Safety Analysis as a Software Tool

Blair T. Whatcott
Northrop Grumman Information Technology

As a software development tool, an independent software safety analysis by trained analysts reduces losses of develop-
ment resources and schedule, improves product quality, and prevents costly mishaps that occur during the operational
Dphase of the system life cycle. The key issues of an effective and efficient software safety analysis include (1) financial
and managerial independence from the software development activity, (2) trained and qualified personnel to perform
the analysis, and (3) a disciplined process that focuses the analysis effort, by priority, on the more safety critical areas.

Performing an independent system and
software safety analysis on embedded
software saves overall life-cycle cost and
schedule resources, and provides a better
overall product. The primary objective of
safety analysis is to find and remove
embedded safety related hazards in the
hardwate and softwate systems before a
mishap occurs.

Finding these embedded hazards early
in the development cycle reduces cost,
safeguards schedules, and improves prod-
uct quality [see Figure 1]. The reduction in
added costs and schedule slips due to
problems found late in the development
cycle and the improvement in product
quality justify the cost of performing an
independent software safety analysis.
Additionally, preventing a single cata-
strophic mishap by removing an embed-
ded hazard could more than pay for the
independent safety analysis effort many
times over, depending upon the system.

This article identifies key terms associ-
ated with system and software safety, pro-
vides a process for performing software
safety analysis, specifies the required envi-
ronment for efficiently and effectively pet-
forming safety analysis, provides cost and
schedule savings rationale, and identifies
issues that delay or prevent effective safe-
ty analyses. Although this article empha-
sizes performing safety analysis on soft-
ware, a thorough software safety analysis
includes a system safety analysis as many
of the embedded hazards occur at inter-
faces between system components.

When developing software systems, a
tool enables a developer to build better sys-
tems quicker. The systems are more effec-
tive, more efficient, and safer. Involving an
independent software safety analysis con-
tributes to these attributes and becomes a
tool that should be used in today’s complex
system development efforts.

Software Safety Analysis

Process
An effective process for performing a
software safety analysis includes four pri-

November 2004

mary steps (see Figure 2):

* Step 1. Identify safety-critical areas
and system safety hazards.

* Step 2. Trace implementation of safe-
ty-critical requirements to the design
and its corresponding code.

* Step 3. Verify correct system use and
implementation of safety-critical data
and processing.

* Step 4. Track identified hazards
throughout the system life cycle .

Each step is discussed in the following

paragraphs.

Step |

The first step is to list all system require-
ments, the relative level of safety criticali-
ty for each system requirement with
respect to the other requirements, and the
applicable documented hazards for safety-
critical requirements. Each system/sub-
system requirement must be evaluated for
criticality with respect to potential haz-
ards. The safety criticality of a require-
ment depends upon the identified hazards
and other items such as remoteness, con-
tributory impact, redundancies, and
human intervention.

System hazards vary depending upon
the function and use of the system. These
hazards must be identified and document-
ed. Sub-hazards that contribute to higher-
level hazards need to be specified to a suf-
ficient detail. An example of a hazard
might be erroneons activation of release.
Examples of corresponding contributing
sub-hazards could be (1) erroneous release
signal, (2) erroneous status display, and (3)
malfunctioning safety lock. This list of
system requirements becomes the plan
that is used to perform software safety
analysis.

Step 2

Using the safety criticality priority estab-
lished by the list from Step 1, the second
step is to evaluate requirements. This step
correlates the functional requirements to
(1) the top level and detailed level design

descriptions and (2) the source code

implementation. The code is verified for
correct implementation of the require-
ments as well as for correct syntax and
safe coding practices. This analysis also
includes identifying specific safety-critical
data items and processing within the
reviewed code module for use in the next
step. An example of a safety-critical data
item could be a weapon release variable.
An example of safety-critical processing
could be the processing required to set or
reset the release signal.

