Software Certification Laboratories
To Be or Not to Be Liable?

Jeffrey Voas
Reliable Software Technologies

Software certification laboratories (SCLs) will potentially change the manner in which software is graded and
sold. However, a main issue is who is liable when, during operation, certified software acts in a manner that
the SCL certified was not possible. Given softwares inherently unpredictable behaviors, can SCLs provide
precise-enough predictions about software quality to reduce their liability from misclassification to a rea-
sonable level? SCLS survival and effectiveness largely depend on solving the issues of certification liability.

will often hear terms such as “inde-

pendent laboratory,” “second opin-
ion,” “additional tests,” or “colleague
consultation.” What these amount to is
a doctor getting another party or pro-
cess involved in a diagnosis or treat-
ment decision. Doctors use outside
authorities, in part, to reduce the risk of
malpractice. The more consensus built
with respect to a particular course of
action, the more due diligence has been
shown. And more parties are culpable if
something goes wrong. For instance, if
a medical laboratory returns a false
diagnosis that a tissue sample is cancer-
ous and the doctor begins treatments
that were not necessary, the doctor can
ascribe some or all of the liability for
this mistake to the laboratory. The
added costs from spreading liability
around in this manner are one reason
for the cost increases in health care.
Each extra opinion and extra test in-
crease patient costs, because each care
provider is a malpractice target.

I f you visit a doctor’s office, you

A Demand for Independent
Certification

In the software world, a similar phe-
nomenon is being observed. Software
producers and consumers are more
frequently demanding that independent
agencies certify that programs meet
certain criteria. Vendors prefer to not
be responsible for guaranteeing their
software, and software consumers want
unbiased assessments that are not based
on a sales pitch. Incredible as it may
seem, vendors, who typically “cut all
corners” in costs, are willing to pay the

April 1998

costs associated with placing this re-
sponsibility on someone else.

Because of the demands for SCL
services, business opportunities exist for
organizations that wish to act in this
capacity. By paying SCLs to grant soft-
ware certificates, independent software
vendors (ISVs) partially shift responsi-
bility onto the SCL for whether the
software is “good.” The question is
whether this method of liability transfer
will be as successful in software as it has
been in health care. As we will discuss,
if SCLs set themselves up right, they
can build more protection around
themselves than you might think, leav-
ing the ISV holding a “hot potato.”

There are several relatively obscure
SCLs in existence today, e.g., KeyLabs,
which handles applications for 100
percent pure Java. Other than these
small, specialized laboratories, the next
closest match to an SCL (conceptually
speaking) is Underwriter’s Laboratory
(UL). UL certifies electrical product
designs to ensure that safety concerns
are mitigated. Rumors are that UL is
interested in performing SCL services,
but to my knowledge, UL has not yet
become an SCL.

Commercial software vendors are
not the only organizations that see the
benefit of SCLs. NASA felt the need for
standardized, independent software
certification for the software they write
and purchase. NASA now has an
SCL—the Independent Verification and
Validation Facility in Fairmont, W. Va.
Intermetrics is the prime contractor at
the facility, and their job is to oversee
the certification process and provide the

necessary independence. This SCL pro-
vides NASA with a common software
assessment process over all software
projects (as opposed to each NASA
center performing assessments in differ-
ent ways). The NASA facility certifies
software developed both by NASA em-
ployees and NASA' contractors.

The beauty of having SCLs is that
they provide a quasi-fair “playing field”
for all software vendors—each product
is supposed to be given equal treatment.
The issue is that when software fails in
the field, and an independent party
provided an assessment that suggested
that the software was good, does the
independent party bear any responsibil-
ity for the failure?

Who Is Liable When Software
Fails?

Who is liable when certified software
fails—the ISV, the SCL, both, or nei-
ther? More specifically, how is liability
divided between these groups? First, the
question of how much liability, if any,
can be placed onto the SCL will be
addressed. By figuring out the liability
incurred by an SCL for its professional
opinions, we can determine how much
liability is offloaded from the ISV.

Limiting Liability

SCLs stand as experts, rendering unbi-
ased professional opinions. This exposes
SCLs to possible malpractice suits.
Schemes to reduce an SCLS liability
include insurance, disclaimers on valid-
ity of the test results, and SCLs employ-
ing accurate certification technologies
based on objective criteria. Of these,

CROSSTALK The Journal of Defense Software Engineering 21



Software Engineering Technology

the best approach is to only certify
objective criteria, and avoid trying to
certify subjective criteria.

