
2 CROSSTALK The Journal of Defense Software Engineering February 1999

Software Knowledge Management
Strengthening Our Community of Practice

Lt. Col. Joe Jarzombek
ESIP Director

When we do some-
thing together over
time, we create shared
practices. We learn to
do what needs to be
done, we learn about
each other, and we

develop shared ways of doing things. We
form communities of practice in which
sharing is a natural part of belonging.
Indeed, “knowing” implies social com-
munities, because facts alone have no
meaning outside a shared context.

Our software community of practice
is such a familiar experience that many
people may hardly notice it. Its identity
derives from participation, and it is self-
organized around important matters
through dynamic renegotiation of what
the profession is about and what needs
doing and learning. The boundaries are
defined by actual participation, not by
affiliation or title. It follows the con-
tours of common practice and is held
together by knowledge rather than task.
Interaction among practitioners con-
tinually refines and develops the ele-
ments of the practice. That which is an
improvement is adopted into the body
of knowledge. Failure to interact regu-
larly with other members of the com-
munity will eventually result in es-
trangement from it. These realities are
indicative of why the identity of our
software community of practice is con-
tinuing to evolve.

Our software community of practice
develops resources such as shared learn-
ing and practices. Organizations such as
the Software Engineering Institute
(SEI) and the Software Technology
Support Center (STSC) facilitate the
capture and transfer of knowledge criti-

cal to our software community practi-
tioners. Through STSC-refereed ar-
ticles, CROSSTALK functions as one of our
software community’s key conduits for
transferring knowledge. Important on-
line resources have also become part of
many organizations’ virtual infrastruc-
ture, particularly the Web sites of the
SEI,1 the Software Engineering Infor-
mation Repository,2 the STSC,3 the
Embedded Computer Resources Sup-
port Improvement Program (ESIP),4

the Data and Analysis Center for Soft-
ware,5 the Software Program Managers
Network,6 and the Defense Acquisition
Deskbook.7

The annual Software Technology
Conference8 and SEI Symposium and
Software Engineering Process Group
Conferences9 are forums that provide
vital interaction opportunities for our
software community because they pro-
vide the necessary facilities of belong-
ing: alignment, engagement, and explo-
ration. They provide time for reflection
and the unstructured personal contact
so vital in the exchange of information
and the development of community
resources. As valuable as the seminars
are in each of these forums, I contend
that in their absence, many people
would continue to pay to attend the
conferences for the networking oppor-
tunities alone. Perhaps, to extend and
energize our community of practice, we
should consider offering a new confer-
ence registration category called “net-
working only.”

An organization’s software commu-
nity of practice is critical to its success.
The community may exist informally
within and across business units and
projects and often across organizational

boundaries. To gain the most leverage,
it maintains links outside the organiza-
tion to strengthen its knowledge base.
Communities of practice are organiza-
tional assets because of the knowledge
they steward at their core and through
the learning they inspire at their
boundaries. The learning potential of
an organization resides in the interac-
tion of cores and boundaries in “con-
stellations” or clusters of different com-
munities of practices.

I contend that the use of the Capa-
bility Maturity Model Integration
(CMMI)10 product suite, being released
this year, will have one of the more
revolutionary impacts on organizational
constellations of communities of prac-
tice because the CMMI addresses enter-
prise-wide, integrated process improve-
ment that cuts across traditional
disciplinary boundaries. What will
transform an organization or commu-
nity of practice is not what an indi-
vidual knows or single function con-
trols but what a group knows and
causes to happen. Processes and prac-
tices that cross disciplines and functions
provide the basis for group “passion” or
motivation. Use of integrated knowl-
edge within and among communities of
practice should prove to be the most
sustainable and profitable aspect of any
organization.

Organizations cannot truly manage
knowledge because it is tacit or internal
to individuals; however, they can man-
age the environment necessary for the
community of practice to flourish and
share information that is a product of
that knowledge. For organizations to
successfully compete in an era of rapid
change, they need to invest in connec-
tivity more than information. Using the
leveraging capabilities of the Internet
and Intranets, organizations need to
establish their own virtual knowledge
management infrastructure that evolves

see COMMUNITY, page 10

From the Publisher

From the upper right corner, clockwise: Kevin Tjoland (TISFD), David
Haakenson (TISFB), Ken Raisor (TISHD [TaskView TSP Project]), Mark
Peterson (TISFD), David Webb (TISHD [TaskView TSP Project]).

On the front cover:

CROSSTALK The Journal of Defense Software Engineering 3February 1999

This article describes the
experiences of a team that used
the TSP to produce a software-

intensive product for the U.S. Air Force.
The Ogden Air Logistics Center, Soft-
ware Engineering Division, Hill Air
Force Base, Utah, has a long history of
producing avionics and support software
for the Air Force. The division had pre-
viously been assessed at a Capability
Maturity Model (CMM)® Level 3 and
has just recently been assessed at CMM
Level 5. TaskView, one of the products
they delivered, is a system to help Air
Force pilots produce flight plans. Flight
planning is labor-intensive and time-
consuming; TaskView automates much
of this work. It helps mission planners
produce accurate flight plans with less
labor and in less time than previously
possible. The project was completed
ahead of its original schedule and within
its committed budget. The product is
currently in customer acceptance testing
with no defects reported to date. This
article is the first published report of
project results with the TSP.

Following a brief TSP overview, we
describe the software organization, the
TaskView project, and the team’s experi-
ences in introducing and using the TSP.
Next, we cover the engineers’ reactions
to using this process. We conclude with
a brief summary of the key findings
from the TaskView experience. The

division already had a high-maturity
software process, so it had data available
from prior work. We can thus compare
the performance of the TSP team to
previous projects. Although this article
presents some of the data, we only show
a few of the indicators that are poten-
tially available for TSP projects.

The TSP
Although the concepts and methods for
running integrated teams are well
known, the specific steps often are not
obvious to working engineers and man-
agers. For example, to be effective, teams
need precise goals, clearly stated roles, a
defined engineering process, and a de-
tailed plan for the work. They need a
framework for periodic coordination and
structured methods to review and track
project risks and issues. Team measures
must be defined and recorded, tracking
mechanisms developed, and a reporting
system established.

Although none of these items is
particularly complex or difficult, the
specific actions often are not obvious.

Using the TSP on the TaskView Project
David Webb, Ogden Air Logistics Center, Software Engineering Division

Watts S. Humphrey, Software Engineering Institute

This article reports the first results of using the Team Software Process (TSP)TM on a software-intensive system
project. The TSP was developed by the Software Engineering Institute (SEI) to guide integrated teams in
producing quality systems on their planned schedules and for their committed costs. The TaskView team at
Hill Air Force Base, Utah used the TSP to deliver the product a month ahead of its originally committed date
for nearly the planned costs. Because the engineers’ productivity was 123 percent higher than on their prior
project, they included substantially more function than originally committed. Testing was completed in one-
eighth the normal time, and as of this writing, the customer has reported no acceptance test defects.

The SEI’s work is supported by the Department of
Defense.

Personal Software Process, PSP, Team Software
Process, and TSP are service marks of Carnegie
Mellon University. Capability Maturity Model
and CMM are registered trademarks of Carnegie
Mellon University.

Figure 1. How PSP and TSP provide IPD capabilities.

Before engineers can work effectively in
an integrated team environment, they
need to know precisely what to do. If
they have not done such work before or
do not have a detailed process to guide
them, they will generally defer the new
or unfamiliar items until they know how
to handle them. They then do the tasks
they fully understand. As a result, many
of the actions required for effective
teaming do not get done. Teams can
waste a great deal of time trying to estab-
lish goals, resolving their working rela-
tionships, and figuring out how to do
the work.

How the TSP Works
The TSP defines the steps required to
build and run software-intensive inte-
grated product development (IPD)
teams [1]. First, the engineers are trained
precisely how to do quality work, use a
defined process, and make and use pro-
cess measurements. For engineers to use
these methods on the job, they must
have hands-on training, explanation of
the methods, and experience using them

Software Engineering Technology

4 CROSSTALK The Journal of Defense Software Engineering February 1999

on realistic project-like exercises. This training is provided by
an intensive 120-hour course that teaches the Personal Soft-
ware Process (PSP)SM [2,3,4,5]. Figure 1 shows how the PSP
training and the TSP process provide the capabilities for inte-
grated teamwork.

After acquiring basic process, planning, and quality man-
agement skills, engineers have the prerequisites to use the TSP.
Every project then starts with a three-day TSP launch work-
shop, where engineers develop teamworking practices, establish
goals, select roles, define processes, and make plans. A shorter
two-day relaunch workshop is then repeated at the start of
every major project phase. Because team members work di-
rectly on their project during the launch, these three days are
part of the job and are not a training exercise.

Finally, the TSP provides the mechanisms to maintain an
effective teamworking environment. This is done with struc-
tured weekly team meetings and periodic relaunch workshops.
The team meeting is much like the football huddle: all mem-
bers participate, and they focus on precisely what to do next. If
the plan is working, they follow it. If it is not, they may de-
cide to change it. The team meeting not only maintains ef-
fective team communication but also facilitates precise status
tracking, provides a context for team decision making, and
supports continuous risk tracking and project reporting. As
in football, periodic “huddles” are important; if teams did
not huddle, they would do a lot of running around but not
win many games.

The team relaunch is conducted at every principal project
milestone. It serves to help the team evaluate and rebalance the
project plan, reassess project risks, integrate new team mem-
bers, reassign team roles, and re-emphasize the team’s goals and
charter. At the conclusion of each launch or relaunch, the team
reviews its status, plans with management, and resolves any
issues and problems.

What the TSP Provides
The TSP process provides a set of forms, scripts, and standards
that lead the team through the process steps. Once they are
PSP trained, engineers know how to develop and follow a
defined process, and they understand how to use the pro-
cess measures to consistently produce quality products. The
PSP can be viewed as a language of process. Until engineers
are reasonably fluent in this language, they generally are not
able to follow the process and use its measures. PSP training
provides the engineers the process fluency they need to use
the TSP.

The TSP process also provides the guidance engineers need
to work effectively in a team context. As shown in Figure 2,
this is done during the three-day team launch. By following
the launch process, the team members can quickly determine
their own and everyone else’s responsibilities, and they can
readily track and coordinate their work with their teammates
and other teams.

Because the TSP produces a large volume of data, manag-
ing and tracking the data can become a burden. The SEI has
developed a support tool that helps engineers record and track
TSP data. The initial tool support is in Microsoft Excel for
Windows 95 and Windows NT. The TSP teams that have used
this tool report that it substantially simplifies their data-gather-
ing and reporting tasks. An enhanced tool is under develop-
ment.

Engineering Support
During the launch and relaunch workshops, the team works as
a unit to develop their process, quality, support, and project
plans. These detailed plans identify and schedule the work for
the next phase to the level of 10 task hours or fewer. Thus, the
team members and their management know what tasks are to
be done and when they are to be completed. In one example,
Dave Webb, the TaskView team leader, needed to temporarily
assign one engineer to help another project with a critical
problem. By reviewing the detailed task schedule with the
engineer, he precisely determined the impact of this reassign-
ment and made workload adjustments to ensure that the
project schedule was not affected.

The team as a unit also performs continuous risk manage-
ment. In the launch and periodic relaunches, members do a
complete project risk assessment. All risks are rated for likeli-
hood and impact, and the more important risks are assigned
to individual members for tracking. The assigned team mem-
bers then develop mitigation plans for the immediate priority
risks and monitor and report risk status in the weekly team
meetings.

Figure 2. The TSP launch process.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 5February 1999

The TSP process helps working groups develop into cohe-
sive and effective engineering teams. With defined and agreed-
to goals and a process and plan to meet these goals, team mem-
bers are more likely to submerge their personal problems and
strive for the common objective. Efficiency is enhanced by the
defined process, and communication is maintained by the
weekly meetings of all team members. These meetings take less
than one hour for teams of about 10 members. Team members
review their role activities, planned vs. actual tasks completed,
and risk status. Each member reports personal earned-value
status, any needed team or management actions, and personal
plans for the next period. These weekly meetings permit the
team as a whole to periodically rebalance the workload, resolve
issues, and make decisions.

TSP Status
The TSP process is being developed by the SEI, and it is cur-
rently under test by approximately 10 engineering groups and
several dozen teams. Based on the experience to date, four TSP
versions have been produced. The TSP has been used with
teams as small as two engineers and with groups as large as 17.
Some teams have been composed of software professionals,
and others have also had hardware, systems, test, or other engi-
neering participants. The project categories include mainte-
nance, new product development, and product enhancement.
System types have ranged from components of large commer-
cial data-processing systems to embedded real-time controllers.
TSP projects have covered proprietary product development,
industrial software contracts, and military development and
enhancement work.

Hill Air Force Base
The TaskView project was conducted by the Ogden Air Logis-
tics Center, Technology and Industrial Support Directorate
(TI), Software Engineering Division (TIS) at Hill Air Force

Base, Utah. The TIS vision statement declares that they will
provide “exceptional weapon system software and related hard-
ware solutions and technology adoption expertise to enhance
our nation’s defense.”

TIS is a high-maturity organization with a strong history of
software process improvement. In March 1995, TIS was as-
sessed as a CMM Level 3 organization, and the assessment
conducted in July 1998 rated them at CMM Level 5. This is
the first software organization in the Department of Defense
(DoD) to receive this rating, and it is one of the few Level 5
software groups in the world.

The software products produced by TIS include opera-
tional flight programs for the F-16 Fighting Falcon aircraft,
test program sets for F-16 automated test equipment, mission-
planning software for a variety of aircraft, and avionics test-
station software. TIS is also the home of the Software Technol-
ogy Support Center (STSC), which provides technology
adoption expertise to the DoD, sponsors the annual Software
Technology Conference, and publishes CROSSTALK.

During the summer of 1996, TIS introduced the PSP to a
small group of software engineers. Although the training was
generally well received, use of the PSP in TIS started to decline
as soon as the classes were completed. Soon, none of the engi-
neers who had been instructed in PSP techniques was using
them on the job. When asked why, the reason was almost
unanimous: “PSP is extremely rigorous, and if no one is asking
for my data, it’s easier to do it the old way.”

Although the TIS Software Engineering Process Group
(SEPG) believes that PSP training accelerated CMM improve-
ment work, members were concerned that the PSP methods
were not being used. They therefore asked the SEI how to get
engineers to consistently use PSP practices on the job. Because
the TSP was then being designed to address this exact prob-
lem, the SEI suggested that TIS become involved in TSP pilot
testing. TIS decided to do so, and this project is the result.

The TaskView Project
TIS chose the TaskView project as the TSP pilot. TaskView is a
UNIX-based tool that parses an Air Tasking Order (ATO),
which is a set of battle instructions for all aircraft involved in a
strike, including fighters, bombers, and refuelers. As shown in
Figure 3, it describes the flight plans, aircraft armament, and
specific mission roles and tasks. Once the battle has been
planned, a complex set of computer programs generates an
ASCII text file that contains the ATO information. This ATO
is then delivered electronically to each of the units participat-
ing in the strike.

Currently, the ATO is “broken out” manually— inter-
preted, sorted, and restructured—by the participating groups,
who use hard copies and highlighters to mark their specific
instructions. This is a laborious process that can take several
hours. Once the information has been identified, the data
must then be manually entered into mission-planning software
tools for each unit, which provides ample opportunity for
further mistakes. The TaskView tool parses the ATO and auto-
matically “breaks out” (sorts and structures) the needed infor-

Figure 3. TaskView converts complex ASCII text to tree structures to map
routes.

Using the TSP on the TaskView Project

6 CROSSTALK The Journal of Defense Software Engineering February 1999

mation in a few seconds. Additionally,
TaskView can port data directly to mis-
sion-planning software tools, which
greatly reduce the defects introduced
during manual entry.

An initial prototype version of
TaskView had been developed by an-
other organization, and the TIS contract
was to produce a product from this
prototype, enhance it for a new ATO
format, and port it from the UNIX
environment to a PC Windows NT
operating system.

TIS chose the TaskView project as a
pilot for the TSP for several reasons:
• The team members were already

PSP trained.
• TaskView was a small (under

20,000 lines of code [LOC]), short-
duration (eight months) project
from which results would be imme-
diately apparent.

• The project manager for TaskView
(Dave Webb) was an SEI-certified
PSP instructor.
The TaskView project started a

month before the introduction of TSP.
The team had already been through the
planning process required by TIS, and a
detailed plan already existed before the
first TSP launch. Since the TSP is de-
signed to build on and augment an
organization’s existing process, the
TaskView project could use the TIS
Standard Engineering Process and
tracking tools. When organizations do
not have a fully defined process, the
TSP launch process guides the team in
defining and developing the needed
process elements.

Using the TSP Process
The first TSP launch for the TaskView
project was held at the end of February
1998. During the launch, we reviewed
TSP concepts with the team and guided
them through the project planning and
tracking steps. The team spent about
two and one-half days in this launch
workshop.

