

What the Agile Toolbox Contains
Rather than use more traditional-based software development tools, agile
teams prefer a cross-disciplinary set of mental, social, environmental,
mechanical, and process tools in addition to a carefully selected set of
software-based tools.
by Dr. Alistair Cockburn

A Revolutionary Use of COTS in a Submarine Sonar
System
U.S. submarine superiority is restored through commercial off-the-shelf
software that provides rapid and inexpensive upgrades to the sonar
hardware suite for continually increasing sonar performance.
by Capt. Gib Kerr and Robert W. Miller

A Survey of Anti-Tamper Technologies
These authors discuss and evaluate the anti-tamper techniques in
use today, then present possible solutions for a strong yet economical
software protection capability.
by Dr. Mikhail J. Atallah, Eric D. Bryant, and Dr. Martin R. Stytz

Safety Analysis as a Software Tool
This author outlines an effective process for performing a software
safety analysis to reduce loss of development resources and schedule,
improve product quality, and prevent costly mishaps during the
operational phase of the system life cycle.
by Blair T. Whatcott

Three Essential Tools for Stable Development
Version control, unit testing, and automation form an interlocking safety
net to help ensure success and prevent common project disasters, yet
many common problems can be traced back to a lack of these basic
practices.
by Andy Hunt and Dave Thomas

Your Quality Data Is Talking – Are You Listening?
This author provides ideas for defect prevention metrics that help
identify and analyze problem areas and help prioritize and plan defect
prevention activities.
by David B. Putman

2 CROSSTALK The Journal of Defense Software Engineering November 2004

4

8

12

17

22

27

SoftwarSoftwaree TToolbooolboxx

Cover Design by
Kent Bingham.

3

11

21

26

31

DeparDepar tmentstments

ON THE COVER

From the Publisher

Coming Events

Call for Articles

Web Sites

BackTalk

CrossTalk
OC-ALC/ MAS

CO-SPONSOR

OO-ALC/MAS
CO-SPONSOR

WR-ALC/MAS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (OC-ALC),
Ogden-Air Logistics Center (OO-ALC), and Warner
Robins-Air Logistics Center (WR-ALC) MAS
Software Divisions are the official co-sponsors of
CROSSTALK, The Journal of Defense Software
Engineering. The MAS Software Divisions and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 26.

OO-ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD . Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the United States government, the DoD, or the
STSC.All product names referenced in this issue are
trademarks of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

SoftwarSoftwaree TToolbooolboxx

Correction: Author David Schaar’s article byline in September’s
CrossTalk listed the wrong company affiliation. Schaar works
for Booz Allen Hamilton. We apologize for any inconvenience this
may have caused.

If you were to start a discussion on software tools, most people’s initial frame of ref-
erence would probably be tools such as modeling languages, compilers, word proces-

sors, project management tools, etc. While these are all important tools, I hope that this
issue of CrossTalk will expand the frame of reference for our readers. When con-
sidering software tools that may help with software development and acquisition, pro-
jects will realize more benefit if the project team expands its consideration of tools to
include helpful processes and techniques in addition to software products such as those

listed above.
Over the years, CrossTalk has shared many tools that apply to most aspects of software

development and acquisition; some examples that readily come to mind include updating lega-
cy code, working with people, information security, architectures, and processes such as those
promoted in the Capability Maturity Model® (CMM®) Integration and ISO 9000. These are all
great tools for improving the quality of software projects, the efficiency in developing software,
and the ability to accurately predict the cost and schedule of delivery. The CrossTalk staff
developed this special issue to highlight the idea that tools for developing software are more
than just software products. Some of the most useful software tools are the ones most often
neglected by software developers, yet much has been expended over the past several years to
educate developers (and now acquirers) about these tools and their benefits.

We begin this issue of CrossTalk with an article from Dr. Alistair Cockburn that truly
stresses this point. In What the Agile Toolbox Contains, Cockburn discusses numerous tools from
all angles of this discussion. If you’re not involved with agile software development, you’ll see
many of these tools apply to other development methods as well. I recommend this article for
everyone.

In A Revolutionary Use of COTS in a Submarine Sonar System, Capt. Gib Kerr and Robert W.
Miller share the success they have achieved thanks to the use of commercial off-the-shelf
(COTS) software. As discussed, this effort was not without its drawbacks, but the benefits out-
weighed the problems.

Next, Dr. Mikhail J. Atallah, Eric D. Bryant, and Dr. Martin R. Stytz discuss various
approaches to anti-tamper technologies in A Survey of Anti-Tamper Technologies. This discussion
emcompasses introductory descriptions of recommended technologies, including their benefits
and their drawbacks.

Safety critical software presents additional challenges for the developers. In Safety Analysis as
a Software Tool, Blair T. Whatcott discusses the basic steps for safety analysis and reminds the
readers that safety analysis must be performed at the system level, since many hazards exist at
interfaces between system components.

In Three Essential Tools for Stable Development, Andy Hunt and Dave Thomas share their expe-
rience that configuration management, unit testing, and automation are key to mitigating a
majority of the common problems experienced by software developers.

We conclude this issue with a high-level discussion on making measures more useful with
David B. Putman’s Your Quality Data Is Talking – Are You Listening? Putman was one of the key
people who helped Hill Air Force Base’s Software Engineering Division receive a Level 5 rating
on the CMM. In this article, he discusses some of the thought processes that helped so much
with the measurement efforts.

You might notice that there are no supporting sections this month. The reason for this is
that the CrossTalk staff believes all of the ideas discussed in these articles should be con-
sidered useful tools that support software development. We hope CrossTalk is also in your
software toolbox.

What’s in Your Toolbox?

November 2004 www.stsc.hill.af.mil 3

Elizabeth Starrett
Associate Publisher

From the Publisher

4 CROSSTALK The Journal of Defense Software Engineering November 2004

The word tool usually brings to mind a
physical or software device. However,

agile software development teams have
removed much of the usually mentioned
hi-tech development tools from their
repertoire. Thus, in conducting a survey of
tools agile teams say produce better soft-
ware sooner, I had to be more general in
considering what might be regarded as a
tool when asking, “What does the agile
toolbox contain?”

The set of tools that agile develop-
ment teams consider part of their toolbox
is very broad, ranging in purpose across
hiring, collaborating, communicating, managing,
developing, etc. Their tools also range in
form across environmental (such as office
layout), social, physical, process, thinking, and
computer-based.

For the survey, I seeded a discussion
about tools and posted requests for input
to four agile development discussion
groups [1, 2, 3, 4]. Originally, I intended to
describe a few of the more unusual items
on the resulting list. However, the toolset
that arrived back was so interesting when
considered as a whole that I chose to show
it in its entirety.

When people are deciding whether to
use an agile development approach on an
upcoming project, they can work through
this list together, considering the implica-
tions of each item on their budget and
work habits. Then it will not be such a sur-
prise when the team starts to rearrange the
cubicles and request different furniture,
post bits of paper all over the wall, or ask
to have job applicants co-program with
them for a morning.

This article is arranged in the following
sections:
• A brief description of agile develop-

ment with references for further read-
ing and a short description of terms
that will show up in the tool lists.

• The tools grouped by the purpose they
support.

• The tools itemized by form.
• Reflection on this list as a whole.

Agile Development Acronyms
and Key Words
Generally speaking, teams using the agile
development approach focus strongly on
collaboration and rapid feedback from
running code.

Collaboration is expected not only
within the development team but also
across organizational boundaries, with
expert users and project sponsors.
Collaboration involves group workshop
techniques for project planning, require-
ments gathering and design, and program-
ming in pairs or in close proximity such as
in a war-room setting.

Collaboration also involves using infor-

mation radiators [5] – large displays showing
up-to-date information placed in public
for people to see whenever they pass by.
Information radiators are used in work-
shops, in the war-room setting, and
between continents to keep people in sync
on their goal and their state.

Rapid feedback is based on running,
tested, integrated system features, or RTF
[6]. The project plan is constructed, and
progress is measured in terms of the
steadily increasing set of integrated fea-
tures. The team seeks early and frequent
integration of features to get feedback
about the team, the process it is using, and
how the requirements fit the actual needs
of the user base.

Attending to collaboration and feed-
back through RTF drives the selection of
many of the tools listed in this article. The
agile team cares that the following occurs:
• The right roles are established for the

team.
• The people who show up fit with the

rest of the team.
• The people develop particular skills.
• The environment is effective to the

development task.
• They use selected process elements.
• Collaboration and communication are facil-

itated.
• The mechanical, hardware, and software

tools used are easy to use, see, and
update; are effective; and support the
agile approach.
Teams debate items in all of these cat-

egories and will feel endangered or
strengthened when the various items are
removed or included. It is on this basis
that I consider such a broad range of
items tools.

There is not space here to undertake a
longer description of agile development; it
has been heavily described in books and
articles. Perhaps the best introduction to
the thinking and practices involved is
found in “Agile Software Development

What the Agile Toolbox Contains

Dr. Alistair Cockburn
Humans and Technology

The agile development community is noted for scorning Computer-Aided Software Engineering modeling and Gantt project
scheduling tools (among others), but what has it replaced them with? Conducting a survey of agile teams for tools they say help
produce better software quicker, this author found they used a cross-disciplinary set of mental, social, environmental, mechan-
ical, and process tools, in addition to a carefully selected set of software-based tools. This list of tools can help your organiza-
tion prepare for the tools – human resource, facilities, software, and non-software – that will be requested and used by the
team starting to adopt the agile approach.

Software Toolbox

“Although physical
proximity, whiteboards,

poster sheets, index
cards, and sticky notes
are still the dominant

tools used in
collaboration, people
started finding and

inventing online
collaboration tools as

agile development moved
into distributed
development.”

November 2004 www.stsc.hill.af.mil 5

Ecosystems” [7] and the articles “The
New Methodology” [8], “The Business of
Innovation” [9], and “The People Factor”
[10]. The AgileAlliance [11] and the Agile
Project Management Group [12] offer
much more information.

Listed below are some terms that may
not be familiar to the reader:
• Dynamic System Development

Method (DSDM): A founding agile
methodology created in the United
Kingdom in the late 1990s [13].

• Scrum: A founding agile methodology
created in the mid-1990s [14].

• Scrum master: In the Scrum method-
ology, a form of team leader who spe-
cializes in getting people to talk
together and in removing obstacles to
progress.

• Gold cards: A token allowing a devel-
oper to work on something other than
scheduled features.

• Class-Responsibility-Collaborator
(CRC) cards: An object-oriented
design technique in which designers
write class names on index cards and
role-play the design with the cards
[15].

• Java 2 Enterprise Edition (J2EE): A
widely used component library mar-
keted by Sun Microsystems.

• Unified Modeling Language
(UML): A widely used graphical
design documentation notation.
If there are other terms you find unfa-

miliar, a quick Web search is sure to turn
up descriptions and discussions of them.

Tools by Purpose
Included here are entries only for hiring,
collaboration, communication, and man-
agement purposes. The entries for other
activities should be fairly obvious when
reading the list grouped by form later in
this article.

Hiring
To hire the appropriate people for the
team, you must first identify the roles
needed and the people to fit those roles.
Process and social tools are used here.

To avoid the standard mistakes in hir-
ing, the tool most often used is a few
hours of pair programming with the team
members. Teams report being able to tell a
lot more about how an applicant thinks,
designs, communicates, and fits with the
team from this experience. Even without
pair programming, interviewers focus on
discovering not only an applicant’s techni-
cal abilities, but also their personal fit with
the organization.

Two new roles or skills are sought:
facilitators and coaches. In the late 1990s,

the founders of the DSDM felt so strong-
ly that their project teams needed proper
facilitation expertise that they helped
develop an internationally recognized
facilitator training and certification pro-
gram [16]. An increasing number of soft-
ware people are becoming certified public
facilitators, and more are taking basic facil-
itator courses.

Coach (from eXtreme Programming
[XP]) and scrum master (from Scrum) are
job titles designed to change the power
relationship and interaction dynamics
from the traditional team lead or project
manager. The coach or scrum master is a
lead person whose job typically is to keep
desired practices in place and remove
obstacles for the group, but not to create
schedules for the developers or construct
their end-of-year performance reviews.
Therefore, the group perceives them as a
leading colleague rather than a boss.

Collaboration
Although physical proximity, whiteboards,
poster sheets, index cards, and sticky notes
are still the dominant tools used in collab-

oration, people started finding and invent-
ing online collaboration tools as agile
development moved into distributed
development. These tools will be listed
separately in the computer-based category.
They generally include WikiWiki and
thread-based discussion group technolo-
gies, instant messaging technologies with
group and recording variants, and distrib-
uted brainstorming technologies.

Whether collocated or distributed, the
two prevalent process tools for collabora-
tion include workshops and short daily
status meetings. Workshops are used to
gather requirements, understand usage
patterns, plan the project, and design the
software. To support the workshops, spe-
cific office facilities are required, including
group work areas with lots of wall space,
speakerphones, and videoconferencing.

Communication
Active and passive communication

remains a dominant trait of agile develop-
ment, whether the team is collocated or
distributed.

Active communication involves two or
more people working on the same task,
whether at a whiteboard, sitting side-by-
side looking at the same screen, or using
shared workspace technology to look at
the same screen from different sites.

Passive communication involves infor-
mation radiators. These are most often on
paper or whiteboard. When the informa-
tion changes on a minute-by-minute basis,
information radiators are sometimes dri-
ven online. Information radiators include
the following:
• A flat monitor hung over the cubicle

wall [17].
• A real traffic light hung in the devel-

opment area that is controlled by an
automated build machine [18].

• An ambient orb reporting the same as
the traffic light, but using a nationally
broadcast signal so teams in all loca-
tions can see the same information
[19, 20].

• The build status maintained on a Web
page so the developers can see what
happened to the code they just
entered.

Management
Agile teams have replaced Gantt charts
with earned value and burn-down charts
[21], graphs of tests created versus passed,
and similar charts. To report these to
upper management, collocated teams still
like the effects of posters taped to the wall
or spreadsheet graphs. A fresh set of
online project management tools is enter-
ing the market, including Rally,
VersionOne, and XPlanner.

Whether online or on paper, these
tools report status with respect to RTF, not
planning, design, or documentation tasks.

Tools by Form
Here are the tools clustered by their form:
environmental, social, physical, process,
mental, and computer-based.

Environmental
You are likely to find that the agile team
will either request a different office layout
or will simply rearrange their given space
to enhance collaboration. The following
are common desires:
• Common design and programming

areas.
• Lots of wall space for posting infor-

mation radiators.
• Convex or straight desks so people can

cluster around the monitor.
• A common couch area with a white-

What the Agile Toolbox Contains

“Whether collocated or
distributed, the two

prevalent process tools
for collaboration include

workshops and short
daily status meetings.”

board (recording type, preferably).
• Kitchen, for social discussions during

breaks.

Social
The top social tools are collocating teams
and attacking problems in workshop ses-
sions. Other social tools revolve around
increasing the tolerance or amicability of
people toward each other, giving them a
chance to alternate high-pressure work
with decompression periods, and allowing
them to feel good about their work and
their contributions. The following are
desired social tools:
• Social roles such as coach, facilitator,

and scrum master.
• Collocated teams (for fast communica-

tion and also the ability to learn about
each other).

• Personal interaction (within and across
specialties).

• Facilitated workshop sessions.
• Daily stand-up status meetings.
• Retrospectives and reflection activities.
• Assisted learning provided by lunch-

and-learn sessions, pair programming
sessions, and having a coach on the
project.

• Pair programming (to provide peer
pressure).

• A shared kitchen.
• Toys (to allow humor and reduce

stress).
• Celebrations of success and acknowl-

edgment of defeat.
• Gold cards issued at an established

rate (to allow programmers to investi-
gate other technical topics for a day or
two).

• Off-work get togethers (typically a
Friday evening visit to a nearby pub,
wine-and-cheese party, even volleyball,
foosball, or Doom competitions).

• Posting information radiators in
unusual places to attract attention (the
most unique I have seen is the number
of open defects being posted in the
bathroom [22].)

Physical Devices
The best physical devices augment indi-
vidual thinking, group thinking, and social
interaction. The following are some of the
preferred ones:
• Index cards and Post-it notes (in any

gathering of agile developers, some-
one is likely to have a pack of index
cards with them).

• Butcher paper lining walls and halls.
• Whiteboards (standard or moveable,

printing, recording, or with a camera).
• Poster sheets (plain paper, 3M sticky,

or plastic cling sheets).

Process
Preferred process tools include short,
time-boxed iterations, frequent integra-
tion, and frequent delivery. Next to these
are workshops for various purposes. Some
of the tools are both process and social in
form, so I risk listing them twice. They are
as follows:
• Project planning jam session (XP’s

planning game [23], Crystal Clear’s
blitz planning [17], or Scrum’s sprint
planning).

• Requirements workshop.
• Group design workshop.
• Reflection or retrospective workshop.
• Pair programming session.
• Refactoring code.
• Growing the system (creating a very

small but functional implementation,
adding both infrastructure and func-
tionality).

• Time boxing.
• Spike prototyping (throwaway prototyp-

ing lasting not more than a day or two).
• Early integration.
• Frequent delivery.
• Programmers writing unit tests.
• Customer writing acceptance tests.
• Tracking by earned value, burn-down,

or backlog.

Thinking
Agile developers may or may not model the
domain with UML, but they do have tools
for helping them decide what and how to
code, starting with using the brain.
Thinking tools include the following:
• Brain-engaged common sense [24].
• Test-first design (assertion-driven

design).
• CRC cards.
• KISS (keep it simple, stupid).
• Once-and-only-once code (do not

repeat yourself in your code).

Computer-Based
Jeff Patton writes:

Of course, agile developers have a
long history of tool building – I
think that started with chimpanzees
using sticks to get bugs out of
stumps. Today we use xDoclet to
generate J2EE interfaces and class-
es, which is a lot like getting bugs
out of stumps [25].

There are enough entries in this list that
I need to group them by purpose.
Obviously, I am not attempting a full listing
of tool vendors, so I name only one or two
sample entries of available online tools
where that is relevant. I apologize to the
other tool suppliers.

