
16 CROSSTALK The Journal of Defense Software Engineering June 2004

Advances in technologies that support
software specification and develop-

ment promise dramatic improvements in
the quality of software intensive systems
and in the reduced cost of developing
(and therefore acquiring) such systems.
Progress in two broad areas is particularly
noteworthy:
1. Trusted Software Components. It is

now beyond doubt that a commercial
market of software components exists,
and will play an increasingly prominent
role in the development of
Department of Defense (DoD) sys-
tems. Recognizing this fact has led to
renewed interest in the question of
trustworthy components – compo-
nents that are certified to exhibit
known quality standards and to honor
their specifications2, 3.

2. Analyzable Software Architecture.
While components exhibit various
qualities individually, systems having
such components exhibit their own
emergent qualities. These emergent
qualities can only be understood when
a system is viewed at a level of abstrac-
tion that includes not only compo-
nents but also, for example, their pat-
terns of interaction. Software architec-
ture technology has emerged as a way
for systems designers to address the
need for predictable system quality
attributes at design time [1].
One theme of predictable assembly

from certifiable components is to com-
bine elements of the above two areas to
provide an end-to-end method that begins
with analyzable design and ends with
deployed software systems that satisfy
their run-time requirements. An equally
important theme is using software compo-
nent technology as a way of packaging
and deploying the capability for pre-
dictable assembly from certifiable compo-
nents into software development houses,
and making these technologies easy to use
by designers and developers.

This article is written from the vantage

of work in predictable assembly from cer-
tifiable components (PACC) conducted at
the Software Engineering Institute (SEI)4.
Our goal is to achieve predictability by con-
struction, the meaning of which is dis-
cussed later in this article. However, our
work is best seen as a manifestation of –
or perhaps a specialization of – a more
fundamental evolution in software devel-
opment practice, referred to as Model
Driven Architecture (MDA) [2]5.

Both PACC and MDA are motivated
by the desire to provide an end-to-end
flow method from design to deployment.
However, our approach to predictable
assembly is to restrict designers and devel-
opers to a class of designs that are known,
by construction, to be analyzable and
therefore predictable. The trade off
between generality and predictability must
of course be made in particular develop-
ment settings. Where predictability is para-
mount – for example in real time, secure,
or highly available systems – restriction
may be warranted.

Predictable Assembly
Assemblies result from composing indi-
vidual software components into an inter-
connected collection of parts intended to
carry out one or more specific functions.
Often, one or more component technolo-
gies and/or protocols are used as the com-
mon unifying mechanism that permits
components to be fitted together.
Component technologies may be off-the-
shelf such as Microsoft’s Component
Object Model (COM6), Object
Management Group’s Common Object
Request Broker Architecture7, Sun’s
Enterprise JavaBeans8, or home grown. In
any case, a common component technolo-
gy is required to plug two or more com-
ponents together, but it is not sufficient to
ensure that the components will play well
together.

To determine whether or not two
components will play well together, soft-
ware engineers typically look at the com-

ponent’s set of inputs, outputs, pre- and
post-conditions, and, when available, the
description of the component’s assump-
tions about the environment (such as
required processor type and speed, avail-
able memory, etc). If there is a match, the
engineer will fit the two components
together and hope everything works, and
works well. If they do not match, the engi-
neer may find another component and try
again. To verify (or rather, gain confi-
dence) that two components do work well
together, the engineer will then test those
integrated components to see if they fail.
When they do fail, likely it is for reasons
other than that which could have been
deduced at the time the initial selection
was made [3].

Predictable assembly, then, is an
approach for integrating individual soft-
ware components into a collection of
parts where critical run-time properties
(e.g., performance, safety, etc.) of that col-
lection are reliably predicted. That is, by
using predictable assembly it can be
known before the actual components are
integrated that they will play together with
respect to one or more run-time proper-
ties of interest. This can be done if the
properties of individual software compo-
nents are known a priori to their selection
or acquisition. The properties of an indi-
vidual component can be the following:
• As simple as the execution latency of a

function call on the component (when
considering the performance of the
assembly).