Team Goals and Roles
During the project launch, the team
members determined and documented
the project goals. Some were high level,

such as “delight our customers” and “be
an effective pilot project for TSP in the
Air Force and the DoD.” More specific
goals included “provide clean beta ver-
sions of TaskView to [the customer]”
and “meet or exceed our quality plan.”
One important goal was to meet the
customer’s recent request that the
TaskView project be delivered one
month earlier than the original Sept.
30, 1998 commitment date.

Next, team members chose their
personal team roles from among the
TSP basic set: Customer Interface Man-
ager, Design Manager, Implementation
Manager, Planning Manager, Process
Manager, Quality Manager, Support
Manager, and Test Manager. Because of
the limited size of the team, some
members received more than one job.
These roles were assigned so that when
risks or issues arose, there would be a
point of contact already designated and
prepared to handle them. As usual, the
official team leader had already been
designated by management.

Detailed Planning
With the goals and roles determined,
the team refined its existing project
plan. The previously developed
TaskView plan contained about three
dozen work breakdown structure ele-
ments and tasks. During the TSP
launch, the engineers produced a de-
tailed list of more than 180 tasks. Using
standard productivity rates, the team
next estimated the task hours and the
size of each task’s product, usually in
LOC. They also estimated each
engineer’s available task hours for each
week of the project.

Task hours are hours spent working
only on the tasks in the task list. Time
spent in meetings, on the telephone,
using E-mail, or engaged in any other
activity that is not defined in the plan is
not counted toward TSP task hours.
Although these activities are necessary
and are definitely work hours, they are
not tracked as part of the project earned
value. Based on the experiences of other
TSP projects, the TaskView team esti-
mated that in an engineer’s standard
40-hour workweek, 20 hours would be
an aggressive goal for task-related work.

The TSP Earned-Value Tool
TSP tools were then used to turn this
top-down plan into an earned-value
chart with a projected completion date.
On the first run, the team and manage-
ment were delighted to find that the new
completion date projected by the top-
down plan matched perfectly with the
customer requirement for a one-month
schedule acceleration.

Next, the software engineers were
each given a copy of the task list and
asked to estimate their personal work,
using their own line of code and effort
data. Such data are a product of the
PSP course, which every engineer
should complete before starting a TSP
project. The TSP tool was then used to
combine these individual estimates into
a bottom-up estimate, also with earned
value and a projected completion date.
This estimate did not match the sched-
ule requirements or the top-down esti-
mate completed only a few hours earlier
because some engineers were tasked
more heavily than others. Because
project schedules often slip if only one
engineer is overburdened, the TSP
launch process includes a workload-
balancing step.

After workload balancing, the bot-
tom-up schedule matched the top-
down estimate and the customer’s need.
At this point, all engineers had a per-
sonal task and earned-value plan for
which they individually had provided
the estimates.

Risk Assessment and Mitigation
At the next TSP launch meeting, the
TaskView team identified the risks
associated with the project. They listed
these risks in a brainstorming session,
prioritized risk likelihood and impact,
and assigned responsibility for mitiga-
tion and tracking. For example, the risk
that “there will be a day-for-day slip in
schedule if we do not receive the neces-
sary header files by 3 March” was given
a high likelihood and impact and as-
signed to the official team leader.

Fourteen risks were identified in this
initial launch, of which seven were
assigned to the team leader, and the
balance were handled by team mem-

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 7February 1999

bers. The team leader also agreed to share responsibility with
the engineers to track and mitigate the other management-
related risks.

Management Review
The final launch activity was a management review of the
team’s launch results. Normally, such meetings provide the
forum to resolve serious scheduling or resource issues. For
TaskView, however, the management review reaffirmed the
existing project commitments.

Tracking the Work
After the two-and-one-half-day TSP launch, the team started
on the job. Using the PSP, the engineers tracked, in minutes,
the time they spent on each task and process phase, recorded
the defects found at every phase, and measured the sizes of the
products they produced. The data were stored in the engineers’
data tracker and in the TSP tracking tools. Thereafter, the team

met weekly to review earned-value status, goals, risks, issues,
and action items.

Within the next few weeks, it was evident that the team
had a problem. The engineers were not achieving the 20 task
hours per week they had planned. Their earned-value data,
however, showed them to be on or ahead of schedule. From
the data, the team found that there were two offsetting factors:
Tasks had generally been overestimated, and it was much
harder to achieve 20 task hours per week than had been ex-
pected. Even though the schedule impact to date had been
minimal, this new understanding helped the team make better
plans, and it showed where to focus to improve performance.

The Team Relaunch
In May 1998, we guided the TaskView team in assessing their
progress and conducting a relaunch. The relaunch was neces-
sary because the project was moving into its second phase, and
the engineers felt a new plan was needed. This new plan would
reflect lessons learned from the prior phase, more realistically
address task hours, and include new tasks.

Although relaunch workshops normally take two days, this
team was able to accomplish it in only one day. During this
period, they replanned the project, refined their size and time
estimates, adjusted their schedule to reflect 15 weekly task
hours per engineer, and reassessed risks. Based on the cost,
schedule, risk, and quality data, the overall project was judged
to be ahead of plan. Because tasks had been generally accom-
plished with less effort than originally planned, some functions
were completed early, whereas one important function planned
for Phase 1 had slipped to Phase 2.

Because of the project’s progress, TaskView could either
return some money to the customer or add new functionality.
The customer interface manager worked with the customer
and found that new functionality was more important than
cost reduction. Management then agreed to add more tasks
and more people to the project. These new functions caused a
modest schedule delay, so the customer interface manager
reviewed the new functionality and schedule with the customer
for approval. Since the planned delivery was still months away,
the customer decided to accept the small schedule change in
order to get the added functions.

Project Results
To determine the benefits of the TSP, TIS compared the
TaskView pilot with similar projects that followed the
organization’s standard process. The project manager and the
software engineers were also asked how the TSP had helped or
hindered their personal work. Because TIS projects already
routinely meet schedules, commitment performance was not
an important factor in the analysis.

Estimating Accuracy
Use of the TSP was found to substantially improve size and
effort estimating accuracy. During the first launch, TaskView
was estimated to be 14,065 LOC. By the second launch, with
the new functions, the total estimated size grew to 19,105

Table 1. TaskView estimated vs. actual LOC. *Note that underestimates are
positive, and overestimates are negative.

rebmuNeludoM
dnaweNdetamitsE

COLdegnahC
dnaweNlautcA

COLdegnahC
*rorrEtnecreP

1 005,1 656,1 %04.01

2 005,1 053,1 %00.01-

3 005 814 %04.61-

4 000,3 525,4 %38.05

5 000,1 379 %07.2-

6 005 760,1 %04.311

7 005 0 %00.001-

8 001,1 773,3 %00.702

9 005,1 848 %74.34-

01 005 659 %02.19

11 005,1 494,1 %04.0-

21 9 4 %65.55-

31 005 356 %06.03

41 desunu desunu desunu

51 005 569 %00.39

61 771,1 379,2 %95.251

71 918 1311 %01.83

81 000,3 683,4 %02.64

latoT 501,91 677,62 %51.04

Using the TSP on the TaskView Project

8 CROSSTALK The Journal of Defense Software Engineering February 1999

LOC. When the TaskView project was
completed, the final new and changed
LOC for the project was 26,776, an
underestimate of 40 percent. When the
9,455 LOC of added function were
subtracted, the team’s original 14,065
LOC size estimate had an error of 23
percent.

Table 1 shows the size estimates the
engineers made during the second TSP
launch. Module 7 took no new and
changed code because the engineer re-
used an existing routine. Although some
individual estimates were reasonably
close, there was considerable variation.
By using a sound statistically based
method and their personal historical
data, however, the engineers were able to
make balanced estimates. This meant
that, on average, they were as likely to
estimate high as low. Because the errors
in the individual estimates tended to
compensate, the overall estimate was
much more accurate than were the indi-
vidual estimates. Team members be-
lieved that their large personal estimat-
ing errors were largely due to the lack of
historical data for this kind of project.
Future project estimates will benefit
from the data gathered during this
project and should be more accurate.

The TaskView effort estimates were
originally made before the introduction
of the TSP. At the first launch, the ef-
fort was again estimated to determine if
the costs were appropriate and if the
load was properly balanced among the
engineers. By the second launch, it was

obvious that effort had been overesti-
mated; the project was able to meet
earned-value goals with fewer task
hours than had originally been ex-
pected. After including the customer-
requested new functionality, the final
delivery date was only two days later
than the accelerated schedule, and the
cost error was negligible.

Productivity
The TIS software process database con-
tains the average productivity in LOC
per man-hour for this team’s prior
project, and the average productivity for
every project that used the TIS organiza-
tional process. Although the exact num-
bers are proprietary, the TaskView
project increased productivity to 16
percent above the TIS average. These
particular engineers increased their pro-
ductivity to 123 percent above their
previous project, or more than two
times. Data on the relative productivity
in LOC per programmer-hour for
TaskView, the team’s prior project, and
the average of all TIS projects are shown
in Figure 4. The TIS average is shown as
100 and TaskView as 116.

Productivity figures are impacted by
many factors. Because TaskView and the
team’s prior project involved different
languages, application domains, and
development environments, the produc-
tivity improvement cannot be consid-
ered a measure of the TSP. The results
do, however, suggest that the TSP im-
proves productivity.

Quality Improvement
As shown in Table 2, the standard TIS
process includes inspections (peer re-
views) of all work products. The TSP
adds a set of personal design and code

reviews. One important question was
whether the time spent doing these
personal reviews was worthwhile. The
TIS process typically removes about 13
defects for every thousand lines of code
(KLOC) during design and code inspec-
tions. The rest must be found in test or
by the user. With TSP, the TaskView
project increased the yield of early defect
removal by more than 60 percent by
removing 21 defects per KLOC in both
the reviews and the inspections. The
benefits of this early attention to quality
are apparent from the results of the later
test phases.

Assuming the engineering process
has rigorous testing criteria, an indicator
of product and process quality is the
time spent running tests. Generally, the
fewer defects there are to be found, the
less time is spent in test and the higher is
the resulting product quality. The TIS
process has three test phases, all with
rigorous criteria, that must be completed
before the product is passed to an exter-
nal agency for operational testing: func-
tional test, candidate evaluation, and
system test. These phases are then fol-
lowed by the customer’s operational test
and evaluation and then by operational
usage. Typical TIS projects require 22
percent of the project schedule (in days)
to perform the final two TIS test
phases. The TaskView project, using
TSP, sharply reduced this percentage to
2.7 percent. This is a schedule savings
of nearly 20 percent. Only one high-
priority defect was found in these last
two test phases.

Data from the completed TaskView
project show that the defect density at
the functional testing phase was close to
that normally achieved by other TIS
projects only after all engineering testing

PhasePhasePhasePhasePhase TIT IT IT IT ISSSSS TSTSTSTSTSPPPPP

Requirements inspection X X
High-level design inspection X X
Detailed design personal review X
Detailed design inspection X X
Personal code review X
Compile X X
Code inspection X X
Functional test X X
Candidate evaluation (CPT&E) X X
System test (ERT) X X
Operational test and evaluation

(acceptance test) X X
Operational usage (external) X X

Table 2. TIS and TSP defect-removal process steps.

TTTTTaskViewaskViewaskViewaskViewaskView PrPrPrPrProject 1oject 1oject 1oject 1oject 1 PrPrPrPrProject 2oject 2oject 2oject 2oject 2 PrPrPrPrProject 3oject 3oject 3oject 3oject 3

Program Size – LOC 26,776 67,291 7,955 86,543
CPT&E Test Days 4 22 10 33
ERT (System Test) Days 2 41 13 59
Total Test Days 6 63 23 92
Test Days/KLOC 0.22 0.94 2.89 1.06
System Test Defects/KLOC 0.52 2.21 4.78 2.66
Acceptance Test Defects/KLOC 0* N/A 1.89 0.07

Table 3. TaskView testing time. *Acceptance test is continuing but no defects have been reported to date.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 9February 1999

phases have been completed. In TaskView, to find only one
high-priority defect in the TaskView product during system
and operational testing is unprecedented for any TIS project.

Because of the improved quality from the TSP process,
TaskView testing time was sharply reduced, as shown in Table
3. Here, the test data for the TaskView project are compared
with three comparable prior projects. Although one could
reduce testing time by running incomplete tests, the fact that
the customer has so far reported no defects during acceptance
test suggests that this was not the case. By using the TSP,
TaskView not only produced a higher-quality product, it also
took only one-eighth the testing time normally required for
similar projects.

Qualitative Results
A critical question in introducing any new software engineer-
ing tool or technology is whether the engineers will use it. If
the engineers do not like a tool or method, they will probably
not use it, regardless of its effectiveness. To assess this issue, we
privately asked all the TSP team members four questions:
• What do you believe are the advantages of the TSP?
• What do you believe are the disadvantages of the TSP?
• What about the TSP would you change?
• What about TSP would you keep the same?

Without knowing their teammates’ responses, every team
member said the TSP helped them form a closer, more effec-
tive team than any they had worked on before and that they
would like to continue to use it. One team member said, “The
TSP creates more group involvement. Everyone feels like
they’re more part of a group instead of a cog in a wheel. It
forces team coordination to talk about and solve problems—
there’s no pigeonholing.” Another team member said, “This
really feels like a tight team. I was on the same team for a year
[while working on another project] and didn’t know the team
members as well as I do now.”

Another qualitative advantage expressed by multiple team
members was increased effectiveness in project planning and
tracking. “TSP gives you better insight into your current
state,” said one software engineer. “It provides better focus for
the software developer on tasks to be done.” Another TaskView
team member summed up the planning and tracking benefits

of TSP in this way: “Measuring progress helps generate
progress.”

The principal weakness the TaskView team mentioned was
the need for better TSP tool support. Several members said
that the tracking and earned-value support needed to be im-
proved, and another suggested more automated data gathering
and analysis. Work on TSP tool improvement has already
begun at the SEI, and a newer, better version of the planning
and tracking tool will soon be available.

The lead software engineer gave perhaps the best testimo-
nial to the qualitative results of the TSP. When asked what he
would not change about the TSP, he said, “I’ve seen a lot of
benefits [from the TSP]. I’d like to see us continue to use it.”

Conclusions
One of the fears many have about process improvement initia-
tives like the TSP is that the cost of doing extensive planning,
personal reviews, and data gathering will increase the overall
cost of the project. It is evident from the TaskView data, how-
ever, that the time spent performing these activities is more
than made up by improved planning accuracy and reduced test
time. As Philip Crosby once noted, “Quality is free.” [6]

Perhaps the greatest change with the TSP is in the relation-
ship between management and the engineers. To be most
effective, engineers must be motivated and energetic; they need
to be creative and concerned about the quality of their prod-
ucts, and they should enjoy their work and be personally com-
mitted to its success. This can only be achieved if management
trusts the engineers to work effectively and the engineers trust
their management to guide and support them.

Although trust is an essential element of effective team-
work, it must rest on more than mere faith. The engineers
must follow appropriate methods and consistently strive for
quality results. They must report on their progress and rapidly
expose risks and problems. Similarly, management must recog-
nize that the engineers generally know more about their de-
tailed work than the managers, and they must rationally debate
cost and schedule issues. Management also needs to ensure that
the engineers consistently follow disciplined methods and that
the teams do not develop interpersonal problems.

The TSP is designed to address these issues and show engi-
neers and managers how to establish an environment in which
effective teamwork is normal and natural. Because this will
often require substantial attitude changes for the engineers and
the managers, to introduce the TSP is a non-trivial step. As the
TaskView data show, however, the TSP can produce extraordi-
nary results. ◆

Acknowledgments
Being a leader and a coach for the TaskView team has been a
rewarding experience for each of us. It would not, however,
have been as rewarding or satisfying without a dedicated and
hard-working team. For their support and cooperation, we
thank Pattie Adkins, Keith Gregersen, Neil Hilton, Craig
Jeske, Ken Raisor, Mark Riter, and Capt. David Tuma. We also
enjoyed excellent support from Tresa Butler for configuration

Figure 4. Relative productivity.

Using the TSP on the TaskView Project

10 CROSSTALK The Journal of Defense Software Engineering February 1999

management, Pat Cosgriff for SEPG
support, and Jim Van Buren of the
STSC for PSP consultation.

For quality engineering work, consis-
tent and informed management leader-
ship is essential. For their trust in us and
their willingness to support us in pio-
neering the early use of TSP in practice,
we thank Dan Wynn, Robert Deru,
Don Thomas, LaMar Nybo, and Eldon
Jensen. Lt. Col. Jacob Thorn, the
TaskView program manager at Eglin Air
Force Base, Fla., also supported our
process improvement initiatives. His
dedication to quality and informed
oversight made the job possible.

