
CROSSTALK The Journal of Defense Software Engineering 11January 1999

As we all know, the Y2K prob-
lem is so serious that it may affect
 you personally. If you are being

caught late in the game, engaged in an
emergency bout of planning, the first
thing you should ask yourself is, “What
is the scope of my problem?”

Galorath Incorporated estimates
resource requirements for software
development, particularly the staffing
and the scheduling required to accom-
plish a particular software project. Re-
cently, we have been asked to estimate a
number of Y2K renovation projects
because of our traditional expertise in
modeling software modification and
reengineering; Y2K work is in many
ways an extension of such traditional
work. However, we have experienced a
learning curve of our own. Although
you can and should apply the lessons of
the past, Y2K work does have a lan-
guage and concerns of its own.

In this article, we share our experi-
ence estimating Y2K work using the
SEER-Year2K model we have developed.
Every Y2K job is different, so you first
need to carefully assess your software
inventory before applying any model.
When estimating a Y2K job, you also
should not apply rules of thumb devel-
oped on the basis of macro, even na-
tional-level data, if you want an accurate
assessment of your costs.

There are many different recipes to
describe Y2K activities; our research
approach was to merge commonly ac-
cepted Y2K renovation activities with
those we have developed to categorize
other forms of rework.

Legacy Sizing
To obtain good Y2K renovation esti-
mates, you must measure the size of
your legacy code. The two most com-

mon metrics for software size are func-
tion points and lines of code, both of
which are supported in our method.
However, for Y2K work, lines of code
are usually the preferred measure: It is
far easier to apply an automatic line
counter to legacy code than it is to
develop a laborious, manual function
point count. Furthermore, changes in
software will usually be made in a line-
by-line fashion whether by automatic
or manual methods.

It is more difficult or impossible to
develop meaningful line-of-code esti-
mates for items like database files; for
these situations, we rely on more ideally
suited function points. A size estimate
may thus combine lines of code with
function points when necessary. As long
as there is no overlap in what is counted,
this is perfectly legitimate.

If you are able to size a good amount
of your legacy code, but not all of it, you
can apply this knowledge to areas you
know less about. This is called estimating
by analogy. Simple analogies are as easy
as saying, “This and that have a similar
magnitude.” There are more sophisti-
cated analogy procedures that can pro-
duce risk ranges, in addition to produc-
ing more accurate estimates.

Effective Size vs. Legacy Size
One big mistake made when scoping
Y2K renovation requirements is to as-
sume that all legacy software needs treat-
ment. There is, in fact, a difference be-
tween total legacy size and the effective
size of the software undergoing repara-
tion. Our model computes effective size
through a series of rework percentages,
which is discussed in the next section.
Imagine effective size as the contents of a
box, as depicted in Figure 1.

Although total size represents all the
code you own, effective size is the code
impacted by Y2K rework requirements.
These requirements may involve simple
testing or actual changes. Changes may
be made manually or using a Y2K “solu-
tion” product. Much of the effort re-
quired for a good Y2K rework estimate
is therefore involved in assessing the
effective size.

When doing an overall estimate of
rework required, there is a balance be-
tween details required and essentially
macro knowledge. We have learned that
this dichotomy can be embodied in
overall size estimates that are then ad-
justed downward using sets of special-
ized percentages; we call this the adjust-
ment to effective size, a process that is by
no means straightforward. You need to
first define the percentage items, then
figure out how these percentages should
be used to adjust the gross size estimate.
We have acquired many data sets of
projects completed, in addition to much
heuristic knowledge and post-validations
of our estimates, which have guided us
toward proper definition of percentages
and their formulaic specification.

Rework Items
This section describes rework categories
for Y2K renovation that we have devel-
oped for our estimates. These originate
from our knowledge of renovation is-
sues, the experience of others, and our
recent Y2K consulting engagements.
Although the computations used are

Estimating Y2K Rework Requirements
Lee Fischman, Galorath Incorporated

Patricia A. McQuaid, California Polytechnic State University

Especially at this late juncture, critical decisions regarding year 2000 (Y2K) projects need to be
grounded in an understanding of the true scope of rework requirements for assessed systems. This
article discusses how to characterize Y2K renovation work and what the scope of that work might be.