Requirements of higher safety criti-
cality are evaluated before those of lesser
criticality. The intent of safety analysis is
to find the more critical hazards that
would cause mishaps of higher severity.
As there will always be some residual
mishap risk, particularly when software is
involved, the task of performing a com-
plete and thorough software safety analy-
sis would be both cost prohibitive as well
as impossible. Consequently, items of
lesser safety criticality may not be

Figure 1: Software Safety Analysis Benefits

Software Safety
Analysis Benefits

Added Value
Cost Savings
Schedule Safeguarding

Improved Product Quality

Primary Objective
Prevention of Mishaps
Injury/Loss of Life
Loss of Equipment
Environment Damage

Figure 2: Software Safety Analysis Process

Safety Analysis Process

Identify safety hazards and safety-critical requirements.

. B

Trace requirements implementations
through design and code.

.

Verifying correct system use and implementation of
safety-critical data and processing.

. B

Track identified hazards throughout the system life cycle.

www.stsc.hillaf.mil 17

Software Toolbox

reviewed so that items that are more safe-
ty critical can be more deeply and com-
pletely reviewed.

Step 3

The third step is to evaluate the safety-
critical data and processing identified in
Step 2 in the context of the system.
Particular attention is given to the inter-
faces between subsystems, sequencing of
state changes, and timing windows of
vulnerability. This type of analysis is
oftentimes not given sufficient attention
during software development and testing
as well as peer reviews because of the
added complexity and time required to be
thorough.

Step 4

In the fourth step, identified hazards are
documented and communicated to the
development organization. The safety
analysis effort tracks the identified haz-
ard until it is removed from the software.
As software hazards tend to be repeated
in other areas and applications, the haz-
ard is added to the Jessons learned software
safety analysis database. The hazards
from this database, as well as hazards
identified on industry generic safety lists,
are used for training of safety analysis
engineers and for performing evaluation
checklists when future modifications are
made to the software being analyzed or
other software in other systems.

An example of a generic safety list
can be found in Appendix E of the Joint
Software System Safety Committee’s
“Software System Safety Handbook™ [1].
This combined list of software-specific
hazards is very large. It would be cost

prohibitive to analyze every line of code
against every item in the hazard list. The
implementation freedom that software
allows precludes an all-comprehensive
automated tool that checks every line of
code for every possible hazard. We have
found that a trained analyst who is cut-
rent with the list of software hazards is
more efficient and effective in perform-
ing the safety analysis. Software utilities
and tools can and are often used to help
the analyst more quickly locate similar
patterns, occurrences, and uses.

Software Safety Analysis

Environment

To petform effective and efficient soft-
ware safety analysis, an environment of
three components is required: (1) finan-
cial and managerial independence from
the software development activity, (2)
trained and qualified personnel to per-
form the analysis, and (3) a disciplined
process that focuses the analysis effort,
by priority, on the more safety-critical
areas [see Figure 3].

Each of these components is neces-
sary for a successful software safety
analysis. The absence of any undermines
the effort and the strength of the other
components. For example, without the
financial and managerial independence
from the development activity, the ana-
lyst may be directed in a way that inhibits
fully performing the analysis, or the dis-
cipline process is circumvented because
of management direction caused by a
need to use resources in areas other than
safety analysis. Similar examples can be
drawn for the absence of the other com-

Figure 3: Safety Analysis Environment for Success

Disciplined
process that
focuses
analysis in
priority on
more safety-
critical areas.

\sm

Safety Analysis Environment for Success

Trained and
qualified
personnel to
perform
analysis.

Financial and
managerial
independence
from software
development
activity.

N

1 8 CrRosSTALK The Journal of Defense Software Engineering

ponents.

Financial and managerial indepen-
dence ensures that specific resources will
be used for performing the software
safety analysis and that there is no con-
tlict of interest between the development
activity and the software safety analysis
activity. An example of a conflict of
interest could be the program office or
development organization controlling
the work of the safety analysis by direc-
tion toward or away from specific haz-
ards or risks. The criticality list from Step
1 is the road map that identifies the pri-
ority of safety-critical areas to be
reviewed. The resources are used in
accordance with this priority, which
means that safety-critical areas of lower
priority may not be reviewed or analyzed
because of the need to use resources to
analyze safety-critical areas of higher pri-
ority.