We also thank those who reviewed
this article. Their comments and sugges-
tions were a great help. Our particular
thanks to Rushby Craig, Walter
Donohoo, Linda Gates, John
Goodenough, and Bill Peterson. Finally,
the professional help and guidance of the
CROSSTALK staff have, as always, been a
great help.

About the Authors
David Webb has a
bachelor’s degree in
electrical and computer
engineering from
Brigham Young Univer-
sity. He has worked for
TIS for more than 11

years as a software engineer. Six of those
years he spent as an F-16 Operational
Flight Program software test engineer and
system design engineer, three years as a
member of the TIS SEPG, and two years

as a technical program manager for TIS
mission-planning software. He has partici-
pated in three CMM-Based Appraisals for
Internal Process Improvement, including
TIS’s 1998 Level 5 assessment. He has also
been certified by the SEI as a PSP course
instructor.

OO-ALC/TISHD
6137 Wardleigh Road
Hill Air Force Base, UT 84056
Voice: 801-775-2916 DSN 775-2916
E-mail: webbda@software.hill.af.mil

Watts S. Humphrey is a
fellow at the SEI at
Carnegie Mellon Uni-
versity, which he joined
in 1986. At the SEI, he
established the Process
Program, led initial
development of the

CMM, introduced the concepts of Soft-
ware Process Assessment and Software
Capability Evaluation, and most recently,
the PSP and TSP. Prior to joining the SEI,
he spent 27 years with IBM in various
technical executive positions, including
management of all IBM commercial soft-
ware development and director of pro-
gramming quality and process. He has a
master’s degree in physics from the Illinois
Institute of Technology and in business
administration from the University of
Chicago. He is the 1993 recipient of the
American Institute of Aeronautics and
Astronautics Software Engineering Award
and an honorary doctorate in software
engineering from Embry Riddle Aeronau-
tical University in 1998. His most recent
books include Managing the Software

Process (1989), A Discipline for Software
Engineering (1995), Managing Technical
People (1996), and Introduction to the
Personal Software Process (1997).

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

References
1. Humphrey, Watts S., “Three Dimen-

sions of Process Improvement, Part III:
The Team Process,” CROSSTALK, Software
Technology Support Center, Hill Air
Force Base, Utah, April 1998, pp. 14-17.

2. Ferguson, Pat, Watts S. Humphrey,
Soheil Khajenoori, Susan Macke, and
Annette Matvya, “Introducing the Per-
sonal Software Process: Three Industry
Case Studies,” IEEE Computer, May
1997, pp. 24-31.

3. Humphrey, Watts S., A Discipline for
Software Engineering, Reading, Mass.,
Addison-Wesley, 1995.

4. Humphrey, Watts S., “Using a Defined
and Measured Personal Software Pro-
cess,” IEEE Software, May 1996.

5. Humphrey, Watts S., “Three Dimen-
sions of Process Improvement, Part II:
The Personal Process,” CROSSTALK, Soft-
ware Technology Support Center, Hill
Air Force Base, Utah, March 1998, pp.
13-15.

6. Crosby, Philip B., Quality Is Free: The Art
of Making Quality Certain, McGraw-
Hill, New York, 1979.

as part of the employees’ routine infor-
mation flow. In addition to providing
the infrastructure, organizations have to
invest in hiring smart people and pro-
viding incentives for sharing informa-
tion, then provide enough unstructured
time to let people talk face to face. Such
an environment will allow organiza-
tions to capitalize on their constella-
tions of communities of practice.

People who appreciate the need for
software knowledge management and
who have the capacity to inspire or take
the lead in providing the guidance and
resources necessary to share informa-
tion will continue to be invaluable.
They can help any organization capital-
ize on opportunities by facilitating the
enablers that are vital to our software
community of practice. ◆

Notes
1. http://www.sei.cmu.edu
2. http://seir.sei.cmu.edu
3. http://www.stsc.hill.af.mil
4. http://esip.hill.af.mil
5. http://www.dacs.dtic.mil
6. http://www.spmn.com
7. http://www.deskbook.osd.mil
8. http://www.stc-online.org
9. http://www.sei.cmu.edu/products/

events
10. http://www.sei.cmu.edu/cmm/cmms/

cmms.integration.html

COMMUNITY, from page 2

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 11February 1999

During the past few years, the
 COCOMO team at USC has
been working to update the

1981 version of the COCOMO estimat-
ing model (COCOMO 81) [1]. The
new version of the model, called
COCOMO II, builds on the experiences
that industrial affiliates of the USC
Center for Software Engineering have
had and addresses lifecycle processes and
paradigms that have become popular
since the original model was first intro-
duced in 1981. These new paradigms
include reuse-driven approaches, com-
mercial-off-the-shelf lifecycle develop-
ments, component-based software engi-
neering approaches, use of
object-oriented methods, and other
improvements to the way we do business
stimulated by process improvement
initiatives.

This article focuses attention on a
tool we have developed to permit our
users to update their original
COCOMO 81 files so that they can be
used with the COCOMO II model. We
call the tool the Rosetta Stone because it
is not unlike the black stone slab found
in Egypt by French troops in 1799. On
it were engraved three scripts (Greek,
Demotic, and hieroglyphics), which
enabled archaeologists to construct
translations among the three languages.
Our Rosetta Stone permits its users to
translate files prepared with the original
COCOMO 81 model to be compatible
with COCOMO II.

Many of our affiliates thought cre-
ation of the Rosetta Stone was important

because they had wanted to use the new
version of the model to take advantage
of its many advanced capabilities, in-
cluding the COCOMO II package’s
autocalibration features. However, they
could not make the move because they
had files that required older versions of
the model to run, e.g., COCOMO 81
and Ada-COCOMO. Others wanted to
calibrate the new version of the model
using their historical databases, but the
new version of the model had a new
structure, altered mathematics, and
different parameters and parametric
ratings. Under such circumstances, con-
verting files was no easy task.

The COCOMO II Estimating
Model
The major differences between
COCOMO 81 and COCOMO II, why
they are important, and cost driver defi-
nitions are summarized in Table 1. These
changes are important because they
reflect how the state of software engi-
neering technology has matured during
the past two decades. For example, pro-
grammers were submitting batch jobs
when the COCOMO 81 model was
first published. Turnaround time im-
pacted their productivity. Therefore, a
parameter TURN was used in the model
to reflect the average wait programmers
experienced before receiving their job
back. Such a parameter is no longer
important because most programmers
have instant access to computational
facilities through their workstations.

Therefore, the parameter has been re-
moved in the COCOMO II model.

The following summary highlights
the major changes made to the original
version of COCOMO 81 as
COCOMO II was developed.
• COCOMO II addresses the follow-

ing three phases of the spiral lifecycle:
applications development, early
design, and post-architecture.

• The three modes in the exponent are
replaced by five scale factors.

• The following cost drivers were
added to COCOMO II: DOCU,
RUSE, PVOL, PEXP, LTEX,
PCON, and SITE.

• The following cost drivers were de-
leted from the original COCOMO:
VIRT, TURN, VEXP, LEXP, and
MODP.

• The ratings for those cost drivers
retained in COCOMO II were al-
tered considerably to reflect more up-
to-date calibrations.

The Rosetta Stone
As illustrated in Table 2, users need to
convert factors in the COCOMO equa-
tions (such as the exponent, the size
estimate, and the ratings for the cost
drivers) from the original to the new
version of the model. We suggest that
users employ the following four steps to
make the conversion so original files can
be used with the COCOMO II model.

Update Size
The original COCOMO cost estimating
model used deliverable source lines of

The Rosetta Stone
Making COCOMO 81 Estimates Work with COCOMO II

Donald J. Reifer, Reifer Consultants, Inc.
Barry W. Boehm and Sunita Chulani, University of Southern California

As part of our efforts to help Constructive Cost Model (COCOMO) users, we, the COCOMO
research team at the Center for Software Engineering at the University of Southern California
(USC), have developed the Rosetta Stone to convert COCOMO 81 files to run using the new
COCOMO II software cost estimating model. The Rosetta Stone is extremely important because
it allows users to update estimates made with the earlier version of the model so that they can take
full advantage of the many new features incorporated into the COCOMO II package. This
article describes both the Rosetta Stone and guidelines to make the job of conversion easy.

12 CROSSTALK The Journal of Defense Software Engineering February 1999

Software Engineering Technology

code (DSI) as its measure of the size of
the software job. DSI were originally
represented by card images, e.g., includes
all non-comment, nonblank carriage
returns. COCOMO II uses the follow-
ing three measures to bound the volume
of work associated with a software job:
source lines of code (SLOC), function

points (FPs), and object points. SLOCs
are counted using logical language state-
ments per Software Engineering Insti-
tute (SEI) guidelines [2], e.g., IF-
THEN-ELSE, ELSE IF is considered
one, not two, statements.

Table 2 provides guidelines to con-
vert size in DSI to SLOCs so that they

can be used with the COCOMO II
model. Whenever possible, we recom-
mend using counts for the actual size of
the file instead of the original estimate.
Such practices allow you to correlate
your actuals, e.g., the actual application
size with the effort required to do the
work associated with developing the
software.

The reduction in size for
COCOMO II estimates is attributable
to COCOMO 81’s need to convert card
images to SLOC counts. As already
noted, the pair IF-THEN-ELSE and
END IF would be counted as two card
images in COCOMO 81 and as a single
source instruction in COCOMO II.
The guidelines offered in Table 2 are
based on statistical averages to simplify
conversions; however, we encourage you
to use your actuals if you have them.

The following are two common
misconceptions about COCOMO’s use
of SLOC and FPs:
• Misconception 1: COCOMO does not

support the use of FPs – FP versions of
COCOMO have been available since
the Before You Leap commercial
COCOMO software package imple-
mentation in 1987. As noted in
Table 1, COCOMO II supports use
of either SLOC or FP metrics. In
both cases, this is done via “backfir-
ing” tables, which permit you to
convert FPs to SLOCs at different
levels.

• Misconception 2: Although it is irre-
sponsible to use SLOC as a general
productivity metric, it is not irrespon-
sible to use FP as a general sizing pa-
rameter for estimation – This miscon-
ception breaks down into the two
following cases.

• Your organization uses different
language levels to develop soft-
ware. In this case, it is irrespon-
sible to use SLOC as your pro-
ductivity metric, since you get
higher productivity per SLOC at
higher language levels; however,
it also is irresponsible to use FP
as a general sizing metric because
pure FP will generate the same
cost (or schedule or quality)
estimate for a program with the
same functionality developed

18OMOCOC IIOMOCOC

erutcurtSledoM htiwtratsuoysemussatahtledomelgniS
.erawtfosotdetacollastnemeriuqer

ssergorpuoyemussatahtsledomeerhT
ottnempolevedepyt-laripsahguorht
ehtyfidilos,stnemeriuqerruoyyfidilos

.ksirecuderdna,erutcetihcra

lacitamehtaM
troffEfomroF

noitauqE

c(A=troffE
i

)eziS() tnenopxE c(A=troffE
i

)eziS() tnenopxE

tnenopxE asadetcelestnatsnocdexiF=tnenopxE
.edomfonoitcnuf

50.1=cinagrO�
21.1=dehcatedimeS�

02.1=deddebmE�

nodesabdehsilbatseelbairaV=tnenopxE
.srotcafelacseviffognitar

� :CERP ssendetnedecerP
� :XELF ytilibixelFtnempoleveD
� :LSER noituloseRksiRroerutcetihcrA
� :MAET noisehoCmaeT
� :TAMP ytirutaMssecorP

eziS .)sPFrofsnoisnetxehtiw(COLS .sCOLSro,sPF,stnioptcejbO

c(srevirDtsoC i) detarebtsumhcihwfohcae,srevird51
� :YLER ytilibaileR
� :ATAD eziSesabataD
� :XLPC ytixelpmoC
� :EMIT tniartsnoCemiTnoitucexE
� :ROTS tniartsnoCegarotSniaM
� :TRIV ytilitaloVenihcaMlautriV
� :NRUT emiTdnuoranruT
� :PACA ytilibapaCtsylanA
� :PACP ytilibapaCremmargorP
� :PXEA ecneirepxEsnoitacilppA
� :PXEV ecneirepxEenihcaMlautriV
� :PXEL ecneirepxEegaugnaL
� :LOOT slooTerawtfoSfoesU
� :PDOM gnimmargorPnredoMfoesU

seuqinhceT
� :DECS eludehcSderiuqeR

detarebtsumhcihwfohcae,srevird71
� :YLER ytilibaileR
� :ATAD eziSesabataD
� :XLPC ytixelpmoC
� :ESUR ytilibasueRderiuqeR
� :UCOD noitatnemucoD
� :EMIT tniartsnoCemiTnoitucexE
� :ROTS tniartsnoCegarotSniaM
� :LOVP ytilitaloVmroftalP
� :PACA ytilibapaCtsylanA
� :PACP ytilibapaCremmargorP
� :PXEA ecneirepxEsnoitacilppA
� :PXEP ecneirepxEmroftalP
� :XETL ecneirepxElooTdnaegaugnaL
� :NOCP ytiunitnoClennosreP
� :LOOT slooTerawtfoSfoesU
� :ETIS tnempoleveDetisitluM
� :DECS eludehcSderiuqeR

ledoMrehtO
secnereffiD

nodesabledoM
.alumrofesuerraeniL�

elbatsylbanosaerfonoitpmussA�
.stnemeriuqer

gnidulcni,stnemecnahnerehtoynamsaH
.alumrofesuerraenilnoN�

troffetaskooltahtledomesueR�
.etalimissadnadnatsrednuotdedeen

otdesusgnitaregakaerB�
.ytilitalovstnemeriuqersserdda

.serutaefnoitarbilacotuA�

Table 1. Model comparisons.

CROSSTALK The Journal of Defense Software Engineering 13February 1999

using different language levels. This is clearly wrong. To
get responsible results in this case, FP-based estimation
models need to use some form of backfiring to account
for the difference in language level.

• Your organization always uses the same programming
language (level). Here, it is responsible to use pure FP
as your sizing metric for estimation. But it also is re-
sponsible to use SLOC as your productivity metric.
Both metrics work in practice.

Convert Exponent
Convert the original COCOMO 81 modes to scale factor
settings using the Rosetta Stone values in Table 3. Then, adjust
the ratings to reflect the actual situation. For example, the
Rosetta Stone rates process maturity (PMAT) low because
most projects using COCOMO 81 are assumed to have been
at Level 1 on the SEI process maturity scale [5]. However, the
project’s actual rating may have been higher and an adjustment
may be in order.

An exception is the PMAT scale factor, which replaces the
COCOMO 81 Modern Programming Practices (MODP)
multiplicative cost driver. As seen in Table 4, MODP ratings of
very low (VL) or low (L) translate into a PMAT rating of VL
or a low level on the Software Capability Maturity Model
scale. An MODP rating of normal (N) translates into a PMAT
rating of L or a high Level 1. An MODP rating of high (H) or

very high (VH) translates into a PMAT rating of N or CMM
Level 2. As with the other factors, if you know that the
project’s actual rating was different from the one provided by
the Rosetta Stone, use the actual value.

The movement from modes to scale factors represents a
major change in the model. To determine the economies and
diseconomies of scale, five factors have been introduced.
Because each of these factors can influence the power to
which size is raised in the COCOMO equation, they can
have a profound impact on cost and productivity. For ex-
ample, to increase the rating from H to VH in these param-
eters can introduce as much as a 6 percent swing in the re-
sulting resource estimate. Most of these factors are modern in
their derivation. For example, the concept of process matu-
rity was not in its formative stages when the original
COCOMO 81 model was published. In addition, the final
three factors, RESL, TEAM, and PMAT, show how an orga-
nization can exercise management control over its
diseconomies of scale. Finally, the first two, PREC and
FLEX, are the less controllable factors contributing to
COCOMO 81 modes or interactions.

Rate Cost Drivers
The trickiest part of the conversion is the cost drivers. Cost
drivers are parameters to which cost is sensitive. For example,
as with the scale factors, you would expect that use of experi-
enced staff would make a software development less expensive;
otherwise, why use them? Because the new version of the
model uses altered drivers, the Rosetta Stone conversion guide-
lines outlined in Table 4 are important. For those interested in
more details about the cost drivers, we suggest you refer to the
COCOMO II Model Definition Manual [6]. Again, the rat-
ings need to be adjusted to reflect what actually happened on
the project. For example, the original estimate may have as-
sumed that analyst capability was very high; however, the
caliber of analysts actually assigned might have been nominal
because key employees were not available to the project when
they were needed.

Users should take advantage of their knowledge of what
occurred on the project to make their estimates more reflective
of what really went on as the application was developed. Use of
such knowledge can improve the credibility and accuracy of
their estimates.

The TURN and TOOL rating scales have been affected by
technology changes since 1981. Today, virtually everyone uses
interactive workstations to develop software. TURN has there-
fore been dropped from COCOMO II and its calibration
assumes the TURN rating is L. Table 5 provides alternative
multipliers for other COCOMO 81 TURN ratings.

