The simplest approach to generating a defect
profile for intended projects within the
organization is to collect actual data about
the insertion and detection rates in each life-
cycle phase. This can be accomplished in the
following four steps:
• First, historical data are collected. Table 1

shows a simple spreadsheet used to tab-
ulate defect discovery and detection data
using example data. In addition, the size
of the project from which the defect data
is collected must be known. The size
measure must be applied consistently,
but this approach does not depend on
using any specific measure. Lines of
code, function points, number of classes,
etc., may be used as appropriate. (The
data in Table 1 are simulated, not real.)

• Second, an initial profile of the number
of defects found in each phase is gener-

Managing Software Quality With Defects1

David N. Card
Software Productivity Consortium

This article describes two common approaches to measuring and modeling software quality throughout the software life cycle
so that it can be made visible to management. Both approaches involve developing a life-cycle defect profile, which serves as a
“quality budget.” This article also provides actual examples using each approach.

Phase Inserted

Phase Detected Analysis Design Code
Developer

Test
System
Test Total

Analysis 0 0

Design 50 200 250

Code 50 100 300 450

Developer Test 25 50 150 0 225

System Test 18 38 113 0 0 169
Operation 7 12 37 0 0 56

Total 150 400 600 0 0 1,150

Table 1: Example of Empirical Defect Profile (Simulated Data)

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

SM Capability Maturity Model Integration and CMMI are serv-
ice marks of Carnegie Mellon University.

Quality Software

Managing Software Quality With Defects

March 2003 www.stsc.hill.af.mil 5

ated as shown in Figure 1. The bars in
that figure represent the totals in the last
column of Table 1.

• Third, this initial profile is scaled to
account for differences between the size
of the project(s) from which the profile
was developed and the size of the proj-
ect to which it is applied. This is accom-
plished by multiplying by the ratio of the
project sizes. For example, if the defect
profile in Figure 1 were to be used to
develop a defect profile for a project
twice the size of the project providing
the data that went into Figure 1, then the
bars of the profile representing the new
project would be twice the size of those
in Figure 1.

• Fourth, the scaled defect profile is
adjusted further to reflect the planned
performance of the project. For exam-
ple, if the project plan called for the
automatic generation of code from
design instead of hand coding as previ-
ously done, then the number of defects
inserted in the implementation phase
would be adjusted downward to reflect
this change in the coding process. Also,
changes in the project’s process may be
induced in order to reach a specified tar-
get in terms of delivered quality if previ-
ous performance did not yield the
required level of quality. The target
might be specified as a result of a cus-
tomer requirement or an organizational
goal.
Actual defect counts can then be com-

pared with this final plan (defect profile) as
the project progresses. Suggestions for this
activity are provided in a later section of this
article. Note that the defect profile does not
address defect status (i.e., open vs. closed prob-
lems/defects). All detected defects, regard-
less of whether or not they ever get resolved,
are included in the defect counts.

Figure 2 shows an example of a defect
profile developed empirically [6] for an actu-
al military project. This figure shows the pre-
dicted number of defects to be injected and
detected in each phase, based on previous
projects. However, only actual counts are
shown for the number of defects detected,
because the actual number injected cannot
be determined with any confidence until
after software delivery.

The project in Figure 2 was about two-
thirds of the way through software integra-
tion at the time data were reported. Two-
thirds of the predicted number of defects
had been found in software integration. The
project’s quality performance was tracking
the plan. This illustrates that the real value of
the defect profile lies in its ability to make
quality visible during development, not as a
post-mortem analysis technique.

The project in Figure 2 actually was
completed after this graph was prepared.
The planned and actual defect levels never
differed by more than 10 percent. The proj-
ect team handed their product over to the
customer with a high degree of confidence
that it met the targeted level of quality.

An Analytical Model
Defect profiles may also be generated analyt-
ically. Many early studies of defect occur-
rence suggest that they followed a Rayleigh
dispersion curve, roughly proportional to
project staffing. The underlying assumption
is that the more effort expended, the more
mistakes that are made and found.

Gaffney [7] developed one such model:

Vt = E (1 — exp(- B(t**2)))

Where:
Vt = Number of defects discovered by

time t.

E = Total number of defects inserted.
B = Location parameter for peak.

The time periods t can be assumed to be
equal to life-cycle phase transition bound-
aries in order to apply the model to project
phases rather than elapsed time. The location
parameter B fixes the time of the maximum
(or peak) distribution. For example, B=1
means that the peak occurs at t=1.

The analytical approach involves apply-
ing regression analysis to actual phase-by-
phase defect data to determine the values of
B and E that produce a curve most like the
input data. Many Software Productivity
Consortium member companies use our
proprietary software, SWEEP [8] (based on
the Gaffney model), to perform this analysis,
but it can easily be implemented in Microsoft
Excel.