Computer-Based Tools By
Purpose
Communication/Collaboration Tools
Here are communication or collaboration
tools that require software:
• Group discussion technologies such as

WikiWiki, Yahoo! eGroups, Lotus
Notes, Starteam, NetMeeting, WebEx,
phpBB, and blogs.

• Instant messaging, including group
messaging, messaging with drawing,
and messaging with discussion thread
management. Examples include
Yahoo! Messenger with Doodle
Imvironment (so people can draw at
each other as well as talk), Jabber,
AIM, GAIM (group chat), Engage
Thoughtware (thread management),
and Trillian.

• Collaboration software packages such
as Marratech, Raindance, Sparrow,
Flywheel, Thoughtware, and Borland’s
Caliber.

• Video projectors for group coding,
learning, and discussion sessions.

Documenting Tools
There is an overlap between collaboration
tools and documentation tools.
Increasingly, teams look for easy ways to
put the results of a group workshop into
archive format. Often that involves a cam-
era, but sometimes it means using an
online tool during collaboration, including
the following:
• Recording whiteboards; scanners; and

archiving message, discussion, and col-
laboration tools (the output is simply
put or linked into the documentation).

• Generic drawing tools, PowerPoint,
Visio, Dia, and ArgoUML (free)
replace expensive computer-aided
software engineering packages.

Project Tracking Tools
These are online alternatives to poster
sheets posted on the wall, and are particu-
larly useful for distributed teams and for
projects whose requirements or plans
change multiple times per week. They are
as follows:
• Spreadsheets (used to hold project

plan and status, and derive tracking
graphs).

• Software for tracking the project
against stories and tasks comes from
XPlanner (free), Rally Software’s Agile
Release Management, Borland’s
CaliberRM, and VersionOne.

Designing-Programming Tools
Here are the essential tools requested by
agile programming teams:

Software Toolbox

6 CROSSTALK The Journal of Defense Software Engineering November 2004

• Configuration management/version
control (Concurrent Version System
or your favorite).

• Automated unit test harness such as
JUnit or any of the xUnit family.

• Automated acceptance test harness
such as Fit or FitNesse.

• Automated build system, preferably a
continuous build system such as aug-
mented Another Neat Tool or
CruiseControl.

• Refactoring development environment
(safe refactoring built in) such as
Intellij’s IDEA, Eclipse, or ReSharper.

• Performance profiling tool such as
Jmeter, Jprofiler, or Jprobe.

• Laptops on a wireless network for pro-
gramming anywhere.

Other Resources
The Internet contains many discussions of
social, process, physical, and computer-
based tools for agile development. Ken
Boucher has created the Web site
<www.fairlygoodpractices.com> for col-
lecting a number of social and process
tool descriptions.

To discover your own set, simply hold
a workshop with the people on your team
and ask them what mental, social, envi-
ronmental, and physical devices help them
in their work. My experience is that they
will be glad to share, and you will end up
with an impressive list of your own.

Reflection on the Lists
I was surprised at the breadth of tools
requested by agile teams, by how far back
into the hiring cycle these tools extend,
and by the number and importance of the
social tools. I was surprised at how far the
industry has come in supporting distrib-
uted teams with distance collaboration
and automated build systems.

As I wrote in [5], understanding passes
from person to person more rapidly when
they are standing next to each other, as
when they are discussing at a whiteboard.
Agile teams stress using tools that permit
the rapid flow of understanding. Some of
those tools are social, starting even at the
hiring stage. Some tools are technological,
helping distributed teams simulate being
physically present. Many tools are physi-
cal, allowing people to manipulate them in
workshops.

If collaboration is one leg that agile
development stands on, the other is rapid
feedback from running code. Configura-
tion management, automated testing, refac-
toring, and performance profiling tools are
the dominant entries here. As Michael
Vizdos reminds us, do not forget to keep
brain and common sense engaged [24].u

References
1. Yahoo Groups. eXtreme Program-

ming <http://groups.yahoo.com/
g roup/ex t r emep rog r amming/
message/93430>.

2. Yahoo Groups. Scrum Users
<http://groups.yahoo.com/group/
scrumdevelopment/message/3652>.

3. Yahoo Finance Groups. Agile Project
Management <http://finance.groups.
yahoo.com/g roup/ag i l epro jec t
management/message/2424>.

4. Yahoo Groups. Salt Lake Agile
Software Development <http://
groups.yahoo.com/group/sl-agile/
message/646>.

5. Cockburn, A. Agile Software
Development. Addison-Wesley, 2002.

6. Jeffries, R. “A Metric Leading to
Agility.” XP Magazine 14 June 2004
<www.xprogramming.com/xpmag/
jatRtsMetric.htm>.

7. Highsmith, J. Agile Software
Development Ecosystems. Addison-
Wesley, 2002.

8. Fowler, M. “The New Methodology.”
Apr. 2003 <www.martinfowler.com/
articles/newMethodology.html>.

9. Highsmith, J., and A. Cockburn. “Agile
Development 1: The Business of In-
novation” <http://alistair.cockburn.
us/crystal/ar t ic les/asdboi/asd1
businessofinnovation.htm>.

10. Cockburn, A., and J. Highsmith. “Agile
Development 2: The People Factor.”
<http://alistair.cockburn.us/crystal
/articles/asdpf/asd2peoplefactor.htm>.

11. Agile Alliance <http://agilealliance. org>.
12. Agile Project Management <http://

agileprojectmgt.com>.
13. DSDM Consortium <http://www.

dsdm.org>.
14. Control Chaos.com. ADM, Inc.

<http://controlchaos.com>.
15. Beck, K., and W.A. Cunningham. “A

Laboratory for Teaching Object-
Oriented Thinking.” ACM SIGPLAN
24.10 (1989): 1-7.

16. Airth, Alan. GlobalFN. Personal com-
munication to the author. 29 June
2004.

17. Cockburn, A. Crystal Clear. Addison-
Wesley, 2004.

18. Freeman-Benson, B., and A. Borning.
“YP and Urban Simulation: Applying
an Agile Programming Methodology
in a Politically Tempestuous Domain.”
Seattle, WA: University of Washing-
ton, 2003 <http://agiledevelopment
conference.com/2003/schedule/
researchpapers.html#P1>.

19. Ambient Devices <www.ambient
devices.com>.

20. Savoia, Alberto. “eXtreme Feedback
for Software Development.” Agitar
Software, Inc., 2003 <www.developer
testing.com/managed_developer
_testing/000036.html>.

21. Cockburn, A. “Earned-Value and
Burn Charts.” Humans and Technol-
ogy, 22 June 2004. Extracted from
Crystal Clear, Addison-Wesley, 2004
<http://alistair.cockburn.us/crystal/
ar t i c l e s/evabc/earnedva lueand
burncharts.htm>.

22. Developertesting.com <http://www.
developertesting.com/images/entry
imag es/mdt - ex t r eme- feedback
_07_0001.jpg>.

23. Beck, K., and M. Fowler. Planning
eXtreme Programming. Addison-
Wesley, 2001.

24. Vizdos, Michael. Online Posting.
Yahoo Groups. Scrum Users <http://
groups.yahoo.com/group/scrum
development/message/3661>.

25. Patton, Jeff. Online Posting. Yahoo
Groups. Salt Lake Agile Software
Development <http://groups/yahoo.
com/group/sl-agile/message/648>.

What the Agile Toolbox Contains

November 2004 www.stsc.hill.af.mil 7

About the Author

Alistair Cockburn,Ph.D.,
is an internationally
respected expert on
object-oriented design,
software development
methodologies, use

cases, and project management. He is
the author of two Jolt Productivity
award winning books, “Agile Software
Development” and “Writing Effective
Use Cases,” as well as author of
“Surviving OO Projects.” He was also
one of the authors of the “Agile
Development Manifesto.” Cockburn
defined an early agile methodology for
the IBM Consulting Group in 1992,
served as special advisor to the Central
Bank of Norway in 1998, and has
worked in companies from Scandinavia
to South Africa, North America to
China. Internationally, he is known for
his seminal work on methodologies and
use cases, as well as his lively presenta-
tions and interactive workshops. Many
of his materials are available online at
http://alistair.cockburn.us.

Humans and Technology
1814 Fort Douglas CIR
Salt Lake City, UT 84121
E-mail: acockburn@aol.com

8 CROSSTALK The Journal of Defense Software Engineering November 2004

By the mid-1990s, the United States
Navy’s submarine force had lost its

once seemingly insurmountable lead in
detecting and tracking foreign submarines.
The use of improved acoustic quieting
measures on foreign submarines as well as
the worldwide proliferation of modern
diesel-electric submarines had sharply
reduced the acoustic advantage that the
United States had held since the mid-
1950s. In addition, the end of the Cold
War brought about a significant reduction
in available funding to develop and field
the improvements necessary to restore
superiority. The operating forces were
forced to use carry-on commercial sys-
tems in an effort to regain some of the
advantage that had been lost. These black
boxes did provide some help but were not
fully integrated with the remainder of the
ship’s combat system, thereby reducing
their effectiveness in maintaining tactical
control.

In an effort to restore United States
submarine sonar superiority and eliminate
the need to bring on temporary equip-
ment to meet mission requirements, the
Navy began developing the Acoustic
Rapid Commercial off-the-shelf (COTS)
Insertion (A-RCI) sonar system, later des-
ignated the AN/BQQ-10(V). Knowing
that the $1.5 billion development cost and
the $90 million shipset cost for a new mil-
itary specification (MIL-SPEC) system
was unaffordable, the A-RCI sonar system
was designed from day one to use COTS
hardware and software components to
provide the most up-to-date and powerful
computer processing capability possible.
This allowed the use of advanced signal
processing algorithms to exploit the much
quieter target acoustic signatures now
available.

Using these advanced algorithms, the
U.S. Navy submarine force has now
regained the tactical advantage, and an
ongoing technology insertion program
means that improvements will continue to

be made. In addition, using COTS com-
ponents instead of MIL-SPEC hardware
brought the development cost down to
about $100 million and the shipset cost
down to $10 million. Since the A-RCI sys-
tem was designed to replace the different
sonar systems on the various submarine
classes with a common system, it also
reduced the support infrastructure and
made it possible for all submarines to have
the most modern and capable sonar sys-
tem available. Commonality also makes it
easier to improve the maintenance and
operational skill level, and increase the
operational experience of the sailors serv-
ing in the fleet. The A-RCI program’s
experiences in using COTS for a critical
military system can be of great benefit for
other defense programs making the same
leap into the COTS world.

Initial Implementation
The first A-RCI hardware suite consisted
of a combination of custom and COTS
Versa Module Europa (VME)1 cards to
provide the necessary processing power in
the limited space available on a submarine.
COTS operating systems and hardware
drivers were used to the maximum extent
practical to minimize the scope of the
required software development effort.
However, several limitations with this
architecture were soon discovered.

The custom cards were prone to fail-
ure and were difficult to program.
Although technically a COTS product, the
signal processing cards were very special-
ized, leading to high procurement costs
and the use of an operating system with
limited peripheral driver support. The
implementation of the sonar system also
used the COTS hardware and software in
non-standard ways (i.e., fibre channel stan-
dard networks for interprocessor commu-
nications vice disk access, Asynchronous
Transfer Mode local area networks) mak-
ing it more difficult to get vendor support
or leverage lessons learned from commer-

cial implementations.
Finally, since the A-RCI program was

only a small player in the COTS market,
receiving timely vendor support for prob-
lems found during integration and test was
a hit or miss affair. If the vendor felt we
were a valuable customer, we would get
good support for correcting noted prob-
lems; but more likely, the vendor focused
its efforts in fixing problems discovered
by its more mainstream customers.

The most important lesson learned
from this implementation was that as
more mainstream hardware and software
components were used, fewer problems
were discovered during testing, and the
vendor was more likely to fix the prob-
lems. This revelation became one of the
tenets for the technology insertion
process that would soon be implemented.

The Technology Insertion
Process
One of the key enablers for both the tech-
nology insertion process and using COTS
hardware in the A-RCI sonar system is
using Multipurpose Transportable Mid-
dleware (MTM) to isolate the application
code from the underlying hardware and its
associated drivers and operating systems.
MTM was developed and is still main-
tained by Digital Systems Resources, now
a part of General Dynamics Advanced
Information Systems.

MTM is a freely licensed set of soft-
ware utilities that allows for high-speed
data passing between the various applica-
tion software modules running in the A-
RCI sonar system, while isolating the
modules from the hardware and network
protocols. This isolation allows the hard-
ware and associated drivers to be updated
without impacting the large amounts of
complex application code. Instead, the
impact of the hardware change is limited
to the MTM that was designed to easily
handle change.

By isolating change from the applica-

A Revolutionary Use of COTS in a
Submarine Sonar System

The AN/BQQ-10(V) Acoustic Rapid Commercial off-the-shelf (COTS) Insertion (A-RCI) submarine sonar system has been
repeatedly cited as one of the Department of Defense’s premier examples of using COTS technology to provide significantly improved
system performance at far lower costs than previously possible. The ability to rapidly and inexpensively upgrade a ship’s sonar hard-
ware suite to provide continually increasing sonar performance has helped to restore United States submarine superiority over all
potential adversaries. As part of this revolution in RCI, the program has identified several lessons on using COTS hardware and
software that can help other programs making the same leap into the COTS world.

Robert W. Miller
Anteon Corporation

Capt. Gib Kerr
Program Executive Office Submarines

tion code, many hours (and dollars) are
saved with each hardware technology
insertion. Because of MTM’s benefits, the
A-RCI sonar system’s hardware has been
successfully upgraded five times in the last
seven years to reduce system cost and
complexity and improve system-process-
ing performance.

The first two technology insertions to
the A-RCI hardware baseline were done to
eliminate most of the custom VME cards
in the system and to provide improved
display performance. Elimination of the
custom VME cards reduced system cost,
improved system reliability, and made
software programming easier and faster.
Instead of having to code at an assembly
level to discrete hardware components,
the code could be written in a high-level
language (typically C), and features of the
COTS operating system could be used to
the maximum extent. Simplifying the cod-
ing allowed the programmers to spend
more time writing better code and debug-
ging problems instead of dealing with the
details of the hardware interface.

The VME signal processors with its
associated proprietary operating systems
and interfaces continued to be used to
meet the processing density requirements.
However, the decision was made to
migrate the display system from VME to a
commercial workstation technology when
it became apparent that there would be lit-
tle vendor support for high performance
graphics on VME processor boards.

After a survey of available high-end
computer workstations, the decision was
made to use the HP J5000 workstation
and the HP-UX operating system. The
choice of this widely used COTS operat-
ing system opened the door for display
development using standard Motif and
Open Graphics Library software libraries.
Using standard libraries and their applica-
tion programming interfaces have made
possible rapid updates to the displays to
fix problems and implement fleet-user
recommendations. This rapid response to
user need has become a hallmark of the
A-RCI program.

Starting in 2000, the performance lev-
els of mainstream COTS processors
became high enough to consider using
them for complex signal processing appli-
cations. Since then, the technology inser-
tion process has focused on migrating the
remainder of the sonar system to main-
stream COTS processors with a main-
stream operating system.

Market surveys in 2000 indicated that
Intel x86 family processors would increase
its domination of the server market and
that the Linux operating system would

become widely supported by device devel-
opers. Based on this research, the signal
processing applications were shifted from
VME cards to Compaq eight-way Pentium
III servers running the Linux operating
system. An immediate impact of this deci-
sion was a large decrease in system acqui-
sition cost. In addition, shifting to a sym-
metric multiprocessor (SMP) architecture
freed the programmer from having to dis-
cretely control each individual processor
and allowed focusing on making the appli-
cation code as robust and reliable as pos-
sible. Another benefit of using the open-
source Linux operating system was its
broad user/developer base to help trou-
bleshoot problems. Linux and the soft-
ware written to use it are also more famil-
iar to most software programmers, leading
to higher productivity.

The 2002 and 2004 technology inser-
tions continued the migration to main-
stream COTS hardware and software. The

signal processing servers were changed
from the eight-way SMP servers to less
expensive dual processor Intel XEON-
based servers running at higher clock
speeds. In addition, the display servers
were changed to dual processor Intel
XEON-based servers to reduce the num-
ber of different hardware types/operating
systems present in the sonar system. Since
both the display and signal processing
servers now used a common hardware
baseline, software development was easier
because data transfer was now simpler (no
more byte swapping), and a common set
of device drivers could be used for both
server types. Just as important, the dual
processor architecture maintained the pre-

vious generation’s flexibility of not having
to individually program each processor.

To the maximum extent possible, the
system networks were also migrated to
Gigabit Ethernet to stay within best com-
mercial practices and provide the most
robust set of hardware and device drivers.
However, the scope of change in the 2000
and 2002 technology insertions resulted in
significant changes to the system network
and cabinet enclosures from the previous
generation. Therefore, as part of the tech-
nology insertions in 2002 and 2004, a con-
certed effort was made to make the system
network architecture more flexible and to
make the cabinet enclosures easier to
upgrade during future technology inser-
tions. This effort is succeeding as the cab-
inet enclosure and cabling system differ-
ences between the 2002 and 2004 technol-
ogy insertions are minimal. Now, when a
new processor design is chosen in a future
technology insertion, no multi-million
dollar cabinet redesign will be required.

Eliminating the need to redo a large
portion of the shipboard cabling and
change-out cabinets will also ensure that
future technology insertions can be done
in a standard length port maintenance
period of about 35 days for about 20 per-
cent of the cost it had previously taken.
Reducing change external to the cabinets
is imperative to minimizing the shipboard
impact of technology insertion.

The Benefits of COTS
The A-RCI sonar program takes advan-
tage of the many benefits of using COTS
hardware and software for military appli-
cations. A significant benefit is the ability
to use computer systems much closer to
commercial state-of-the-art systems than
was ever possible with MIL-SPEC sys-
tems. This has allowed the use of
advanced computation-intensive signal
processing algorithms and easy-to-use dis-
plays to improve the operator’s ability to
detect signals of interest. Using COTS
processors also makes it much easier to
develop, purchase, and install upgrades to
the sonar system to keep its performance
at the highest possible level.