The tool suites available in the 1990s far exceed the
COCOMO 81 VH TOOL rating, and virtually no projects
operate at the COCOMO 81 VL or L TOOL levels.
COCOMO II has shifted the TOOL rating scale two levels
higher so that a COCOMO 81 N TOOL rating corresponds
to a VL COCOMO II TOOL rating. Figure 5 also provides a

Table 2. Converting size estimates.

srotcaFelacSdnaedoM cinagrO dehcatedimeS deddebmE

)CERP(ssendetnedecerP HX H L

ytilibixelFtnempoleveD
)XELF(

HX H L

ksiRdnaerutcetihcrA
)LSER(noituloseR

HX H L

)MAET(noisehoCmaeT HX HV N

)TAMP(ytirutaMssecorP L L L

Table 3. Model scale factor conversion ratings.

The Rosetta Stone: Making COCOMO 81 Estimates Work with COCOMO II

18OMOCOC IIOMOCOC

ISD
segaugnaLnoitareneG-dnoceS�

segaugnaLnoitareneG-drihT�
segaugnaLnoitareneG-htruoF�

segaugnaLdetneiro-tcejbO�

]3[COLS
.tnecrep53ybISDecudeR�
.tnecrep52ybISDecudeR�
.tnecrep04ybISDecudeR�
.tnecrep03ybISDecudeR�

stnioPnoitcnuF srepaCybdepolevedsrotcafnoisnapxeehtesU
.sCOLStnelaviuqeenimretedot]4[senoJ

stnioPerutaeF srepaCybdepolevedsrotcafnoisnapxeehtesU
.sCOLStnelaviuqeenimretedotsenoJ

14 CROSSTALK The Journal of Defense Software Engineering February 1999

Software Engineering Technology

set of COCOMO II multipliers corresponding to COCOMO
81 project ratings.

Some implementations of COCOMO II, such as the USC
COCOMO II package, provide slots for extra user-defined
cost drivers. The values in Figure 5 can be put into those slots
(if you do this, use an N rating in the normal COCOMO II
TOOL slot).

To learn more about the cost drivers and their ratings,
refer to the USC Web site (http://sunset.usc.edu/
COCOMOII) or several of the Center for Software
Engineering’s other publications [7, 8]. Because the goal of
this article is to present the Rosetta Stone, we did not think it
was necessary to go into the details of the model and an ex-
planation of its many parameters.

Experimental Accuracy
To assess the accuracy of the translations, the team used the
Rosetta Stone to convert 89 projects. These projects were
clustered subsets of the databases we used for model calibra-
tion. Clusters were domain-specific. We updated our esti-
mates using actuals whenever we could. We then used the
autocalibration feature of the USC COCOMO II package to
develop a constant for the effort equation, e.g., the A in the
equation Effort = A(size)P. Finally, we compared our esti-
mates to actuals and computed the relative error as a function
of the following cases.
• Using the Rosetta Stone with no adjustments.
• Using the Rosetta Stone with knowledge-base adjustments,

e.g., updating the estimate files with actuals when available.
• Using the Rosetta Stone with knowledge-base adjustments

and domain clustering, e.g., segmenting the data based on
organization or application area.
The results of these analyses, which are summarized in

Table 6, were extremely positive. They show that we can
achieve an acceptable degree of estimating accuracy when
using the Rosetta Stone to convert COCOMO 81 files to run
with the COCOMO II software cost model.

Summary and Conclusions
The Rosetta Stone was developed to provide its users with a
process and a tool to convert their original COCOMO 81 files
so that they can be used with the new COCOMO II estimat-
ing model. The Stone represents a starting point for such ef-
forts. It does not replace the need to understand either the
scope of the estimate or the changes that occurred as the

18OMOCOC
srevirD

IIOMOCOC
srevirD

srotcaFnoisrevnoC

YLER YLER .lautcaehtroemasehtetaR.enoN

ATAD ATAD .lautcaehtroemasehtetaR.enoN

XLPC XLPC .lautcaehtroemasehtetaR.enoN

EMIT EMIT .lautcaehtroemasehtetaR.enoN

ROTS ROTS .lautcaehtroemasehtetaR.enoN

TRIV LOVP .lautcaehtroemasehtetaR.enoN

NRUT .5elbaTniseulavesU

PACA PACA .lautcaehtroemasehtetaR.enoN

PACP PACP .lautcaehtroemasehtetaR.enoN

PXEV PXEP .lautcaehtroemasehtetaR.enoN

PXEA PXEA .lautcaehtroemasehtetaR.enoN

PXEL XETL .lautcaehtroemasehtetaR.enoN

LOOT LOOT .5elbaTniseulavesU

PDOM TAMPtsujdA
.sgnittes

detarsiPDOMfI
.LVotTAMPtes,LroLV�

.LotTAMPtes,N�
.NotTAMPtes,HVroH�

DECS DECS .lautcaehtroemasehtetaR.enoN

ESUR .elbaliavafi,lautcaroNotteS

UCOD :edoMfI
.Lottes,cinagrO=

.Nottes,dehcatedimeS=
.Hottes,deddebmE=

NOCP .elbaliavafi,lautcaroNotteS

ETIS .elbaliavafi,lautcaroHotteS

Table 4. Cost drivers conversions.

Table 5. TURN and TOOL adjustments.

sesaC)rorrEevitaleR(ycaruccA

.detarbilacsaledomIIOMOCOCehtgnisU slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep86

detarbilacsaledomIIOMOCOCehtgnisU
.gniretsulcniamodrorepolevedgnisu

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep67

onhtiwenotSattesoRehtgnisU
.stnemtsujda

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep06

-egdelwonkhtiwenotSattesoRehtgnisU
.stnemtsujdaesab

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep86

-egdelwonkhtiwenotSattesoRehtgnisU
.gniretsulcniamoddnastnemtsujdaesab

slautcafotnecrep52nihtiwerasetamitsE
.emitehtfotnecrep47

Table 6. Estimate accuracy analysis results.

gnitaR18OMOCOC LV L N H HV

:reilpitluMIIOMOCOC NRUT 00.1 51.1 32.1 23.1

:reilpitluMIIOMOCOC LOOT 42.1 01.1 00.1

CROSSTALK The Journal of Defense Software Engineering 15February 1999

project unfolded. Rather, the Stone takes
these considerations into account as you
update its knowledge base with actuals.

The value of the Rosetta Stone was
demonstrated convincingly based on an
accuracy analysis of an 89-project data-
base. As expected, the accuracy increased
as we adjusted the estimates using
actuals and looked at results based on
domain segmentations. We are encour-
aged by the results. We plan to continue
our efforts to provide structure and
support for such conversion efforts. ◆

References
1. Boehm, B., Software Engineering Eco-

nomics, Prentice-Hall, Englewood Cliffs,
N.J., 1981.

2. Park, R., “Software Size Measurement:
A Framework for Counting Source
Statements,” CMU/SEI-92-TR-20,
Software Engineering Institute, Pitts-
burgh, Pa., 1992.

3. Reifer, D., personal correspondence,
1998.

4. Jones, C., Applied Software Measurement:
Assuring Productivity and Quality,
McGraw-Hill, New York, 1992.

5. Paulk, M., C. Weber, B. Curtis, and M.
Chrissis, The Capability Maturity Model:
Guidelines for Improving the Software
Process, Addison-Wesley, Reading, Mass.,
1995.

6. Boehm, B., et al., COCOMO II Model
Definition Manual, Version 1.4, Univer-
sity of Southern California, Los Ange-
les, Calif., 1997.

7. Boehm, B., et al., “The COCOMO
2.0 Software Cost Estimation Model,”
American Programmer, July 1996, pp.
2-17.

8. Clark, B. and D. Reifer, “The Rosetta
Stone: Making Your COCOMO Esti-
mates Work with COCOMO II,” Soft-
ware Technology Conference, Salt Lake
City, Utah, 1998.

About the Authors
Donald J. Reifer is a leading figure in
software engineering and management,
with over 30 years progressive experience
in government and industry. He has been

chief of the Ada Joint
Program Office, techni-
cal adviser to the Center
for Software, and direc-
tor of the Department of
Defense (DoD) Software
Reuse Initiative under an

Intergovernmental Personnel Act assign-
ment with the Defense Information Sys-
tems Agency. He is currently president of
RCI, a small consulting firm servicing
Fortune 500 companies, and he is a visit-
ing associate at USC, where he serves on
the COCOMO team. He has a bachelor’s
degree in electrical engineering, a master’s
degree in operations research, and a certifi-
cate in business management (master’s
equivalent). His many honors include the
Secretary of Defense’s medal for Outstand-
ing Public Service, the NASA Distin-
guished Service Medal, the Freiman
Award, and the Hughes Aircraft Fellow-
ship. He has over 100 publications, in-
cluding his popular IEEE Software Man-
agement Tutorial and a new Wiley book
entitled Practical Software Reuse.

Reifer Consultants, Inc.
P.O. Box 4046
Torrance, CA 90505
Voice: 310-530-4493
E-mail: d.reifer@ieee.org

Barry W. Boehm is
considered one of the
fathers of the field of
software engineering. He
is currently director of
the Center for Software
Engineering at USC,

and for many years directed key technol-
ogy offices in the DoD, TRW, and Rand
Corporation. His contributions to soft-
ware engineering include COCOMO, the
spiral model of the software process, the
Theory W approach to software manage-
ment and requirements determination,
and the TRW Software Productivity Sys-
tem and Quantum Leap advanced soft-
ware engineering environments. His cur-
rent software research interests include
process modeling, requirements engineer-
ing, architectures, metrics and cost mod-

els, engineering environments, and knowl-
edge-based engineering.

Boehm has a bachelor’s degree from
Harvard University and a master’s degree
and a doctorate from the University of
California at Los Angeles, all in math-
ematics. He has served on the board of
several scientific journals and has served
as chairman of numerous prominent
engineering society committees. He is the
recipient of many of software
engineering’s highest awards. He is an
American Institute of Aeronautics and
Astronautics Fellow, an Association for
Computing Machinery Fellow, an Insti-
tute of Electrical and Electronics Engi-
neers Fellow, and a member of the Na-
tional Academy of Engineering.

Center for Software Engineering
University of Southern California
941 West 37th Place
Los Angeles, CA 90089
Voice: 213-740-8163
E-mail: boehm@sunset.usc.edu

Sunita Chulani is a
research assistant at the
Center for Software
Engineering at the
University of Southern
California. She is an
active participant on

the COCOMO II research team and is
working on a Bayesian approach to data
analysis and model calibration. She is also
working on a cost and quality model that
will be an extension to the existing
COCOMO II model. Her main interests
include software process improvement
with statistical process control, software
reliability modeling, risk assessment,
software cost estimation, and software
metrics. She has a bachelor’s degree in
computer engineering from Bombay
University and a master’s degree in com-
puter science from USC. She is currently
a doctoral candidate at the Center for
Software Engineering at USC.

Center for Software Engineering
University of Southern California
941 West 37th Place
Los Angeles, CA 90089
Voice: 213-740-6470
E-mail: sdevnani@sunset.usc.edu

The Rosetta Stone: Making COCOMO 81 Estimates Work with COCOMO II

16 CROSSTALK The Journal of Defense Software Engineering February 1999

The system or software re-
quirements specification (SRS)
document is the first definitive

representation of the capability that the
provider is to deliver to the user or ac-
quirer. The SRS document becomes the
basis for all a project’s subsequent man-
agement, engineering, and assurance
activities. As such, it is a strong source of
potential risks that could adversely im-
pact the project’s resources, schedules,
and products. Because of the criticality
of the SRS, it is important to prevent or
correct shortcomings in both the form
and content of the SRS document before
it is established as a project baseline.

A study conducted by the Software
Assurance Technology Center (SATC)
located at NASA’s Goddard Space Flight
Center (GSFC) found that 40 approved
SRS documents contained many in-
stances of three common weaknesses.
Deficiencies were found in
• the organization of requirement

information.
• the structure of individual require-

ment statements.
• the language used to express re-

quirements.
These defects can be prevented through
a more disciplined and consistent ap-
proach to document design, formulation
of specification statements, and selection
of key words and phrases.

Organizing Requirements
To develop, deliver, and install system or
software capability that successfully
satisfies the expectations and needs of
the user, the provider of the capability
must have access to a wide variety of
information. In addition to the require-
ments that prescribe a solution to the
user’s needs, descriptions of the user’s

current and future operational environ-
ments and a definition of the transition
from one environment to the other must
be provided. In some instances, support
considerations make it necessary to dic-
tate restrictions on the development
environment and limit the technology
content of the delivered capability.

Detail and Consistency
The problem of organizing the require-
ments information is compounded by
the need for specific topics to be ad-
dressed in detail and in a manner that
enhances comprehension and minimizes
redundancy. The Institute of Electrical
and Electronics Engineers (IEEE) [1]
recommends that an SRS address each of
the following topics.
• Interfaces.
• Functional capabilities.
• Performance levels.
• Data structures and elements.
• Safety.
• Reliability.
• Security and privacy.
• Quality.
• Constraints and limitations.

The first four topics address engi-
neering requirements associated with
individual elements of the needed capa-
bility. The last five topics address quality
requirements that cross all aspects of the
needed capability. These topics are not
isolated subjects; they are coupled in
various ways. Functions, interfaces, and
data are closely linked. The question
may arise: Should the section of the SRS
that prescribes the requirements for a
particular function include interfaces
and data specifications, or should it
point to sections of the SRS devoted to
these topics? The first alternative distrib-
utes similar information across several

sections of the document and creates
problems in maintaining the document.
The second alternative breaks the
reader’s train of thought when the refer-
enced information is needed. The basic
structural issue is how to organize these
topics so that relationships and neces-
sary detail can be stated clearly and
succinctly.

Data Item Descriptions (DIDs)
refine the SRS’s design in most docu-
mentation schemes and are used to es-
tablish generic design solutions for each
type of document. As with most general
solutions, DIDs only resolve issues at the
highest level of organization. Documen-
tation standards developed by both the
Department of Defense (DoD) [2] and
NASA [3] include several DIDs to
specify systems at various levels and from
different aspects. The scope and number
of DIDs included in these standards are
intended to facilitate the documentation
of large programs and projects. For
smaller projects, these schemes are bur-
densome. Smaller projects tend to use
fewer documents to decrease costs and
facilitate information control.

Both DoD and NASA documenta-
tion standards provide for adaptation of
DIDs to meet the needs of a particular
project: DoD provides specific guidance
for tailoring its DIDs, NASA provides
guidance for tailoring and “rolling up”
the concept, requirements, design, and
other documents into a single volume.

Tailoring DIDs is a design activity.
Its potential impact on a project’s success
is significant and should be undertaken
with the same importance given to the
design of any engineering product. The
final design of the SRS must be a struc-
ture of sections and subparagraphs that
encompass and address the concerns of

Writing Effective Natural Language
Requirements Specifications

William M. Wilson

This article details writing practices that will produce a stronger requirements speci-
fication document by avoiding three common documentation problems. Examples
of these problems and the recommended solutions presented in this article were
derived by analyzing 40 approved NASA requirements specification documents.

CROSSTALK The Journal of Defense Software Engineering 17February 1999

all project participants and organiza-
tional stakeholders. The SRS structure
must facilitate everyone’s understanding
of the totality of required capability, the
particular attributes of a capability, and
how their areas of responsibility will be
affected by the capability. Sections of the
documents must be constructed in light
of the cohesiveness, coupling, complex-
ity, and consistency necessary to achieve
a balance between comprehensibility and
completeness.

Information should never be arbi-
trarily grouped together—it makes the
document difficult to understand and to
maintain. Descriptions of the conditions
and situations that the required capabil-
ity will encounter must be located with
the prescription of its required response;
however, the description and prescrip-
tion must be kept distinct from one
another. Requirements that are parts of a
single functional capability must be
grouped together, e.g., functions that are
connected in series by output-to-input
relationships should appear in the SRS
in the same sequence, if possible. Func-
tions that share common inputs and
outputs should be addressed within the
same section of the SRS. If several pro-
cesses must be accomplished in the same
time frame, their specifications must be
tied together by the document’s structure
to make this commonality clear. Similar
functions need to be distinguished from
one another but the similarities also need
to be emphasized. Most of these restric-
tions can be satisfied by combining a
requirements identification scheme that
consistently uses similar numbers to
number similar things and by using a
writing style that uses short declarative
sentences.

Both the DoD SRS DID, DPSC-8-
1433, [2] and NASA-DID-P200, [4]
provide an excellent starting point for
the organization of a requirements docu-
ment. Most structures provide for most
environmental subjects as well as the
nine essential topics of requirements
information. It is highly desirable to
have the same topics identified with the
same number in related documents such
as the Operational Concept Description,
System/Subsystem Specification, SRS,
and Software Product Specification;

therefore, care must be taken to ensure
that the integrity of paragraph number-
ing is maintained when the structure of
the DID is shortened or extended. If
not, any correlation of like information
across the set of documents will be lost.
Both NASA and DoD documentation
tailoring instructions address this prob-
lem; the crux of their tailoring instruc-
tions is to not change subject numbers.