• As complex as a state machine descrip-
tion of the function call itself (when
considering the safety of the assem-
bly).
In this approach, it is the properties of

individual components that are integrated
together rather than the actual compo-
nents. Therefore it is not necessary to
actually acquire a component in advance
of making the determination if it will
work well together with other compo-
nents. That determination is aided by a rea-

Predictable Assembly From Certifiable Components1

Using predictable assembly from certifiable components is one approach to developing software systems with run-time qualities
that are predictable by construction. Predictable assembly combines advances in software component technology and software
architecture to automate many engineering activities in constructing predictable component-based systems. In this article, I
introduce the concept of predictable assembly and its connection to certifiable components, and provide a brief illustration of
early experience with this approach.

Scott A. Hissam
Software Engineering Institute

Software Engineering Technology

June 2004 www.stsc.hill.af.mil 17

Predictable Assembly From Certifiable Components

soning framework that is specific to a prop-
erty of an assembly for which it is desired
to predict.

A reasoning framework uses these
properties to make a determination if the
assembly of those components is well
formed with respect to the rules dictated
by the reasoning framework. If the assem-
bly is well formed, then the reasoning
framework generates a prediction (e.g., see
the example in PACC in Action). Further,
the prediction can be trusted, as the rea-
soning framework itself is statistically
labeled to generate predictions with a stat-
ed accuracy and confidence level.

For software system developers and
integrators, predictable assembly means
the following:
• Reduced guesswork as to whether or

not the component selection made is
viable for the context in which the
component will be used.

• Assemblies are predictable by con-
struction.

• Greater confidence that components
will work well together prior to testing.

• Lower likelihood that redesign, reinte-
gration, and retesting of actual com-
ponents will be necessary.
The properties that serve as input are

specific to the reasoning framework. If
the reasoning framework is predicting exe-
cution latencies of tasks, then the individ-
ual component latencies are required as
the properties of input. If the reasoning
framework is proving that an assembly is
deadlock-free, then the individual compo-
nent state machine might be the required
property of input. From the inputs to the
reasoning framework, predictions and
acquisition decisions could be made. As
such, it is critical that those input proper-
ties to the reasoning framework be trusted
or, ideally, certified.

Certifiable Components
A component is certifiable if it has prop-
erties that can be demonstrated in an
objective way. Common examples of this
occur in the consumer marketplace. For
example, hard disk drive (HDD) manufac-
turers often provide data sheets that attest
to various properties of their products
(e.g., seek time, average latency, or mean
time between failures). Objectively, an end
consumer of one of these HDDs could
measure the seek time and average latency
of the HDD and know whether or not its
manufacturer was telling the truth. Mean
time between failures would be harder for
the end consumer to independently con-
firm, as the consumer would need all the
historical data from the HDD manufac-
turer to reproduce the same HDD prop-

erty. In this example, then, the consumer
trusts that the HDD manufacturer has
objectively stated these properties, and
often treat them as certified properties.

Certification of a component’s proper-
ties does not necessarily have to come
from the component manufacturer.
Consider a component that comes from
the free/open source software communi-
ty. An end user would be free to publish a
state machine description of that compo-
nent, and could even publish results that
verify the component implementation
matches the published state machine. This
would make the state machine a certifiable
property of that component. Any proper-
ty of a component that can be demon-
strated (in the form of a verifiable proof)
or is plausible (in the form of empirical
observation) can be the subject of certifi-
cation.

Certification need not be a pass/fail
proposition, although it is frequently treat-
ed as such. Descriptive certification of a
component property (as opposed to a
pass/fail normative certification) is a
statement about an objective fact about a
component. Revisiting the HDD example,
the fact that a particular HDD has an
average seek time of < 1 millisecond is
not a statement that this HDD is good or
bad. It is simply a stated fact, and if the
consumer trusts the HDD manufacturer,
the consumer can treat it as a certified
property. This, then, leaves it to the inte-
grator to determine if the value of the

certified property is good enough for the
assembly in which the component will be
used.

PACC in Action: A Simple
Illustration
In this illustration, a software engineer
wishes to predict a run-time property, exe-
cution latency, of a task with an assembly
of components. The illustration is drawn
from a proof of feasibility of predictable
assembly for power transmission and dis-
tribution [4].