An example of implementing an
independent safety analysis effort would
be for the program office to contract
separate activities to the development
organization and the software safety
analysis organization. As such, reports to
the program office from the software
safety analysis organization are indepen-
dent of the software development activi-
ty. Another example would be to have
the safety office independently contract
to the software safety analysis organiza-
tion for work being developed by the
program office that is contracted to the
software development organization.

Performing a successful software
safety analysis requires a technical staff
that is qualified to perform safety analy-
ses and enjoys doing this type of work.
Most engineers prefer building new sys-
tems and being part of the development
process of major systems. Many engi-
neers find no interest in digging through
systems to find embedded hazards that
are not only difficult to find and under-
stand, but also have not evidenced them-
selves. It becomes the proverbial looking
for a needle in the haystack, except there
is really no clue that the needle is even in
the haystack or even in a number of
haystacks. Finding engineers who can do
this type of work and want to do it for
many years is difficult. Some can do
analysis for a year or so; however, the
strength of a software safety analysis
organization comes from analysts who
have done analysis for many years on
many systems.

Two pitfalls are seen when companies
set up software safety organizations.
First, individuals who are used to per-
forming software safety analysis activities

November 2004

are not correctly screened with respect to
ability and desire. Oftentimes, they are
selected from those who have not been
successful doing other code development
activities because of work habit issues or
lack of ability. The fallacy of doing this is
that performing successful analysis on
code that is generated by the develop-
ment activity requires individuals that are
better trained and more capable than
those who have developed the code.
They must be able to find embedded
hazards missed by other development
reviews and testing that could result in a
mishap during the operational phase of
the system life cycle.

The second pitfall of setting up soft-
ware safety organizations is that the
development activity expects that the
code developer should be able to gener-
ate good code that contains no safety
hazards. Consequently, the development
activity either sees no value in perform-
ing an independent safety analysis or lim-
its safety analysis resources to the point
that little can be done to effectively
accomplish a thorough safety analysis.
They fail to understand that there is a
basic difference between engineers who
develop code and engineers who analyze
code for embedded hazards. Engineers
who develop code are success oriented.
They move from the implementation of
one requirement to the next. They are
driven by a typically over-budget sched-
ule and are always anxious to cazh up.
Conversely, safety engineers analyze code
in the context of finding failures. They
move from analyzing one module to the
next only when they are convinced that
there are no embedded safety concerns.

Complexity Warrants Additional
Safety Analysis

With our mentality of getting the most
out of software development budgets
combined with the mindset that develop-
ers can generate hazard-free code, man-
agers pressure software developers to
generate code faster and more efficiently.
They insist that better processes, pride of
workmanship, better compilers and
development environment tools, code
walk-throughs, and peer reviews should
sufficiently guarantee safe code. It is true
that compilers and development environ-
ment tools are becoming more powerful,
but at the same time they are becoming
more complex. This additional complex-
ity warrants additional safety analysis. It
is true that code walk-throughs, peer
reviews, and other process improve-
ments result in better code; however,
they rely upon peers who are also behind

November 2004

Safety Analysis as a Software Tool

12].

ard severity and hazard probability.

exhausted.

management.

the system life cycle.

Safety Terminology

For the purposes of this article, the following safety-related terms are provided from

* A mishap is an unplanned event that results in death, injury, occupational illness,
equipment or property damage or the loss of, or environmental damage.

e Hazards are conditions that cause a mishap.

e The ultimate goal of a system safety program is to design systems that contain
no hazards. However, since the nature of most complex systems makes it impos-
sible or impractical to design them completely hazard-free, a successful system
safety program often provides a system design where there exist no hazards
resulting in an unacceptable level of mishap risk.