Unnecessary sections should be
“stubbed” with an “N/A” as close to the
main section of the document as pos-
sible. Stubbing retains the topic’s title
and identification number. Cutting
sections removes the topic and reassigns
its identification number to the follow-
ing topic. This would apply through the
rest of the document’s numbers and
destroy the document’s congruence with
the rest of the document set. New topics
should extend the numbering established
by the DID by adding a node (section)
to the document tree that is appropriate
to the new subject. They should be in-
serted as the last branch or leaf (at the
end) and given the node’s next available
sequential number.

Statement Structuring
Poorly structured specification state-
ments result in confusing requirements
that are prone to incorrect interpreta-
tions. If a specification statement con-
tains three or more punctuation marks,
it probably needs to be restructured.

An example of a specification that is
a prime candidate for restructuring
follows:

3.1 The XYZ system shall provide
variance/comparative information
that is timely, itemized in sufficient
detail so that important individual
variances are not obscured by other
variances, pinpoints the source of
each variance, and indicates the
area of investigation that will maxi-
mize overall benefits.

It is much easier to read when struc-
tured as follows:

3.1 The XYZ system shall provide vari-
ance/comparative information.

3.1.1 Variance/comparative informa-
tion shall be timely.

3.1.2 Variance/comparative informa-
tion shall be itemized in sufficient
detail to do the following:

3.1.2.1 Prevent important indi-
vidual variances from being ob-
scured by other variances.
3.1.2.2 Pinpoint the source of
each variance.
3.1.2.3 Indicate the area of in-
vestigation that will maximize
overall benefits.

Each specification statement consists
of four basic structural elements—enti-
ties, actions, events, and conditions.
These elements can be used or modified
by various cases such as the following:
• Owner.
• Actor.
• Target.
• Constraint.
• Owned.
• Action.
• Object.
• Localization.

The recommended model for a
specification statement’s structure is as
follows:
• Localization.
• Actor/Owner.
• Action.
• Target/Owner.
• Constraint.

For example, “When three or more
star trackers lose reference stars, the
spacecraft shall immediately align its
main axis on the earth-sun line unless
the optical instrument’s cover is not
closed.”
• Localization – When three or more star

trackers lose reference stars.
• Actor/Owner – Spacecraft.
• Action – Align.
• Target/Owned – Main axis.
• Constraint – Unless the optical

instrument’s cover is not closed.

Problems with Natural
Language
Natural language’s extensive vocabulary
and commonly understood syntax facili-
tate communication and make it an
inviting choice to express requirements.
The informality of the language also
makes it relatively easy to specify high-
level general requirements when precise

Writing Effective Natural Language Requirements Specifications

18 CROSSTALK The Journal of Defense Software Engineering February 1999

details are not yet known. However,
because of differences among formal,
colloquial, and popular definitions of
words and phrases and the effort re-
quired to produce detailed information,
these same attributes also contribute to
documentation problems. The use of
natural language to prescribe complex,
dynamic systems has at least three com-
mon and severe problems: ambiguity,
inaccuracy, and inconsistency [5].

The precise meaning of many words
and phrases depends entirely on the
context in which they are used. For
example, Webster’s New World Dictio-
nary identifies three variations in mean-
ing for the word “align,” 17 for “mea-
sure,” and four for “delete.” Even
though the words “error,” “fault,” and
“failure” have been precisely defined by
the IEEE [5], they frequently are used
incorrectly in specifications.

Attention must be given to the role
of each word and phrase when formulat-
ing specification statements. Words and
phrases that are carelessly selected or
carelessly placed produce statements that
are ambiguous and imprecise.

The most simple word that is appro-
priate to its intended purpose in the
specification is the one to use. The word
“hide” is defined as “to put out of sight.”
The word “obscure” is defined as “lack-
ing light or dim.” Do not use obscure if
you mean hide—the rules for the game
“obscure and seek” are not well known.

Use the correct imperative and use it
consistently. Remember that the word
“shall” prescribes, “will” describes,
“must” and “must not” constrain, and
“should” suggests. Avoid weak phrases
such as “as a minimum,” “be able to,”
“capable of,” and “not limited to.” These
phrases are subject to different interpre-
tations and also set the stage for future
changes to the requirements.

Do not use words or terms that give
the provider an option regarding the
extent to which the requirement is to be
satisfied, such as “may,” “if required,” “as
appropriate,” or “if practical.” Do not
use generalities when numbers are re-
quired, for example, “large,” “rapid,”
“many,” “timely,” “most,” and “close.”
Avoid imprecise words that have relative

meanings such as “easy,” “normal,” “ad-
equate,” or “effective.”

The use of imprecise terms usually
indicates that the specifications author
was either lazy, incompetent, or did not
have sufficient time to determine the
exact requirements. Some writers seem
to be afraid that their audience will be
bored or will think them lazy if they use
simple words and repeat themselves.
When writing documents or software,
being too fancy complicates things and
make the resulting products hard to
understand.

The previously given example specifi-
cation could be further strengthened
through a better selection of words and
phrases.

3.1 The XYZ system shall provide vari-
ance/comparative information.

3.1.1 Variance/comparative informa-
tion shall be provided at the end of
every reporting cycle.
3.1.2 Variance/comparative infor-
mation shall include the data neces-
sary to

3.1.2.1 Prevent important indi-
vidual variances from being hid-
den by other variances.
3.1.2.2 Pinpoint the source of
each variance.
3.1.2.3 Determine the frequency
and severity of each variance.

Serious problems will always result
from specifications statements such as
“The system shall be user friendly and
provide adequate resources to meet the
user’s operational needs.” What is
considered to be “user friendly,” “ad-
equate resources,” and “user’s opera-
tional needs” must be defined in detail
through specification or by reference
to an existing system that has the re-
quired characteristics.

Natural language often entices au-
thors to write “stream of consciousness”
specification statements that are difficult
to understand, for example, “Users at-
tempting to access the ABC database
should be reminded by a system message
that will be acknowledged and on page
headings on all reports that the data is
sensitive, and access is limited by their
system privileges.”

Restructured as shown below, this
requirement, although longer, is easier to
comprehend.

4.4 The system shall notify users at-
tempting to access the ABC database that

a. The ABC data is classified as
“sensitive.”

b. Access to the ABC data is lim-
ited to that allowed by the user’s
system privileges.

c. Page headings on all reports
generated using the ABC data-
base must state that the report
contains “sensitive” information.

4.4.1 The system shall require the
user to acknowledge the notification
before being allowed to access the
ABC database.

Summary and Conclusion
When natural language is used to specify
requirements, several things must be
kept in mind.
• The SRS is the medium to express

requirements that have been identi-
fied and defined. The SRS’s DID is
not an outline for a method to derive
requirements.

• The SRS is a software item and as
such should be a product that is
engineered to satisfy the project’s
needs.

• Begin the design process with the
appropriate SRS DID.

• Use simple sentence structures and
select words and phrases based on
their formal definitions, not on how
popular culture defines them.

• The SRS must be understandable. It
does not have to be interesting. As-
pire to be a good engineer, not a
literary artist. ◆

About the Author
William M. Wilson is a retired principal
systems engineering consultant formerly
with the Software Assurance Technology
Center (SATC). He has 40 years of profes-
sional engineering experience with NASA,
DoD, and industry. He is a recognized
author and instructor of software safety
and reliability courses, an authority on the
specification of software requirements, and
a trained lead auditor under the TickIT
software certification scheme. Before

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 19February 1999

joining the SATC, he was vice president of
Quong and Associates, a consulting firm
specializing in quality engineering and
assurance practices. He was responsible for
aerospace industry software quality assur-
ance standards and procedures. While
manager of software engineering assurance
in the Office of the Chief Engineer at
NASA Headquarters, he established and
directed the Software Management and
Assurance Program, which produced
NASA’s first agency-wide software policies
and standards. As a member of the De-
fense Communications Agency’s National
Military Command Systems Engineering
Directorate, he was the project manager
and systems engineer for the acquisition
and development of several first-genera-
tion strategic command, control, and
communications systems that support the

National Command Authority. He has a
bachelor’s degree in electrical engineering.
He is a member of the IEEE Computer
Society, the Association for Computing
Machinery, and the American Society for
Quality Control.

Point of Contact: Linda H. Rosenberg
Goddard Space Flight Center
Code 300.1, Building 6
Greenbelt, MD 20771
E-mail: Linda.H.Rosenberg.1@gsfc.nasa.gov

References
1. IEEE Standard 830-1993, Recom-

mended Practice for Software Require-
ments Specifications, Dec. 2, 1995.

2. MIL-STD-498, Software Development
and Documentation, Dec. 5, 1994
(http://scpo.nosc.n&498.html).

3. Ganska, Ralph, John Grotzky, Jack
Rubinstein, and Jim Van Buren, Require-

ments Engineering and Design Technology
Report, Software Technology Support
Center, Hill Air Force Base, Utah, Octo-
ber 1995.

4. NASA-STD-2100-91, NASA Software
Documentation Standard, NASA Head-
quarters Software Engineering Program,
July 29, 1991 (http://satc.gsfc.
nasa.gov/assure/docstd.html).

5. Wilson, William, Linda H. Rosenberg,
and Lawrence E. Hyatt, “Automated
Quality Analysis of Natural Language
Requirement Specifications,” Pacific
Northwest Software Quality Conference
Proceedings, October 1996, pp. 140-151
(http://sate.gdcnasa.gov/SATC/PA-
PERS/PNQ/pncl.htnil).

6. 610.12-1990, IEEE Standard Glossary
of Software Engineering Terminology.

In May 1997, the SSG at Maxwell Air Force Base, Gunter
Annex in Montgomery, Ala. was rated Level 3 according to
the Software Engineering Institute Capability Maturity
Model. SSG is one of the larger, more diverse government
agencies to achieve this distinction. Continuous, sustained
process improvements led to this maturity level, and the
method by which it was achieved is embodied in the SEP,
now in Version 4. A combination of management and engi-
neering activities composes this standard organizational
process that can be tailored to address project specifics.

The SEP is a pragmatic, disciplined approach to soft-
ware systems engineering. It describes the essential elements
of an organization’s systems engineering process that must
exist to ensure good systems engineering.

The SEP’s goals for a product are to
• Meet customer’s functional objectives.
• Minimize defects.
• Enhance look and feel of having been built by one per-

son, though it does not depend on one person for main-
tenance.

• Reduce risk; eliminate rework.
• Improve predictable schedule and cost.
• Provide development insight.

The SSG Systems Engineering Process
This brief overview of the Standard Systems Group (SSG) Systems Engineering
Process (SEP) summarizes the primary objectives of the SEP. For complete in-
formation, see http://web1.ssg.gunter.af.mil/sep/SEPver40/ssddview.html.

• Enhance maintainability.
• Introduce industry best practices.
• Operationalize policies and directives.

Success in a market-driven and contractually negotiated
market is often determined by how efficiently an organiza-
tion translates customer needs into a product that meets
those needs. Good systems engineering is key to that activ-
ity, and the SEP provides a way to define, measure, repeat,
and enhance performance. The SEP acts as a framework to
which continuous process improvement can be added.

Under the SEP, projects and systems experience produc-
tivity improvements of 200 percent to 300 percent, a hun-
dredfold reduction in post-release defects, less overtime and
fewer crises, a return on investment of up to a ratio of 7-to-1,
reduced long-term sustainment costs, and improved
interoperability. The employees also are able to feel more
competitive.

The greatest benefit of the SEP is that it increases the
ability to meet customer cost, schedule, and performance
expectations.

Point of Contact: Barry Morton
SSG Software Engineering Process Group Facilitator
Voice: 334-416-3547 DSN 596-3547
E-mail: MortonB@ssg.gunter.af.mil

Writing Effective Natural Language Requirements Specifications

20 CROSSTALK The Journal of Defense Software Engineering February 1999

Software Product Lines
A New Paradigm for the New Century

Paul Clements
Software Engineering Institute

Imagine turning out a 1.5 mil-
lion-line Ada command and control
system for a Navy frigate warship.

The system is hard real-time, fault-
tolerant, and highly distributed, run-
ning on 70 separate processors on 30
different local area network nodes scat-
tered all over the ship. It must interface
with radars and other sensors, missile
and torpedo launchers, and other com-
plicated devices. The human-computer
interface is complex and highly de-
manding. In this application, quality is
everything: The system must be robust,
reliable, and avoid a host of perfor-
mance, distribution, communication,
and other errors.

Now suppose that you have not one
of these systems to build but several.
Your marketing department has suc-
ceeded beyond your wildest dreams.
Navies from all over the world have
ordered your command and control
system. Now, your software must run
on almost a dozen different ship classes
including a submarine, systems that are
drastically separate: The end users speak
different languages (therefore, the hu-
man-computer interface requirements
are extremely different), the ships are
laid out differently, have different num-
bers of processors and nodes, and dif-
ferent fault tolerance requirements,
different weapons systems and sensors,
and different computers and operating
systems. But quality remains crucial in
all of them.

Suppose you are the manager for
this megaproject. Do you panic? Do
you resign? Run to a third-world coun-
try? What if you could produce each
one of the systems for a fraction of the
cost and in a fraction of the time that
one would normally expect? And what

if you could do it so that quality was
improved and reliability and customer
satisfaction increased with each new
system? What if creating a new ship
system was merely a matter of combin-
ing large, easily tailorable components
under the auspices of a software archi-
tecture that was generic across the en-
tire domain (in this case, of shipboard
command and control systems)?

Is this a fantasy? No, it is not. It is
the story of CelsiusTech Systems AB, a
long-time European defense contractor.
In the 1980s, CelsiusTech was con-
fronted with the dilemma outlined
above: They had to build two large
command and control systems, each
larger than anything they had at-
tempted before, and they had barely
enough resources to build one. Because
necessity stimulates invention (and
determination implements it), Celsius-
Tech realized that their only hope was
to build both systems at once using the
same assets and resources. And in a vi-
sionary stroke, CelsiusTech knew that
their future lay in exploiting these assets
for not only the first two systems but
also for a whole family of products they
hoped and expected would follow.

Software Product Lines
In short, CelsiusTech launched a soft-
ware product line. A product line is a set
of products that together address a
particular market segment or fulfill a
particular mission. Product lines prom-
ise to become the dominating produc-
tion software paradigm of the new
century. Product flexibility is the new
anthem of the marketplace, and prod-
uct lines fulfill the promise of tailor-
made systems built specifically for the
needs of particular customers or cus-

tomer groups. What makes product
lines succeed from the vendor’s
(developer’s) point of view is that the
commonalities shared by the products
can be exploited to achieve economics
of production.

Product lines are nothing new in
manufacturing. Boeing builds one, so
does Ford, IBM, and even McDonald’s.
Each of these exploits commonality in
different ways. Boeing, for example,
developed the 757 and 767 transports
in tandem, and the parts lists of these
two decidedly different aircraft overlap
by about 60 percent. But software prod-
uct lines based on interproduct com-
monality are a relatively new concept,
and the community is discovering that
this path to success contains more than
its share of pitfalls.

The Software Engineering Institute
(SEI) has a program to identify and
promulgate the best practices for prod-
uct-line production and help organiza-
tions negotiate the hurdles to which
adopting a product-line approach will
lead. The Product-Line Systems Pro-
gram focuses on these essential technol-
ogy areas for product-line production:
• Domain Engineering – Reveals the

commonalities and variations
among a set of products.

• Architecture – The foundation for a
product line, it provides the frame-
work into which tailorable compo-
nents plug.

• Architecture-Based Development –
The disciplined derivation or gen-
eration of product components (and
once the components are ready,
whole products) from the architec-
tural skeleton.

• Reengineering – helps mine reus-
able assets from legacy assets.

Software developed as a product line promises to be a dominant development paradigm for
the new century, one that the Department of Defense (DoD) can leverage when acquiring
software-intensive systems. This article discusses the advantages of product lines, uncovers
some of their pitfalls, and shows by example the kinds of successes the organizations can enjoy.

Emerging Ideas

CROSSTALK The Journal of Defense Software Engineering 21February 1999

The result is a technology infrastructure
that can produce large custom systems
quickly and reliably by checking out
components from the asset repository,
tailoring the components for their par-
ticular application (CelsiusTech uses
compile-time parameters to instantiate
different versions of a component), and
beginning the integrate-and-test cycle
as in normal system development.

Product Line Benefits
Once the product-line repository is
established, consider what is saved each
time a product is ordered.
• Requirements. Most of the require-

ments are common with earlier
systems and therefore can be used.
Requirements analysis is saved.
Feasibility is assured.