In addition, using standard rack-
mounted server boxes means that ongoing
improvements in commercial computers
can now be rapidly inserted into the sys-
tem with minimal changes required. This
is similar to the way a business using
Hewlett Packard and Dell computers
would upgrade its server farm.
Importantly, the ongoing technology
insertion process eliminates the need to
maintain obsolete COTS hardware;
instead, when a ship’s computer hardware

A Revolutionary Use of COTS in a Submarine Sonar System

November 2004 www.stsc.hill.af.mil 9

“The most important
lesson learned from this
implementation was that

as more mainstream
hardware and software
components were used,
fewer problems were

discovered during
testing, and the vendor
was more likely to fix

the problems.”

becomes obsolete and unsupportable, it
is replaced with an up-to-date system.

Using COTS hardware components
brings the benefit of using COTS oper-
ating systems, device drivers, and
libraries. This has enabled the system
software developers to focus on the
applications versus the support software.
In addition, mainstream software is bet-
ter tested and more robust than custom
software. Using open-source software
such as Linux brings the advantage of a
large developer base so that software
problems will be resolved in a very time-
ly manner. The large developer base also
ensures that any security holes are quick-
ly discovered and corrected and that no
malicious code is inserted into the oper-
ating system. This is one reason why
Linux has a much lower incidence of
security breaches than the proprietary
Microsoft Windows operating systems.
Although COTS operating systems,
device drivers, and libraries are used, the
critical application software is still writ-
ten and maintained by the system devel-
opers using secure facilities.

The lower hardware cost and the
continuous improvement cycle associat-
ed with commercial computer hardware
is what allows the A-RCI technology
insertion process to succeed. If the cost
of hardware components were equiva-
lent to the MIL-SPEC hardware used in
the past, the pace of system upgrades
would be unaffordable and the Navy
would soon be behind the technology
curve like it was in the mid-90s. Using a
COTS technology insertion process has
enabled a 10x increase in system
throughput and an 86 percent reduction
in hardware cost per billion floating
point operations per second in a six-year
period. Low hardware cost has also
allowed the A-RCI sonar program to
purchase system equipment from several
vendors, ensuring that a continuous price
competition exists.

Because integrating COTS compo-
nents is within the capability of firms
much smaller than the traditional major
Department of Defense (DoD) contrac-
tors, a much broader business base is also
available. Configuration control of the
system is maintained by requiring all sys-
tem equipment vendors to work together
in specifying the COTS components.

The Downside of COTS
The downside to using COTS software is
the lack of insight into the code details.
Since the system contractor does not
write the software, the programmers have
a much-reduced understanding of the

code than they would have with internally
developed software. This could make the
development team dependent on the
skills of the open-source community to
fix any problems noted during integration
and testing – an unacceptable situation.
This situation is prevented by researching
the COTS products selected to verify they
are in use by many other developers with
similar applications and requirements.
This broad user base helps ensure the
software is well tested and robust before
it is used by the A-RCI system.

A more significant downside is a
result of using COTS hardware in a non-
office environment. COTS servers are
designed for use in well air-conditioned
spaces and not the sealed, water-cooled
cabinets used on submarines. Cooling
the processors has become a significant
issue, currently limiting the team’s ability
to use the full capability of today’s
processors. In the future, it may not be
possible to continue providing increased
processing power with each technology
insertion unless improved cabinet cool-
ing methods can be implemented.

Process Migration
The benefits of this new COTS business
model have so significantly outweighed
the disadvantages (primarily with respect
to cost and rate at which capability can
be added) that the model has been
expanded to include the entire non-
propulsion electronics suite on the
newest class of submarine: the USS
Virginia attack submarine. The process
has expanded from what was simply a
single sonar sensor and processor to a
20-million source lines of code system of
systems that includes all sensors, ship’s
navigation, combat/fire control, and
ship monitoring functions.

Rapid COTS insertion is also being
used to upgrade older submarine classes’
combat control systems and is planned
for use on undersea weapons. This abili-
ty to rapidly insert improved capability in
the form of software and hardware has
become a hallmark of acquisition
reform. Software and hardware solutions
that are one-time developments are now
implemented in many systems, including
those in use on submarines, surface
ships, undersea surveillance systems, and
aircraft.

Conclusion
The AN/BQQ-10(V) A-RCI sonar sys-
tem would not be the success it is today
without its embrace of COTS hardware
and software. The only way to economi-
cally take advantage of the advances in

computer processing is to buy from the
mainstream market. The less the hard-
ware has to be modified to work in the
system, the more rapidly and inexpen-
sively it can be implemented. Moreover,
COTS hardware brings with it COTS
software. The contractor must learn to
live within the limitations of the soft-
ware and not try to make it incremental-
ly better. Time spent in this manner is
time not spent improving the more criti-
cal system application software. By pick-
ing COTS software that is well used and
tested, the contractor can reduce prob-
lems observed, but also must accept the
loss of total control over the code.

If COTS hardware is used, an ongo-
ing technology insertion program is
required to reduce obsolescence issues
and maintain the system at its highest
capability. A-RCI has successfully imple-
mented five technology insertions and
has an ongoing plan to continue with the
process. Making the technology insertion
process affordable is the MTM, which
helps to isolate the complex application
code from the underlying hardware and
device drivers. A-RCI has shown that it is
possible to reap the benefits of COTS
computer hardware and software while
still meeting all military requirements. It
is now up to other DoD programs to
make the same leap.

Final Points
Adopting a RCI process is not painless.
Overcoming organizational bias, MIL-
SPEC thinking, severe skepticism, and the
not-invented-here syndromes were tre-
mendous challenges for the A-RCI pro-
gram to overcome in its early stages. It
required an extraordinary culture shift for
all stakeholders to achieve what today is
almost taken for granted. The combined
sense of urgency due to 1) the need to
regain technological superiority, and 2)
severe budget cuts drove the U.S. Navy’s
submarine force to the RCI solution.
Without those kinds of drivers, no
amount of hearing this is a good idea will
result in other DoD programs adopting
RCI processes. RCI is a business decision
that requires dedicated believers to suc-
ceed and change the status quo of systems
acquisition, and properly leverage the
power and agility of the commercial, non-
government business world.

Knowing that RCI may be the only
efficient way to quickly regain technolog-
ical superiority at a reduced cost does not
mean that those who manage such pro-
grams should always sleep well at night.
What have been discussed here are
implementations in modern sensor and

10 CROSSTALK The Journal of Defense Software Engineering November 2004

Software Toolbox

combat systems. These are systems that
warfighters depend on when they are in
harm’s way to be 100 percent effective. It
is this balance between efficiency in cost
and effectiveness in war that should keep
program managers awake at night with
these questions:
• How can we be 100 percent assured

that COTS products contain no
latent defects that may have deadly
consequences when they manifest
themselves?

• What represents the necessary and
sufficient testing and verification to
preclude unacceptable consequences?

• How much do we really want to be
dependent on a potentially fickle
commercial market for critical sys-
tems in our military machines?

• What is the minimum acceptable

cost/risk ratio for a critical technolo-
gy?

• What is the necessary and sufficient
amount of discipline required in the
process so that capability is rapidly
inserted, without undo risk, and with-
out unduly constraining the process?
It is the description, quantification,

understanding, and reconciliation of
these issues and their risks that must
become the main focus and challenge of
the program manager’s efforts in an RCI
program. They certainly have become
the focus for the submarine force’s A-
RCI program.u

Note
1. VME is a standard developed in 1981

for embedded computer hardware
form factor and data transfer protocol.

About the Authors

November 2004 www.stsc.hill.af.mil 11

A Revolutionary Use of COTS in a Submarine Sonar System

December 2-3
6th IEEE Workshop on Mobile

Computing Systems and Applications
Lake Windermere, United Kingdom

http://wmcsa2004.lancs.ac.uk

December 2-4
InTech ‘04

International Conference on
Intelligence Technologies

Houston, TX
http://csc.csudh.edu/
intech04/index.htm

December 4-8
IEEE/ACM International

Symposium on Microarchitecture
Portland, OR

www.microarch.org/micro37

December 6-9
Inerservice/Indusry Training,

Simulation, and Education Conference
Orlando, FL

www.iitsec.org

January 6-9, 2005
Internet, Processing, Systems, and

Interdisciplinary Research (IPSI) 2005
Oahu, HI

www.internetconferences.net/
industrie/hawaii2005.html

January 9-12, 2005
International Conference on
Intelligent User Interfaces

San Diego, CA
www.iuiconf.org

January 31-February 3, 2005
16th Annual Government
Technology Conference

Austin, TX
www.govtech.net/gtc/?pg=
conference&confid=182

April 18-21, 2005
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

Capt. Gib Kerr is a
mechanica l/nuclear/
acoustic engineer by
training, a nuclear sub-
mariner by qualification,
a combat systems pro-

gram manager by assignment, and a sys-
tems acquisition professional by choice.
He has done a little of everything,
including traditional jobs onboard sub-
marines, flag officer’s staff, repaired and
built submarines, and has been a fleet
repair officer (repairing surface ships,
submarines, and one helicopter). A con-
summate team player and trained facili-
tator, he has led, been a member of, and
facilitated numerous Integrated Product
Teams and Process Action Teams and
facilitated several organizational reengi-
neering and restructuring projects.
Kerr’s strength is in getting disparate
organizations working together, assess-
ing performance and value management
to develop and implement sound techni-
cal and business solutions. He has been
working Navy submarine acquisition
programs for the past seven years.

Program Executive
Office Submarines
Attn: PMS 401
614 Sicard ST SE STOP 7013
Washington Navy Yard, D.C.
20376-7013
Phone: (202) 781-1556
Fax: (202) 781-4688
E-mail: kerrgb@navsea.navy.mil

Robert W. Miller is a
senior program manager
with Anteon Corpora-
tion. For the past eight
years, he has been pro-
viding technical support

for the Acoustic Rapid Commercial off-
the-shelf Insertion sonar program to the
Submarine Acoustic Systems Program
Office. Prior to joining Anteon, he
served in the United States Navy for 16
years as a submarine line officer and
engineering duty officer. He has a
Bachelor of Science in electrical engi-
neering from the United States Naval
Academy and a Master of Science in
electrical engineering from the Naval
Postgraduate School.

Anteon Corporation
1100 New Jersey AVE SE STE 200
Washington, D.C. 20003
Phone: (202) 756-7629
Fax: (202) 646-0122
E-mail: rwmiller@anteon.com

The unauthorized modification and
subsequent misuse of software is

often referred to as software cracking.
Usually, cracking requires disabling one or
more software features that enforce poli-
cies (of access, usage, dissemination, etc.)
related to the software. Because there is
value and/or notoriety to be gained by
accessing valuable software capabilities,
cracking continues to be common and is a
growing problem.

To combat cracking, anti-tamper (AT)
technologies have been developed to pro-
tect valuable software. Both hardware and
software AT technologies aim to make
software more resistant against attack and
protect critical program elements.
However, before discussing the various
AT technologies, we need to know the
adversary’s goals. What do software crack-
ers hope to achieve? Their purposes vary,
and typically include one or more of the
following:
• Gaining unauthorized access. The

attacker’s goal is to disable the soft-
ware access control mechanisms built
into the software. After doing so, the
attacker can make and distribute illegal
copies whose copy protection or
usage control mechanisms have been
disabled – this is the familiar software
piracy problem. If the cracked soft-
ware provides access to classified data,
then the attacker’s real goal is not the
software itself, but the data that is
accessible through the software. The
attacker sometimes aims at modifying
or unlocking specific functionality in
the program, e.g., a demo or export ver-
sion of software is often a deliberate-
ly degraded version of what is other-
wise fully functional software. The
attacker then seeks to make it fully
functional by re-enabling the missing
features.

• Reverse engineering. The attacker
aims to understand enough about the

software to steal key routines, to gain
access to proprietary intellectual prop-
erty, or to carry out code-lifting, which
consists of reusing a crucial part of
the code (without necessarily under-
standing the internals of how it
works) in some other software. Good
programming practices, while they
facilitate software engineering, also
tend to simultaneously make it easier
to carry out reverse engineering
attacks. These attacks are potentially
very costly to the original software
developer as they allow a competitor
(or an enemy) to nullify the develop-
er’s competitive advantage by rapidly
closing a technology gap through
insights gleaned from examining the
software.

• Violating code integrity. This famil-
iar attack consists of either injecting
malicious code (malware) into a pro-
gram, injecting code that is not malev-
olent but illegally enhances a pro-
gram’s functionality, or otherwise sub-
verting a program so it performs new
and unadvertised functions (functions
that the owner or user would not
approve of). While AT technology is
related to anti-virus protection, it has
some crucial differences. AT technol-
ogy is similar to virus protection in
that it impedes malware infection of
an AT-protected executable. However,
AT technology differs from virus pro-
tection in that the AT technology’s
goal is not only to protect the client’s
software from unauthorized modifica-
tion by malevolent outsiders (infection
by malware written by others), but also
to protect the software from modifica-
tion by an authorized client. In many
situations, it is important that only
authorized applications execute (e.g.,
in a taximeter, odometer, or any situa-
tion where tampering is feared), using
only authorized functionality, and that

only valid data is used.
It should be clear by now that AT

technology is not only about anti-piracy, it
has an equal and broader aim of policy
enforcement. That aim is to enforce the
policies of the software publisher about
the proper use of the software, even as
the software is running in a potentially
hostile environment where the user owns
the processor and is intent on violating those
policies.

There is a plethora of AT protection
mechanisms. These include encryption
wrappers, code obfuscation, guarding,
and watermarking/fingerprinting in addi-
tion to various hardware techniques.
While these techniques are discussed sep-
arately for pedagogical purposes, the
reader should bear in mind that software
is best protected when several protection
techniques are used together in a mutual-
ly supportive manner. No technique is
invulnerable or even clearly superior to
the others in all circumstances; therefore,
a mix of protection techniques allows the
defense to capitalize on the strengths of
each technique while also masking the
shortfalls of other techniques. In the fol-
lowing paragraphs we present a brief
overview of these techniques.

Hardware-Based Protections
The most common hardware approach
uses a trusted processor. The trusted,
tamper-resistant hardware checks and ver-
ifies every piece of hardware and software
that exists – or that requests to be run on
a computer – starting at the boot-up
process [1]. This hardware could guaran-
tee integrity by checking every entity
when the machine boots up, and every
entity that will be run or used on that
machine after it boots up. The hardware
could, for example, store all of the keys
necessary to verify digital signatures,
decrypt licenses, decrypt software before
running it, and encrypt messages during

A Survey of Anti-Tamper Technologies

This article surveys the various anti-tamper (AT) technologies used to protect software. The primary objective of AT tech-
niques is to protect critical program information by preventing unauthorized modification and use of software. This protec-
tion goal applies to any program that requires protection from unauthorized disclosure or inadvertent transfer of leading-
edge technologies and sensitive data or systems. In this article, we review the various approaches to AT techniques, their
strengths and weaknesses, their advantages and disadvantages, and briefly discuss a process for developing program protec-
tion plans. We also survey the tools that are typically used to circumvent AT protections, and techniques that are commonly
used to make these protections more resilient against such attack.

Dr. Mikhail J. Atallah, Eric D. Bryant, and Dr. Martin R. Stytz
Arxan Technologies, Inc.

12 CROSSTALK The Journal of Defense Software Engineering November 2004

any online protocols it may need to run
(e.g., for updates) with another trusted
remote entity (such as the software pub-
lisher).

Software downloaded onto a machine
would be stored in encrypted form on the
hard drive and would be decrypted and
executed by the hardware, which would
also encrypt and decrypt information it
sends and receives from its random access
memory. The same software or media
could be encrypted in a different way for
each trusted processor that would execute
it because each processor would have a
distinctive decryption key. This would put
quite a dent in the piracy problem, as dis-
seminating your software or media files to
others would not do them much good
(because their own hardware would have
different keys).

A less drastic protection than using a
separate, trusted, hardware computational
device also involves hardware, but is more
lightweight such as a smart card or physi-
cally secure token. These lightweight hard-
ware protection techniques usually require
that the hardware be present for the soft-
ware to run, to have certain functionality,
to access a media file, etc. Defeating this
kind of protection usually requires working
around the need for the hardware rather
than duplicating the hardware. The diffi-
culty of this work-around depends on the
role that the tamper-resistant hardware
plays in the protection. A device that just
outputs a serial number is trivially vulner-
able to a replay attack (e.g., an attacker
replays a valid serial number to the soft-
ware, without the presence of the hard-
ware device), whereas a smart card that
engages in a challenge-response protocol
(different data each time) prevents the
simple replay attack but is still vulnerable
(e.g., to modification of the software
interacting with the smart card). A device
that decrypts content or that provides
some essential feature of a program or
media file is even harder to defeat.

Advantages and Drawbacks
The chief advantage of hardware-based
protection techniques is that they run on
a trusted CPU and can be made arbitrari-
ly complex – hence, difficult to defeat
while inflicting minimal computational
cost on the protected software once it has
been decrypted within the hardware and
is running. However, there is a cost to
decrypt it in the first place, and also to
encrypt everything that goes out to the
non-protected part of the system, and
then decrypt it when it comes back into
the trusted hardware.

In addition, it is generally more diffi-

cult to successfully attack tamper-resistant
hardware and make the exploit directly
available to others than a software-only
protection scheme. This point holds only
for a properly designed system. A com-
promise of hardware that imprudently
contains the same secret keys as all other
hardware of the same type would lead to
widely reproducible exploits.

The advantages of hardware protec-
tion also include its capability to enforce
such rules as “only approved peripherals
can be a part of this computer system,” or
“only approved (through digital signa-
tures) software and contents are allowed,”
etc.

Nevertheless, hardware-based protec-
tion also has its drawbacks. There is the
usual problem of inflexibility: hardware-
based protections are more awkward to
modify, port, and update than software-

based ones. They are also less secure than
commonly assumed and can be broken;
see, e.g., [2]. To date, it has not been
demonstrated that hardware protections
can scale to grid computing or to small-
scale computing. In addition, there is no
guarantee that all avenues of attack are
closed by hardware protection, and there
is a significant cost attached to using
hardware protection; the cost is driven
mainly by the time needed to assemble,
integrate, and test the hardware protec-
tion technique.