Figure 1. Effective size of the software undergoing
remediation.

12 CROSSTALK The Journal of Defense Software Engineering January 1999

specific to our model, the definitions
should provide robust ground rules to
evaluate your work. We have added
detailed “Y2K Advice” sections to guide
you in this. The rework items covered
include
• Reverse Engineering Required.
• Date-Related Design Change.
• Specification Updates Required.
• Manual Recoding Required.
• Automated Recoding Required.
• Automated Conversion Verification.
• Programmer and Unit Testing Re-

quired.
• Test-Bed Preparation.
• Application Testing.

The diversity of these categories is a
strength, since misspecification of any
one category is not likely to drive the
estimate too far off. The following
sections provide details on these rework
categories.

Reverse Engineering Required
This is the percentage of code (relative to
the total application size) that a technical
staff must review to understand what is
happening at the code level. Include
only those lines of code with which
someone must be familiar for the appli-
cation to be considered “reviewed.”

Whole blocks of code may theoreti-
cally undergo “review,” but lines thor-
oughly analyzed may be slight. In this
case, the percentage of reverse engineer-
ing would only be the lines studied. Let
us say that a “100 percent code review”
translates into a scan across all code but
only at the level of function calls—
function contents are not examined. In
this case, the percentage of reverse engi-
neering is far lower than 100 percent—
it may even be 1 percent or less.

To determine the percentage of re-
verse engineering, consider
• The level of familiarity with the

system’s internal logic. Systems that
have been informally maintained
over the years may now require basic
understanding (ultimately expressed
as flowcharts, entity-relationship
diagrams, data flow diagrams, data
dictionaries) before substantial reno-
vation can begin.

• Formal documentation requirements
may mandate additional reverse

engineering, other than that neces-
sary to complete work.

• Redocumenting requirements. These
may be closely related to reverse
engineering.

Y2K Advice
Outside teams may have to reverse engi-
neer code to orient themselves to basic
architecture and design. Code analyzers,
scanning methods, and other automated
tools may mitigate the need to reverse
engineer—do not include the code cov-
ered by automated methods in this per-
centage. Older applications have higher
levels of hidden utility and therefore
require a more detailed approach, which
often translates into additional reverse
engineering.

Date-Related Design Change
These are date-related design changes
measured relative to the total applica-
tion size. Design is at a level that covers
everything except actual programming.

To determine the percentage of rede-
sign required, consider changes to
• Data structures, e.g., data-type

changes, new or deleted fields, and
expansions. When redesigning these,
think in terms of the amount of code
necessary to carry the design in a
given data structure (such as in a
structured query language CREATE
command).

• Object methods.
• Date-related data passage between

functions.
• Operating system-related issues, e.g.,

memory usage and date and time
functions.

• Design changes at the function level
(this does not include isolated code
changes that do not change the
function’s design).

Y2K Advice
Consider the changes that actively ad-
dress date issues. These include bridges
to noncompliant external applications,
encapsulation of potentially troublesome
code to capture noncompliant dates, on-
the-fly record format translation,
windowing of two-digit years, redesign
of date logic, representation, and ma-
nipulation.

Specification Updates Required
This is the percentage of new documen-
tation to be developed compared to total
existing documentation.

Redocumentation relates to both
the proportion of a system being
redocumented and the coverage of that
documentation. An application may be
well described at a high level, but this
may only amount to a small percentage
of what comprises the application.
Only if requirements spell out that
every single line of code be mentioned
in new documentation is redocumen-
tation 100 percent.

Redocumentation can also be
thought of as the amount of code of
which a technician must be cognizant to
adequately document a system; in this
way, it may be closely related to reverse
engineering. Thus, a short report that
describes a large system, which took only
a few days to produce, is likely to fall
into the low percentage ranges.

To determine the percentage of up-
dates required, consider
• Comments. When inserted into the

code, they are not part of formal
documentation; however, this may be
a part of reverse engineering.