A power substation serves several pur-
poses, among which is protection and
control of primary equipment such as
transformers, circuit breakers, and switch-
es. The task for the software engineer in
this illustration is to develop, from soft-
ware components, a controller for a high-
voltage switch. One function of the con-
troller is to provide an interface that
allows operators to manually open and
close the switch. One activity in this task is
to predict the time it takes for a controller
to process operator requests, and the time
it takes for the controller to report on a
change in switch status.

The illustration in Figure 1 presents
the gestalt of the software engineering
task in terms of predictable assembly.
Assume that a set of software compo-
nents already exists, and that the service
time of these components (defined as the
time it takes for a component to do its
work, assuming no blocking or pre-emp-

measure and certify

compose and predict

deploy and
validate

Figure 1: A Predictable Substation Assembly

tion) has been obtained or certified to a
certain degree of trust (� in the figure).
The software engineer selects a set of can-
didate components and composes specifi-
cations to produce a model of the con-
troller assembly, which is analyzed and
from which the execution latency of a task
is predicted (� in the figure).

In the illustration, the connection from
y to z is computed automatically based on
the certified latency of C2 in the context
of the entire assembly (w to x in this case)
that may introduce blocking and preemp-
tion during run time, effecting latency. If
the predicted latency satisfies require-
ments, the components (rather than their
specifications) are composed and the
resulting assembly is deployed. Predictions
are just predictions because there is a pos-
sibility that they are wrong, so some vali-
dation is required of the deployed assem-
bly (� in the figure).

This illustration is intended to encap-
sulate the idea of how predictable assem-
bly can be used in a development setting.
What is not shown in Figure 1 is the level
of automation supported in the assembly,
prediction, and composition processes. In
particular, using this example results in the
following:
• Latency prediction for user-selected

controller operations (e.g., from arrival
of an operator request on w until the
switch is signaled on x in Figure 1) is
computed automatically from assem-
bly specifications.

• The reasoning framework used to
make latency predictions defines pre-
cisely what run-time properties of
components must be known, and how
these properties are specified and
obtained. Thus, the properties of com-
ponents that must be trusted are pre-
cisely those that enable predictions of
assembly run-time behavior.

• The assumptions underlying the rea-
soning framework about how compo-
nents interact with their environment
and with each other are made explicit.
Assemblies are well formed if they sat-
isfy these assumptions. How well they
are formed is checked automatically
thus, assembly behavior is predictable
by construction.

• The accuracy and reliability of reason-
ing framework predictions is objective-
ly validated using statistically sound
sampling and measurement. The quali-
ty of predictions is specified as a con-
fidence interval – e.g., nine out of 10
predictions will have an upper error
bound of 3 percent with 95 percent
confidence.

Although this illustration is

focused on execution latency, our project
is concerned with more than just the tim-
ing properties of assemblies – e.g., safety
and liveness (areas of current work), and
reliability and security (areas for future
work). Therefore, the technology our pro-
ject is developing can be applied to many
reasoning frameworks.

Status
The initial application of the SEI’s PACC
approach to predictable assembly was
motivated by the challenges of using soft-
ware component technology in the field of
substation automation systems [4].
Although our project developed and vali-
dated a prototype infrastructure for pre-
dictable assembly, our main objective was
exploratory. The primary result was an
overall process model for the design,
development, and validation for pre-
dictable assembly [5].

A secondary result from this work was
the development of a measurement and
validation infrastructure supporting
empirical validation of a reasoning frame-
work – it is the validation of a reasoning
framework that quantifies the quality of
predictions produced by a reasoning
framework for the user. A tertiary result
from this work was the development of a
prototype for predicting the latency of
substation operator commands to a switch
controller. This prototype ran on two plat-
forms: a substation operator platform
using Microsoft .NET, and a switch con-
troller platform using Microsoft COM.
The two platforms communicated
through an industrial middleware, Object
Linking and Embedding for Process
Control9, and used the International
Electrotechnical Commission 61850
Standard for substation automation com-
ponent type model [6].