* Mishap risk is an expression of the possibility/impact of a mishap in terms of haz-

* Residual mishap risk is the remaining mishap risk after all mitigation techniques
(techniques used to remove or lessen the hazard) have been implemented or

e Safety is the freedom from hazards, which cause death, injury, occupational ill-
ness, equipment or property damage or loss, or environmental damage.

e The objective of a safety analysis is to achieve acceptable mishap risk through
a documented systematic approach to hazard analysis, risks assessment, and risk

» System safety is the application of engineering and management principles, cri-
teria, and techniques to achieve acceptable mishap risk, within the constraints of
operational effectiveness and suitability, time, and cost, throughout all phases of

schedule, over-budget, and anxious to get
their own work done. These distractions
lessen the effectiveness of the peer
review. Additionally, peer reviews tend to
focus on the module level and place less
emphasis at the system level where many
of the embedded safety hazards reside.

Software developers must be safety
conscious as they develop code.
However, in light of the above and their
success orientation, developers continue
to introduce embedded hazards in the
software development process; it is very
difficult for them to see their own errots.
E-mails are a vivid example. E-mail
authors re-read their own e-mails over
and over to verify correctness. They send
them out only to later find a glaring error
in the most awkward place that they
missed during multiple reviews. Some
well-known examples of software fail-
ures resulting in mishaps are described in
Appendix F of the Joint Software System
Safety Committee’s “Software System
Safety Handbook™ [1].

Engineers who effectively analyze
code for embedded hazards are con-
vinced that all software contains embed-
ded hazards and that it is only a matter of
time and circumstance before the haz-
ard(s) causes a mishap. The quality and
quantity of analysis is a function of the
analyst’s safety experience and undet-
standing of the code under inspection
within the context of the system.
Tangible products of the analysis may be

misleading as amount and quality of
product does not necessarily prove that
the right analysis was performed. On the
other hand, the tangible products of a
development effort do prove the efforts
of the development engineer.

From the development activity pet-
spective, if the code successfully per-
forms its intended function and matches
documented code standards, then return
on investment is evident. Failure to iden-
tify embedded hazards does not confirm
that quality analysis has not been per-
formed any more than the identification
of some embedded hazards ensures that
all hazards have been found. The analyst
decides the correct amount of effort
spent in the analysis of a safety-critical
area for hazards without evidence of
their existence based on his or her expe-
rience and understanding.

In summary, development engineers
are good at building new systems in the
context of a driving schedule. Software
safety engineers are good at evaluating
code for embedded hazards. Requiring
development engineers to constantly
evaluate their code with the understand-
ing that something is wrong and there are
embedded hazards seriously takes away
from the success orientation that enables
forward progress. Software safety analy-
sis engineers are attuned to the identifi-
cation of embedded hazards and the
amount of resources requited to fully
analyze a safety-critical area of code. Just

www.stsc.hillaf.mil 19

Software Toolbox

as letting off an automobile’s gas pedal
does perform some slowing, and letting
off the brake pedal allows continued
movement, both the gas pedal and the
brake pedal are required for efficient
handling. A combination of develop-
ment engineers and software safety engi-
neers in an independent environment
provides a product that is synergistically
more than if either were to do both
tasks.

The software safety analysis process
combines the people and the resources
to produce the most effective and effi-
cient product possible. The process
ensures that priorities are followed,
products are produced, and schedules
are met. The four primary steps of a
software safety analysis process have
been described. Necessary products of
the safety analysis include a criticality
analysis report from Step 1, problem
reports from all steps, and a software
safety analysis report — including testing
and analysis summaries — from Step 2
through Step 4 of the process. When a
thorough and conscientious software
safety analysis is complete, and safety
hazards have been identified and
removed, the resulting summary report
becomes a tangible product that indi-
cates with a high level of confidence that

the examined software will not be the
source of a system mishap.