Additional drawbacks to the hardware
protection approach include its expense
and general fragility to accidents (an elec-
tric power surge that fries the processor

also renders the hard drive contents unus-
able because the key that decrypts them is
destroyed). The potential implications for
censorship are also chilling. Another dis-
advantage of hardware protection is the
boot-up time and the time spent encrypt-
ing and decrypting, which makes the
approach problematic for low-end
machines and embedded systems (unless
the whole system lies within tamper-resis-
tant hardware).

Using trusted hardware also incurs
many indirect costs as a result of the ear-
lier-mentioned limitations it imposes (e.g.,
the restriction to only certain approved
hardware, software, and media creates a
barrier to competition that leads to high-
er prices). Due to the imperfect protec-
tion offered by hardware protection, a
more robust approach to software securi-
ty interweaves hardware protection with
other protection techniques such as those
discussed in the following sections.

The rest of this article discusses the
various software-based protection mecha-
nisms. The reader should keep in mind
that hardware and software protection
techniques are not mutually exclusive. A
judicious combination can serve to
increase the security of the system more
than any of its individual component
techniques.

Encryption Wrappers
With encryption wrapper software securi-
ty, critical portions of the software (or
possibly all of it) are encrypted and
decrypted dynamically at run-time. The
encryption wrapper approach works well
against a static attack, and forces the
attacker to run the program in order to
get an unencrypted image of it. To make
the attacker’s task harder, at no time dur-
ing execution is the whole software in the
clear; code decrypts just before it executes,
leaving other parts of the program still
encrypted. Therefore, no single snapshot of
memory can expose the whole decrypted
program. Of course, the attacker can take
many such snapshots, compare them, and
piece together the unencrypted program.

Another avenue of attack is to figure
out the various decryption keys that are
present in the software. One defensive
technique that can be used to delay the
attacker is to include defensive mecha-
nisms in the program that deprive the
attacker of using run-time attack tools,
e.g., anti-debugger, anti-memory dump,
and other defensive mechanisms, which
make it more difficult for the attacker to
run and analyze the program in a synthet-
ic (virtual machine) environment. Yet, a
determined attacker can usually defeat

November 2004 www.stsc.hill.af.mil 13

A Survey of Anti-Tamper Technologies

“No technique is
invulnerable or even

clearly superior to the
others in all

circumstances; therefore,
a mix of protection

techniques allows the
defense to capitalize on
the strengths of each
technique while also

masking the shortfalls of
other techniques.”

these protections (e.g., through the use of
virtual machines that faithfully emulate a
PC, including the most rarely used
instructions, cache behavior, etc).

Encryption wrappers often use light-
weight encryption to minimize the compu-
tational cost of executing the protected
program. The encryption can be advanta-
geously combined with compression: Not
only does this result in a smaller amount
of storage usage, but it also makes the
encryption harder to defeat by cryptanaly-
sis (of course one compresses before
encryption, not the other way around).

An encryption wrapper’s chief advan-
tage is that it effectively hinders an attack-
er’s ability to statically analyze a program.
The attacker is then forced to perform
more sophisticated types of dynamic
attacks, which can significantly increase
the amount of time needed to defeat the
protection. The main disadvantage of
encryption wrappers is the performance
penalty caused by the decryption over-
head, and its weakness to memory dumps:
before it can run, encryption-protected
software must be decrypted, at which
point it becomes exposed.

Code Obfuscation
Code obfuscation consists of transform-
ing code so it becomes less intelligible to
a human, thus making it not only harder
to reverse engineer, but also harder to
tamper with. In software that has specific
areas where policy checks are made, these
areas will be harder to identify and disable
after the software has been obfuscated.
Obfuscation is usually carried out by
inserting or performing obfuscating
transformations. It is a requirement that
these transformations do not damage a
program’s functionality, and it must have
only a moderate impact on code perfor-
mance, and on the storage space used on
the disk and at run-time (of the two,
speed is more important).

The obfuscation must also be resilient
to attack, and for this reason it is desirable
to maximize the obscurity of the obfuscat-
ed software. The obfuscating transforma-
tions need to be resilient against tools
designed to automatically undo them, and
to not be easily detectable by statistical
analysis of the resulting code (resilience
to statistical analysis makes it harder for
automatic tools to find the locations
where these transformations were
applied).

The different types of obfuscation
transformations that have been proposed
[3] include the following:
• Layout obfuscation. This modifies

the physical appearance of the code, e.g.,

replacing important variables with
random strings, removing all format-
ting (making nested conditional state-
ments harder to read), etc. Such trans-
formations are easy to make but are
effective only when combined with
other transformation techniques.

• Data obfuscation. This obscures the
data structures used within a program,
e.g., the representation and the meth-
ods of using that data, independent
data merging (and vice-versa – split-
ting up data that is dependent), etc.
Data obfuscation serves to delay the
attacker because data structures con-
tain important information that any
attacker needs to comprehend before
launching an attack.

• Control obfuscation. This manipu-
lates the control flow of a program to
make it difficult to discern its original
structure, e.g., through merging (or
splitting) various fragments of code,
reordering expressions, loops, or
blocks, etc. It is similar to creating a
spurious program that is entangled with
the original program so as to obscure
the important control features of that
program.

• Preventive transformations. These
aim at making it difficult for a de-
obfuscation tool to extract the true
program from the obfuscated version
of it. Preventive transformations can
be implemented by using what
Collberg [4] calls opaque predicates,
an example of which is a conditional
statement that always evaluates as
true, but in a manner that is hard to
recognize.
Obfuscation can be done at the

source-code level (source-to-source
translation) or at the assembly level.
Although most obfuscators are of the
former kind (source-to-source), assembly
level obfuscation is better because it
effectively hides the operation of the
binary. If the source-code level transfor-
mations hide information by adding
crude and inefficient ways of doing sim-
ple tasks, then the code optimizer in the
compiler may undo them. If, on the other
hand, the transformations are clever
enough to fool the optimizer, then it can
fail to properly do its job, and the perfor-
mance of the resulting code suffers. Low-
level obfuscation does not prevent the
code optimizer from doing its job, but if
done carelessly it runs the risk of produc-
ing code that looks so different from the
kind produced by the compiler that it
inadvertently flags the areas where the
transformations were applied.

Obfuscation transformations are clas-

sified according to several criteria: how
much obscurity they add to the program
(potency), how difficult they are to break
for a de-obfuscator (resilience), and how
much computational overhead they add
to the obfuscated application (cost). In
[4], software complexity metrics are used
to formalize the notion of transforma-
tion potency and resilience.

The potency of a transformation
measures how much more difficult the
obfuscated code is to understand for a
human than the original code. On the
other hand, the resilience of a transfor-
mation measures how well it stands up to
attack by an automatic de-obfuscator.
The resilience measurement takes two
factors into account: the programmer
effort required to construct the de-obfus-
cator and the execution time and space
required by the de-obfuscator to reduce
the potency of the transformation. The
best obfuscation is usually achieved by a
combination of the above three men-
tioned transformations. The combination
of the three approaches provides a well-
balanced mix of highly potent and
resilient transformations.

Like all software-only protections,
obfuscation can delay – but not prevent –
a determined attacker intent on reverse
engineering the software. Barak [5] pre-
sents a family of functions that are prov-
ably impossible to completely and suc-
cessfully obfuscate. For more informa-
tion and a discussion of code obfusca-
tion, refer to [3, 4, 6, 7].

Software Watermarking and
Fingerprinting
The goal of watermarking is to embed
information into software in a manner
that makes it hard to remove by an adver-
sary without damaging the software’s
functionality. The information inserted
could be purchaser information, or it
could be an integrity check to detect
modification, the placing of caption-type
information, etc. A watermark need not
be stealthy; visible watermarks act as a
deterrent (against piracy, for example),
but most of the literature has focused on
stealthy watermarks. In steganography
(the art of concealing the existence of
information within seemingly innocuous
carriers), the mark is required to be
stealthy: its very existence must not be
detectable [8].

A specific type of watermarking is
fingerprinting, which embeds a unique
message in each instance of the software
for traitor tracing. This has consequences
for the adversary’s ability to attack the

Software Toolbox

14 CROSSTALK The Journal of Defense Software Engineering November 2004

watermark: two differently marked copies
often make possible a diff attack that
compares the two differently marked
copies and can enable the adversary to
create a usable copy that has neither one
of the two marks. Thus, in any finger-
printing scheme, it is critical to use tech-
niques that are resilient against such com-
parison attacks.

A watermark is generally required to
be robust (hard to remove). In some situ-
ations, however, a fragile watermark is
desirable; it is destroyed if even a small
alteration is made to the software (e.g.,
this is useful for making the software
tamper-evident).

Software watermarks can be static,
i.e., readable without running the soft-
ware, or could appear only at run-time
(preferably in an evanescent form). In
either case, reading the watermark usual-
ly requires knowing a secret key, without
which the watermark remains invisible.

Watermarks may be used for proof of
software authorship or ownership, finger-
printing for identifying the source of ille-
gal information/software dissemination,
proof of authenticity, tamper-resistant
copyright protection, and captioning to
provide information about the software.
When software watermarks are used for
proof of authorship or ownership (cul-
prit-tracing), it is important to use a very
resilient scheme. Recall that this is when
the watermark contains information
about the copyright owner as well as the
entity that is licensed to use the software,
thus allowing trace-back to the culprit if
the item were to be illegally disseminated
to others. Breaking the security of such a
scheme can enable the attacker to frame
an innocent victim.

As you can see, while watermarks can
demonstrate authorized possession and
the fact that software has been pirated,
they do not address the reverse engineer-
ing or authorized execution issues of the
other schemes discussed; therefore, we
advocate the development and use of a
spectrum of software protection tech-
niques.

Guarding
A guard is code that is injected into the
software for the sake of AT protection. A
guard must not interfere with the pro-
gram’s basic functionality unless that pro-
gram is tampered with – it is the tamper-
ing that triggers a guard to take action
that deviates from normal program
behavior. Examples of guard functionali-
ty range from tasks as simple as compar-
ing a checksum of a code fragment to its
expected value, to repairing code (in case

it was maliciously damaged), to complex
and indirect forms of protection through
subtle side effects.

The preferred use of the guarding
approach consists of injecting into the
code to be protected a large number of
guards that mutually protect each other as
well as the software program in which
they now reside. Guards can also be used
to good effect in conjunction with hard-
ware-based protection techniques to fur-
ther ensure that the protected software is
only executed in an authorized environ-
ment.

The number, types, and stealthiness of
guards; the protection topology (who pro-
tects who); and where the guards are inject-
ed in the original code and how they are
entangled with it are some of the para-
meters in the strength of the resulting
protection: They are all tunable in a man-
ner that depends on the type of code
being protected, the desired level of pro-
tection, etc.

Manually installing such a tangled web
of protection is impractical (as it must be
done every time the software is updated),
so it is important that this protection be
done in a highly automated fashion using
high-level scripts that specify the protec-
tion guidelines and parameters. It should
be thought of as a part of the compila-
tion process where an anti-tamper option
results in code that is guarded and tam-
per-resistant.

The rationale for this approach is that
a single (even if elaborate) AT protection
scheme for a software application is
insufficient because a single defense
results in a single point of attack that can
be located and compromised. To make
self-protection robust, the defense must
not rely on a single complex protection
technique no matter how effective it
might be. Instead, there needs to be a
multitude of (possibly simple) protection
techniques installed in the program that
cooperatively enforce the code’s integrity
as well as protect the other against tam-
pering.

The guard’s response when it detects
tampering is flexible and can range from a
mild response to the disruption of nor-
mal program execution through injection
of run-time errors (crashes or even subtle
errors in the answers computed); the reac-
tion chosen depends on the software pub-
lisher’s business model and the expected
adversary. Generally, it is better for a
guard’s reaction to be delayed rather than
to occur immediately upon detection so
that tracing the reaction back to its true
cause is as difficult as possible and con-
sumes a great deal of the attacker’s time.

More on guarding can be found in [9].

AT Process
This section explores the various AT
guidelines expressed in the “Defense
Acquisition Guidebook” [10], and the
recommended process for developing a
program protection plan. The “Defense
Acquisition Guidebook” specifies the AT
measures that should be considered for
use on any system with critical program
information (CPI), developed with allied
partners, likely to be sold or provided to
United States allies and friendly foreign
governments, or likely to fall into enemy
hands. The first step in the recommended
AT methodology is to develop a program
protection plan. The process of develop-
ing this plan includes the following:
• Develop a list of critical technologies.
• Develop a threat analysis.
• Develop a list of identified vulnerabil-

ities.
• Develop a preliminary AT require-

ment.
• Perform an analysis of AT methods

that applies to the system, including
cost/benefit assessments.

• Provide an explanation of which AT
method(s) will be implemented; devel-
op a plan for validating the AT imple-
mentation.
The standard approach of validating

AT protections is done via red-teaming. A
red team consists of individuals who are
well versed in security methods and their
corresponding weaknesses. Their primary
objectives are to attempt to defeat the
protection, to assess the protection’s
strengths and weaknesses, and to make
recommendations for improvement.
While this is an effective method of eval-
uation, a major problem with red teams is
that the validation is done by humans,
and may not be totally reliable or repeat-
able. Furthermore, as the need for AT
technologies grows, red teams are becom-
ing increasingly called upon to perform
evaluations. The teams are overwhelmed
with assignments, significant delays in
product evaluations, and release results.
To improve this process, there is a clear
and present need for automated testing
and validation tools. Such tools could be
used to define a standard set of metrics
and guidelines to evaluate software pro-
tections.

Conclusion
This article has surveyed the motivation
for using AT technology, the hardware
and software AT techniques in use today,
and the strengths and weaknesses of AT
technologies. We also briefly introduced

November 2004 www.stsc.hill.af.mil 15

A Survey of Anti-Tamper Technologies

16 CROSSTALK The Journal of Defense Software Engineering November 2004

Software Toolbox

the process and documentation used to
develop a program protection plan. The
motivation for and primary objective of
AT technology is to protect CPI by pre-
venting unauthorized modification and
use of software. The main software AT
techniques include encryption wrappers,
code obfuscation, watermarking/finger-
printing, and guarding.

A fundamental challenge faced by
software AT technology is that the pro-
tected application is running on a host
that is not trusted, and thus cannot be
assured to be secure. Guards address this
shortfall to a degree and in a flexible and
extensible manner. However, in light of
the need for robust, seamless, compre-
hensive software defense, using both
software and hardware AT solutions in
combination often offers an appealing
alternative to using them individually
(especially if economic considerations
are factored in).

At this time, indications are that if
strong software AT technology (e.g., in
the form of judiciously constructed
guards) is added to an application so that
it requires the presence of a lightweight
tamper-resistant hardware device in order
to execute properly, the result is a strong
yet economical software protection capa-
bility.u

References
1. Arbaugh, W., D. Farber, and J. Smith. A

Secure and Reliable Bootstrap
Architecture. Proc. of the IEEE
Symposium on Security and Privacy,
Oakland, CA, 1997.

2. Anderson, R., and M. Kuhn. Tamper
Resistance – A Cautionary Note. Proc.
of Second Usenix Workshop on
Electronic Commerce, Oakland, CA,
Nov. 1996: 1-11.

3. Collberg C., and C. Thomborson.
“Watermarking, Tamper-Proofing, and
Obfuscation Tools for Software
Protection.” IEEE Transactions on
Software Engineering 28.8 (2002):
735-746, 2002.

4. Collberg, C., C. Thomborson, and D.
Low. “A Taxonomy of Obfuscating
Transformations.” Department of
Computer Science, University of
Auckland, New Zealand, 1997.

5. Barak, B., et al. “On the (Im)possibili-
ty of Obfuscating Programs.” Elec-
tronic Colloquium on Computational
Complexity. Report No. 57, 2001.

6. Wang, C., et al. “Software Tamper
Resistance: Obstructing Static Analysis
of Programs.” University of Virginia,
Computer Science Technical Report
CS-2000-12, Dec. 2000.

7. Wroblewski, G. “General Method of

Program Code Obfuscation.” Diss. Wro-
claw University of Technology, Institute
of Engineering Cybernetics, 2002.

8. Johnson, N. “Introduction to
Steganography and Steganalysis.”
Workshop on Statistical and Machine
Learning Techniques in Computer
Intrusion Detection, Johns Hopkins
University, 11-13 June 2002.

9. Chang, H., and M. Atallah. Protecting
Software Code By Guards. Proc. of
ACM Workshop on Security and
Privacy in Digital Rights Management,
Philadelphia, PA, Nov. 2001: 160-175.

10. Office of the Secretary of Defense.
Interim Defense Acquisition Guide-
book. Washington, D.C.: OSD, 30 Oct.
2002 <http://dod5000.dau.mil/DoD
5000Interactive/InterimGuidebook.
asp>.

Additional Reading
1. Lipton, R.J., S. Rajagopalan, and D.N.

Serpanos. “Spy: A Method to Secure
Clients for Network Services.” IEEE
Distributed Computing Systems
Workshops 2002: 23-28.

2. Anderson, R., and M. Kuhn. “Low
Cost Attacks on Tamper Resistant
Devices.” 5th International Workshop
on Security Protocols, Apr. 1997: 125-
136.

About the Authors

Mikhail “Mike” J.
Atallah, Ph.D., is a dis-
tinguished professor in
the Computer Science
Department at Purdue
University. His main re-

search interests are in information secu-
rity. A fellow of the Institute of Electri-
cal and Electronics Engineers, Atallah
has been both a keynote and invited
speaker at many national and interna-
tional meetings, and a speaker in the Dis-
tinguished Colloquium Series of many
top computer science departments. He is
a co-founder of Arxan Technologies
Inc. Atallah has a Master of Science and
a doctorate degree from Johns Hopkins.