Lessons from the initial application
included the following:
• Adherence to the invariants demanded

by the reasoning framework is vital.
• Development of a reasoning frame-

work is a time-consuming proposition.
The first lesson from this list made it

clear that the ability to reason (and ulti-
mately make a prediction) about an
assembly of components relies on con-
sistency between what the reasoning
framework expects to be true about the
assemblies and its constituent compo-
nents and the assemblies that can be cre-
ated in the component technology. For
example, the reasoning framework
expected that components in the assem-
blies adhere to priority ceiling protocol
[7]; however, the human designer did not
always adhere to that restriction causing
poor predictions. This inconsistency was
spotted during validation of the reason-
ing framework. However, more specific
rigor was clearly needed to establish and
maintain consistency.

The second application of our approach
(in the domain of industrial robot control,
which is currently underway) is expanding,
technically, to address this lesson with lan-
guage (Component and Composition
Language) and tool (compilers and code
generators) support. The key aspect behind
this additional suite of tools [8, 9] is to
enforce, through automation, consistency
between what is built and the invariants
required by a reasoning framework.

The second lesson from this list
reflects the need for expertise in the math-
ematical and formal models used as the
foundation for any reasoning framework.
As our project moves forward, it is broad-
ening its repertoire of reasoning frame-
works to include a variety of performance
and verification (through model checking)
technologies. Our project does this with
the end goal to package these reasoning
frameworks into a starter-kit to reduce the
initial investment needed to create reason-
ing frameworks, and to make predictable
assembly a practical tool for the design
and deployment of software with pre-
dictable behavior.

Challenges
MDA, or something like it, is inevitable.
Our project’s specialized approach to
MDA focuses on using software compo-
nent technology to package analyzable
architectural design patterns and associat-
ed reasoning (analysis) methods. As men-
tioned earlier, our team is developing
methods and tools that will enable the
software industry as well as the DoD to
introduce predictable assembly from certi-
fiable components into practice. Our team
is working to demonstrate the feasibility of
this approach in industrial settings, and is

18 CROSSTALK The Journal of Defense Software Engineering June 2004

Software Engineering Technology

“Predictable assembly
from certifiable

components is not a
radical concept, especially
when viewed from the
vantage of traditional

engineering discipline.”

Predictable Assembly From Certifiable Components

June 2004 www.stsc.hill.af.mil 19

seeking suitable DoD applications for trial
use as well.

Although our team believes that it has
demonstrated the potential of predictable
assembly, there are several challenges that
must be met if the ideas are to find wide-
spread use and acceptance:
• Techniques for certifying, and labeling

component properties required by rea-
soning frameworks must be developed.

• The business case for prediction and
certification must be established, since
the development of an infrastructure
for predictable assembly requires up-
front investment.

• The engineering methods and technol-
ogy needed to build and use pre-
dictable assembly must be better
understood, documented, and sup-
ported by commercial tools.
These are serious challenges, but the

needs addressed by predictable assembly
are real and immediate. Moreover,
progress is being made, and not just at the
SEI. Academic research10 [10] and indus-
trial practice [11, 12] are moving in the
direction of predictable assembly. Further,
guaranteed component quality is increas-
ingly demanded by the marketplace, by
societal needs, and by the software com-
munity’s quest to establish rigorous foun-
dations for software engineering practice.

Summary
Predictable assembly from certifiable com-
ponents is not a radical concept, especially
when viewed from the vantage of tradi-
tional engineering discipline. The key prin-
ciple is to restrict developers to build only
systems whose behaviors can be predicted,
rather than trying to develop a general-
purpose technology that can predict the
behavior of any system. Granted, restrict-
ing developer freedom has never been an
important concern of the software tech-
nology marketplace, but with the maturing
of the software engineering discipline –
and with the self evident importance of
software to our safety and standard of liv-
ing – these market forces may finally be
poised to make a change for the better.◆

Acknowledgements
I would like to thank Linda Northrop,
Kurt Wallnau, James Ivers, Paulo Merson,
Daniel Plakosh, and Jacqueline Hissam for
their helpful reviews.

References
1. Bass, L., P. Clements, and R. Kazman.

Software Architecture in Practice. 2nd
ed. Reading, MA: Addison-Wesley,
2003.

2. Mellor, S., and M. Balcer. Executable

UML: A Foundation for Model Driven
Architecture. Reading, MA: Addison-
Wesley, 2002.