• Architectural design. An architecture
for a software system represents a
large investment in time from the
organization’s most talented engi-
neers. The quality goals for a sys-
tem—performance, reliability, modi-
fiability, etc.—are largely allowed or
precluded once the architecture is in
place. If the architecture is wrong,
the system cannot be saved; however,
for a new product, this most impor-
tant design step is already done and
need not be repeated.

• Components. The detailed (inter-
nal) designs for the architectural
components are reused from system
to system, as is the documentation
of those designs. Data structures
and algorithms are saved and need
not be reinvented.

• Modeling and analysis. CelsiusTech
reports that the real-time distributed
headache associated with the kinds
of systems they build (real-time
distributed) has all but vanished.
When they field a new product in
their product line, they have ex-
tremely high confidence that the
timing problems have been worked
out, and the challenges associated
with distributed computing—syn-
chronization, network loading, and
absence of deadlock—have been
eliminated.

• Testing. Test plans, test processes,
test cases, test data, test harnesses,

and the communication paths re-
quired to report and fix problems
are already available.

• Planning. Budgets and schedules
can be reused from previous
projects, and they are much more
reliable.

• Processes. Configuration control
boards, configuration management
tools and procedures, management
processes, and the overall software
development process are in place,
have been used before, and are ro-
bust, reliable, and responsive to the
organization’s special needs.

• People. Because of the commonality
of the applications, personnel can be
fluidly transferred among projects as
required. Their expertise is appli-
cable across the entire line.
Product lines enhance quality. Each

new system takes advantage of all of the
defect elimination in its forebearers;
both developer and customer confi-
dence rise with each new instantiation.
The more complicated the system, the
higher the payoff for solving the vexing
performance, distribution, reliability,
and other engineering issues only once
for the entire family.

Clearly, product lines benefit the
developing organization, but they also
benefit acquirers of systems as well.
Acquiring a family of related systems
using a product-line acquisition ap-
proach (as opposed to acquiring each
system separately and independently)
clearly falls within the realm of DoD
reuse initiatives and policies and prom-
ises to accrue significant benefits for the
DoD, including
• Streamlining the acquisition process.
• Enjoying higher product quality.
• Lower acquisition cost.
• Simplified training.
• Reduced maintenance cost.

Organizational Maturity Needs
It takes a certain maturity in the devel-
oping organization to successfully field
a product line. Technology is not the
only barrier to successful product-line
adoption. Experiences in the Product-
Line Systems Program show that orga-
nization, process, and business issues
are equally vital to master.

For instance, traditional organiza-
tional structures that have one business
unit per product are generally not ap-
propriate for product lines. Who will
build and maintain the core reusable
assets—the architecture, the reusable
components, and so forth? If these
assets are under the control of a busi-
ness unit associated with one product
or one large customer, the assets may
evolve to serve that business unit, that
product, and that customer to the ex-
clusion of the others. On the other
hand, to establish a separate business
unit to work on the core assets but be
divorced from working on individual
products carries the danger that this
unit will produce assets that emphasize
beauty and elegance over practicality
and utility. In either case, producing
and managing the reusable assets means
establishing processes to make the assets
satisfy the needs of all of the business
units that use them. This is a crucial role
that requires staff skilled in abstraction,
design, negotiation, and creative prob-
lem solving. The question of funding the
core asset development is crucial.

Customer Management
Customer management becomes an
important product-line function. Cus-
tomers interact with a product-line
organization in a different way. Market-
ers can no longer agree to anything
customers want but must instead nudge
customers to set their requirements so
that they can be fulfilled by a version of
the product line within the planned
scope of variation.

Contrary to intuition, this often
makes the customer much happier than
before. Under the new paradigm, the
marketer can point to specific require-
ments that would put the customer’s
new system outside the scope of the
product line, which would increase the
cost and delivery time, lower the
system’s reliability, and keep that cus-
tomer out of a community of customers
to which the vendor pays a lot of atten-
tion. Thus, the customer could clearly
(and probably for the first time) see the
real cost of those “special” requirements
and make an informed decision about
their real value. If the customer decides

Software Product Lines: A New Paradigm for the New Century

22 CROSSTALK The Journal of Defense Software Engineering February 1999

that a variant of the “standard” or prod-
uct-line system will suffice, so much the
better. If not, the customer can still
order a system to satisfy particular re-
quirements but with a better idea of
where the risks may be hiding.

The customer community should
not be underestimated. In Celsius-
Tech’s case, their naval customers
around the world banded together to
form a users’ group. They did this in
their self-interest—to provide a forum
in which they could jointly derive new
requirements for their evolving sys-
tems and drive CelsiusTech to supply
new systems more economically than
they otherwise might. But it does not
take much to realize how beneficial
this is to CelsiusTech as well: Their
customer base is jointly defining their
next-generation products and effec-
tively buying in to their approach, thus
guaranteeing the vitality of their prod-
uct line for years to come.

The users’ group has a clear lesson
for DoD acquisitions: It pays to col-
laborate (or at least communicate)
when it comes to commissioning or
purchasing similar systems.

Conclusion
Successful transition to product-line
technology is thus a careful blend of
technology, process, organization, and
business factors improvement. The
Product-Line Systems Program is at-
tempting to codify these practices and
understand how they vary with the type

of organization involved and the kind
of systems being built. Through a series
of workshops, case studies, and collabo-
rative engagements, SEI is helping to
build a community of organizations
interested in moving to a product-line
approach for their software products.

We believe that product lines will be
the predominant software paradigm at
the beginning of the new century. The
history of programming can be viewed
as an upward spiral in which the ab-
stractions manifested by components
have grown larger and more application
meaningful, with resulting increases in
the reuse and applicability of those
components. From subroutines in the
1960s to modules in the 1970s to ob-
jects in the 1980s to component-based
systems in the 1990s, software product
lines will perpetuate the upward spiral
by accomplishing previously unheard-of
levels of reuse from system to system.

If the pitfalls are successfully negoti-
ated, the result is an enviable capacity
to deliver extremely large systems on
time and within budget.

For more information about the
Product-Line Systems Program and its
technology initiatives, visit SEI’s Web
page at http://www.sei.cmu.edu. You
can download the full report that details
the CelsiusTech product-line case study,
which includes data about their dramatic
results in time to market, levels of reuse,
and required staffing. You also can read
other product-line-related material,
including the latest version of the SEI’s

Product-Line Practice Framework, a
document that describes the essential
practice areas of successful product-line
development and acquisition. Contact
the program manager, Linda Northrop,
at lmn@sei.cmu.edu, for additional
information. ◆

About the Author
Paul Clements is a
senior member of the
technical staff at
Carnegie Mellon
University’s SEI. A
graduate of the Univer-
sity of North Carolina

and the University of Texas, he is a
project leader in the SEI’s Product-Line
Systems Program. His work includes
collaborating with organizations that are
launching product-line efforts. He is a
co-creator of the Software Architecture
Analysis Method (SAAM), which allows
organizations to evaluate architectures for
fitness of purpose. He and others are
working on an extension to SAAM,
which will allow analysis of quality at-
tribute trade-offs at the architectural
level. He is co-author of Software Archi-
tecture in Practice (Addison-Wesley-
Longman, 1998) and over three dozen
papers and articles about software engi-
neering.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 512-453-1471
Fax: 412-268-5758
E-mail: clements@sei.cmu.edu

Emerging Ideas

CROSSTALK The Journal of Defense Software Engineering 23February 1999

The use of FPs is becoming a
widely supported method to
create meaningful software met-

rics. In the past year, there has been a
proliferation of software industry confer-
ences with an increased emphasis on
software measurement and FP-based
metrics. Even tracks within traditionally
non-measurement conferences now
feature software measurement and FP
presentations (the American Society for
Quality’s International Conference on
Software Quality, the Quality Assurance
Institute’s International Quality Confer-
ence, the Software Technology Confer-
ence, and The MITRE Corporation’s
Software Engineering and Economics
Conference, to name a few).

Prominent systems consultants are
also increasingly vocal and supportive of
FP-based metrics. For example, Howard
Rubin based many of his workflow mea-
surements on FPs (see IT Metric Strate-
gies, December 1997), Capers Jones
frequently highlights FPs as a basis for
year 2000, productivity, and quality
metrics; and Ed Yourdon discussed FPs
in his presentation at the Applications of
Software Measurement Conference (At-
lanta, Ga., October 1997).

As president of the International
Function Point Users Group (IFPUG), I
appreciate the visibility generated for FPs
by leading software practitioners, but I
am disappointed that many profession-
als remain unfamiliar or misinformed
about what functional size can and can-
not do. There are even professionals who
believe that by implementing FPs they
can throw away all other software mea-
sures—they think FPs are the measure-
ment program, but they are not.

FPs provide one additional project
management tool, but they are not the
entire toolkit. This article outlines the
major components involved in FP count-

ing, including counting examples. It
ends with a look at the misconceptions
about what FPs can and cannot do.
(Other published articles such as
“Demystifying Function Points – Under-
standing the Terminology” are available
from the author.) This article also pro-
vides project managers with enough
knowledge about FPs and their usage to
make informed decisions about when
and how to implement functional sizing
on their projects.

What Are Function Points?
FPs measure the size of a software
project’s work output or work product
rather than measure internal features
such as lines of code (LOC). FPs evalu-
ate the size of the functional user require-
ments that are supported or delivered by
the software. In simplest terms, FPs
measure what the software must do from
an external, user perspective, irrespective
of how the software is constructed. Simi-
lar to the way that a building’s square
measurement reflects the floor plan size,
FPs reflect the size of the software’s func-
tional user requirements.

However, to know only the square
foot size of a building is insufficient to
manage a construction project. Obvi-
ously, the construction of a 20,000
square-foot airplane hangar will be dif-
ferent from a 20,000 square-foot office
building. In the same manner, to know
only the FP size of a system is insuffi-
cient to manage a system development
project: A 2,000 FP client-server finan-
cial project will be quite different from a
2,000 FP aircraft avionics project.

I will carry the construction analogy
one step further. To exclusively count the
LOC (which many military departments
do) is similar to counting the total num-
ber of construction pieces, e.g., 850,000
individual components that weigh

15,000 tons. This counting method is
more indicative of construction methods
than the functions (FPs) contained
within a building. FPs are similar to
summing up the square footage of func-
tional items on a floor plan, e.g., the
square footage of four sets of 10 x 15-
foot restrooms, nine 12 x 20-foot meet-
ing rooms, one 30 x 20-foot boiler room,
two 10 x 40-foot staircases. FPs, like
square feet, provide a normalized size,
based on summing up the component
functions that the resultant product must
provide.

Because—no matter how large or
how small—most software is developed
to address user requirements, it can be
measured in FPs. Some practitioners use
the analogy of a “black box” to describe
how FPs measure software independent
of the inner workings of the software.

The process to calculate FPs is main-
tained by IFPUG and documented in its
Function Point Counting Practices
Manual (currently in release 4.0). Unlike
LOC, FPs are independent of the physi-
cal implementation and languages used
to develop the software, and they remain
consistent no matter what development
language or technique is used.

The fit between FPs and software
development can be described analo-
gously with square feet and construction
(Table 1).

Why Use Function Points?
FPs provide an objective project size for
use in estimating equations (together
with other factors) or to normalize pro-
ductivity or quality ratios. The value in
using FPs lies in the ratios and normal-
ized comparisons between ratios. Process
improvements can be found when nor-
malized ratios are compared and their
underlying project attributes evaluated.

Managing (the Size of) Your Projects
A Project Management Look at Function Points

Carol A. Dekkers
Quality Plus Technologies, Inc.

This article is an introduction, as well as a refresher, to readers who need to update their knowledge about
function points (FPs). It includes many of the concepts presented in my presentation, “Requirements Are
(the Size of) the Problem,” at the 1998 Software Technology Conference in Salt Lake City, Utah.

In the Classroom

24 CROSSTALK The Journal of Defense Software Engineering February 1999

In the Classroom

FPs provide a standard, normalized
measure of the work product or func-
tional size of software. Together with
other measures, FP-based software met-
rics highlight process improvement op-
portunities and can increase estimating
and prediction accuracy.

The Key to Counting Function
Points: “Think Logical”
A fundamental feature of FP counting is
that everything is counted from a logical
user perspective, based on functional user
requirements.1 This is a paradigm shift
for developers who are excellent at pro-
gramming and physical configuration
management. It does not matter to the
functional size (FPs) whether it takes one
thousand lines of COBOL code and
eight subroutine calls or 100 lines of
C++ code to perform a given business
function; the FP count remains the same
because the user function is the same.

Because excellent developers are akin
to excellent plumbers involved in home
construction, it takes a change in their
mind-set to remove themselves from the
physical implementation and look only
at the floor plan. At this point, perhaps
I have lost some developers who may
think, “But the plumbing is important
to keeping the house functioning. If we
do not count other aspects of the soft-
ware like the development language, we
cannot accurately predict how long it
will take to build.” This assertion is
absolutely correct, but functional size
(FPs) is not the same as work effort.
Here is the relationship:

Size (in FPs): An independent mea-
sure of the software’s logical size. (Like
the total room count and square foot-
age of the finished building, which are
constant regardless of construction
methods.)

Work effort (in hours): A dependent
measure of how long the software will
take to develop, equal to a function of
size, language, platform, skills, methods,
team size, risks, and many other variables.

Productivity (in hours per FP): A
dependent result, dependent on all the
same factors as work effort. Note that an
independent variable (FP) divided by a
dependent variable (hours) yields a depen-
dent result.

This means that just as the quality of
the raw materials, piping configuration,
and house layout affects the work effort it
will take to plumb a house, so, too, will
the language and other attributes affect
software development time. However,
regardless of how the house is designed
and constructed, the functional size of
the house stays the same. With software,
the software size (in FPs) is independent
of the language, skills, physical configu-
ration, and other factors used in the
development. When you use FPs, you
are talking only about the software size.

What Gets Counted in Function
Point Counting?
To count FPs, evaluate the following five
logical components of the software based
on the user requirements (Figure 1):2

• Internal logical files (ILFs) – Logi-
cal, persistent entities maintained by
the software application.

• External interface files (EIFs) –
Logical, persistent entities referenced
only by this software application but
which are maintained by another
software application.

• External inputs (EIs) – Logical,
elementary business processes that
cross into the application boundary
to maintain the data on an ILF or to
ensure compliance with user business
requirements, e.g., control data.

• External outputs (EOs) – Logical,
elementary business processes that
result in data leaving the application
boundary to meet a user requirement,
e.g., reports, data files, tapes, and
screen alerts.

• External queries (EQs) – Logical,
elementary business processes that
consist of a data “trigger” followed by
a retrieval of data that leaves the
application boundary.
The five types of logical components

counted are not the same as physical
components. Discussion of ILFs, for
example, does not refer to the physical
files or data sets. ILF refers to the logical,
persistent entities maintained through a
standardized function of the software—
they are the stand-alone, logical entities
that typically would appear on an entity
relationship diagram. For example, in a
human resources application, an associ-
ate or employee entity would be main-
tained. This entity would be counted as
an ILF.

Another illustration of counting
logical components is when referring to
EIs, which are the logical, elementary
business processes that maintain the data
on an ILF or that control processing.

Figure 1. IFPUG function point components in
relation to the application.

Table 1. Function points as a construction analogy.

cirteM noitcurtsnoC
fostinU
erusaeM

tIsInehW
ottnatropmI

?erusaeM

fostinUTI
erusaeM

tIsInehW
ottnatropmI

?erusaeM

tcejorPdetamitsE
eziS

.teeferauqS .egatssnalproolfgniruD .PF rostnemeriuqergniruD
.egatstcartnoc

llarevO,tsoCtinU
tsoC

erauqsreptsoC
.tsoclatot,toof

noitcurtsnocgniruD
.noitaitogentcartnoc

,PFreptsoC
.tsoc

ogonroogerofeB
.noisicedtnempoleved

kroWdetamitsE
troffE

.shtnom-naM ronoitcurtsnoctuohguorhT
.sruccoegnahcrevenehw

-namrosruoH
.shtnom

rotnempolevedtuohguorhT
.sruccoegnahcrevenehw

egnahCfoeziS
sredrO

tsoc,teeferauqS
.)tcapmi(

siegnahcrevenehW
.deifitnedi

ro,tsoc,PF
.)tcapmi(sruoh

siegnahcrevenehW
.deifitnedi

CROSSTALK The Journal of Defense Software Engineering 25February 1999

The logical business process of adding an
associate would be one user function;
therefore, in function point counting,
you would count one EI. The size in FPs
for this one EI would be the same re-
gardless of how we physically imple-
mented it because in every implementa-
tion, it performs one logical user
function. For example, the count for

“add associate” is the same regardless of
the number of screens, keystrokes, batch
programs or pop-up data windows
needed to complete the process.

What Is Involved in Function
Point Counting?
The basic steps3 involved in function
point counting include
• Determine type of count, e.g., new

development project, application or
base count, or enhancement project
count.