The effectiveness of the analytical
approach depends on the satisfaction of
additional assumptions, including the follow-
ing:

95

33 36

195

52 50

0

89

60

0

115

0

0

20

40

60

80

100

120

140

160

180

200

D
ef

ec
ts

Design Implemetation Software Integration System Integration

Software Phase

M2.3+ Defects: Predicted vs. Actual

Predicted Defects Injected
Predicted Defects Detected
Actual Defects Detected

Figure 2: Example of Empirical Defect Profile (Actual Project Data)

0

250

450

225

169

56

Analysis Design Coding Developer
Testing

System
Testing

Operation

0

250

450

225

169

56

Analysis Design Coding Developer
Testing

System
Testing

Operation

Figure 1: Example of Defect Profile With Data From Table 1

Quality Software

6 CROSSTALK The Journal of Defense Software Engineering March 2003

• Unimodal staffing profile.
• Life-cycle phases of similar (not exact-

ly equal) duration (not effort).
• Reasonably complete defect reporting.
• Using only observable/operational

defects.
To the extent that these assumptions

are satisfied, this model gives better results.
Analytical models such as this are useful
when the organization lacks complete life-
cycle defect data or desires to smooth
existing data to provide an initial solution
for new projects without prior historical
data. The defect profile obtained from the
actual data can be easily adjusted to fit
projects with different numbers of life-
cycle phases and processes by selecting
appropriate values of E and B.

Figure 3 provides an example of a
defect profile for another actual military
project generated by SWEEP. The light
bars in Figure 3 represent the expected
number of defects for each phase, based
on the model. For this specific project, the
actual number of defects discovered is
substantially lower than planned during
design. Consequently, additional emphasis
was placed on performing rigorous inspec-
tions during code, with the result that
more defects than anticipated were cap-
tured during code, putting the project back
on track to deliver a quality project as
shown at post release.

A detailed discussion and analysis of
applying the Gaffney model to a military
project using SWEEP can be found in [9].

Interpreting Differences
During project execution, planned defect
levels are compared to actual defect levels.
Typically, this occurs at major phase transi-

tions (milestones). However, if a phase
extends beyond six months, then consider
inserting additional checkpoints during the
phase (as in the example in Figure 1 where
analyses were conducted at the completion
of each one-third of integration testing).
Since real performance never exactly
matches the plan, the differences must be
investigated. This involves three steps:
• Determine if the differences are signif-

icant and/or substantive. This might
be accomplished by seeking visually
large differences, establishing thresh-
olds based on experience, or applying
statistical tests such as the Chi-Square
[10].

• Determine the underlying cause of the
difference. This may require an exami-
nation of other types and sources of
data such as process audit results as
well as effort and schedule data. Many
techniques have been developed for
causal analysis (e.g., [11]), but they fall
beyond the scope of this article.

• Take appropriate action. This includes
corrective actions to address problems
identified in the preceding step, as well
as updates to the defect profile to
reflect anticipated future performance.
Differences between planned and actu-

al defect levels do not always represent
quality problems. Potential explanations of
departures from the plan include the fol-
lowing:
• Bad initial plan (assumptions not satis-

fied, or incomplete or inappropriate
data).

• Wrong software size (more or less than
the initial estimate).

• Change in process performance (better
or worse than planned).

• Greater or lesser software complexity
than initially assumed.

• Inspection and/or test coverage not as
complete as planned.
Analyzing departures from the defect

profile early in the life cycle provides feed-
back for our understanding of the size and
complexity of the software engineering
task while there is still time to react.

Summary
Relatively simple models of software qual-
ity based on defect profiles are becoming
increasingly popular in the software indus-
try as organizations mature. These models
establish a quality budget that helps to make
trade offs among cost, schedule, and qual-
ity visible and reasoned, rather than choic-
es made by default. Defect profiles present
quality performance to the project manag-
er in a form that he or she understands.
Thus, the consequences of a decision such
as “reducing inspection and testing effort
to accelerate progress” can be predicted.
Unintended departures from planned
quality activities can be detected and
addressed.

Moreover, the ability to model quality
across the project life cycle is a necessary
prerequisite to implementing design for
Six Sigma techniques [3] in software devel-
opment. Achieving Six Sigma requires
measuring and managing quality at each
software production step, not just during
the final testing stages prior to delivery.

Defect models can become very rich.
The concept of orthogonal defect classifi-
cation [12], for example, involves develop-
ing separate profiles for each of many dif-
ferent defect types. These defect classifica-
tions facilitate the causal analysis process
when potential problems are identified.

This article discussed two very simple
approaches to building and using defect
profiles. These techniques make quality
visible so that it can be managed.◆

References
1. Paulk, Mark, et al. Capability Maturity

Model: Guidelines for Improving the
Software Process. Boston: Addison-
Wesley, June 1995.

2. Software Engineering Institute. Capa-
bility Maturity Model ® Integrated SM.
Pittsburgh: SEI.

3. Harry, Mikel J., and Richard Schroeder.
Six Sigma: The Breakthrough Manage-
ment Strategy Revolutionizing The
World's Top Corporations. New York:
Doubleday, Dec. 1999.