• Documentation. If documentation
must be completely rewritten, this
does not necessarily mean 100 per-
cent redocumentation. Documenta-
tion is calculated only with respect to
the full application.

• Formal documentation requirements.
Informal development shops with no
formal processes or standards have
documentation requirements that are
typically orders of magnitude lower
than those for shops that follow
stringent standards.

Y2K Advice
Consider the state of existing formal
documentation for this application,
then decide whether it has to be up-
dated. If there is no outstanding formal
documentation requirement (have pre-
vious maintenance efforts had any?),
the updates required percentage may be
zero. An outsourcer may have formal
documentation requirements imposed
to ease later in-house maintenance or

Year 2000

CROSSTALK The Journal of Defense Software Engineering 13January 1999

because of other contractual require-
ments.

Manual Recoding Required
These are manual changes to software
evaluated as a percentage of existing size.
Thus, if 200 lines of a 10,000-line appli-
cation are modified, recoding would be
2 percent.

To determine the percentage of
recoding, consider
• New code. If any new code is being

written to support changes, it should
be factored into the size of the exist-
ing software to develop a correct
percentage. Thus, if 200 lines of a
10,000-line application are modified
and 200 new lines are written,
recoding will be 4 percent.

• Language conversions. Major lan-
guage changes, such as from CO-
BOL to C (with no automatic con-
version aids), will require 100
percent recoding, even if virtually no
redesign is required.

• Minor changes due to a change in
compilers.
Do not count code that is changed

using an automated tool, but do con-
sider the manual refinements that are
necessary after the tool is used.

Y2K Advice
Consider code that directly impacts
date and time issues. This includes, to
the extent applicable, data typing and
initialization of date and time variables,
date logic, input and output of date and
time data, encapsulation of existing
code, bridges to noncompliant external
applications, and other software patches
necessary to ensure compliance, fault
recovery, etc. A simple text scan helps
reveal what percentage of the code
needs attention and rewriting.

Automated Recoding Required
These are automated changes to software
evaluated as a percentage of the existing
size. Thus, if 500 lines of a 10,000-line
application are to be modified by means
of an automated tool, automated
recoding would be 5 percent.

To determine the percentage of auto-
mated recoding, consider

• If any new code must be written to
support the automated changes, it
should be factored into the size of the
existing software to develop a correct
percentage. Thus, if 500 lines of a
10,000-line application are to be
recoded by an automated tool, but
100 new lines must first be written to
assist the automated recoding, auto-
mated recoding will be 6 percent,
and manual recoding must be in-
creased by 1 percent.

• If no automated tool is used, this
input will be 0 percent.

Automated Conversion
Verification
This is the amount of code processed by
automated conversion that requires
manual inspection, review, or walk-
throughs. This should be given as a
percentage of the code that is being
converted by automated means. Code
reviews are generally done to ensure
coding standards and conventions are
adhered to and to detect potential errors.

To determine the percentage of veri-
fication required, consider
• Code reviews are work that is subject

to low-level, direct review by one or
more people knowledgeable in the
organization’s standards and practices
and the language in which the code
is written.

• The use of automated code conver-
sion may significantly reduce the
need for code reviews or at least
reduce the rigor of required reviews.

• If no formalized code reviews are
performed, i.e., regular get-togethers,
this could be 0 percent.

• Use of automated tools to check for
adherence to coding standards and
conventions may reduce or eliminate
code reviews.

Y2K Advice
Are code reviews part of your normal
development or maintenance process? If
so, they will probably be part of your
Y2K renovation. Code reviews are nor-
mally isolated to new changes. To de-
velop an accurate percentage, consider
the percentage of work that is normally
reviewed and multiply this by the per-
centage of new coding.

Programmer and Unit Testing
Required
This is measured as the percentage of
code, relative to existing size, that re-
quires unit testing. Unit testing is gener-
ally done by programmers to test and
debug low-level software. Unit testing is
usually considered at the module level
(such as functions and subroutines) and
the unit level (generally a source file).