Arxan Technologies, Inc.
3000 Kent AVE
STE D2-100
West Lafayette, IN 47906
Phone: (765) 494-6017 ext. 54
Fax: (765) 496-3181
E-mail: mja@cs.purdue.edu

Eric D. Bryant is a re-
search engineer for Arxan
Technologies, Inc., and is
pursuing his doctorate
degree at Purdue Univer-
sity. His primary research

interests are in information security,
reverse engineering, compiler and pro-
gramming language design, and artificial
intelligence. Bryant has a Bachelor of
Science in computer science from
Purdue University. Arxan’s EnforcIT™
product fortifies software applications
with complex software guards designed
to prevent unauthorized access, reverse
engineering, and code lifting. More
information can be found at <www.
arxan.com>.

Arxan Technologies, Inc.
3000 Kent AVE
STE D2-100
West Lafayette, IN 47906
Phone: (765) 775-1004 ext. 106
Fax: (765) 775-1004
E-mail: ebryant@arxan.com

Martin R. Stytz, Ph.D.,
is a senior research scien-
tist and engineer for
Calculated Insight and
formerly for the Air
Force Research Labora-

tory at Wright-Patterson Air Force Base,
Ohio. Stytz was a consultant at Arxan
Technologies, Inc. at the time this article
was written. He is a member of the
Institute of Electrical and Electronics
Engineers (IEEE) Task Force on
Security and Privacy, and is on the edito-
rial board for IEEE’s Security and
Privacy. Stytz has a Bachelor of Science
from the U.S. Air Force Academy, a
Master of Arts from Central Missouri
State University, and a Master of Science
and doctorate degree from the
University of Michigan.

Calculated Insight
Orlando, FL
Phone: (407) 497-4407
Fax: (703) 671-4697
E-mail: mstytz@att.net

November 2004 www.stsc.hill.af.mil 17

Performing an independent system and
software safety analysis on embedded

software saves overall life-cycle cost and
schedule resources, and provides a better
overall product. The primary objective of
safety analysis is to find and remove
embedded safety related hazards in the
hardware and software systems before a
mishap occurs.

Finding these embedded hazards early
in the development cycle reduces cost,
safeguards schedules, and improves prod-
uct quality [see Figure 1]. The reduction in
added costs and schedule slips due to
problems found late in the development
cycle and the improvement in product
quality justify the cost of performing an
independent software safety analysis.
Additionally, preventing a single cata-
strophic mishap by removing an embed-
ded hazard could more than pay for the
independent safety analysis effort many
times over, depending upon the system.

This article identifies key terms associ-
ated with system and software safety, pro-
vides a process for performing software
safety analysis, specifies the required envi-
ronment for efficiently and effectively per-
forming safety analysis, provides cost and
schedule savings rationale, and identifies
issues that delay or prevent effective safe-
ty analyses. Although this article empha-
sizes performing safety analysis on soft-
ware, a thorough software safety analysis
includes a system safety analysis as many
of the embedded hazards occur at inter-
faces between system components.

When developing software systems, a
tool enables a developer to build better sys-
tems quicker. The systems are more effec-
tive, more efficient, and safer. Involving an
independent software safety analysis con-
tributes to these attributes and becomes a
tool that should be used in today’s complex
system development efforts.

Software Safety Analysis
Process
An effective process for performing a
software safety analysis includes four pri-

mary steps (see Figure 2):
• Step 1. Identify safety-critical areas

and system safety hazards.
• Step 2. Trace implementation of safe-

ty-critical requirements to the design
and its corresponding code.

• Step 3. Verify correct system use and
implementation of safety-critical data
and processing.

• Step 4. Track identified hazards
throughout the system life cycle .

Each step is discussed in the following
paragraphs.

Step 1
The first step is to list all system require-
ments, the relative level of safety criticali-
ty for each system requirement with
respect to the other requirements, and the
applicable documented hazards for safety-
critical requirements. Each system/sub-
system requirement must be evaluated for
criticality with respect to potential haz-
ards. The safety criticality of a require-
ment depends upon the identified hazards
and other items such as remoteness, con-
tributory impact, redundancies, and
human intervention.

System hazards vary depending upon
the function and use of the system. These
hazards must be identified and document-
ed. Sub-hazards that contribute to higher-
level hazards need to be specified to a suf-
ficient detail. An example of a hazard
might be erroneous activation of release.
Examples of corresponding contributing
sub-hazards could be (1) erroneous release
signal, (2) erroneous status display, and (3)
malfunctioning safety lock. This list of
system requirements becomes the plan
that is used to perform software safety
analysis.

Step 2
Using the safety criticality priority estab-
lished by the list from Step 1, the second
step is to evaluate requirements. This step
correlates the functional requirements to
(1) the top level and detailed level design
descriptions and (2) the source code

implementation. The code is verified for
correct implementation of the require-
ments as well as for correct syntax and
safe coding practices. This analysis also
includes identifying specific safety-critical
data items and processing within the
reviewed code module for use in the next
step. An example of a safety-critical data
item could be a weapon release variable.
An example of safety-critical processing
could be the processing required to set or
reset the release signal.

Requirements of higher safety criti-
cality are evaluated before those of lesser
criticality. The intent of safety analysis is
to find the more critical hazards that
would cause mishaps of higher severity.
As there will always be some residual
mishap risk, particularly when software is
involved, the task of performing a com-
plete and thorough software safety analy-
sis would be both cost prohibitive as well
as impossible. Consequently, items of
lesser safety criticality may not be

Safety Analysis as a Software Tool
Blair T. Whatcott

Northrop Grumman Information Technology

As a software development tool, an independent software safety analysis by trained analysts reduces losses of develop-
ment resources and schedule, improves product quality, and prevents costly mishaps that occur during the operational
phase of the system life cycle. The key issues of an effective and efficient software safety analysis include (1) financial
and managerial independence from the software development activity, (2) trained and qualified personnel to perform
the analysis, and (3) a disciplined process that focuses the analysis effort, by priority, on the more safety critical areas.

Figure 1: Software Safety Analysis Benefits

Safety Analysis Process

Identify safety hazards and safety-critical requirements.

Trace requirements implementations

through design and code.

safety-critical data and processing.
Verifying correct system use and implementation of

Track identified hazards throughout the system life cycle.

Safety Analysis Environment for Success

T

Safety Analysis Process

Identify safety hazards and safety-critical requirements.

Trace requirements implementations

through design and code.

safety-critical data and processing.
Verifying correct system use and implementation of

Track identified hazards throughout the system life cycle.

Primary Objective
Prevention of Mishaps

Injury/Loss of Life

Loss of Equipment

Environment Damage

Added Value

Cost Savings

Schedule Safeguarding

Improved Product Quality

Safety Analysis Environment for Success

Trained and

qualified

personnel to

perform

analysis.

Financial and

managerial

independence

from software

development

activity.

Disciplined

process that

focuses

analysis in

priority on

more safety-

critical areas.

Actual NeedReason

Early identification of safety problems saves

resources by preventing redesign, recode,

retest, and prevents mishap.

Problems found in safety analysis cause

additional work impacts.

Evaluate potential safety analysis

organizations on track record, processes,

and staff.

Lack of software safety analysis expertise

and processes.

The objective of software safety is to remove

hazard before mishap; prevention of one

catastrophic mishap more than pays for safety

analysis effort.

Lack of mishap evidence if hazard found

and removed.

Software safety analysis needs to be budgeted

independently of development activity budgets.

Failure to budget in software safety

analysis activities.

Success orientation of development engineers

results in missed errors; development

environment pressures prevent thorough

system and interface analysis.

Misconception that good coding processes

preclude embedded safety hazards.

Most major defense contractors have General
Services Administration-type contracts that could

support safety efforts.

Difficulty establishing a contract with an

independent organization to do safety.

Early evaluation of requirements and design

precludes costly coding and testing errors.
Conserve funds because there is no code

to review.

Software Safety
Analysis Benefits

Mistaken Reasons Why Software Safety Is Not Included During

Early Phases of System Software Development Life Cycle

Figure 2: Software Safety Analysis Process

18 CROSSTALK The Journal of Defense Software Engineering November 2004

Software Toolbox

reviewed so that items that are more safe-
ty critical can be more deeply and com-
pletely reviewed.

Step 3
The third step is to evaluate the safety-
critical data and processing identified in
Step 2 in the context of the system.
Particular attention is given to the inter-
faces between subsystems, sequencing of
state changes, and timing windows of
vulnerability. This type of analysis is
oftentimes not given sufficient attention
during software development and testing
as well as peer reviews because of the
added complexity and time required to be
thorough.

Step 4
In the fourth step, identified hazards are
documented and communicated to the
development organization. The safety
analysis effort tracks the identified haz-
ard until it is removed from the software.
As software hazards tend to be repeated
in other areas and applications, the haz-
ard is added to the lessons learned software
safety analysis database. The hazards
from this database, as well as hazards
identified on industry generic safety lists,
are used for training of safety analysis
engineers and for performing evaluation
checklists when future modifications are
made to the software being analyzed or
other software in other systems.

An example of a generic safety list
can be found in Appendix E of the Joint
Software System Safety Committee’s
“Software System Safety Handbook” [1].
This combined list of software-specific
hazards is very large. It would be cost

prohibitive to analyze every line of code
against every item in the hazard list. The
implementation freedom that software
allows precludes an all-comprehensive
automated tool that checks every line of
code for every possible hazard. We have
found that a trained analyst who is cur-
rent with the list of software hazards is
more efficient and effective in perform-
ing the safety analysis. Software utilities
and tools can and are often used to help
the analyst more quickly locate similar
patterns, occurrences, and uses.

Software Safety Analysis
Environment
To perform effective and efficient soft-
ware safety analysis, an environment of
three components is required: (1) finan-
cial and managerial independence from
the software development activity, (2)
trained and qualified personnel to per-
form the analysis, and (3) a disciplined
process that focuses the analysis effort,
by priority, on the more safety-critical
areas [see Figure 3].

Each of these components is neces-
sary for a successful software safety
analysis. The absence of any undermines
the effort and the strength of the other
components. For example, without the
financial and managerial independence
from the development activity, the ana-
lyst may be directed in a way that inhibits
fully performing the analysis, or the dis-
cipline process is circumvented because
of management direction caused by a
need to use resources in areas other than
safety analysis. Similar examples can be
drawn for the absence of the other com-

ponents.
Financial and managerial indepen-

dence ensures that specific resources will
be used for performing the software
safety analysis and that there is no con-
flict of interest between the development
activity and the software safety analysis
activity. An example of a conflict of
interest could be the program office or
development organization controlling
the work of the safety analysis by direc-
tion toward or away from specific haz-
ards or risks. The criticality list from Step
1 is the road map that identifies the pri-
ority of safety-critical areas to be
reviewed. The resources are used in
accordance with this priority, which
means that safety-critical areas of lower
priority may not be reviewed or analyzed
because of the need to use resources to
analyze safety-critical areas of higher pri-
ority.

An example of implementing an
independent safety analysis effort would
be for the program office to contract
separate activities to the development
organization and the software safety
analysis organization. As such, reports to
the program office from the software
safety analysis organization are indepen-
dent of the software development activi-
ty. Another example would be to have
the safety office independently contract
to the software safety analysis organiza-
tion for work being developed by the
program office that is contracted to the
software development organization.

Performing a successful software
safety analysis requires a technical staff
that is qualified to perform safety analy-
ses and enjoys doing this type of work.
Most engineers prefer building new sys-
tems and being part of the development
process of major systems. Many engi-
neers find no interest in digging through
systems to find embedded hazards that
are not only difficult to find and under-
stand, but also have not evidenced them-
selves. It becomes the proverbial looking
for a needle in the haystack, except there
is really no clue that the needle is even in
the haystack or even in a number of
haystacks. Finding engineers who can do
this type of work and want to do it for
many years is difficult. Some can do
analysis for a year or so; however, the
strength of a software safety analysis
organization comes from analysts who
have done analysis for many years on
many systems.

Two pitfalls are seen when companies
set up software safety organizations.
First, individuals who are used to per-
forming software safety analysis activities

Safety Analysis Process

Identify safety hazards and safety-critical requirements.

Trace requirements implementations

through design and code.

safety-critical data and processing.
Verifying correct system use and implementation of

Track identified hazards throughout the system life cycle.

Primary Objective
Prevention of Mishaps

Injury/Loss of Life

Loss of Equipment

Environment Damage

A

Safety Analysis Environment for Success

Trained and

qualified

personnel to

perform

analysis.

Financial and

managerial

independence

from software

development

activity.

Disciplined

process that

focuses

analysis in

priority on

more safety-

critical areas.

Reason

EProblems found in safety analysis cause

additional work impacts.

ELack of software safety analysis expertise

and processes.

TLack of mishap evidence if hazard found

and removed.

SFailure to budget in software safety

analysis activities.

SMisconception that good coding processes

preclude embedded safety hazards.

M
S

Difficulty establishing a contract with an

independent organization to do safety.

Conserve funds because there is no code
to review.

Software S
Analysis B

Mistaken Reasons Why Software Safety I

Early Phases of System Software DevFigure 3: Safety Analysis Environment for Success

November 2004 www.stsc.hill.af.mil 19

are not correctly screened with respect to
ability and desire. Oftentimes, they are
selected from those who have not been
successful doing other code development
activities because of work habit issues or
lack of ability. The fallacy of doing this is
that performing successful analysis on
code that is generated by the develop-
ment activity requires individuals that are
better trained and more capable than
those who have developed the code.
They must be able to find embedded
hazards missed by other development
reviews and testing that could result in a
mishap during the operational phase of
the system life cycle.

The second pitfall of setting up soft-
ware safety organizations is that the
development activity expects that the
code developer should be able to gener-
ate good code that contains no safety
hazards. Consequently, the development
activity either sees no value in perform-
ing an independent safety analysis or lim-
its safety analysis resources to the point
that little can be done to effectively
accomplish a thorough safety analysis.
They fail to understand that there is a
basic difference between engineers who
develop code and engineers who analyze
code for embedded hazards. Engineers
who develop code are success oriented.
They move from the implementation of
one requirement to the next. They are
driven by a typically over-budget sched-
ule and are always anxious to catch up.
Conversely, safety engineers analyze code
in the context of finding failures. They
move from analyzing one module to the
next only when they are convinced that
there are no embedded safety concerns.

Complexity Warrants Additional
Safety Analysis
With our mentality of getting the most
out of software development budgets
combined with the mindset that develop-
ers can generate hazard-free code, man-
agers pressure software developers to
generate code faster and more efficiently.
They insist that better processes, pride of
workmanship, better compilers and
development environment tools, code
walk-throughs, and peer reviews should
sufficiently guarantee safe code. It is true
that compilers and development environ-
ment tools are becoming more powerful,
but at the same time they are becoming
more complex. This additional complex-
ity warrants additional safety analysis. It
is true that code walk-throughs, peer
reviews, and other process improve-
ments result in better code; however,
they rely upon peers who are also behind

schedule, over-budget, and anxious to get
their own work done. These distractions
lessen the effectiveness of the peer
review. Additionally, peer reviews tend to
focus on the module level and place less
emphasis at the system level where many
of the embedded safety hazards reside.

Software developers must be safety
conscious as they develop code.
However, in light of the above and their
success orientation, developers continue
to introduce embedded hazards in the
software development process; it is very
difficult for them to see their own errors.
E-mails are a vivid example. E-mail
authors re-read their own e-mails over
and over to verify correctness. They send
them out only to later find a glaring error
in the most awkward place that they
missed during multiple reviews. Some
well-known examples of software fail-
ures resulting in mishaps are described in
Appendix F of the Joint Software System
Safety Committee’s “Software System
Safety Handbook” [1].

Engineers who effectively analyze
code for embedded hazards are con-
vinced that all software contains embed-
ded hazards and that it is only a matter of
time and circumstance before the haz-
ard(s) causes a mishap. The quality and
quantity of analysis is a function of the
analyst’s safety experience and under-
standing of the code under inspection
within the context of the system.
Tangible products of the analysis may be

misleading as amount and quality of
product does not necessarily prove that
the right analysis was performed. On the
other hand, the tangible products of a
development effort do prove the efforts
of the development engineer.

From the development activity per-
spective, if the code successfully per-
forms its intended function and matches
documented code standards, then return
on investment is evident. Failure to iden-
tify embedded hazards does not confirm
that quality analysis has not been per-
formed any more than the identification
of some embedded hazards ensures that
all hazards have been found. The analyst
decides the correct amount of effort
spent in the analysis of a safety-critical
area for hazards without evidence of
their existence based on his or her expe-
rience and understanding.

In summary, development engineers
are good at building new systems in the
context of a driving schedule. Software
safety engineers are good at evaluating
code for embedded hazards. Requiring
development engineers to constantly
evaluate their code with the understand-
ing that something is wrong and there are
embedded hazards seriously takes away
from the success orientation that enables
forward progress. Software safety analy-
sis engineers are attuned to the identifi-
cation of embedded hazards and the
amount of resources required to fully
analyze a safety-critical area of code. Just

Safety Analysis as a Software Tool

Safety Terminology

For the purposes of this article, the following safety-related terms are provided from
[2].
• A mishap is an unplanned event that results in death, injury, occupational illness,

equipment or property damage or the loss of, or environmental damage.
• Hazards are conditions that cause a mishap.
• The ultimate goal of a system safety program is to design systems that contain

no hazards. However, since the nature of most complex systems makes it impos-
sible or impractical to design them completely hazard-free, a successful system
safety program often provides a system design where there exist no hazards
resulting in an unacceptable level of mishap risk.

• Mishap risk is an expression of the possibility/impact of a mishap in terms of haz-
ard severity and hazard probability.

• Residual mishap risk is the remaining mishap risk after all mitigation techniques
(techniques used to remove or lessen the hazard) have been implemented or
exhausted.

• Safety is the freedom from hazards, which cause death, injury, occupational ill-
ness, equipment or property damage or loss, or environmental damage.

• The objective of a safety analysis is to achieve acceptable mishap risk through
a documented systematic approach to hazard analysis, risks assessment, and risk
management.

• System safety is the application of engineering and management principles, cri-
teria, and techniques to achieve acceptable mishap risk, within the constraints of
operational effectiveness and suitability, time, and cost, throughout all phases of
the system life cycle.