Subjective vs. Objective Criteria
Different software criteria can be tested
by SCLs, spanning the spectrum from
guaranteeing correctness to counting
lines of code. Subjective criteria are
imprecise and prone to error. Objective
criteria are precise and less prone to
error. For example, deciding whether
software is correct is subjective because
of the dependence on the precise defini-
tion of “correctness.” SCLs should avoid
rendering professional opinions for crite-
ria that are as contentious as this.

Instead, SCLs should assess objec-
tive software characteristics such as
exception handling calls and lines of
code. Testing for objective criteria is not
rocket science. Troubles will begin,
however, when an SCL tries to get into
the tricky business of estimating a sub-
jective criterion such as software reli-
ability. By only certifying objective
criteria, the chances of inadvertent
favoritism for one product over another
is reduced.

The ICSA Certification Approach
The International Security Computer
Association (ICSA) is a for-profit SCL
that has taken an interesting approach
to the liability issue. They use industry
consensus building. ICSA only certifies
that specific known problems are not
present in an applicant’s system. This is
an objective criterion. Their firewall
certification program is based on the
opinions of industry representatives
who periodically decide for which
known potential problems the software
should be checked. Over time, addi-
tional criteria are introduced into the
certification process. This adaptive
certification process serves two pur-
poses: it adds rigor to the firewall certi-
fication process and produces a steady
stream of business for the ICSA. To
further reduce liability, ICSA does not
claim that their firewall certificate
guarantees firewall security.

22 CrossTALK The Journal of Defense Software Engineering

ISVs’ Liability Concerns

ISVs have a different liability concern,
particularly when their software fails in
the field. For example, suppose an SCL
says that an ISV'’s software is “certified
to not cause problem X.” If the soft-
ware causes problem X and fails, and
the ISV faces legal problems, can the
ISV use their SCL certificate as evi-
dence of due diligence? Can the ISV
assign blame to the SCL? The answer to
the first question is “probably,” and the
answer to the second question depends
on what “certified to not cause problem
X” means. If the certification was based
on objective criteria and the process was
performed properly, the ISV probably
cannot blame the SCL. If the process
was improperly applied, the SCL may
be culpable. If subjective criteria were
applied, the answer is unclear.

If the SCL used consensus building
to develop their certification process,
the question that may someday be
tested in the courts is whether abiding
by an industry consensus on reasonable
criteria protects SCLs from punitive
damages. Generally speaking, as long as
a professional adheres to defined stan-
dards, punitive damages are not admin-
istered. Professions such as medicine,
engineering, aviation, and accounting
have defined standards for professional
conduct.

Lack of Professional Standards
Software engineering has never had
such standards, although several unsuc-
cessful attempts to do so have been
staged. Also, there are no state-of-the-
practice rules to determine if code
meets professional standards. For ex-
ample, the title “software engineer” is
legally invalid in 48 of 50 states. In
these states, the title “engineer” is re-
served for people who have passed
state-sanctioned certification examina-
tions to become professional engineers
[1]. Because the software engineering
field does not have professional stan-
dards, it could also be argued that the
actions of organizations such as the
ICSA are laudable.

Because software engineering has no
professional organization to accredit its
developers, the approach taken by the

ICSA could also be argued in a court of
law to be state of the practice. If argued
successfully, software developers whose
software passed the certification process
could expect to avoid punitive damages.
But if these state-of-the-practice stan-
dards are deliberately weak, even
though consensual, satisfaction of the
standards may fail to persuade a jury. It
is widely held by the public that the
policy of industry self-regulation has
failed. When those being forced to
comply are those making the rules, are
the rules trustworthy? Challenges in the
courts could be foreseen, claiming a
conflict of interest. This would invali-
date claims that consensus-based stan-
dards sufficiently protect customers.

However, the commercial aviation
industry is an example of the successful
application of industry-guided stan-
dards. Rigorous software guidelines in
the DO-178B standard were approved
through industry and government con-
sensus. These software safety guidelines
remain the most stringent software certi-
fication standards in the world. It is clear
that the Federal Aviation Administra-
tion’s influence played a role during the
formation of these standards.

There are self-correcting mecha-
nisms that work to some degree in self-
policing industries. If an industry such
as air travel failed to police itself, it
would lose so much favor with its cus-
tomer base that the entire industry
could fail.

