
July 2003 www.stsc.hill.af.mil 25

When it comes to measurement, the
software industry responds incon-

sistently. Even though other industries
have long depended on measurable out-
comes to gauge their profitability and con-
trol their processes’ progress, the informa-
tion technology industry has been slow to
embrace software measurement. Even
when software managers recognize that
software measurement can deliver benefits
and is a critical component in achieving a
Software Engineering Institute Capability
Maturity Model for Software (SW-CMM)
Level 3 or higher, their expectations are
often unrealistic.

While advancements have been made
to implement software measurement,
specifically to the Department of Defense
(DoD) in such initiatives as the Practical
Software Measurement Initiative and oth-
ers, for the most part software measure-
ment is not well understood or used in the
software industry. Traditionally, when the
software industry has produced metrics,
they are typically isolated operational
measures (such as transactions per hour or
million-instructions per second) or physi-
cal measures (such as source lines of code)
that tell little about the effectiveness or
efficiency of the development process.

Additionally, many software managers
seek a silver-bullet metric, which not only
answers development questions but does
so with several-decimal-point accuracy.
Because there is no silver bullet, measure-
ment falls short of these expectations and
metrics programs are abandoned before
they deliver a return on investment. Such
outcomes do not need to happen, in fact,
software measurement can deliver value
even when the chosen measures are sub-
jective (as with customer satisfaction) or
when the measures are imperfect (as with
defect tracking).

This article seeks to overcome man-
agement resistance to software measure-
ment by addressing management expecta-
tions for silver-bullet metrics. Realistic
management expectations for measure-
ment provide a chance for measurement
to survive. It is a critical prerequisite for
DoD agencies contemplating process

improvement based on software measure-
ment.

Not an Exact Science
For engineers, computer scientists, and
other information technology profession-
als, it is natural to expect that measure-
ment can be made into an exact science
(recall college labs where data outliers on
research graphs were too difficult to
explain and therefore were erased). In the
real world of information technology,
however, measurement does not always
translate into predictable outcomes, and
not everything that can be measured nec-
essarily should be.

Measurement consists of taking a
series of observations about a process or
product and analyzing the data to indicate

where positive changes might be made. It
is important to realize that just because
something can be measured to the nth
degree of accuracy does not make it valu-
able to measure – there needs to be a pur-
pose and a method behind the measure
before it will be useful.

The first step in creating a successful
measurement program is to realign your
and your company’s expectations about
software measurement. The following sec-
tions describe how to do that.

Goal-Question-Metric
Approach
Follow the Goal-Question-Metric (GQM)
approach to software measurement introduced by
Victor Basili of the University of Maryland 1.
This approach forces companies to clearly
identify their strategic goals and to pose
questions to track whether or not the

goals are being met. Only then are the
metrics needed to answer the questions
identified, and data collection mechanisms
put into place. The resulting metrics nec-
essarily depend on the specific goals and
questions of the organization. Within the
SW-CMM are a number of Level 2 and
Level 3 key process areas that can form
the basis of an organization’s goals/ques-
tions/metrics.

The importance of planning when
implementing measurement is an area that
is often glossed over in an organization’s
rush to quickly establish a solid metrics
program. As such, it is not uncommon for
senior management to initiate a software
metrics program by collecting metrics
without first having identified the goals or
the questions into which the metrics
should fit. Consequently, after six months
of data collection, the lack of planning
often becomes clear as management and
their developers try to fit the metrics into
a cohesive program to support their
goal/question/decision-making needs.
Without planning, the collected metrics
often do not fit together properly, nor do
they answer the questions that manage-
ment needs answered to gauge whether
their goals are being met.

Planning for measurement (by identi-
fying your critical goals and questions that
measurement must support) is as impor-
tant a prerequisite as are requirements in
software development. To be successful,
measurement implementation should fol-
low a project plan and consist of allocated
and scheduled resources to perform the
measurement requirements (GQM). An
analysis of how measurement will be done
should address the six W’s of data collec-
tion and measurement:
• What processes will be impacted?
• What measures are needed?
• Who will participate in metrics design,

collection, data analysis, and reporting?
• When will metrics be collected, includ-

ing collection frequency (how often),
life-cycle phase, data entry, etc? 

• Where will metrics be collected: cen-
tralized/decentralized, from all proj-
ects/some projects, etc.? 

Combat Resistance to Software Measurement by
Targeting Management Expectations 

Carol A. Dekkers
Quality Plus Technologies, Inc.

The software industry has been slow to embrace measurement practices even when software managers recognize the benefits it
can deliver. This article seeks to overcome management resistance to software measurement by addressing management expec-
tations. It includes a discussion of the human and technical factors involved in software measurement success.

“... there needs to be a
purpose and a method

behind the measure
before it will be useful.”



Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering July 2003

• Why are metrics being gathered? (The
purpose of each metric can change
what is reported.) 
Metrics without goals and pertinent

questions are meaningless. For example, if
a manager asks me for my project hours,
and I think the purpose is to determine
my paycheck, the answer will be 40 hours
per week. If the purpose is to analyze
how much time is actually being spent on
the project by phase so that the process
can be improved, my answer will be the
accurate 50 hours per week.

While it may be tempting to rush
directly to the design and selection of
metrics, do not skip proper planning!
Instead, take the time and energy to
develop and produce a measurement
project plan. This project plan is critical to
aligning management’s expectations
because it will identify the resources, the
time frame, and the coordination needed
to implement measurement. In the same
way that skipping software requirements
leads to products that do not meet cus-
tomer needs, skipping measurement pro-
gram requirements – GQM – will lead to
a measurement program that does not
meet its customer needs.

The aforementioned book1 outlines
more details about the steps to take in
planning a GQM-based measurement
program, including checklists, tasks, rec-
ommended time frames, and resource lev-
els. While it is not the only model for
implementing software measurement,
(others include the Balanced Scorecard),
GQM is a rational approach that aligns
metrics to the business goals, which in
turn, will lead to higher success rates for
measurement programs.

No Silver Bullet
Communicate early and often that there is no sil-
ver-bullet software metric, just as there is no silver-
bullet accounting metric. Defects, functional
size, project duration, and work effort all
measure a different aspect of software
development; they are not interchange-
able. No single measure or single combi-
nation metric will satisfy all goals or
answer all measurement questions – you
must choose the metric suitable for each
specific question. Once the specific, meas-
urable GQMs have been identified, select
the most appropriate metric. In the same
way that a toolbox contains many tools,
each specifically designed to serve a par-
ticular use, a measurement toolbox should
contain specific measures selected to suit
your specific needs.

For example, if the goals were to
increase user satisfaction and software
product quality, the questions would

include the following: “What was the level
of customer satisfaction with the product
before implementing change?” “What is
the new level of customer satisfaction?”
“How has product quality improved (per-
centage increase in product quality lev-
els)?” The contributing metrics would
then consist of the following: customer
satisfaction rating (using a numerically
scored customer satisfaction survey) and
defect density (measured using defects per
function point or other software sizing
measure).

There is no Swiss army knife of met-
rics – you need to select the measure(s)
that best fits the purpose, be it defects,
function points, number of objects, lines
of code, customer satisfaction, work
effort, etc. – each is intended to measure a
different aspect of software development.

Learn About Metrics
Learn about the available metrics and what they
mean before implementing them in an organiza-
tion. For example, work effort is a function
of many variables, including software size,
implementation technology, development
tools, skills, hardware platforms, degree of
reuse, tasks to be done, and many others.
As such, no single variable can accurately
predict work effort; yet, there is often an
expectation that a single variable (for
example, degree of reuse) can accurately
predict work effort.

If one of your goals is to increase esti-
mating capability, it is also wise to research
the available automated tools on the mar-
ket and talk to actual users (not just tool
vendors) about how their chosen tools
work within their particular environment.
Note that not all estimating tools address
the same problem – some provide proba-
ble estimates of work effort and cost,
while others provide hourly breakdowns
of predicted work effort. Which one will
best suit your needs? It depends on your
goals and questions.

Use Metrics Properly
Plan a measurement program by using metrics
and measures in their intended manner, and
ensure that there is a common understanding of
the chosen measures. For example, functional
size reflects software size based on its
functional user requirements, not its phys-

ical size. (Physical size of software is
often expressed in lines of code.)
Together with other variables, functional
size can be used as a technology inde-
pendent measure of software size in
order to predict effort or cost in software
estimation models.

However, functional size is not the
right measure for predicting direct access
storage device space requirements. These
requirements depend on the physical
space taken up by the software and the
volume of data and are better measured
with other units. For example, 50,000
COBOL lines of code take up more space
than the equivalent lines of Java code.
And the user requirement to store 50 mil-
lion transactions takes up more physical
space than it does to store a tenth of that.

There is an abundance of information
on the Internet about various software
metrics from organizations such as the
Quality Assurance Institute <www.
qaiusa.com>, the American Society for
Quality <www.asq.org>, and the
International Function Point Users
Group <www.ifpug.org>.

Realize True Accuracy
Remember that the accuracy of a metric is a func-
tion of the least accurate component measure it
involves. People often run into measure-
ment difficulty when they assign several
decimal places of accuracy to metrics that
are derived from a series of relatively
inaccurate or imprecise measures. For
example, the function point (FP) count of
a project is calculated by summing up dis-
crete values of its component functions,
none of which is more granular than
three FP. To then calculate defect density
and report it with multiple decimal places
leads to the mistaken conclusion that the
metric is exact.