Issues That Hinder Software
Safety Efforts

There are many reasons why organiza-
tions mistakenly choose not to include a
software safety analysis activity eatly in
the code development cycle (see Table 1).
These include the following:

1. Organizations erroneously believe
that performing software safety
analysis only needs to be done when
code has been generated. They
believe that they can
resources during the requirements
definition and design disclosure phas-
es by waiting until code is released to
involve the software safety analysis
effort. They fail to understand the
importance of evaluating system and
functional requirements with respect
to safety prior to design, and of eval-
uating the design disclosure with
respect to safety prior to coding
Safety concerns found during the
implementation phase after the code
has been generated require re-evalua-
tion of the requirements, redesign,
and recoding. This results in wasted
resources and schedule slips because

conserve

Table 1: Mistaken Reasons Why Software Safety Is Not Included During Early Phases of the

System Development Life Cycle

Mistaken Reasons Why Software Safety Is Not Included During
Early Phases of System Software Development Life Cycle

Reason

Actual Need

Conserve funds because there is no code
to review.

Early evaluation of requirements and design
precludes costly coding and testing errors.

Difficulty establishing a contract with an
independent organization to do safety.

Most major defense contractors have General
Services Administration-type contracts that could
support safety efforts.

Misconception that good coding processes
preclude embedded safety hazards.

Success orientation of development engineers
results in missed errors; development
environment pressures prevent thorough
system and interface analysis.

Failure to budget in software safety
analysis activities.

Software safety analysis needs to be budgeted
independently of development activity budgets.

Lack of mishap evidence if hazard found
and removed.

The objective of software safety is to remove
hazard before mishap; prevention of one
catastrophic mishap more than pays for safety
analysis effort.

Lack of software safety analysis expertise
and processes.

Evaluate potential safety analysis
organizations on track record, processes,
and staff.

Problems found in safety analysis cause
additional work impacts.

20 CrossTALK The Journal of Defense Software Engincering

Early identification of safety problems saves
resources by preventing redesign, recode,
retest, and prevents mishap.

of the necessary review and rework.
This is further impacted by the soft-
ware safety analyst’s need for time to
become familiar with the function,
requirements, design, and code of the
software under analysis. If this need
is put off until code is released, then
safety concerns are, consequently,
identified later in the implementation
phase, resulting in additional wasted
resources because testing must also
be repeated due to reworked require-
ments, design, and code.

2. Government organizations find it dif-
ficult and time consuming to estab-
lish a contract with an independent
organization to do software safety
analysis. It is important to start the
process eatly to take into account the
lead times as well as the need for
either contracting directly with the
software safety analysis company or
using a contract vehicle already in
place by the contractor.

3. The organization erroneously be-
lieves that a good code development
process will preclude all embedded
safety hazards. Mishaps caused by
software occur in fielded systems that
were developed under good process-
es. As described earlier, an indepen-
dent software safety analysis can find
embedded hazards and prevent
mishaps when trained and experi-
enced analysts are used and the soft-
ware safety analysis process is fol-
lowed.

4. Organizations fail to factor into their
budget the software safety analysis
activity when cost projections are
supplied to planning activities. Upon
program execution, they severely limit
or do not fund software safety activi-
ties because of the difficulty of find-
ing unbudgeted resources to cover
safety. Including software safety
analysis activities in the master budget
plan is critical to software safety.

5. The lack of mishap evidence gives
the program manager a false impres-
sion of the safety state of the soft-
ware being developed. If an embed-
ded hazard is found and removed,
there is no evidence that the mishap
would have ever occurred. Embedded
hazards cause catastrophic mishaps
only when a set of combining cir-
cumstances simultaneously occurs. A
thorough analysis covers areas and
combinations of events that are
either difficult to test or are not test-
ed because of limitations due to test
time and tester expertise.

6. Organizations have difficulty finding

November 2004

software safety analysis expertise and
processes. As described eatlier, effec-
tive analysis is a function of the
expertise and experience of the ana-
lyst. Qualified sources for software
safety expertise will probably be more
costly because of the need to employ
this level of expertise and experience.
7. Organizations are concerned that
problems found by software safety
analysis will cause additional work
that impacts schedule and resource
needs. Reputable organizations do
not generate unsafe software.