To determine the percentage of unit
testing, consider
• The amount of recoding required,

because code changes typically must
be tested. If 10 percent of code is
changed and all of that is tested, unit
testing is also 10 percent.

• External testing. If testing is carried
out by people other than the pro-
grammer making code changes, these
testers will probably cover more code
than has been changed.

Y2K Advice
Are unit tests part of your normal devel-
opment or maintenance work? If so,
they will probably be part of your Y2K
renovation. In addition, because unit
tests of certain sensitive functions are an
efficient way to track down faults, unit
testing may exceed the amount of code
changed.

Test-Bed Preparation
This parameter covers the preparation of
new test plans and test procedures, not
their implementation. Actual testing is
covered in application testing. Test plans
and procedures that already exist should
not be included in the Test-Bed Prepara-
tion percentage.

Test preparation describes the scope,
approach, resources, and schedule of
test activities. It further identifies test
items, features to be tested, tasks, who
will perform each task, and any risks
that require contingency planning. To
clarify the difference between test pro-
cedures and plans, imagine an orches-
tra: Test plans describe the conductor’s
job, whereas test procedures describe
the musician’s instructions.

The percentage of test-bed prepara-
tion required relates to both the pro-
portion of a system to be tested and
the depth of testing required. In an

Estimating Y2K Rework Requirements

14 CROSSTALK The Journal of Defense Software Engineering January 1999

absolute sense, the overall percentage
covers the extent to which the lowest
logical attributes of the software are
exercised. If plans spell out that every
piece of code be reached by test plans
and procedures, the percentage re-
quired is 100 percent.

To determine the percentage of test-
bed preparation required, consider
• If you have informal integration

testing and little or no formal testing,
test-bed percentages are likely to be
low.

• Test plans orchestrate testing activi-
ties but do not control the most
detailed tasks. These are covered by
test procedures.

• Can existing test plans be reused
without modification? For every test
plan that exists, somewhat fewer
new plans may be required. The
same may be true for existing test
procedures.

• A clever test plan may simultaneously
exercise multiple test points with a
single directive. For instance, a re-
petitive software architecture may
allow the test plan to specify an iden-
tical approach across system compo-
nents. If each “test point” is sepa-
rately accounted for in development
of the test plan, coverage should
include each test point separately.

However, if only a single test point
needs to be accounted for despite
several being tested, coverage should
include only that test point.

Y2K Advice
A Y2K renovation effort may require test
plans and procedures if formal testing or
third-party regression and integration
testing is used. Furthermore, validation
of date compliance may require that
additional tests be drawn up.

Application Testing
This parameter covers only actual test-
ing, not detailed test preparation.
Preparation is covered in Test-Bed
Preparation. Include all testing effort,
even if familiar from previous efforts.
Formal tests are conducted in an envi-
ronment of intentional yet usually ami-
cable mistrust; an outside authority or
an in-house authority—which requires
extremely formal turnover proce-
dures—asks developers to provide proof
that various aspects of a system work
before they will accept delivery. Formal
testing is sometimes called user accep-
tance testing.

The overall formal testing percent-
age covers the extent to which the low-
est logical attributes of the software are
exercised. Some formal tests provide an

automatic environment that is designed
to ultimately “contact” a high percent-
age of test points. If so, the percentage
of formal tests required should be rated
lower than the percentage of points that
will be asymptotically “hit.” The test
percentage should instead be rated at
the percentage of the application that
the equivalent test effort could at mini-
mum cover.

To determine the percentage of ap-
plication testing required, consider:
• Do you do formal testing? If it is not

a part of the standard product sign-
off, formal testing will be zero.

• Complete formal testing does not
necessarily imply “100 percent”—
what percentage of code is actually
exercised?

Y2K Advice
Meaningful formal acceptance testing is
common in so-called “formal” develop-
ment environments.

Rework Percentages
Recall that all the categories above are
expressed in terms of percentages. The
first “default” percentages that we de-
veloped were based on our experience
with other types of renovation work;
these can be modified by a user possess-
ing more specific information. As a
sanity check, however, it is useful to
note that with these default percent-
ages, our model yields results that are
similar in magnitude to those produced
by other third-party benchmarks, nota-
bly those by the Gartner Group and
Capers Jones.