The same situation arises when
sophisticated estimating models produce
effort estimates to 15-minute accuracy
based on input variables that may have
been guesses (e.g., project risk on a one-
to-five scale). We all know intuitively that
estimates based on a myriad of input vari-
ables cannot accurately predict schedules
to the closest 15 minutes (let alone the
number of hours). Yet I routinely
encounter professionals who cite hour
estimates with at least one decimal place.
(Does this imply that your estimate is
accurate to the closest tenth of an hour,
or six minutes?)

Correlate With Common
Sense
Use common sense and statistics to correlate col-

“Metrics without goals
and pertinent questions

are meaningless.”



Combat Resistance to Software Measurement by Targeting Management Expectations 

July 2003 www.stsc.hill.af.mil 27

lected data, and question figures that seem out of
line. Do not accept data purely at face
value without verifying its consistency or
accuracy. Many companies collect work
effort data on completed projects, but the
definition of project work effort can vary
widely across different teams (e.g., over-
time recorded/not recorded, resources
included, work breakdown structure,
commencement/finish points, etc).

Be careful not to compare data that
appears comparable because of common
units (e.g., hours) that is actually based on
different measurement criteria. For
example, two projects may report 100
development hours, but one project
included overtime and user training hours
while the other did not. Although the
units are the same, the hours are not
comparable. Project hours has no indus-
try-wide definition and can vary widely.
Ensure that your organization has estab-
lished a consistent definition for collect-
ing and reporting project hours for any
projects included within the scope of
data collection.

Additionally, it is important to apply
common sense when establishing the fre-
quency and granularity (unit size) for
metrics data collection. For example,
while it might be ideal from a theoretical
point of view to collect work effort met-
rics to the closest 0.5 hour broken down
by a work breakdown structure task level,
it may require more administrative
changes and double data entry effort,
eliminating potential gain. If your current
work effort reporting provides for the
developers to enter their project hours
into an automated system to the closest
hour and broken down by phase on a
weekly basis, it would likely prove coun-
terproductive to ask them to re-enter
hours a different way just to populate the
metrics database. Work with and leverage
your existing processes – your developers
will appreciate it and will more readily buy
in to participating in the metrics collec-
tion process.

The frequency and granularity of
your metrics collection process will
depend on your chosen metrics (in sup-
port of the goals and questions) and the
scope of your measurement program. If
your goal is to improve a particular
process (e.g., Capability Maturity Model®

key processes) for which there has never
been any data collected, do not structure
the data collection process to impede the
overall development processes. Measure-
ment should always be the means to an
end – not an end in itself. In other words,
measurement must support and provide
the opportunity to improve a particular

process, not to take the place of the devel-
opment process itself. Measurement
should not interfere with the business of
developing software. If we focus on
measurement to the detriment of devel-
oping software, our business will cease to
be viable; it will no longer be a matter of
measurement, it will become a matter of
survival.

Conclusion
These are a few of the factors, both
human and technical, that can lead to
software measurement success. There is a
great deal to be gained by tracking and
controlling software development
through measurement – if only manage-
ment would realign their measurement
expectations of what the particular meas-
ures can provide, rather than seeking a
non-existent silver bullet that will solve
all of their measurement needs.◆

Note
1. McGraw-Hill published a book fea-

turing a foreword by Victor Basili:
The Goal/Question/Metric Method
by Rini van Solingen and Egon
Berghout.

August 10-13
Third International Conference on

Intelligent Systems Design
and Applications

Tulsa, OK
http://isda03.softcomputing.net

August 18-21
2nd Annual C4ISR Summit

Danvers, MA
www.paulrevereafa.horizons.com

August 25-29
QAI’s Annual eXtreme Conference

Las Vegas, NV
www.qaiusa.com

September 8-12
International Conference on Practical

Software Testing Techniques
Minneapolis, MN

www.psqtconference.com

September 14-19
International Function Point Users

Group Annual Conference 
Scottsdale, AZ

www.ifpug.org/conferences

September 22-25
AUTOTESTCON 2003

Anaheim, CA
www.autotestcon.com

October 21-24
18th International Forum

on COCOMO and Software
Cost Modeling

Los Angeles, CA
http://cse.usc.edu

November 17-21
International Conference on

Software Process Improvement
Washington, DC

www.software-process-institute.com

April 19-22, 2004
Software Technology Conference 2004

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

About the Author 

Carol A. Dekkers is a
leading software meas-
urement authority and
president of Quality
Plus Technologies, Inc.,
which provides profes-

sional software measurement training
and consulting services as well as
International Function Point Users
Group (IFPUG) certified function
point training, mentoring, and consult-
ing services. She is past president of
the IFPUG and was named by the
American Society for Quality as one of
the 21 New Faces of Quality for the
21st Century. Additional measurement
articles by Dekkers, including how to
set up measurement programs, are
available by e-mail or by accessing an
article request form at <www.quality
plustech.com>.

Quality Plus Technologies, Inc.
8430 Egret Lane
Seminole, FL 33776
Phone: (727) 393-6048
Fax: (727) 393-8732
E-mail:dekkers@qualityplustech.com