4. ISO/IEC Standard 9126.
“Information Technology – Software
Quality, Part 1.” 1995.

5. Card, David, and William Agresti.

Defect Profile

0

100

200

300

400

500

600

700

800

Req
uir

em
en

ts

Des
ign

Cod
e

Int
eg

rat
ion

Dry-
Run

Fo
rm

al
Te

st

Pos
t R

ele
as

e

D
ef

ec
ts

 D
is

co
ve

re
d Defects per Phase

Expected Defects per Phase

Post-release defects are those
reported within six months
following release of the software
to the field.

Figure 3: Example of Analytical Defect Profile (Actual Project Data)

Managing Software Quality With Defects

March 2003 www.stsc.hill.af.mil 7

“Resolving the Software Science
Anomaly.” Journal of Systems and
Software Vol. 7 (1990): 29-35.

6. Card, David. “Quantitatively Managing
the Object-Oriented Design Process.”
Canadian National Research Council
Conference on Quality Assurance of
Object-Oriented Software. Feb. 2000.

7. Gaffney, John. “Some Models for
Software Defect Analysis.” Lockheed
Martin Software Engineering Work-
shop, Gaithersburg, MD, Nov. 1996.

8. Software Productivity Consortium.
SWEEP Users Guide. SPC-98030-MC,
1997.

9. Harbaugh, Sam. “Crusader Software
Quality Assurance Process Improve-
ment.” Technical Report. Integrated
Software, Inc., 2002.

10. Hays, William, and Robert Walker.
Statistics: Probability, Inference, and
Decision. Austin, TX: Holt, Rinehart,
and Winston, 1970.

11. Card, David. “Learning From Our
Mistakes With Defect Causal Analysis.”
IEEE Software Jan. 1998.

12. Chillarge, R., et al. “Orthogonal Defect
Classification.” IEEE Transactions on
Software Engineering Nov. 1992.

Note
1. An earlier version of this article was

published in the proceedings of the
Institute of Electrical and Electronics
Engineers’ Computer Software and
Applications Conference, Aug. 2002.

About the Author

David N. Card is a
fellow of the Software
Productivity Consor-
tium where he pro-
vides technical leader-
ship in software meas-

urement and process improvement.
During 15 years at Computer Sciences
Corporation, Card spent six years as
the director of Software Process and
Measurement, one year as a resident
affiliate at the Software Engineering
Institute, and seven years with the
research team supporting the NASA
Software Engineering Laboratory.
Card is editor-in-chief of the Journal of
Systems and Software. He is the author
of “Measuring Software Design
Quality,” co-author of “Practical
Software Measurement,” and co-edi-
tor of ISO/IEC standard 15939:2002
“Software Measurement Process.”
Card is a senior member of the
American Society for Quality.

Software Productivity
Consortium
2214 Rock Hill Road
Herndon,VA 20170
Phone: (703) 742-7199
Fax: (703) 742-7200
E-mail: card@software.org

Software Quality HotList
www.soft.com/Institute/HotList
The Software Research Institute main-
tains a list of links to selected organiza-
tions and institutions that support the
software quality and software testing
area. Organizations and other references
are classified by type, by geographic area,
and then in alphabetic order within each
geographic area. The institute’s aim is to
bring to one location a complete list of
technical, organizational, and related
resources.

The Quality Assurance
Institute
www.qaiusa.com
The Quality Assurance Institute (QAI) is
exclusively dedicated to partnering with

the enterprise-wide information quality
profession. QAI is an international organ-
ization consisting of member companies
in search of effective methods for detec-
tion-software quality control and preven-
tion-software quality assurance. QAI pro-
vides consulting, education services, and
assessments.

Software Technology
Support Center
www.stsc.hill.af.mil
The Software Technology Support Center
is an Air Force organization established to
help other U.S. government organizations
identify, evaluate, and adopt technologies
to improve the quality of their software
products, efficiency in producing them,
and their ability to accurately predict the
cost and schedule of their delivery.

WEB SITES

March 24-28
International Symposium on

Integrated Network Management
Colorado Springs, CO

www.im2003.org

March 31-April 2
Association for Configuration and Data

Management’s Annual Technical and
Training Conference

San Diego, CA
www.acdm.org/main.htm

April 1-2
SecurE-Biz Summit

Arlington, VA
www.SecurE-Biz.net

April 8-10
FOSE 2003

(Federal Office Systems Exposition)
Washington, D.C.

www.fose.com

April 28-May 1
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

May 3-10
International Conference on

Software Engineering
Portland, OR

www.icse-conferences.org/2003

May 12-16
STAREAST ’03

Orlando, FL
www.sqe.com/stareast/

June 2-6
Applications of Software Measurement

San Jose, CA
www.sqe.com/asm

August 19-22
Software Test Automation Fall ’03

Boston, MA
www.sqe.com/testautomation/

COMING EVENTS