Limiting ISV Liability

Possibly the best defense for any ISV is
the use of disclaimers, not reliance on
an SCL. There is a perverse advantage
to disclaiming one’s own product. The
less competent an ISV portrays itself to
be, the lower the standard of profes-
sionalism to which it will be held. Tak-
ing this principle to an extreme, we
might suggest that a disclaimer be in-
cluded in a comment at the top of each
program stating, “This software was
developed by incompetent people try-
ing to learn how to program, and it
probably does not work.” The degree to
which this tongue-in-cheek disclaimer
reflects reality is a sad commentary on
the state of our industry. But until more

April 1998



cases are tested in the courts, no one
knows how much protection software
disclaimers will afford.

Article 2B

There is one more interesting develop-
ment that has occurred: a draft of Ar-
ticle 2B of the Uniform Commercial
Code (UCC) (which pertains to com-
puters and computer services) was re-
leased Nov. 1, 1997 [2]. Article 2B will
play an important role in defining soft-
ware warranties. Article 2B will only
serve as a model template, and each
state in the United States will be re-
sponsible to modify it to their standards
before adopting it as law. Further, Ar-
ticle 2B has the potential to relax the
liability concerns that might force an
ISV to use a certification laboratory.
This could turn out to be a disaster for
those parties most concerned with soft-
ware quality.

Conclusion

Before we can determine what role
SCLs will play in software liability, we
must wait for more cases to be tested in
court to see to what standard of profes-
sionalism ISVs are held. If the criteria
for which SCLs test are not meaningful,
SCLs will find that neither developers

Software Certification Laboratories: To Be or Not to Be Liable?

nor consumers of software care about
the certification process.

For SCLs to succeed, it also is im-
perative that they employ accurate
assessment technologies for objective
criteria. If SCLs do this, malpractice
suits against them will be difficult to
win unless they mishandle a particular
case or make false statements.

This article is entitled “Software
Certification Laboratories: To Be or
Not to Be Liable” because until these
hard issues are resolved, it is hard to
measure the degree of liability protec-
tion afforded an ISV by hiring the
services of an SCL. Nonetheless, if
SCLs can measure valuable criteria (and
by this I do not mean “lines of code™)
in a quick and inexpensive manner,
SCLs have the ability to foster greater
software commerce between vendors
and consumers. This could move an
SCL certificate from being viewed as a
tax to a trophy. ¢

About the Author

Jeffrey Voas is a co-founder of and chief
scientist for Reliable Software Technolo-
gies and is currently the principal investi-
gator on research initiatives for the De-
fense Advanced Research Projects Agency
and the National Institute of Standards

and Technology. He has

published over 85 re-
. fereed journal and con-
ference papers. He co-
wrote Software
Assessment: Reliability,
Safety, Testability (John
Wiley & Sons, 1995) and Software Fault-
Injection: Inoculating Programs Against
Errors (John Wiley & Sons, 1997). His
current research interests include informa-
tion security metrics, software dependabil-
ity metrics, software liability and certifica-
tion, software safety and testing, and
information warfare tactics. He is a mem-
ber of the Institute of Electrical and Elec-
tronics Engineers and he holds a doctor-
ate in computer science from the College
of William & Mary.

Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166

Voice: 703-404-9293

Fax: 703-404-9295

E-mail: jmvoas@rstcorp.com

References

1. Jones, C., “Legal Status of Software
Engineering,” IEEE Computer, May
1995.

2. UCC Article 2B (Draft), November
1997, the American Law Institute and
the National Conference of Commis-
sioners on Uniform State Laws.

CMM, from page 20

time and within budget. Best of all, we
achieved exceptional customer satisfac-
tion, which is, after all, what counts. ¢

About the Author

Rita Hadden is the information systems
performance practice leader at Project
Performance Corporation. She has pro-
vided leadership, coordination, and
coaching on more than 70 software
projects for more than 35 organizations.

April 1998

Her software engineer-
ing and management
experience includes 28
years working with
multiple teams of devel-
opers and managers.
o She has successfully
managed cross-platform information
system projects for the private and public
sectors. She is an acknowledged leader in
industry best practices, software process

improvement, and corporate culture
change. She has helped organizations
worldwide mature their software capabili-
ties and meet their business objectives.
She is certified by the SEI as a lead soft-
ware process assessor.

Project Performance Corporation
20251 Century Boulevard
Germantown, MD 20874

Voice: 301-601-1810

E-mail: rhadden@ppc.com.

CROSSTALK The Journal of Defense Software Engineering 23