3. Hissam, S., and D. Carney. “Isolating
Faults in Complex COTS-Based Sys-
tems.” Journal of Software Mainte-
nance: Research and Practice. John
Wiley & Sons, Ltd., Mar. 1999. 183-199.

4. Hissam, S., et al. “Predictable Assembly
of Substation Automation Systems: An
Experiment Report.” CMU/SEI-2002-
TR-031. Pittsburgh, PA: Software
Engineering Institute, 2002. <www.sei.
cmu.edu/publications/documents/
02.reports/02tr031.html>.

5. Wallnau, K. “Volume III: A Technol-
ogy for Predictable Assembly From
Certifiable Components.” CMU/SEI-
2003-TR-009. Pittsburgh, PA: Soft-
ware Engineering Institute, 2003
<www.sei.cmu.edu/publications/
documents/03.reports/03tr009.html>.

6. International Electrotechnical Com-
mission. “Communications Networks
and Systems in Substations.” Working
Draft for International Standard IEC
61850-1.10. Geneva, Switzerland:
International Electrotechnical Com-
mission, 2002.

7. Goodenough, J., and L. Sha. “The
Priority Ceiling Protocol: A Method for
Minimizing the Blocking of High-
Priority Ada Tasks.” CMU/SEI-88-SR-
004. Pittsburgh, PA. Software
Engineering Institute, 1988. <www.sei.
cmu.edu/publications/documents/
88.reports/88.sr.004. html>.

8. Wallnau, K., and J. Ivers. “Snapshot of
CCL: A Language for Predictable
Assembly.” CMU/SEI-2003-TN-025.
Pittsburgh, PA: Software Engineering
Institute, 2003 <www.sei.cmu.edu/
publications/documents/03.reports/
03tn025.html>.

9. Hissam, S., and J. Ivers. “PECT Infra-
structure: A Rough Sketch.” CMU/
SEI-2002-TN-033. Pittsburgh, PA:
Software Engineering Institute, 2002
<www.sei.cmu.edu/publications/
documents/02.reports/02tn033.
html>.

10. Meyer, B. The Grand Challenge of
Trusted Components. Proc. of 25th
International Conference on Software
Engineering, Portland, OR, May 2003.
New York: IEEE Computer Press,
2003.

11. Soley, R., et al. “Model Driven
Architecture.” White Paper Draft 3.2.
Needham, MA: Object Management
Group, 27 Nov. 2000.

12. Microsoft. “Foundations of Software
Engineering.” Redmond, WA: Micro-
soft Research, 2003 <http://

research.microsoft.com/fse>.

Notes
1. Sponsored by the U.S. Department of

Defense.
2. See <http://niap.nist.gov/cc-scheme>

for a U.S. government-sponsored effort
to establish certification criteria for sec-
urity-related aspects of components.

3. For Bertrand Meyer’s, et al. take on the
issue of trusted components, see
<http://archive.eiffel .com/doc/
manuals/technology/bmarticles/
computer/trusted/page.html>.

4. See <www.sei.cmu.edu/pacc> for
details.

5. See <www.omg.org/mda> for details.
6. See <www.microsoft.com/com> for

details.
7. See <www.omg.org/gettingstarted>

for details.
8. See <http://java.sun.com/products/

ejb> for details.
9. See <www.opcfoundation.org/01

_ about/01_whatis.asp> for details.
10. Department of Computer Science –

Research. Swiss Federal Institute of
Technology, Zurich, Switzerland <www.
inf.ethz.ch/research/inst i tutes/
group.php?grp=Meyer#Anchor-
Trusted>.

About the Author

Scott A. Hissam is a
senior member of the
technical staff for the
Software Engineering
Institute at Carnegie
Mellon University.

Hissam conducts research on compo-
nent-based software engineering and
open source software. He is also an
adjunct faculty member of the
University of Pittsburgh. Previously, he
held positions at Lockheed Martin, Bell
Atlantic, and the U.S. Department of
Defense. Hissam is co-author of
“Building Systems from Commercial
Components” and has been published in
international journals, including IEEE
Internet Computing and Journal of Software
Maintenance. He has a Bachelor of
Science in computer science from West
Virginia University.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: (412) 268-6526
Fax: (412) 268-5758
E-mail: shissam@sei.cmu.edu