Software Toolbox

20 CROSSTALK The Journal of Defense Software Engineering November 2004

as letting off an automobile’s gas pedal
does perform some slowing, and letting
off the brake pedal allows continued
movement, both the gas pedal and the
brake pedal are required for efficient
handling. A combination of develop-
ment engineers and software safety engi-
neers in an independent environment
provides a product that is synergistically
more than if either were to do both
tasks.

The software safety analysis process
combines the people and the resources
to produce the most effective and effi-
cient product possible. The process
ensures that priorities are followed,
products are produced, and schedules
are met. The four primary steps of a
software safety analysis process have
been described. Necessary products of
the safety analysis include a criticality
analysis report from Step 1, problem
reports from all steps, and a software
safety analysis report – including testing
and analysis summaries – from Step 2
through Step 4 of the process. When a
thorough and conscientious software
safety analysis is complete, and safety
hazards have been identified and
removed, the resulting summary report
becomes a tangible product that indi-
cates with a high level of confidence that

the examined software will not be the
source of a system mishap.

Issues That Hinder Software
Safety Efforts
There are many reasons why organiza-
tions mistakenly choose not to include a
software safety analysis activity early in
the code development cycle (see Table 1).
These include the following:
1. Organizations erroneously believe

that performing software safety
analysis only needs to be done when
code has been generated. They
believe that they can conserve
resources during the requirements
definition and design disclosure phas-
es by waiting until code is released to
involve the software safety analysis
effort. They fail to understand the
importance of evaluating system and
functional requirements with respect
to safety prior to design, and of eval-
uating the design disclosure with
respect to safety prior to coding.
Safety concerns found during the
implementation phase after the code
has been generated require re-evalua-
tion of the requirements, redesign,
and recoding. This results in wasted
resources and schedule slips because

of the necessary review and rework.
This is further impacted by the soft-
ware safety analyst’s need for time to
become familiar with the function,
requirements, design, and code of the
software under analysis. If this need
is put off until code is released, then
safety concerns are, consequently,
identified later in the implementation
phase, resulting in additional wasted
resources because testing must also
be repeated due to reworked require-
ments, design, and code.

2. Government organizations find it dif-
ficult and time consuming to estab-
lish a contract with an independent
organization to do software safety
analysis. It is important to start the
process early to take into account the
lead times as well as the need for
either contracting directly with the
software safety analysis company or
using a contract vehicle already in
place by the contractor.

3. The organization erroneously be-
lieves that a good code development
process will preclude all embedded
safety hazards. Mishaps caused by
software occur in fielded systems that
were developed under good process-
es. As described earlier, an indepen-
dent software safety analysis can find
embedded hazards and prevent
mishaps when trained and experi-
enced analysts are used and the soft-
ware safety analysis process is fol-
lowed.

4. Organizations fail to factor into their
budget the software safety analysis
activity when cost projections are
supplied to planning activities. Upon
program execution, they severely limit
or do not fund software safety activi-
ties because of the difficulty of find-
ing unbudgeted resources to cover
safety. Including software safety
analysis activities in the master budget
plan is critical to software safety.

5. The lack of mishap evidence gives
the program manager a false impres-
sion of the safety state of the soft-
ware being developed. If an embed-
ded hazard is found and removed,
there is no evidence that the mishap
would have ever occurred. Embedded
hazards cause catastrophic mishaps
only when a set of combining cir-
cumstances simultaneously occurs. A
thorough analysis covers areas and
combinations of events that are
either difficult to test or are not test-
ed because of limitations due to test
time and tester expertise.

6. Organizations have difficulty finding

Primary Objective
Prevention of Mishaps

Injury/Loss of Life

Loss of Equipment

Environment Damage

Added Value

Cost Savings

Schedule Safeguarding

Improved Product Quality

Actual NeedReason

Early identification of safety problems saves

resources by preventing redesign, recode,

retest, and prevents mishap.

Problems found in safety analysis cause

additional work impacts.

Evaluate potential safety analysis

organizations on track record, processes,

and staff.

Lack of software safety analysis expertise

and processes.

The objective of software safety is to remove

hazard before mishap; prevention of one

catastrophic mishap more than pays for safety

analysis effort.

Lack of mishap evidence if hazard found

and removed.

Software safety analysis needs to be budgeted

independently of development activity budgets.

Failure to budget in software safety

analysis activities.

Success orientation of development engineers

results in missed errors; development

environment pressures prevent thorough

system and interface analysis.

Misconception that good coding processes

preclude embedded safety hazards.

Most major defense contractors have General
Services Administration-type contracts that could

support safety efforts.

Difficulty establishing a contract with an

independent organization to do safety.

Early evaluation of requirements and design

precludes costly coding and testing errors.
Conserve funds because there is no code

to review.

Software Safety
Analysis Benefits

Mistaken Reasons Why Software Safety Is Not Included During

Early Phases of System Software Development Life Cycle

Table 1: Mistaken Reasons Why Software Safety Is Not Included During Early Phases of the
System Development Life Cycle

Safety Analysis as a Software Tool

November 2004 ww.stsc.hill.af.mil 21

software safety analysis expertise and
processes. As described earlier, effec-
tive analysis is a function of the
expertise and experience of the ana-
lyst. Qualified sources for software
safety expertise will probably be more
costly because of the need to employ
this level of expertise and experience.

7. Organizations are concerned that
problems found by software safety
analysis will cause additional work
that impacts schedule and resource
needs. Reputable organizations do
not generate unsafe software.
However, because of the nature of
embedded hazards that result in
mishaps, there is always the concern
that large amounts of resources are
spent to prevent mishaps that have a
very low probability of occurring.
These organizations fail to under-
stand that providing a small level of
software safety analysis can greatly
lower the probability of a mishap
occurring.
Each of these mistaken reasons is

real. Together they may discourage using
software safety analysis as a tool to gen-
erate a better product for less cost.
Finding these embedded hazards early in
the development cycle reduces cost, safe-
guards schedules, and improves product
quality. Our experience shows that a
requirements problem that is not found
until the test phase of the software
development cycle results in the loss of
70 percent of the time used to design,
code, and test the implementation of
that requirement.

Summary
We live in a world that is averse to unsafe
conditions. We also live in a world that
applies heavy pressure to building the bet-
ter and faster more efficiently. The con-
flicts between these two mindsets are
profit and risk. The courts of the land
insist daily upon the responsibility of the
product provider. Flashy packaging and
brand-name recognition oftentimes erro-
neously instill within us a false sense of
trust. And if we are harmed, our loss of
productivity and capability demands
compensation in order to survive.

Software safety analysis as a tool
results in a safer and better product at a
cost and schedule savings. Early involve-
ment is critical to an efficient and effec-
tive analysis effort. Software require-
ments hazards will be found and
removed during the requirements phase.
Hazards found during the other software
development phases will be found during
the correct phase, preventing loss of

resources and schedule.
Software development teams want to

generate a quality product, but are hesi-
tant to have independent activities per-
form analysis on their product. A change
of mindset will result in a synergistic
team that produces a superior product.
Development engineers will be able to
do what they do best in a success-orient-
ed environment within their resources
and schedules. Software safety analysis
engineers will provide the necessary
checks and balances that result in a supe-
rior product, free of embedded hazards.
When these work as a team, software
development will cost less and be pro-
vided on schedule in our world of con-
tinuous change and improvement.u

References
1. Joint Software System Safety

Committee. Software System Safety
Handbook. Washington, D.C.:
Department of Defense, Dec. 1999
<www.egginc.com/dahlgren/files/
ssshandbook.pdf>.

2. Department of Defense. “Standard
Practice for System Safety.” MIL-
STD 882D. Washington, D.C.: DoD,
10 Feb. 2000 <www.safetycenter.
navy.mil/instructions/osh/milstd
882d.pdf>.

About the Author

Blair T. Whatcott is the
lead engineer and pro-
gram manager of the
Software and System
Safety Analysis Program
Office in the Infor-

mation Solutions Department of
Northrop Grumman Information
Technology. He has managed and been
lead engineer on independent verifica-
tion and validation and software safety
analysis projects for more than 18 years.
These projects have focused on detailed
analysis and testing of embedded soft-
ware in military aircraft and weapon
systems. He has a bachelor’s degree in
electrical engineering from Brigham
Young University, Provo, Utah.

Northrop Grumman
Information Technology
1530 N Layton Hills PKWY
STE 200
Layton, UT 84041-5683
Phone: (801) 773-5274 ext. 13
Fax: (801) 773-5262
E-mail: blair.whatcott@ngc.com

22 CROSSTALK The Journal of Defense Software Engineering November 2004

Three Essential Tools for Stable Development©

Three basic practices make the difference between a software project that succeeds and one that fails. These practices support
and reinforce each other; when done properly, they form an interlocking safety net to help ensure success and prevent common
project disasters. However, few development teams in the United States use these proven techniques, and even fewer use them
correctly.

Andy Hunt and Dave Thomas
The Pragmatic Programmers, LLC

Many software projects that fail seem
to fail for very similar reasons. After

observing – and helping – many of these
ailing projects over the past couple of
decades, it seems clear to us that a majori-
ty of common problems can be traced
back to a lack of three very basic practices.
Fortunately, these three practices are easy
and relatively inexpensive to adopt. It does
not require a large-scale, expensive, or
bureaucratic effort; with just these prac-
tices in place, your team can work at top
speed with increased parallelism. You will
never lose precious work, and you will
know immediately when the development
starts to veer off-track in time to correct it,
cheaply and easily.

The three basic practices that we have
identified as being the most crucial are ver-
sion control, unit testing, and automation.
Version control is an obvious best practice,
yet nearly 40 percent of software projects
in the United States do not use any form
of version control for their source code
files [1]. The motto of these shops seems
to be last one in wins. That is, they will use a
shared drive of some sort and hope that
no one overwrites their changes as the
software evolves. Hope is a pretty poor
methodology, and these teams regularly
lose precious work. Developers begin to
fear making any changes at all, in case they
accidentally make the system worse. Of
course, this fear becomes a self-fulfilling
prophecy as necessary changes are neglect-
ed and the system begins to degrade.

Unit testing is a coding technique for
programmers so they can verify that the
code they just wrote actually does some-
thing akin to their intent. It may or may
not fulfill the requirements, but that is a
separate question: If the code does not do
what the programmer thought it did, then
any further testing or validation is both

meaningless and a large waste of time and
money (two items that are in short supply
to begin with). Developer-centric unit
testing is a great way to introduce basic
regression testing, create more modular-
ized code that is easier to maintain, and
ensure that new work does not break
existing work. Despite the effectiveness of
this technique in both improving design
and identifying and preventing defects
(aka bugs), 76 percent of companies in the
United States do not even try it [2].

Automation is a catchall category that
includes regular, unattended project builds,
including regression tests and push-button
convenience for day-to-day activities.
Regular builds ensure that the product can
be built to catch simple mistakes early and
easily, when fixing them is the cheapest.
When implemented properly, it is as if you
have an ever-vigilant guardian looking over
your shoulder, warning you as soon as
there is a problem. Incredibly, some 70
percent of projects in the United States do
not have any sort of daily build [2]. By the
time they discover a problem, it has metas-
tasized into a much larger and potentially
fatal problem.

We will briefly examine each of these
areas, with an in-depth look at unit testing
in particular. We will outline the important
ideas, synergies, and caveats for each of
these practices so your team can either
begin using them or improve your current
use of them.

Version Control
Everyone can agree that version control is
a best practice but even with it in place, is
it being used effectively? Ask yourself
these questions: Can you re-create your
software exactly as it existed on January 8?
When a bug is found that affects multiple
versions of your released software, can
your team fix it just once, and then apply
that fix to the different versions automati-
cally? Can a developer quickly back out of
a bad piece of code?

There is more to version control than
just keeping track of files. But before we

proceed, we need to define some simple
terminology: We use check-in to mean that
a programmer has submitted his or her
changes to the version control system. We
use checkout to refer to getting a personal
version of code from the version control
system into a local working area.

When a programmer checks in code, it
is now potentially available to the rest of
the team. As such, it is only polite to
ensure that this new code actually compiles
successfully; it should be accompanied by
unit tests (more on this later), and those
tests should pass. All the other passing
tests in the system should continue to pass
as well – if they suddenly fail, then you can
easily trace the failure to the new code that
was introduced.

It is far easier to track down these sort
of problems right at the point of creation
instead of days, weeks, or even months
later. To exploit this effect, you must allow
and encourage frequent check-ins of code
multiple times per day. It is not unusual to
see team members check-in code 10-20
times a day. It is unusual – and very dan-
gerous – to allow a programmer to go a
few days or a week or more without check-
ing in code.

Because check-ins occur so frequently,
these and other day-to-day operations
must be very fast and low ceremony. A
check-in or checkout of code should not
take more than five to 15 seconds in gen-
eral. If it takes an hour, people will not do
it, and you have lost the advantage.

Now some people get a little nervous
when they read this part. They fret that all
of this code is being dumped into the sys-
tem without being reviewed, tested by QA,
audited, or whatever else their methodolo-
gy or environment demands. They are
rightfully concerned that this code is not
yet ready to be part of a release.
Nonetheless, it must still be in the version
control system so that it is protected.

Most version control systems provide a
mechanism to differentiate ongoing devel-
opment changes from official release can-
didates. Some feature explicit promotion

© 2004 The Pragmatic Programmers, LLC. Portions of
this article adapted from “Pragmatic Unit Testing in Java
With JUnit,” by Andy Hunt and Dave Thomas (Volume
II of the Pragmatic Starter Kit), published by the
Pragmatic Bookshelf and Copyright © 2003, 2004 The
Pragmatic Programmers, LLC. Reprinted with permis-
sion.

Three Essential Tools for Stable Development

November 2004 www.stsc.hill.af.mil 23

commands to allow this. You can accom-
plish the same thing in other systems by
using tags (or version labels) to identify
stable release versions of source code as
opposed to code that is in progress.

Regardless of the mechanism, it must
be an easy operation to promote develop-
ment changes to an official release status.
On the other side of the coin, you need to
be able to back out changes and any disas-
trous new code when needed.

Finally, you need to be able to re-cre-
ate any product built at any previous point
in time. This ability to go back in time is
crucial for effective debugging and prob-
lem solving (just think of any developer
who starts a discussion with, “Well, it used
to work”).

Commercial and freely available ver-
sion control systems vary in complexity,
features, and ease of administration. But
one feature in particular is worth examin-
ing: whether it supports strict locking or
optimistic locking. In systems under strict
locking, only one person can edit a file at
a time. While that sounds like a good idea,
it turns out to be unduly restrictive in
practice. We favor the Concurrent
Version System <www.cvshome.org>
described in [3].

You may find you can increase paral-
lelism and efficiency in your team by using
a system that features optimistic locking.
In these systems, multiple people can edit
the same source code file simultaneously.
The system uses conflict-resolution algo-
rithms to merge the disparate changes
together in a sensible manner. Ninety-nine
percent of the time it works perfectly with-
out intervention. Occasionally, however,
there is a conflict that must be addressed
manually. At no point is anyone’s work in
danger of being lost, and it ends up being
much more efficient to coordinate just
these few conflicts by hand instead of hav-
ing everyone coordinate every change with
the rest of the team.

Unit Testing
When a developer makes a change to the
code on your project, what feedback is
available? Does the developer have any
way of knowing if the new code broke
anything else? Better still, how do you know
if any developer has broken anything
today? A system of automated unit tests
will give you this information in real-time.

Programming languages are notorious
for doing exactly what programmers say,
not what they mean. Like a petulant child
that takes your expressions completely lit-
erally, the computer follows our instruc-
tions to the letter, with no regard at all to
our intent. Technology has yet to produce

the compiler that implements with do what
I mean, not what I say.

So in keeping with the idea of finding
and fixing problems as soon as they occur,
you want programmers to use unit tests (or
checked examples) to verify the computer’s
literal interpretation of their commands. It
is really no different from following
through with a subordinate to verify that a
delegated task was performed – except
that instead of just checking once, auto-
mated unit tests will check and recheck
every time any code is changed.

There are some requirements to using
this style of development, however:
• The code base must be decoupled

enough to allow testing. When code is
tightly coupled, it is very difficult to
test individual pieces in isolation, and
harder to devise unit tests that exercise
specific areas of functionality. Well-
written code, on the other hand, is easy
to test. If your team finds that the code
is difficult to test, then take that as a
warning sign that the code is in serious
trouble to begin with.

• Only check-in tested code. As we men-
tioned above, checking-in foists a pro-
grammer’s code onto the rest of the
team. Once it is available to everyone,
then the whole team will begin to rely
on it. Because of this reliance, all code
that is checked in must pass its own
tests.

• In addition to passing its own tests, the
programmer checking in the code must
ensure nothing else breaks, either. This
simple regression helps prevent that
frustrating feeling of one step forward, two
steps back that becomes commonplace
when code fixes cause collateral dam-
age to other parts of the code base.
Usually these bugs then require fixes,
which in turn cause more damage, and
so on. The discipline of keeping all the
tests running all the time prevents that
particular death-spiral.

• There should be at least as much test
code as production code. You might
think that is excessive, but it is really
just a question of where the value of
the system resides. We firmly believe
the code that implements the system is
not where the value of your intellectu-
al property lies. Code can be rewritten
and replaced, and the new code (even
an entirely new system) can be verified
against the existing tests. Now the
most precise specification of the sys-
tem is in executable form – the unit
tests. The learning and experience that
goes into creating the unit tests is
invaluable, and the tests themselves are
the best expression we have of that

knowledge.
We will look at implementing unit tests

(aka checked examples) in much greater
detail later in this article.

Automation
An old saying goes the cobbler’s children have
no shoes. This saying is particularly appro-
priate for our use of software tools during
software development. We see teams rou-
tinely waste time using manual procedures
that could easily be automated.

Everyone clamors for software devel-
opment to be more defined and repeat-
able. Well, the design and implementation of
software probably cannot be made repeat-
able any more than you could make the
process of making hit movies repeatable.
But the production of software is another
matter entirely.

The process of taking source code
files, bits of eXtensible Markup Language,
libraries, and other resources and produc-
ing an executable for the end user should
be precisely repeatable. Given the same
inputs, you want the same outputs, every
time, without excuses. In combination
with version control, you want to be able
to go back in time and reproduce that
same pile of bits that you would have pro-
duced on January 8 just as easily. That
comes in very handy should the
Department of Justice ask for it politely, or
a frustrated customer asks for it somewhat
less politely to work around some out-
standing bug.