In Table 1, “Least” is the least likely
coverage or percentage, “Likely” is most
probable, and “Most” is the highest
possible. These percentages are translated
into effort and schedule estimates via
SEER-Year2K’s analytic model.

The percentages are in some ways
quite general; what is important are
• The magnitudes being assumed.
• The balancing for the ranges speci-

fied.
It also is apparent that the percent-

ages are quite low, emphasizing how
strictly we have defined activities. This
should make sense, because Y2K renova-
tion falls far short of rewriting code. We

Table 1. Rework percentages. Some are in hundredths because they are products of other estimating
formulas.

citamotuA citamotuaimeS launaM

tsaeL ylekiL tsoM tsaeL ylekiL tsoM tsaeL ylekiL tsoM

deriuqeRgnireenignEesreveR 00.0 00.1 00.3 00.0 00.2 00.6 00.0 00.4 00.21

egnahCngiseDdetaleR-etaD 00.0 00.4 00.4 00.0 00.4 00.4 00.0 00.4 00.4

deriuqeRsetadpUnoitacificepS 00.0 00.0 00.2 00.0 00.0 00.2 00.0 00.0 00.2

deriuqeRgnidoceRlaunaM 00.0 00.0 00.0 00.0 00.2 00.2 00.0 00.4 00.4

deriuqeRgnidoceRdetamotuA 00.0 00.4 00.4 00.0 00.2 00.2 00.0 00.0 00.0

noitacifireVnoisrevnoCdetamotuA 00.1 00.5 00.01 00.1 00.5 00.01 00.0 00.0 00.0

gnitseTtinUdnaremmargorP
deriuqeR

00.0 41.1 03.1 00.0 85.2 56.2 00.0 00.4 00.4

noitaraperPdeB-tseT 00.0 61.0 86.0 00.0 61.0 86.0 00.0 61.0 86.0

gnitseTnoitacilppA 00.0 00.4 00.4 00.0 00.4 00.4 00.0 00.4 00.4

Year 2000

CROSSTALK The Journal of Defense Software Engineering 15January 1999

reiterate that these percentages are start-
ing points; they need to be plugged into
a formula to determine cost and—ban-
ish the thought with our millenium
deadline—schedule. Over time and with
enough projects, you could, as we have,
develop such a formula—maybe by the
millenium?

Conclusion
A diversity of activities are under the
Y2K umbrella, and not all are always
required. Sizing alone, therefore, cannot
suffice as an accurate guide to effort
required. It is useful to develop a set of
secondary criteria based on types of
activity.

You will need a standard way to
specify the magnitude of Y2K rework
activities; we have found that percent-
ages are an efficient standard metric to
scope activities. Percentages are well-
suited to the gross inventorying that
typically occurs in Y2K planning. Ap-
plication specialists in the field with
day-to-day responsibility for Y2K-
impacted systems and the renovation
team doing the work will buy in to the

language of percentages with a mini-
mum of introduction. Percentages thus
give you an agreeable basis to rapidly
approach an estimate.

The importance of a risk-based
estimate cannot be overstated given the
scarce resources and tight schedules of
Y2K work. Without knowing upside or
downside exposure, a simple point
estimate in the face of such constraints
carries tremendous risk. With a dead-
line that cannot be moved for these
renovations, risk is not an option. u

About the Authors
Lee Fischman is special
projects manager at
Galorath Incorporated
in El Segundo, Calif.
He is active in the devel-
opment of SEER tools
and consulting meth-

ods. He wrote the Software Evaluation
Guide for the Office of the Secretary of
Defense, Program Analysis and Evalua-
tion, and he has explored software eco-
nomics and estimating in numerous pa-
pers over the past several years, all available
at http://www.galorath.com.