• Identify the application boundary,
i.e., what functions must the software
perform? This creates a context dia-
gram for the application or project.

• Count the data function types.
• ILFs – logical data groups main-

tained within the application
boundary.

• EIFs – used only for reference by
the application.

• Count the transactional function
types.

• EIs – data entry processes and
controlled inputs.

• EOs – e.g., reports.
• EQs – e.g., question-and-answer

pair that results in data retrieval.
• Evaluate the complexity of each of

the five function types identified
above. IFPUG provides several
simple matrices to determine whether
a function is low, average, or high,
based on data element types (user
recognizable, non-recursive data
fields), record element types (subsets
of user-recognizable data), and file
types referenced (number of logical
data groupings required to complete
a process). Table 2 summarizes the
number of FPs assigned to each func-
tion type. Following the IFPUG
guidelines, count and rate all the
identified functions and add the FPs
together. The resulting number is the
unadjusted FP count.

• Determine the value adjustment
factor (VAF), which reflects the user
problem complexity for the devel-
oped software. The VAF is calculated
via an equation (VAF = 0.65 + (sum
of GSCs x .01) and the evaluation of
the following 14 general system
characteristics (GSCs). Specific
evaluation guidelines for the follow-
ing GSCs are provided in the IFPUG
Function Point Counting Practices
Manual.

• Data Communication.
• Distributed Data Processing.
• Performance.
• Heavily Used Configuration.
• Transaction Rate.
• On-Line Data Entry.
• End-User Efficiency.
• On-Line Update.
• Complex Processing.
• Reusability.
• Installation Ease.
• Operational Ease.
• Multiple Sites.
• Facilitate Change.

• Calculate the final adjusted FP count
(adjusted function count = unad-
justed FP count x VAF).

Table 2. Unadjusted FP values by component.

Without getting into IFPUG Function Point Count-
ing Practices Manual specifics of how to rate
components as low, average, or high complexity,
the following illustrates how to arrive at the
unadjusted FP count for an application or develop-
ment project. Following are the functional user
requirements.

• Create an application to store and maintain
employee records consisting of the following
data fields: name, number, rank, street
address, city, state, ZIP code, date of birth,
telephone number, office assigned, and date
the employee data was last modified.

• The application must provide a means to add
new employees, update employee informa-
tion, terminate employees, and merge two
employee records.

• The application must provide a weekly report
on paper that lists which employees’ informa-
tion has changed during the past week.

• The application must provide a means to
browse employee data.

• No data outside the application is referenced,
and all data validation edits are done using
hard coded (not modifiable) data.

The FP components to be counted based on the
above include

• One ILF for the employee data because it is
a persistent logical entity maintained by the
application. Based on an evaluation of the
data elements and logical record types

(contained in the counting practices manual),
this ILF would be categorized low and be
worth seven FPs.

• Four EI processes: One EI each for add
employee, update employee, terminate
employee, and merge employee records.
Assuming each one is of low complexity
(each requires only one logical entity and
requires fewer than 16 data elements), each
EI would be worth three FPs for a total of
12 FPs.

• One EO process: The weekly report would
be categorized as an external output and
typically would consist of fewer than 20 data
elements and require only the employee
logical file. Based on the counting rules, this
external output would be classified low and
be worth four FPs.

• One EQ process. The process to browse the
employee data would be classified as an EQ.
Based on the number of data elements (fewer
than 20) and the number of logical files
accessed (the employee ILF), this EQ would
be classified low and be worth three FPs.
Total components from the above four points:

26 unadjusted FPs. The final step would be to
determine the value adjustment factor based on
the user business constraints evaluated per the
Function Point Counting Practices Manual. Guide-
lines are provided in the manual to help FP practi-
tioners properly evaluate the adjustment factor.

Making Adjusted FP Counts

noitcnuF
epyT

woL egarevA hgiH

IE 3x 4x 6x

OE 4x 5x 7x

QE 3x 4x 6x

FLI 7x 01x 51x

FIE 5x 7x 01x

Managing (the Size of) Your Projects: A Project Management Look at Function Points

26 CROSSTALK The Journal of Defense Software Engineering February 1999

The Logical Boundary
One of the first steps of counting FPs is
to identify the logical boundary around a
software application. This “boundary”
separates the software from the user
domain. (Users can be people, things,
other software applications, departments,
other organizations, etc.) As such, the
software may span several platforms and
include both batch and on-line processes.
The boundary is not drawn around the
software in terms of how the system is
implemented but rather in terms of how
an experienced user would view the
software. This means that a single appli-
cation boundary can encompass several
hardware platforms, e.g., both main-
frame and PC hardware used to provide
an accounts receivable application would
be included within the application
boundary.

Where Do Function Points Fit In?
Once the adjusted FP count for a project
or application has been created, it be-
comes the size of the work product. Just
as the total functional size of a house
does not equal the speed at which a
house can be built or its construction
time, the FP size does not equal produc-
tivity or work effort. FPs measure the size
of what the software does, rather than
how it is developed and implemented.
This means that given a common set of
logical user requirements, the FP size of
the software will be the same whether it
is developed using COBOL or DB2 or

and is a project editor
within the ISO func-
tional size measurement
workgroup (ISO/IEC/
JTC1/SC7 WG12). She
is a frequent presenter
and trainer at both U.S.

and international quality and measure-
ment conferences and is credentialed as a
certified management consultant, a certi-
fied function point specialist, a profes-
sional engineer (Canada), and an Infor-
mation Systems professional.

Quality Plus Technologies, Inc.
8430 Egret Lane
Seminole, FL 33776
Voice: 727-393-6048
Fax: 727-393-8732
E-mail: dekkers@qualityplustech.com
Internet: http://www.qualityplustech.com

Notes
1. If you do not have “functional user

requirements,” does that mean you
cannot count FPs? There are always
requirements, although they may not be
fully articulated by users or documented
in a clear and complete fashion. In the
early stages of software development,
you may have to estimate the require-
ments or make assumptions about the
user requirements and subsequently
base your count on those assumptions.
(See “Requirements Are [the Size of]
the Problem,” ITMetric Strategies,
March 1998, which further explores the
topic.)

2. The components listed are taken from
the IFPUG Function Point Counting
Practices Manual, Version 4.0, February
1994. The explanatory text in italics
below each component is my wording
to describe each component. For fur-
ther information or to obtain the
manual, contact the IFPUG adminis-
trative office in Westerville, Ohio at
614-895-7130 or visit the Web site at
http://www.ifpug.org.

3. These steps condense the full details of
function point counting included in the
Function Point Counting Practices
Manual, Version 4.0. Additionally, there
are full case studies of FP counts, done
at differing phases of application devel-
opment, that can also be ordered
through the IFPUG office.

Types of Function Point Counts
The full details of FP counting procedure is contained in the IFPUG Function Point Counting Practices
Manual, Version 4.0. There are two major types of FP counts:
• Application or base FP count: This count is the size of an installed base application. (Think of it in

terms of total square feet of an existing house). The base size in FP is a point-in-time snapshot of
the current size of an application. This number is useful whenever comparisons are required between
different applications, e.g., defects divided by base FPs.

• Project or enhancement FP count: This count reflects the size of the functional “area touched” by
an enhancement project. An enhancement project count is the result of summing the new functions
added in the project plus the functions removed from the application by a project plus the functions
changed by the project. (Think of this count in terms of a renovation project where the square foot of
the project equals the sum of the area of a new living room, a removed bathroom, and a remodeled
kitchen). This count is useful in project-based metrics, e.g., relative cost in dollars divided by devel-
opment FP.

As the project is finished, the application or base FP count must be updated by the net, i.e., new minus
removed plus the net difference in the changed functions.

using rapid application development or
structured development methods.

Where Can I Learn More About
Function Points?
If you are going to get serious about
software measurement or FPs or just
want further information on how to get
started with a measurement program,
contact IFPUG or me. Incorporated in
1986, IFPUG is a not-for-profit users’
group that has become a leader in estab-
lishing and publishing function point-
related documents, including the Func-
tion Point Counting Practices Manual, the
Guidelines to Software Measurement (cur-
rently in release 1.1), Function Points as
Assets guide, and several detailed FP case
studies. IFPUG remains a volunteer
organization (with a small, paid adminis-
trative staff), is active in International
Organization for Standardization (ISO)
standards, sponsors conferences and
workshops, and certifies FP training,
counters (certified function point spe-
cialists), and FP software. Currently, paid
membership represents over 30 countries
worldwide. ◆

About the Author
Carol A. Dekkers is president of Quality
Plus Technologies, Inc., a management
consulting firm specializing in training
and consulting in function points, soft-
ware metrics, requirements, and estima-
tion process improvement. She is presi-
dent of the IFPUG board of directors

In the Classroom

CROSSTALK The Journal of Defense Software Engineering 27February 1999

Information technology (IT)
industry pundits and the press pre-
dict all types of calamities to befall

humanity because of the year 2000
(Y2K) crisis. Some of the worst-case
scenarios may manifest themselves, and
technology’s reputation will take a beat-
ing from those most injured. Despite
the near-term downside of Y2K prob-
lems, the long-term view indicates
many beneficial aspects to “the crisis.”

The major problem IT faces is de-
scribed in the popular press as a “bug” or
a “glitch.” These terms are commonly
used by practitioners for relatively minor
problems that can be solved with mini-
mal effort. The truth is that information
technologists created the Y2K problem
by conscious decisions; that is, we de-
signed a crisis. But crises frequently have
positive aspects when viewed from a
long-range perspective.

Other articles have addressed the
technical issues Department of Defense
commanders and information tech-
nologists face. This article details the
positive aspects of solving Y2K prob-
lems. When we look back on this era
10 or 20 years from now, we will appre-
ciate what the millennium has done to
transform our industry.

The common thread of the upside
of Y2K is a focus on process. Whether a
five-step Y2K process or the Capability
Maturity Model (CMM), many soft-
ware engineering processes will be en-
hanced by the year 2001. The positive
aspects of Y2K can be grouped into
four major areas:
• Improved structure.
• Heightened software awareness.
• Enforced accountability.
• Industrial maturity.

Improved Structure
After an inventory of systems (also a
long-term benefit), the next step in

addressing an organization’s Y2K situa-
tion is the decision to retire applications
not worth renovating. Many of these
older systems should have been retired
many years ago. But we are reluctant to
pull the plug on these stalwart applica-
tions. Building in the “millennium
bug” when storage was a premium
created unplanned obsolescence. After
1999, we will no longer need to main-
tain systems for which the functions
will be delivered with more contempo-
rary software. The cost to maintain
applications will be reduced through
• fewer lines of code to support.
• a refreshed understanding of the

remaining programs.
Organizations that started their Y2K

activities a year or two ago took advan-
tage of the opportunity to thoroughly
review their systems. One health-care
claims processing software shop that
carefully examined all its applications in
1994 reported a reduction of more than
10 percent in lines of code compiled
upon completion of their Y2K project.
Organizations that have completed a re-
engineering with their Y2K renovation
also report less cycle time to execute the
more efficient applications.

Shops that started later had to em-
ploy fully automated techniques with-
out a comprehensive review to optimize
systems before renovation. These shops
see little code reduction and, when
using windowing techniques, may expe-
rience a small increase. Regardless of
the amount of reengineering, additional
benefits to the renovation process in-
clude expansion of the regression test-
ing suite.

On the hardware side, many com-
mands experienced a proliferation of
platforms over the past several years.
Improved infrastructure provides many
of these shops with the opportunity to
standardize on a processor base that

should consolidate future maintenance
costs. As commanders stabilize their
platforms, they will also be using the
Y2K process as an opportunity to reduce
the multiplicity of operating systems and
to benefit from economies of scale.

Heightened Software
Awareness
Perhaps one of the most profound and
subtle positive effects of the Y2K prob-
lem is the new level of dialog between
senior managers and information tech-
nologists. Over the past 25 years, data
processing has grown from an ancillary
function to a ubiquitous necessity of
modern life. Many managers in govern-
ment and business, however, continue to
see IT as a “back room” support func-
tion. The abstract nature of software
once facilitated a manager’s ability to
relegate our profession to a support role.

With the millennium approaching,
managers are more acutely aware of the
role of software to the continued suc-
cessful operation of the organization.
Senior commanders and boards of di-
rectors now are aware of software risk
management, project staffing, task
status, metrics, and contingency plan-
ning. Although upper-level manage-
ment need not be involved in the de-
tails of IT over the long range, their
concerns about the Y2K project bodes
well for the future of our profession.
Their increased awareness of the pro-
cesses required to create and maintain
software should reduce the number of
arbitrary, uninformed decisions in the
future and foster better communica-
tions with technologists. Programmers at
Johns Hopkins University report that
their board of directors has a Y2K over-
sight committee that tracks progress and
issues on a regular basis. Nontechnical
managers at all levels will have a better

The Upside of Y2K
John B. Hubbs

AverStar, Inc.
Despite the potential catastrophes of failure, a long-term view of solving the Y2K problem
provides many positive benefits. The opportunities should be seized for more objective com-
munications within the commands and for improved processes within our software shops.

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering February 1999

appreciation for software and the exten-
sive testing required to get it right.

In addition to systems “owned” by a
command, interfaces with other applica-
tions have increased with advances in
telecommunications. With each com-
mand serving its own needs, we have
unintentionally woven a complex web of
interfacing systems. The Y2K issue
forces us to realize that the interfaces are
as important as the home-grown sys-
tems. As information technology practi-
tioners, we should not let this opportu-
nity pass us by to inform our managers.

Enforced Accountability
Partly because our work is viewed as a
“black art,” we have been allowed slip-
pages and nonperformance that would
not be acceptable in other parts of the
military. Software project failures and
cost increases are not as publicized in
the popular press as much as hardware
fiascoes. Software projects have been
given more time and money despite
• The shortage of documented re-

quirements.
• Demands to meet an often arbitrary

deadline.
• Confusion about the process.
• A changing technologic base.
• Frequent reorganizations.

Yet, this “new industry” has fostered
unprecedented growth in an economy
that was all but given up as lifeless 20
years ago when we feared being overrun
by the Japanese. Most of this success
was achieved by heroes who sacrificed a
good share of their personal life to
bring order out of chaos.

With an unchangeable due date that
cannot be missed, we will be held re-
sponsible for our performance. The
processes that must be enforced to be
Y2K successful have grabbed the atten-
tion of senior officers (assuming they
know they need a disciplined software
process). Failure is not an option with-
out bringing down the enterprise—be it
a command, a business, or a govern-
ment agency. Technologists will be fully
accountable for Y2K success or failure.

Industrial Maturity
Any new industry experiences growing
pains. The opportunities of the indus-

trial revolution at the end of the last
century gave rise to labor abuses and
monopoly powers. Through painful
experience, a free society regulated itself
to create a positive, constructive envi-
ronment in which the then new tech-
nologies could flourish. Electricity was
as misunderstood and ubiquitous at the
turn of the last century as software is at
the turn of the millennium.

Thus, the millennium change is our
epiphany—the hidden art of software
engineering will come out of obscurity
to be seen and to serve in a more open
and visible manner. This coming out
will be accompanied by a renewed focus
on the processes by which software is
conceived and delivered. Those organi-
zations that handle Y2K successfully
will be seen as more progressive and
able to deal with future challenges.
Those who fail will join the manufac-
turers of muzzleloaders or will be rel-
egated to forever catching up until they
are overtaken by new market or regula-
tory forces.

The rapid growth of information
technologies has rendered established
techniques out of date. The cry of the
hands-on technologist is the need to
“maintain my skills.” Everyone wants to
work on new development projects
using the latest technology. As soon as a
new technique catches on, the “old”
skills are no longer desirable.

Only a few years ago, COBOL
programmers were concerned about
two aspects of their jobs: being rel-
egated to maintenance tasks and not
staying current with the latest technol-
ogy. Today, these same people are being
recalled from retirement with attractive
salaries to perform maintenance on the
old mission-critical systems. Skills in
COBOL and the older information
technologies enjoy a new-found respect
that will last many years.

Our industry has grown so rapidly
that we have not taken the time to step
back and see what we have wrought.
Individual commands focus on their
system needs and develop interfaces
with other systems for even more effi-
ciencies. A similar approach to address
Y2K is being taken. Each organization
has looked at its system inventory and

(I hope) taken appropriate action. Only
late in the game has it become apparent
that the Y2K issues of our partners
(suppliers of data as well as software)
are as important as our internal prob-
lems. The worst-case scenarios of a
global data meltdown are based on an
understanding of the intricate, inter-
locking webs of applications that were
built long before the Advanced Re-
search Project Agency conceived the
Internet. If any of these scenarios be-
come real, we will fully realize for the
first time how pervasive software has
become.