The rule we try to adopt is that any
manual process that is repeated twice is
likely to be repeated a third time – or more
– so it needs to be encapsulated within a
shell script, batch file, piece of Java code,
Job Control Language, or whatever.

Unit tests, as well as functional and
acceptance tests, should be run automati-
cally as well as be part of the build process.
You will probably want to run the unit
tests (which should execute very quickly)
with every build; automatic functional and
acceptance tests might take longer and you
may only want to run those once a week,
or when convenient.

You see, not only does automation
make developer’s lives easier by providing
push-button convenience, it helps keep the
feedback coming by constantly checking
the state of the software. Automated
builds are constantly asking two questions:
Does the software build correctly? Do all
the tests still pass a basic regression? With
the computer performing these checks
regularly, developers do not have to.
Problems can be identified as soon as they
happen, and the appropriate developer or
team lead can be notified immediately of

Software Toolbox

24 CROSSTALK The Journal of Defense Software Engineering November 2004

the problem [4]. Problems can be fixed
quickly, before they have a chance to cause
any additional damage. That is the benefit
we want from automation.

Finally, consider how the build com-
municates to the development team and its
management. Does the team lead look at
the latest results in some log file and then
report status to management? Does not
that constitute a manual process? It is rela-
tively easy to set up visual display devices,
ranging from liquid crystal display screens
to bubbling lava-style lamps to the new
and popular Ambient Orb [4].

Synergy
These three practices interlock to provide a
genuine safety net for developers. Version
control is the foundation. Unit tests and
scripts for automation are under version
control, but version control needs automa-
tion to be effective. Unit testing needs both
version control and automation.

With the combination, developers can
better afford to take chances, experiment,
and find the best solutions. The Rule of
Three says that if you have not proposed
at least three solutions to a problem then
you have not thought about it hard
enough. With this set of practices in place,
developers can realistically try out a num-
ber of different solutions to a problem:
Version control will keep them separate,
and unit testing will help confirm the via-
bility of each solution. All this with plenty
of automated support, including continu-
ous, ongoing checks ensures that the team
does not wander too far off into the
woods. This is how modern, successful
software development is done.

Unit Testing With Your
Right-BICEP
You can strengthen your organization’s
testing skills by looking at six specific areas
of code that may need unit tests. These
areas are remembered easily using the
mnemonic Right-BICEP [5]:

Right Are the results right?
B Are all the boundary conditions cor-

rect?
I Can you check inverse relation-

ships?
C Can you cross-check results using

other means?
E Can you force error conditions to

happen?
P Are performance characteristics

within bounds?

Are the Results Right?
The first and most obvious area to test is

simply to see if the expected results are
right – to validate the results. These are
usually the easy tests, as they represent the
answer to the key question: If the code ran
correctly, how would I know? Here is an
example of how being forced to think
about testing helps developers code better:
If this question cannot be answered satis-
factorily, then writing the code – or the test
– may be a complete waste of time.

“But wait,” you cry out, “that does not
sound very agile! What if the requirements
are vague or incomplete? Does that mean
we can’t write code until all the require-
ments are firm?” No, it does not at all. If
the requirements are truly not yet known,
or not yet complete, you can always make
some assumptions as a stake in the ground.
They may not be correct from the user’s
point of view (or anyone else on the plan-
et), but they let the team continue to devel-
op. And, because you have written a test
based on your assumption, you have now
documented it – nothing is implicit.

Of course, you must then arrange for
feedback with users or sponsors to fine-
tune your assumptions. The definition of
correct may change over the lifetime of the
code in question, but at any point, you
should be able to prove that it is doing
what you think it ought.

Boundary Conditions
Identifying boundary conditions is one of
the most valuable parts of unit testing
because this is where most bugs generally
live – at the edges. Some conditions you
might want to think about include the fol-
lowing:
• Totally bogus or inconsistent input val-

ues such as a file name of
!*W:X\\{\&Gi/w$>$g/h\#WQ@.

• Badly formatted data such as an e-mail
address without a top-level domain
<fred@foobar>.

• Empty or missing values such as 0, 0.0,
“”, or null.

• Values far in excess of reasonable
expectations such as a person’s age of
10,000 years.

• Duplicates in lists that should not have
duplicates.

• Ordered lists that are not in order and
vice-versa. Try handing a pre-sorted list
to a sort algorithm, for instance, or
even a reverse-sorted list.

• Things that arrive out of order, or hap-
pen out of expected order such as try-
ing to print a document before logging
in, for instance.
An easy way to think of possible

boundary conditions is to remember the
acronym CORRECT. For each of these
items, consider whether or not similar con-

ditions may exist in your method that you
want to test, and what might happen if
these conditions were violated [4]:
• Conformance. Does the value con-

form to an expected format?
• Ordering. Is the set of values ordered

or unordered as appropriate?
• Range. Is the value within reasonable

minimum and maximum values?
• Reference. Does the code reference

anything external that is not under
direct control of the code itself ?

• Existence.Does the value exist (e.g., is
non-null, non-zero, present in a set,
etc.)?

• Cardinality. Are there exactly enough
values?

• Time (absolute and relative). Is
everything happening in order? At the
right time? In time?

Check Inverse Relationships
Some methods can be checked by applying
their logical inverse. For instance develop-
ers might check a method that calculates a
square root by squaring the result, and test-
ing that it is tolerably close to the original
number. They might also check that some
data was successfully inserted into a data-
base by then searching for it, and so on.

Be cautious when the same person has
written both the original routine and its
inverse, as some bugs might be masked by
a common error in both routines. Where
possible, use a different source for the
inverse test. In the square root example,
we might use regular multiplication to test
our method. For the database search, we
will probably use a vendor-provided search
routine to test our insertion.

Cross-Check Using Other Means
Developers might also be able to cross-
check results of their method using differ-
ent means. Usually there is more than one
way to calculate some quantity; we might
pick one algorithm over the others because
it performs better or has other desirable
characteristics. That is the one we will use
in production, but we can use one of the
other versions to cross-check our results in
the test system. This technique is especial-
ly helpful when there is a proven, known
way of accomplishing the task that hap-
pens to be too slow or too inflexible to use
in production code.

Another way of looking at this is to use
different pieces of data from the code
itself to make sure they all add up. For
instance, suppose you had some sort of
system that automated a lending library. In
this system, the number of copies of a
particular book should always balance.
That is, the number of copies that are

Three Essential Tools for Stable Development

November 2004 www.stsc.hill.af.mil 25

checked out plus the number of copies sit-
ting on the shelves should always equal the
total number of copies in the collection.
These are separate pieces of data, and may
even be managed by different pieces of
code, but they still have to agree and so can
be used to cross-check one another.

Force Error Conditions
In the real world, errors happen. Disks fill
up, network lines drop, e-mail goes into a
black hole, and programs crash. You
should be able to test that code handles all
of these real-world problems by forcing
errors to occur.

That is easy enough to do with invalid
parameters and the like, but to simulate
specific network errors – without unplug-
ging any cables – takes some special tech-
niques, including using mock objects.

In movie and television production,
crews will often use stand-ins, or doubles,
for the real actors. In particular, while the
crews are setting up the lights and camera
angles, they will use lighting doubles: inex-
pensive, unimportant people who are
about the same height and complexion as
the very expensive, important actors who
remain safely lounging in their luxurious
trailers.

The crew then tests their setup with
the lighting doubles, measuring the dis-
tance from the camera to the stand-in’s
nose, adjusting the lighting until there are
no unwanted shadows, and so on, while
the obedient stand-in just stands there and
does not whine or complain about lacking
motivation for their character in this scene.

What you can do in unit testing is sim-
ilar to the use of lighting doubles in the
movies: Use a cheap stand-in that is kind
of close to the real thing, at least superfi-
cially, but that will be easier to work with
for your purposes.

Performance Characteristics
One area that might prove beneficial to
examine is performance characteristics –
not performance itself, but trends as input
sizes grow, as problems become more
complex, and so on. Why? We have all
experienced applications that work fine for
a year or so, but suddenly and inexplicably
slow to a crawl. Often, this is the result of
a silly error or oversight: A database
administrator changed the indexing struc-
ture in the database, or a developer typed
an extra zero into a loop counter.

What we would like to achieve is a
quick regression test of performance
characteristics. We want to do this regular-
ly, every day at least, so that if we have
inadvertently introduced a performance
problem we will know about it sooner

rather than later (because the nearer in
time you are to the change that introduced
the problem, the easier it is to work
through the list of things that may have
caused that problem).

So, to avoid shipping software with
unsuspected performance problems,
teams should consider writing some rough
tests just to make sure that the perfor-
mance curve remains stable. For instance,
suppose the team is working on a compo-
nent that lets users browse the Web from
within their application. Part of the
requirement is to filter out access to Web
sites that we wish to block. The code
works fine with a few dozen sample sites,
but will it work as well with 10,000?
100,000? We can write a unit test to find
out.

This gives us some assurance that we
are still meeting performance targets. But
because this one test takes six to seven
seconds to run, we may not want to run it
every time. As long as we run it (say)
nightly, we will quickly be alerted to any
problems we may introduce while there is
still time to fix them.

Getting Started
All of the software tools mentioned in this
article are freely available on the Web. To
get started using these practices effectively,
we recommend following this sequence:
1. Get everything into version control.
2. Arrange for automatic, daily builds.

Increase these to multiple times per day
or continuously as soon as the process
begins to work smoothly.

3. Start writing unit tests for new code.

Where needed, add some unit tests to
existing code (but be pragmatic about
it; only add tests if they will really help,
not just for the sake of completeness).

4. Add the unit tests to the scheduled
builds.
You can begin right away. Fire up that

Web browser and start downloading some
software if you do not already have it.
These ideas will not fix all the problems
on your project, of course, but they will
provide your project with a firm footing
so you can concentrate on the truly diffi-
cult problems.u

References
1. Zeichick, Alan. “Debuggers, Source

Control Keys to Quality.” Software
Development Times 1 Mar. 2002.

2. Cusumano, Michael, et al. “A Global
Survey of Software Development
Practices.” Paper 178. MIT Sloan
School of Management, June 2003.

3. Thomas, Dave, and Andy Hunt.
Pragmatic Version Control With CVS.
Raleigh, NC: Pragmatic Bookshelf,
2003 <www.PragmaticBookshelf.
com>.

4. Clark, Mike. Pragmatic Project
Automation. Raleigh, NC: Pragmatic
Bookshelf, 2004 <www.Pragmatic
Bookshelf.com>.

5. Hunt, Andy, and Dave Thomas.
Pragmatic Unit Testing in Java With
JUnit. Raleigh, NC: Pragmatic
Bookshelf, 2003. (Also available in a
C# version) <www.PragmaticBook
shelf.com>.

About the Authors

Andy Hunt is an avid
woodworker and musi-
cian, but curiously, he is
more in demand as a
consultant. He has work-
ed in telecommunica-

tions, banking, financial services, and
utilities, as well as more exotic fields such
as medical imaging and graphic arts.
Hunt is author of many articles,
columns and books, and co-author of
“The Pragmatic Programmer.”

The Pragmatic Programmers, LLC
9650 Strickland RD
STE 103-255
Raleigh, NC 27615
Phone: (800) 699-7764
E-mail: andy@pragmatic

programmer.com

Dave Thomas likes to
fly single-engine air-
planes and pays for his
habit by finding elegant
solutions to difficult
problems, consulting in

areas as diverse as aerospace, banking,
financial services, telecommunications,
travel and transport, and the Internet.
Thomas is author of many articles,
columns and books, and co-author of
“The Pragmatic Programmer.”

The Pragmatic Programmers, LLC
P.O. Box 293325
Lewisville,TX 75029
Phone: (972) 539-7832
E-mail: dave@pragmatic

programmer.com

26 CROSSTALK The Journal of Defense Software Engineering November 2004

Departments

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

AUG2003 c NETWORK-CENTRIC ARCHT.

SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW

DEC2003 c MANAGEMENTBASICS

MAR2004 c SWPROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.

JUN2004 c ASSESSMENT AND CERT.

JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

The Agile Alliance
www.agilealliance.com/home
The Agile Alliance is a non-profit organi-
zation dedicated to promoting the con-
cepts of agile software development, and
helping organizations adopt those con-
cepts. The site features an extensive
library of articles about agile processes
and agile development.

COTS Journal
www.cotsjournalonline.com
COTS Journal is a technology-in-context
magazine that looks at any embedded
technology anywhere it exists. Its editors
assess the applicability of the world’s best
embedded research and standards,
methodologies, and products for govern-
ment, military, and aerospace applica-
tions. COTS Journal provides the indus-
try with technical material to help readers
design and build embedded computers
for the military – whether for benign
applications or for the most rugged, mis-
sion-critical jobs.

Concurrent Versions
System
www.cvshome.org
This site is dedicated to supporting the
community around the Concurrent
Versions System (CVS). The CVS is the
dominant open-source network-trans-
parent version control system. CVS is
useful for everyone from individual
developers to large, distributed teams for
the following:
• Its client-server access method lets

developers access the latest code from
anywhere there is an Internet connec-
tion.

• Its unreserved checkout model to ver-
sion control avoids artificial conflicts
common with the exclusive checkout
model.

Control Chaos.com
http://controlchaos.com
Control Chaos.com is home to Scrum,
an agile, lightweight process that can be
used to manage and control software and
product development using iterative,
incremental practices. Wrapping existing
engineering practices, including eXtreme

Programming and RUP, Scrum generates
the benefits of agile development with
the advantages of a simple implementa-
tion. Scrum significantly increases pro-
ductivity and reduces time to benefits
while facilitating adaptive, empirical sys-
tems development. Advanced Develop-
ment Methods, Inc. maintains this Web
site to provide information, news, refer-
ences, and a cookbook description of
Scrum.

Air Force Research
Laboratory/Information
Directorate
www.rl.af.mil
The Air Force Research Laboratory/
Information Directorate (AFRL/IF) is a
confluence of information specialists,
electrical and computer engineers, com-
puter scientists, mathematicians, physi-
cists, and a supporting staff. The
AFRL/IF develops systems, concepts,
and technologies to enhance the Air
Force’s capability to successfully meet the
challenges of the information age. It
develops and integrates programs to
acquire data and to find better ways to
store, process, and fuse data to make it
into information. The AFRL/IF creates
the means to deliver and present tailored
information to allow the military deci-
sion maker to have the total sphere of
information needed for successful opera-
tions worldwide.

MIT System Safety and
Software Safety Research
http://sunnyday.mit.edu/safety.html
The goal of the Massachusetts Institute
of Technology’s (MIT) System Safety and
Software Safety Research project is to
develop a theoretical foundation for safe-
ty and a methodology for building safety-
critical systems built upon that founda-
tion. The methodology includes special
management structures and procedures,
system hazard analysis, software hazard
analysis, requirements modeling and
analysis for completeness and safety,
design for safety, design of human-
machine interaction, verification (both
testing and code analysis), operational
feedback, and change analysis.

WEB SITES

November 2004 www.stsc.hill.af.mil 27

You know it is impossible to fix
every problem at once so you

review the defect information looking
for something that will jump out and
say, “Fix me.” During your review of
the data, you find an item that grabs
your attention. You are confident that
you can reduce type xyz defects by 90
percent simply by providing the organi-
zation with an annual eight-hour
refresher-training course. You estimate
that it will cost $20,000 to develop a for-
mal training course, and you get man-
agement approval to implement the
idea. A few weeks later, you provide the
first eight-hour training course to a
team of 50 employees.

Six months later you analyze the data
and, to your credit, you exceeded your
goal: Type xyz defects were reduced by
95 percent. Unfortunately, you learn
that your savings in development and
rework costs is significantly less than
the annual costs for the training. You
also realize that all type xyz defects were
detected internally and none were ever
released to the customer. In order to
maintain your integrity, you brief man-
agement of your findings and recom-
mend discontinuing the annual eight-
hour training course.

You cannot try to solve every type of
defect at once so clearly you need a way
of prioritizing your efforts. You also
need a way of evaluating the possible
solutions (cost versus benefit) to deter-
mine the most effective solution. This
article is aimed at giving the reader
some ideas on what type of defect
information should be captured, and
ways to present that data. Armed with
the proper information, a defect pre-
vention team will be able to prioritize its
efforts, evaluate the effectiveness of the

proposed solutions, and determine the
proper corrective action.

Quantitative (Non-Statistical
Process Control) Data Analysis
As our Software Engineering Division
at the Ogden-Air Logistics Center
increased its focus on defect prevention
activities, the Extended Software
Engineering Process Group (ESEPG)
found that it was not receiving much
utility from its existing quality metrics.
At the request of the ESEPG, I began
analyzing its data in an effort to recom-
mend some potential metrics that would
facilitate defect prevention activities.

In my data analysis, I explored a vari-
ety of ways to show the data in order to
provide the ESEPG with the ability to
prioritize its efforts. Our group had col-
lected a vast amount of information, so
the first task was to develop appropriate
filters to give me a better ability to

extract the data in a manner that would
facilitate the analysis. My first look at
the information was by the category and
severity of the defect as shown in
Figure 1. If defects of a high severity
were getting through the process, then
this would be a logical starting point for
defect prevention activities.

As seen in Figure 1, almost all of the
recent defects were identified as being a
minor severity. At this point, I changed
the filters to extract the information for
18 different categories and types of
defects, and then again for 19 different
categories and locations for the defects.
Table 1 (page 28) provides an example
of how each defect is characterized by
category, type, and location.