However, because of the nature of

embedded hazards that result in

mishaps, there is always the concern
that large amounts of resources are

spent to prevent mishaps that have a

very low probability of occurring.

These organizations fail to undet-

stand that providing a small level of

software safety analysis can greatly
lower the probability of a mishap
occurring,

Each of these mistaken reasons is
real. Together they may discourage using
software safety analysis as a tool to gen-
erate a better product for less cost.
Finding these embedded hazards eatly in
the development cycle reduces cost, safe-
guards schedules, and improves product
quality. Our experience shows that a
requirements problem that is not found
until the test phase of the software
development cycle results in the loss of
70 percent of the time used to design,
code, and test the implementation of
that requirement.

Summary
We live in a world that is averse to unsafe
conditions. We also live in a world that
applies heavy pressure to building the bez-
ter and faster more efficiently. The con-
flicts between these two mindsets are
profit and risk. The courts of the land
insist daily upon the responsibility of the
product provider. Flashy packaging and
brand-name recognition oftentimes erro-
neously instill within us a false sense of
trust. And if we are harmed, our loss of
productivity and capability demands
compensation in order to survive.
Software safety analysis as a tool
results in a safer and better product at a
cost and schedule savings. Early involve-
ment is critical to an efficient and effec-
tive analysis effort. Software require-
ments hazards will be found and
removed during the requirements phase.
Hazards found during the other software
development phases will be found during
the correct phase, preventing loss of

November 2004

resources and schedule.

Software development teams want to
generate a quality product, but are hesi-
tant to have independent activities per-
form analysis on their product. A change
of mindset will result in a synergistic
team that produces a superior product.
Development engineers will be able to
do what they do best in a success-orient-
ed environment within their resources
and schedules. Software safety analysis
engineers will provide the necessary
checks and balances that result in a supe-
rior product, free of embedded hazards.
When these work as a team, software
development will cost less and be pro-
vided on schedule in our wortld of con-
tinuous change and improvement. 4

References

1. Joint Software System Safety
Committee. Software System Safety
Handbook. Washington, D.C.:

Department of Defense, Dec. 1999
<www.egginc.com/dahlgren/files/
ssshandbook.pdf>.

2. Department of Defense. “Standard
Practice for System Safety” MIL-
STD 882D. Washington, D.C.: DoD,
10 Feb. 2000 <www.safetycenter.

navy.mil/instructions/osh/milstd
882d.pdf>.

Safety Analysis as a Software Tool

About the Author

Blair T. Whatcott is the
lead engineer and pro-
gram manager of the
Software and System
Safety Analysis Program

I Office in the Infor-
mation Solutions Department of
Northrop Grumman Information

Technology. He has managed and been
lead engineer on independent verifica-
tion and validation and software safety
analysis projects for more than 18 years.
These projects have focused on detailed
analysis and testing of embedded soft-
ware in military aircraft and weapon
systems. He has a bachelot’s degree in
electrical engineering from Brigham
Young University, Provo, Utah.

Northrop Grumman
Information Technology

1530 N Layton Hills PKWY
STE 200

Layton, UT 84041-5683

Phone: (801) 773-5274 ext. 13
Fax: (801) 773-5262

E-mail: blair.whatcott@ngc.com

CALL FOR ARTICLES

If your experience or research has produced information that could be useful
to others, CROSSTALK can get the word out. We are specifically looking for
articles on software-related topics to supplement upcoming theme issues.
Below is the submittal schedule for four areas of emphasis we are looking for:

Cost Estimation
April 2005
Submission Deadline: November 15, 2004

Configuration Management
June 2005
Submission Deadline: January 17,2005

Software: More Than Just Code
August 2005
Submission Deadline: March 14, 2005

Software Safety/Security
September 2005
Submission Deadline: April 19, 2005

Please follow the Author Guidelines for CrossTalk, available on the
Internet at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on all
software-related topics at any time, along with Letters to the Editor and BackTalk.

ww.stsc.hillafmil 21