Another subtle change in attitude
centers on motivation. Nature’s primary
motivators are desire and fear. As soci-
ety exploited computational skills,
management and practitioners were
motivated mostly by desires—to beat
the competition (or enemy), to code a
more sophisticated routine, or to engi-
neer another massive system. The moti-
vator for the Y2K problem, however, is
fear. For commands actively working
on Y2K problems, management should
be fully involved—failure is not an
option. Fear of failure is more tangible
now than it ever has been in this indus-
try. The new motivator is another basis
for maturation of our profession.

Conclusion
The Y2K issues and fears we face today
are substantial. When we look back on
the Y2K problem in 2015, we will see it
as a blessing that we designed into an
infant industry. Many more positives
than those outlined here will be visible
from the perspective of hindsight.

With an accurate inventory and
improved regression test suite, pro-
grammers will be able to maintain sys-
tems more efficiently than in the past.
As a result of the intense focus on Y2K
projects, senior commanders and execu-
tives will have a better appreciation of
the configuration management and
quality assurance processes necessary to
develop and support systems. With
better processes, project managers can
estimate costs and schedules more accu-
rately and be more accountable for the
results. Thus, a more mature industry

Open Forum

CROSSTALK The Journal of Defense Software Engineering 29February 1999

that has survived a dilemma of its own
making may be seen as a valuable asset.

As information technology survives
the millennium, the perception of our
industry will move from that of an art to
a science. As we struggle with our Y2K
problems through the next few years, let
us not lose sight of the many potentially
beneficial aspects that improved pro-
cesses will provide us. In the future,
commanders and practitioners alike will
be able to focus more on technical issues
than process problems. ◆

About the Author
John B. Hubbs de-
signed the Civilian
Health and Medical
Program for the Uni-
formed Services health-
care claims processing
system deployed with

the 7th Army in Heidelberg, Germany.
While supporting the Social Security
Administration, he directed the
contractor’s CMM-based process im-
provements and lead the design for a

major development project that received
Vice President Gore’s National Perfor-
mance Review Award in June 1997. He
currently performs independent verifica-
tion and validation for the Health Care
Financing Administration.

AverStar, Inc.
3120 Timanus Lane
Baltimore, MD 21244
Voice: 410-944-3190
Fax: 410-944-3868
E-mail: jhubbs@averstar.com
Internet: http://www.averstar.com

Coming Events
Call for Papers: 1999 Acquisition Research
Symposium (ARS)

Dates: June 21-23, 1999
Location: Doubletree Hotel, Rockville, Md.
Sponsor: Deputy Undersecretary of Defense for Acquisi-

tion Reform.
Co-hosts: Defense Systems Management College

(DSMC) and the National Contract Management
Association, Washington, D.C. chapter.

Theme: “Acquisition Reform – A Revolution in Business
Affairs”

Topics: Acquisition Reform Successes and Lessons
Learned, Business Process Reengineering and
Benchmarking, Commercial Applications in Govern-
ment, Competitive Acquisition Strategies, Cost and
Resource Management, Federal Acquisition and the
Political Process, Industrial Base/Civil/Military Inte-
gration, International Acquisition Issues, Leveraging
Technology in Acquisition, Management Decision
and Information Support Tools, Organization and
Cultural Change, Outsourcing and Privatization.

Three camera-ready copies of paper due: Feb. 26, 1999
(obtain guidelines from Joan L. Sable)

Submit to: Joan L. Sable, DSMC Program Chairwoman,
ARS 99, 9820 Belvoir Road, Suite 3, Fort Belvoir, VA
22060-5565

Voice: 703-805-5406 DSN 655-5406
E-mail: ars99@dsmc.dsm.mil

“Making the Move to COCOMO II” Seminars
Dates: March, May, and September 1999
Locations: Los Angeles, Calif., San Francisco, Calif.,

Dallas, Texas, Chicago, Ill., Boston, Mass., Wash-
ington, D.C., depending on date.

Instructor: Donald J. Reifer
Voice: 310-530-4493
Fax: 310-530-4297
E-mail: info@reifer.com
Internet: http://www.reifer.com

1999 IEEE Aerospace Conference
Dates: March 6-13, 1999
Location: Snowmass at Aspen, Colo.
Sponsor: Aerospace and Electronics Systems Society of

the Institute of Electrical and Electronics Engineers
(IEEE).

Topic: The internationally attended IEEE Aerospace
Conference is organized to promote interdiscipli-
nary understanding of aerospace systems, their
underlying science and technology, and their appli-
cations to government and commercial endeavors.

Contact: Mike Johnson or Beth Leitereg
Voice: 702-784-6485
Fax: 702-787-1342
E-mail: jmj@ee.unr.edu
Registration: registration@aeroconf.org
Internet: http://www.aeroconf.org

Call for Papers and Workshops: Ninth International
Conference on Software Quality

Dates: Oct. 4-6, 1999
Location: Royal Sonesta Hotel, Cambridge, Mass.
Sponsor: American Society for Quality Software Division
Suggested Topics: Software Quality Management, Soft-

ware Processes, Software Project Management, Soft-
ware Metrics, Measurement and Analytical Methods,
Software Inspection, Testing, Verification and Valida-
tion, Software Audits, Software Configuration Man-
agement, Standards, Quality Philosophies and Prin-
ciples, Organizational and Interpersonal Techniques,
Problem-Solving Tools and Processes, and Professional
Conduct and Ethics.

Abstracts, proposals for workshops, and panel sessions
due: March 8, 1999

Contact: John Pustaver, Conference Chairman, 4
Kendall Road, Sudbury, MA 01776

E-mail: pustaver@swquality.com

The Upside of Y2K

30 CROSSTALK The Journal of Defense Software Engineering February 1999

call fax-on-demand 435-797-2358 for a
housing reservation form. As soon as
possible, fax it to the SLCVB Housing
Bureau at 801-355-0250. Government-
rate rooms are filled quickly. Buses will
be provided to help with transportation
between the conference center and city-
center hotels during conference hours.
Be sure to read the instructions on the
housing form closely.

The conference fee structure for
STC ’99 is

Discounted registration fee paid by March 26, 1999

Active Duty Military/Government $465*
Business/Industry/Other $585

Regular registration fee paid after March 26, 1999

Active Duty Military/Government $515*
Business/Industry/Other $635

* Military rank (active duty) or govern-
ment GS rating or equivalent is re-
quired to qualify for this rate.

The official STC ’99 registration
brochure was mailed in early January. We
have made it easier to register early this
year. Send in your registration forms
with your credit card number now, and it
will not be charged until March 25, 1999.
You no longer have to wait until May to
register.

All CROSSTALK subscribers are on our
mailing list. If you borrow CROSSTALK,
please contact us to be added to our
mailing list.

You may use our Web site at http://
www.stc-online.org for further informa-
tion about STC ’99.

If we can be of further assistance,
please call or E-mail. This is one confer-
ence that you do not want to miss. We
will see you in May!

Dana Dovenbarger, Conference Manager
Lynne Wade, Assistant Conference Manager
Software Technology Support Center
OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-7411 DSN 777-7411
Voice: 801-777-9828 DSN 777-9828
Fax: 801-775-4932 DSN 775-4932
E-mail: dovenbad@software.hill.af.mil
 wadel@software.hill.af.mil

The Eleventh Annual Soft-
ware Technology Conference
(STC ’99) will be held in Salt

Lake City, Utah, May 2-6, 1999.
The U.S. Air Force, Army, Navy,

Marine Corps, and the Defense Informa-
tion Systems Agency (DISA) have again
joined forces to co-sponsor STC ’99, the
premier software technology conference
in the Department of Defense (DoD).
Once again, Utah State University Con-
ference Services is the conference
nonfederal co-sponsor.

The government co-sponsors are Lt.
Gen. David J. Kelley (DISA), Lt. Gen.
William Campbell (U.S. Army), Dr.
Helmut Hellwig (U.S. Air Force), Rear
Adm. Kenneth D. Slaght (U.S. Navy),
and Brig. Gen. Robert Shea (U.S. Ma-
rine Corps).

The theme for STC ’99, “Software
and Systems for the Next Millennium,”
is shaping up to be a transition confer-
ence reflecting the convergence of the
DoD’s tactical and nontactical informa-
tion systems, processes, people, and
policy in support of our war fighters.
This theme reflects the broader role of
software within the domain of knowl-
edge sharing. Going beyond mere trans-
mission of data elements, knowledge
sharing identifies the need for contextual
exchange of situational awareness within
the dispersed, rapid-paced battle space in
which modern U.S., allied, and coalition
forces operate. STC ’99 showcases more
than just a “software technology confer-
ence”; it sharpens the focus of the ubiq-
uitous role of software, information
technology, and information warriors as
they support our military capabilities.

We anticipate over 3,500 partici-
pants from the military services, govern-
ment agencies, contractors, industry,
and academia.

The general session will be held on
Monday afternoon. In addition to the
general session, the co-sponsors have
agreed to host a question-and-answer
general session on Tuesday morning,
when they will address questions from
conference participants. Conference

attendees are encouraged to turn in their
questions to conference management
prior to the conference or to the on-site
control room on Monday of the confer-
ence week. This is a great chance to get
answers from our senior leaders on im-
portant issues.

Over 600 excellent abstracts were
submitted this year by potential speakers,
which made choosing a few more than
100 speakers extremely difficult. Partici-
pants will be greatly pleased with the
selection of speakers and topics.

There will also be a special intelli-
gence meeting held in conjunction with
the conference on Wednesday. Top Secret
SI/TK clearances will be necessary for
this one-day track. Details are in the
registration brochure.

Our exhibit area has grown to 324
vendor booths. At press time, limited
space is still available. Registration infor-
mation is in the registration brochure.
For current vendor information, please
check the STC ’99 Web site at http://
www.stc-online.org. Space rental rate is
$1,175 per 10-foot by 10-foot booth.
Late registration received after Feb. 12,
1999, should space be available, will rent
for $1,275 per booth. A copy of the
exhibitor registration brochure with a
full layout of the exhibition area is avail-
able on the Internet at http://www.stc-
online.org. For more information con-
cerning the exhibition, E-mail a request
to stcexhibits@ext.usu.edu, use fax-on-
demand at 435-797-2358, or call 435-
797-0047.

One of the greatest benefits of STC
is that it provides excellent networking
opportunities. Side meetings and
Birds-of-a-Feather meetings are already
being scheduled. If you are interested
in reserving a time for one of these
meetings, please call us at 801-777-
9828, and we will be glad to schedule a
meeting for you.

Hotel guest room reservations are
being taken through the Salt Lake Con-
vention and Visitors Bureau (SLCVB).
To reserve your hotel guest room, fill out
the form in your registration brochure or

It’s Time to Register for the Eleventh Annual
Software Technology Conference

CROSSTALK The Journal of Defense Software Engineering 31February 1999

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Tracy Stauder
801-775-5746 DSN 775-5746
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5798
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5799
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-777-8045
editorial_assistant@stsc1.hill.af.mil

Features Coordinator Denise Sagel
801-775-5555
features@stsc1.hill.af.mil

Customer Service 801-775-5555
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the atten-
tion of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense software
community. Articles must be approved by the CROSSTALK editorial board prior to
publication. Please follow the Guidelines for CROSSTALK Authors, available upon re-
quest. We do not pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that are
of interest to our readers. There is no fee for this service, but we must receive
the information at least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or E-mail to
schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies of
back issues of CROSSTALK free of charge. If you would like a copy of the printed
edition of this or another issue of CROSSTALK, or would like to subscribe, please
contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of their delivery.
CROSSTALK is assembled, printed, and distributed by the Defense Automated Printing
Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individu-
als actively involved in the defense software development process.

BACKTALK

Legacy of the Information Age
Every era of human history is designated by an “age,” such as the Iron Age, the
Industrial Age, the Space Age, and the Age of Flared Pants and Shirt Lapels Big
Enough to Shade Municipal Stadiums. How will our age be remembered by future
historians? What earth-changing creations of our era will take place alongside the
wheel, the printing press, the factory, the telephone, and stone-washed jeans?

The namesake invention of our era should be so pervasive that it affects the
way we work, play, and think. And the winner becomes painfully self-evident to
me as I type this column on my word processor in preparation to E-mail it to our
Webmaster: We’ll be remembered as the Age of Multilevel Marketing Schemes. I
tell you, it’s the wave of the future, taking advantage of the vast network of family
and friends you already have and providing almost limitless opportunities to anger
and alienate them—although they’ll someday thank you when their hard work
blossoms into never-ending wealth for some schmuck two levels above you.

However, my grandparents have been around for nearly a century, and they
believe the biggest invention of their lifetimes—even ahead of television, the
airplane, and “The Clapper”—has been the computer. They may have a point. It’s
hard to appreciate what an impact they’ve had on society (computers, not my
grandparents) without stepping back and imagining how key historical periods
would have been altered if the players had had the benefits of computers:
MarMarMarMarMartin Ltin Ltin Ltin Ltin Luther:uther:uther:uther:uther: I hath thrice E-mailed thee without response. Art thou hastily printing my Biblical translation?
Johannes Gutenberg:Johannes Gutenberg:Johannes Gutenberg:Johannes Gutenberg:Johannes Gutenberg: Nay, I art ensnared in a game of Mule Simulator II. Didst thou send thy file?
LLLLLuther:uther:uther:uther:uther: Thou hast not seen it? I hath sent it erenow a fortnight!
Gutenberg:Gutenberg:Gutenberg:Gutenberg:Gutenberg: Perchance my mail server doth have the palsy anew. Lo, a half moon aforehence I hath received a
scrip that I couldst not readeth, for verily it wert not properly unencoded.
LLLLLuther:uther:uther:uther:uther: Must I nail the scrip to thy door? I shall sendeth a new copyeth so thou canst printeth in hasteth!
Gutenberg:Gutenberg:Gutenberg:Gutenberg:Gutenberg: Have not a heifer! Lo, I am bound to take respite from my toils at present, for my press art incompat-
ible with “Parchment 1495.” I awaiteth a hardware upgrade and a beta of “Parchment 1500.”
LLLLLuther:uther:uther:uther:uther: The Reformation canst not wait! When wilt it arrive?
Gutenberg:Gutenberg:Gutenberg:Gutenberg:Gutenberg: Perchance decades. After all, I dieth in 1468.
LLLLLuther:uther:uther:uther:uther: Forsooth! Thou dost yield the ghost 15 years before my very birth. ’Tis truly vexing we chance to speak!
Gutenberg: Gutenberg: Gutenberg: Gutenberg: Gutenberg: Yea. And shouldn’t we be speaking German?

So you can see why we owe such a debt of gratitude to computers. For ex-
ample, the above exchange demonstrates how computers enhance our effective-
ness in one of the most critical aspects of business: having a believable excuse for
not getting stuff done.

The old technology just wasn’t working right. Receptionists always blather to
annoying clients that they left the phone message “right on your chair.” The
postal service has become too reliable for anyone to believe “the check is in the
mail.” So we were long overdue for the powerful alibis computers provide:

“Our E-mail is down.”
“My voice mail system erased your message.”
“My dog ate my network password.”
“Our E-mail ate your network.”
“Your voice mail erased my dog.”
We all experience these problems from time to time, so people believe us. And

with no humans in the electronic loop, these excuses are tough to disprove.
I’d share other ways computers improve our lives, but unfortunately, a virus

scrambled them on my hard drive—which demonstrates the need for reliable
computers you can buy from people you trust. There’s a huge untapped market for
this type of buying—the path to financial independence! If you get in on the
ground floor now by selling reasonably priced computer products to your family
and friends (and get them to sell to their friends, and so on), I guarantee that
you’ll soon have nothing to do but kick back on your new yacht and tell your
forklift driver where to deposit the morning’s usual incoming bale of $100 bills.

Send $100 in care of this journal, and I’ll forward information on this exciting
opportunity just as soon as I cash your check—that is, unless my E-mail server
gets the palsy. If you experience delays, just leave me a voice mail. – Lorin May

	Contents
	Software Knowledge Management …
	Strengthening Our Community of Practice…
	Lt. Col. Joe Jarzombek…
	ESIP Director…
	Using the TSP on the TaskView Project…
	David Webb, Ogden Air Logistics Center, Software Engineering Division…
	Watts S. Humphrey, Software Engineering Institute…
	The Rosetta Stone…
	Making COCOMO 81 Estimates Work with COCOMO II…
	Donald J. Reifer, Reifer Consultants, Inc.…
	Barry W. Boehm and Sunita Chulani, University of Southern California…
	Writing Effective Natural Language …
	Requirements Specifications …
	William M. Wilson…
	The SSG Systems Engineering Process…
	Software Product Lines A New Paradigm for the New Century…
	Paul Clements…
	Software Engineering Institute…
	Managing (the Size of) Your Projects …
	A Project Management Look at Function Points…
	Carol A. Dekkers…
	Quality Plus Technologies, Inc.…
	Making Adjusted FP Counts…
	Types of Function Point Counts…
	The Upside of Y2K…
	John B. Hubbs…
	AverStar…
	Coming Events…
	It's Time to Register for the Eleventh Annual …
	Software Technology Conference …