The documentation defects analysis
showed that typographical errors in the
engineering documentation used to
maintain the product were the most
common defect type found during peer
reviews. I then began to perform a sim-

Your Quality Data Is Talking – Are You Listening?
David B. Putman

Ogden-Air Logistics Center

The transition from defect detection and removal activities to defect prevention activities may not be as smooth as you
would like. You may start asking, “Where do I start?” Or, you may have the feeling that you are not getting much
benefit from your defect prevention activities. You may also find yourself faced with a need to explore, evaluate, and
adopt new metrics. This article discusses some quantitative (non-statistical process control [SPC]) methods for looking
at your data; I will show the results of applying SPC to the same information, and provide a few “what next” options.
The intent of this article is to provide process improvement team members, program managers, and supervisors with
ideas for defect prevention metrics to help them identify and analyze problem areas and to help them prioritize and
plan their defect prevention activities. I have chosen to avoid discussing complex mathematical algorithms in favor of
providing charts to aid the reader in participating in brainstorming activities to identify metrics they will find useful for
their situation.

All Defects Found in the Last 12 Months

By Severity and Category

Category

Q
u

a
n

ti
ty

Software Process Document Hardware

Major
Moderate
Minor

Q

250

200

150

100

50

0

Figure 1: Quantity of Defects By Severity and Category

28 CROSSTALK The Journal of Defense Software Engineering November 2004

ilar analysis on the software defects
using the same type of metrics devel-
oped for documentation defects. Too
much information on a chart can make
it difficult to understand, so to keep the
information presentable, the documen-
tation metrics were displayed on one
chart and the software metrics on
another. A few items from both cate-
gories were selected to display on the
chart shown in Figure 2.

The information shown in Figure 2
can be used quite easily to convince a

defect prevention team that they need
to jump in and begin taking action to
reduce the number of typographical
errors. But the information presented
so far does not answer the question, “Is
working the typographical errors the
best use of our time?” To answer this, I
developed a chart similar to the one
shown in Figure 3.

Figure 3 shows an example of the
rework costs; this chart was developed
to enable an easy comparison between
Figures 2 and 3. Presenting and compar-

ing the information in this manner (as
shown in Figures 1-3) is a method that
you may want to consider to help prior-
itize your defect prevention activities.

Applying Statistical Process
Control
Knowing the information discussed ear-
lier, many teams may think, “We know
everything that we need to know. What
can statistical process control (SPC) tell
us that we don’t already know?” To start
with, the information shown in Figures
1-3 does not identify whether or not the
process is under control, and the charts
do not identify random events versus
non-random events. Non-random
events can be assigned to specific caus-
es, which you may be able to prevent or
take into future consideration as a risk.

At least seven watch-for indicators
have been identified as events that can
be assigned to a cause; they have a very
low probability of being random in
nature. These watch-for indicators
include the following:
• One or more points above the upper

natural process limit (UNPL) or
below the lower natural process limit
(LNPL).

• Seven or more consecutive points on
one side of the center line.

• Six or more points in a row steadily
increasing or decreasing.

• Fourteen points in a row alternating
up and down.

• Two out of three consecutive points
in the outer third of the control
region.

• Fifteen or more points in a row
within the center one-third region of
the chart.

• Eight or more points on both sides
of the control chart with none in the
center one-third region of the chart.
Using the same data, I generated the

Sample (X) and moving Range (XmR)
Control Charts for the total number of
defects found during each peer review.
The Sample (X) run chart is shown in
Figure 4.

The LNPL shown in Figure 4 was
not allowed to go below zero because it
is impossible to have a negative number
of findings. As can be seen in Figure 4,
only one anomaly occurred where the
number of peer review findings exceed-
ed the UNPL.

I was concerned that by including all
defect types in the run chart, I was
masking defects that could be assigned
to a cause. I then developed individual
XmR charts for 18 different types of

Software Toolbox

Quantity of Defects

Defect Type

Q
u

a
n

ti
ty

Software
Execution

Software
Flow

Software
Logic

Software
Style Guide

Software
Syntax

Document
Typo

Figure 2: Peel Back - Quantities of Some of the Defect Types

Rework Costs

Defect Type

T
o

ta
l
C

o
s
ts

 t
o

 F
ix

Software
Execution

Software
Flow

Software
Logic

Software
Style Guide

Software
Syntax

Document
Typo

Figure 3: Rework Costs per Defect Type

Table 1: Defects Characterized By Category, Type, and Location

Category Type Location

Software Syntax Source Code
Software Typographical Source Code (e.g., comment)
Documentation Typographical User's Manual
Documentation Typographical Customer Product Acceptance Form

Quantity of Defects

Defect Type

Q
u

a
n

ti
ty

Software
Execution

Software
Flow

Software
Logic

Software
Style Guide

Software
Syntax

Document
Typo

November 2004 www.stsc.hill.af.mil 29

Your Quality Data Is Talking – Are You Listening?

defects and for 19 different defect loca-
tions (okay, so I need a life). Peeling
back the data and looking at the specif-
ic defects revealed an additional 18
anomalies where the quantity exceeded
the UNPL. Figure 5 shows one of these
additional charts, which in this case
there were five instances in which the
quantity of defects exceeded the UNPL.

The result of this effort identified a
total of 19 anomalies1 in which the
quantity of defects exceeded the UNPL.
As I started looking at each anomaly, a
common attribute appeared in the data.
All 19 anomalies pointed back to one
small2 highly skilled team working on a
project in which the original proposal
was too optimistic and based upon an
unproven technology. The project
quickly went over schedule as soon as
the unproven technology failed to meet
or exceed the anticipated productivity.
The team was under a lot of pressure
from both the customer and manage-
ment to bring the project back on
schedule. The harder the team tried to
bring the project back on schedule, the
louder the voice of the process became.

As I further analyzed the project’s
data, I started using this analogy:
putting three valves on the end of a gar-
den hose does not increase the flow of
the water through the hose. The process
capability was limited by constraints
within the process such as manpower,
equipment availability, and equipment
throughput. In essence, the process
capability resisted heroic efforts to
bring the project back into the contract
schedule. When the employees tried to
rush through their own personal quality
checks, they were met with higher
defect rates found during the peer
reviews.

SPC Versus Non-SPC
The following is a comparison of the
two methods of quantitative analysis.

Non-SPC
The benefit of quantitative non-SPC
types of metrics is simplicity. The met-
rics and charts may seem easier to devel-
op, the metrics may take less time to
develop, and the audience may find
these charts a lot easier to understand.
Depending upon the data collected,
these may be about the only metrics the
team can develop. One drawback is that
you do not necessarily know up front if
the causes of the defects are random in
nature or attributable to specific causes.

Based upon the software style guide
rework costs shown in Figure 3, I rec-

ommended that the ESEPG first con-
sider a variety of training options to
reduce the style guide defects. The cor-
rective actions for these defects could
range from creating a heightened aware-
ness (such as a team staff meeting) of
the need to follow the style guide, to
providing the team with formalized
training on it. The cost of implementing
each of the proposed solutions can be
calculated, the annual rework costs are
known, and based upon the perceived
success of the proposed solutions, the
defect prevention team can determine
the appropriate corrective action plan.

SPC
The benefits of applying SPC tech-
niques as a project management tool are
that they may help identify problems
that could remain hidden by other quan-
titative analysis methodologies. The cal-

culations are a little more complex, but
once you set up your calculations in
something like a spreadsheet file then
the file can easily be changed for the
new set of data.

The results of this analysis led to a
decision that every program manager
will probably have to make sometime in
his or her career. The proper corrective
action was obvious, but at first it was
not well received by the customer. After
determining the process capability, I
calculated a new baseline for the project
and presented the new baseline to the
customer. My analysis included the neg-
ative quality impacts experienced from
trying to bring the project back on
schedule and the argument that the new
baseline would reduce life-cycle costs
by providing the customer with higher
quality products. The damage repair in
customer satisfaction took many

Figure3:Rework Costs per Defect Type

Figure 5: XmR Sample Chart for the Quantity of Defects Found in the
Engineering Documentation

Q
u

a
n

ti
ty

 D
e
fe

c
ts

 F
o

u
n

d
 p

e
r

P
e
e
r

R
e
v
ie

w
Q

u
a
n

ti
ty

 o
f

E
n

g
in

e
e
ri

n
g

 D
o

c
u

m
e
n

ta
ti

o
n

 D
e
fe

c
ts

Sample (X) Chart for Defects
in Engineering Documentation

Sample (X) Chart for All Defects

Figure 4: XmR Sample Run Chart for All Defects

Figure3:Rework Costs per Defect Type

Figure 5: XmR Sample Chart for the Quantity of Defects Found in the
Engineering Documentation

Q
u

a
n

ti
ty

 D
e

fe
c

ts
 F

o
u

n
d

 p
e

r
P

e
e

r
R

e
v

ie
w

Q
u

a
n

ti
ty

 o
f

E
n

g
in

e
e
ri

n
g

 D
o

c
u

m
e
n

ta
ti

o
n

 D
e
fe

c
ts

Sample (X) Chart for Defects
in Engineering Documentation

Sample (X) Chart for All Defects

Figure 5: XmR Sample Chart for the Quantity of Defects Found in the Engineering Documentation

months to achieve, but the last feedback
that I received was that customer satis-
faction did improve over time. The
team met the re-baselined plan and pro-
vided the customer with a higher quali-
ty product.

What Next?
All of the charts discussed in this article
provide a historical view of process
activities. Displaying the data in a man-
ner that shows trends may enable man-
agement to move from reactive manage-
ment toward proactive management
activities. I explored a variety of options
for trying to watch for trends in the
quality. One option that seemed to give
some insight into the process was to
show the trend of the probability of the
chance of one or more defects being
found; for each peer review I set a
yes/no flag to indicate whether any
defects of that nature occurred. I estab-
lished the probability calculation based
upon the sum of defects found in the
last 50 peer reviews. By using the infor-
mation from the last 50 reviews, I was
able to develop a chart with a moving
window (last 50) that would show a
trend in the data.

I chose to use the last 50 reviews for
two reasons. First, it was large enough
to give a fair representation of the prob-
ability of the defect occurring in the
product. The second reason was that
even with using a sample size of 50, the
time period spanning the reviews was
less than a year. Figure 6 shows the
trends for two of the defect types; the
undesirable trends include the increas-
ing probability of finding style guide
and typographical defects. Smaller
improvements in other defect types

added up to a noticeable improvement
trend in the probability of not finding
any defects. The probability of not find-
ing any defects was promising but the
undesirable trends again reinforced a
need to take action to reduce the style
guide and typographical defects.

Conclusion
The three attributes of the product
being developed are cost, schedule, and
quality. When projects fall behind
schedule and/or over-budget, then
efforts are made to bring the project
back on track, but it is undesirable to do
this at the expense of quality. Applying
the SPC concepts to the process
revealed that our current course of
action on one project risked delivering
poor-quality products to the customer.
In this case, the application of the SPC
concepts enabled us to change our
course of action to improve the quality
of the products delivered to the cus-
tomer.

As shown earlier, a lot of knowledge
can be gained by a careful analysis of
the data. By carefully analyzing the data
and comparing the perceived benefits
versus the costs, the defect prevention
teams can select activities that provide
the best return on investment.

Final Note
You may find automated charts to be
one of your greatest assets, but they can
also be one of your greatest liabilities.
The person that extracts the data, per-
forms the calculations, and builds the
charts seems to have a much better
understanding of the data behind the
chart than does the person that gets the
charts from an automated process.u

Notes
1. One anomaly (reference Figure 4)

plus an additional 18 anomalies iden-
tified by peeling back the data
equates to a total of 19 anomalies.

2. The project accounted for only 5 per-
cent of the workload within the
branch, yet 100 percent of the defect
anomalies pointed to that one project.

Additional Reading
1. Florac, W., and A.D. Carlton.

Measuring the Software Process:
Statistical Process Control for
Software Process Improvement.
Addison-Wesley, 1999.

2. Dove, Lt. Col. Phillip, et al. The
Quality Approach, Air Force
Handbook 90-502. Washington,
D.C.: Department of Defense, 1996.

30 CROSSTALK The Journal of Defense Software Engineering November 2004

Software Toolbox

About the Author

David B. Putman for
the past year managed
system safety, environ-
mental, and engineering
data teams at Ogden-Air
Logistics Center (OO-

ALC) and has recently returned to a
technical position in the Software
Engineering Division Maintenance
Directorate (MAS) at Hill Air Force
Base, Utah. Prior to this assignment, he
worked in software engineering for 24
years. He has more than 18 years experi-
ence in automatic test equipment (ATE),
including nine years as a senior engineer
in the Avionics Software Support
Branch, and more than three years man-
aging ATE workloads. He has also man-
aged F-16 Operational Flight Program
System Design and Integration Test
teams and the Operational Flight
Program Branch. He was the lead of the
Software Engineering Process Group
when OO-ALC/TIS (prior MAS organi-
zation) was assessed to be a Capability
Maturity Model® Level 5 organization.
He has a bachelor’s degree in electrical
engineering from the University of Utah
and a master’s degree in business admin-
istration from Utah State University.

Ogden-Air Logistics Center
6054 Dogwood AVE
BLDG 1255
Hill AFB, UT 84056-5816
Phone: (801) 775-2661
E-mail: david.putman@hill.af.mil

Figure6:Moving Window of the Probability of at Least One Defect, or No Defects, Being Found Figure 6: Moving Window of the Probability of at Least One Defect, or No Defects, Being Found

November 2004 www.stsc.hill.af.mil 31

BackTalk

In 1969, Stanford University psychologist Philip Zimbardo con-
ducted an experiment on human nature. He abandoned two

similar cars in different neighborhoods – one in the heart of the
Bronx, N.Y., the other in an affluent neighborhood in Palo Alto,
Calif. He removed the license plates, left the hoods open, and
chronicled what happened.

In the Bronx, within 10 minutes of abandonment, people
began stealing parts from the alluring car. It took approximately
three days to strip the car of all valuable parts. Once stripped of
economic value, the car then became a source of entertainment.
People smashed windows, ripped upholstery, and chipped the
paint – reducing the car to a pile of junk.

In Palo Alto, something quite different happened – nothing.
For more than a week, the car sat
unmolested. There was no theft,
vandalism, or even a scratch.
Puzzled, Zimbardo, in plain view
of everyone, took a sledgehammer
and smashed part of the car. Soon
passersby were taking turns with
the hammer, delivering blow after
satisfying blow. Within a few
hours, the vehicle was resting on
its roof, demolished.

Among the scholars who took
note of Zimbardo’s experiment
were two criminologists: James Q.
Wilson and George Kelling. The
experiment spurred their now
famous broken windows theory of crime. Their premise is that if a
broken window remains unrepaired, vandals will soon break a
building’s remaining windows.

Why is that? Aside from the fact that it is fun to break win-
dows, why does the broken window invite further vandalism?
Wilson and Kelling’s hypothesis is the broken window sends a
signal that no one is in charge, breaking more windows costs
nothing, and there are no consequences to breaking more win-
dows.

The broken window is a metaphor for ways behavioral norms
break down in a community. If one person scrawls graffiti on the
wall, others will soon be spraying paint. If one aggressive pan-
handler begins working a street block, others will follow. In short,
once people begin disregarding norms that keep order in a com-
munity, both order and community unravel.

Police in big cities have dramatically reduced crime rates by
applying this theory. Rather than concentrating on felonies, they
aggressively enforce minor offenses like graffiti, public drinking,
panhandling, and littering. This police enforcement sends a sig-
nal that broken-window behavior has consequences in a city. If
you cannot get away with jumping a turnstile in the subway, you
had better not try armed robbery.

At this point, you are wondering what crime in the streets has
to do with software development. The broken window theory
plays out in software development organizations daily. Software
managers inadvertently send signals that no one is in charge and
there are no costs or consequences to ignoring project norms.
Before you say “not on my project,” you might want to look for
some classical broken windows in your organization.

Problems arise when managers allow prima donnas to domi-

nate, intimidate, and dictate projects. It is tempting to let a tech-
nical superstar take the lead, especially for managers who ques-
tion their own engineering talent, but they will pay in the end.
Once ideas are stifled and insults start flying, team members will
opt out or limit their contribution to the project. The prima
donna will get overloaded and then the vandalism will begin.
Broken stained glass is still broken glass. Do you cultivate sages
who are inclusive and teach their craft, or prima donnas who hide
their weaknesses and feed their insecurities?

Do you have managers whose directions are clear as mud?
Like the opaque window in a bathroom, they appear to shed light
on the subject but in reality, things are not that bright or clear.
After a while, some engineers enjoy these opaque managers

because if directions are not clear
then accountability is not clear. If
accountability is not clear, then
this project is a free for all, so start
breaking the windows. Are you
blocking the light or letting the
sunshine in?

Troubles occur when man-
agers exert their authority by
hoarding information and tighten-
ing control. Collaboration and ini-
tiative are dirty words to these
comptrollers. Everything runs on
maximum management sanction
and minimum information shar-
ing. Processes stall or wander,

engineers revert to cruise control, and information flows like
Molly Brown through a portal window. Do you lead, manage, or
choke your projects?

Then there are indecisive managers, the sliding glass doors of
management. People are enamored with sliding glass doors until
they own one. Then you discover the door is always open when
you want it closed and kids are constantly running into it when
closed, thinking it is open. Like a sliding glass door, you never
seem to be accordant with indecisive managers. They never pro-
vide direction and avoid decisions until you make a move, then
there they are – blocking progress or letting the air out of your
project. Are you indecisive? Need more time to think about it?

Space and time is running out so we will have to discuss the
skylight manager, triple-pane glass manager, tinted window man-
ager, two-way mirror manager, and the cockpit canopy manager
another time.

The point is, once managers begin disregarding norms that
keep order in a project, both order and the project unravel.
Repair the broken windows in your management style and order
will return.

Amazingly, I think Wilson and Kelling’s theory may explain
the mystery of software quality. From its first release to present
versions, Microsoft Windows was released broken. Distributing
broken Windows sends a signal that no one is in charge, there are
no consequences, and breaking more Windows software is okay.
Software norms break down and our systems vandalized – all
from broken windows.

—Gary Petersen
Shim Enterprise, Inc.

Broken Windows

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Software Toolbox
	What the Agile Toolbox Contains
	A Revolutionary Use of COTS in a Submarine Sonar System
	A Survey of Anti-Tamper Technologies
	Safety Analysis as a Software Tool
	Three Essential Tools for Stable Development©
	Your Quality Data Is Talking – Are You Listening?

	From the Publisher
	Coming Events

	Call For Articles

	Web Sites

	BackTalk
	Back Cover