Galorath Incorporated
Voice: 310-414-3222
E-mail: fischman@galorath.com
Internet: http://www.galorath.com

Patricia A. McQuaid
is an assistant professor
of management infor-
mation systems at
California Polytechnic
State University at San
Luis Obispo. She has

taught a wide range of courses in both the
business and the engineering colleges. She
has industry experience in computer audit-
ing and is a certified information systems
auditor. Her research interests include
software process improvement, software
quality, and software testing, particularly
in complexity metrics. She is the developer
of a new software complexity metric
known as the Profile Metric.

California Polytechnic State University
Management Information Systems Area
College of Business
San Luis Obispo, CA 93407
Voice: 805-756-5381
Fax: 805-756-1473
E-mail: pmcquaid@calpoly.edu

Estimating Y2K Rework Requirements

Configuration Management
Seminars

Dates: Between Jan. 25, 1999 and
March 5, 1999, depending on
location and seminar.

Locations: San Diego, Calif., Las
Vegas, Nev., Orlando, Fla.,
Washington, D.C.

Sponsor: Technology Training Cor-
poration

Instructors: Robert Ventimiglia,
Larry Bowen

Topics: Four seminars. Examples of
topics: How to Integrate Con-
figuration Management (CM)
into Your Software Development
Methods, the Latest CM Stan-
dards and Requirements, Estab-
lishing Appropriate Baselines.

Contact: Dana Marcus
Voice: 310-563-1223
E-mail: dmarcus@ttcus.com

product exhibition. Target audi-
ence: embedded systems software
developers, hardware engineers,
and project leaders.

Internet: http://
www.embedded.com/
escfrm.htm

SEPG 99: 11th Software
Engineering Process Group
Conference

Dates: March 8-11, 1999
Location: Atlanta, Ga.
Subject: This four-day event brings

together international representa-
tives from government, industry,
and academia for a global per-
spective on software process
improvement.

Sponsor: Software Engineering
Institute

Voice: 412-268-3007
Fax: 412-268-5758
E-mail: sepg@sei.cmu.edu

Coming Events
ITCC World Conference and
Exposition

Dates: Feb. 11-12, 1999
Location: Chicago, Ill.
Topic: Information Technology (IT)

Consultants and Contractors
(ITCC) World Conference and
Exposition is the only industry
event designed specifically for IT
consultants and contractors. Join
over 60 of the region’s top IT
consulting and software companies
at the ITCC Exposition, along
with a two-day conference pro-
gram and workshops to maximize
your professional success.

Internet: http://www.itccexpo.com

ESC Spring: Embedded Systems
Conference

Dates: March 1-4, 1999
Place: McCormick Place South, Chi-

cago, Ill.
Topic: Five days of high-level techni-

cal training as well as a three-day

	Contents
	Short-Term Fix Casts Long Shadow…
	Forrest Brown…
	Managing Editor…
	Call for Articles …
	Year 2000 Compliance 1999 Reporting Requirements…
	Improving Software Engineering Practice…
	Patricia Sanders…
	Office of the Undersecretary of Defense for Acquisition and Technology…
	"The Network Is Down …"…
	Capt. Cathy Walter…
	Headquarters, Air Force Communications Agency…
	Inventory Your Network with…
	Simple Network Management Protocol…
	Estimating Y2K Rework Requirements…
	Lee Fischman, Galorath Incorporated…
	Patricia A. McQuaid, California Polytechnic State University…
	Effective Methods for Testing Year 2000 Compliance…
	William E. Perry…
	Quality Assurance Institute…
	Year 2000 (Y2K) Web Sites…
	Coming Events…
	Building Self-Reconfiguring Distributed Simulations Using Compensating Reconfiguration…
	Lt. Col. Don Welch, U.S. Military Academy…
	James Purtilo, University of Maryland…
	Real-World Java Development Experiences…
	A Background Data Collection System…
	Jerome B. Soller, James Clingenpeel, Patrick W. Hayes Jr.,…
	Mark Muday, Brian Larsen, and Tamara Jones…
	CogniTech Corporation…
	Outsourcing and Privatizing Information Technology…
	Re-examining the "Savings"…
	J. Michael Brower…
	Department of Justice, Immigration, and Naturalization Service…
	$^&$*(#)…

