PAIR: A Rational Approach to Fighting
Software Project Fires

Gregory T. Daich
Software Technology Support Center

What happens when an organization finds a significant number of critical defects
during testing? Whether the organization has a documented process or not, the organ-
ization naturally reverts to firefighting. It must quickly correct the problems before
the schedule is “burned” beyond repair. The defined process for firefighting—which
is likely called by other names, such as debugging, root cause analysis, or redesign or
rework—may be followed. Regardless, it is project firefighting.

Red Adair

The book, An American Hero: The Red Adair Story, An
Authorized Biography by Philip Singerman, tells of the famed
firefighter who battles oil fires around the world. Revered as one
of the most heroic firefighters, Adair has inspired us to assist
organizations with immature document review practices to put
out project fires. We have even seen some organizations with
documented processes get caught firefighting too late in the
project to overcome poor software quality.

PAIR Service

The Software Technology Support Center’s (STSC) Preliminary
Analysis Inspection Report (PAIR) Service has demonstrated to
many organizations an effective document review (inspection)
process.t This service identified significant opportunities for
improvement as well as the cause of the fire raging through
many projects. We review a sampling of the organization’s proj-
ect documentation that is causing problems. The service then
provides a report that can be used to initiate and plan improve-
ments that focus on achieving desired quality levels.

Typical Review Practices

After encountering a large number of defects, some people ask
why the defects were not found in previous reviews. Document
reviewers often are not given useful guidance in how to review
documents. A manager merely slaps down a 100-page or more
document and says, “We are going to have a meeting on this
document in two days. | want you to review it.”

The reviewer quickly skims through the document for the
obvious problems or reads it late into the night to prepare for
the meeting. Either way, many critical defects that could ignite
project wildfires anytime during development are often missed.

Management usually has no problem signing off bug-infest-
ed documentation because project personnel cannot see the
problems. More specifically, project personnel have not taken
the time nor have they used effective techniques to inspect proj-
ect documentation. It is not uncommon for organizations start-
ing a new document inspection program to encounter 10 or
more major defects per page in requirements specifications,
designs, test plans, and process documentation.

June 1999

Enlightened Review Practices

A simple set of document rules and other useful tools and prac-
tices can turn a document skimmer or near comatose reviewer
into an effective consultant who advises document authors
about significant document issues. The PAIR concept initially
joins the project organization with the STSC as partners in
fighting fires caused by serious document defects. The docu-
ment review practices we advocate help organizations dramati-
cally improve their ability to find and remove many types of
serious defects when it is cost-effective to do so, and ultimately
to prevent them from occurring in the first place.

Are CMM? and the J-STD-0163 Enough?

Using the right tools, it does not take much effort to determine
that a project has document quality problems. Many organiza-
tions have conducted process improvement initiatives, which
started with a Capability Maturity Model-flavored process
assessment. However, the guidelines for conducting these assess-
ments are mainly concerned about document existence and not
the quality of the project documentation. Some process assessors
have reviewed a few document samples during an assessment
and found useful information about process maturity.

I have seen approved software test plans that are void of test
planning information. | have even seen software development
plans that did not contain schedule, task, and product deliver-
able information. The main reason these significant problems
exist is often because people do not fully understand the pur-
pose of the required documents. Standards like the J-STD-016
should help us write better documents, but without effective
and efficient review practices, the standards and guidelines do
little.

Institute of Electrical and Electronics Engineers (IEEE)
1028, Software Reviews, provides some useful generic review
practices that are worth considering. But this standard will still
need to be customized for an organization’s specific needs.

PAIR Service Demonstrated

Projects that are experiencing significant quality and testing
problems can be assessed to determine if document quality is
significantly inhibiting software quality and testing effectiveness.
Understanding the purpose and objectives each document is

CrossTALK ThelourddDereeSonaeEgeaiy 23

Software Engineering Technology

supposed to accomplish and mapping the contents against those
objectives often finds gaping holes in the document’s content.

A no-cost demonstration of our PAIR service has substantiated
this fact for many organizations. It is a simple yet powerful
approach to reviewing that changes how people look at docu-
ments and can radically improve overall project performance
and software quality.

We will use our PAIR Service to help you extinguish fires
that threaten your projects. Recovering from poorly written
requirements documents during systems testing will be expen-
sive compared to recovering during the requirements phase.
However, it will be much less expensive than recovering after
system delivery. PAIR will help you start a document quality
improvement initiative before the fires rage and help you
achieve your project goals.

Conclusion

We are not advocating firefighting as a way of life for software
developers. We advocate a rational approach to stamp out fires
when they occur. A consequence of this approach is the ability
to prevent project fires and many types of software quality prob-
lems in the first place.

We do not need heroes who remove defects just before
delivery after they inserted them throughout development. Red
Adair does not start the oil fires he is asked to extinguish, but
we need heroes like him in the software world who can put
them out before we lose everything. We need heroes to identify
significant issues early, helping authors improve document qual-
ity and succeed in meeting document and project objectives. [

About the Author

Gregory T. Daich is a senior software engineer with Science
Applications International Corporation currently under contract
with the Software Technology Support Center. He supports
STSC’s Software Quality and Test Group with more than 22
years experience in developing and testing software. He has

24 CrossTaLK ThelourddDebreeSdnareEngneaig

taught more than 60 software test, document
inspection, and process improvement seminars
in the last five years.

Daich consults with government and com-
mercial organizations on improving the effec-
tiveness and efficiency of software quality
practices. His consulting approach coordinates
formal document inspections with analysis of test work prod-
ucts to identify opportunities for software test process improve-
ment. These practices have also been applied in supporting and
testing year 2000 upgrades. He is the principal author for sever-
al guidebooks and workshops for conducting year 2000 compli-
ance projects. These guidebooks address corporate- and project-
level compliance efforts as well as year 2000 desktop (PC and
Macintosh) software compliance.

Daich has a master’s degree in computer science from the
University of Utah and a bachelor’s degree in mathematics from
Weber State University.

Software Technology Support Center
7278 Fourth Street

Hill AFB, UT 84056-5205

Voice: 801-777-7172

Fax: 801-777-8069

E-mail: daichg@software.hill.af.mil
Internet: http://www.saic.com

Notes

1. For example, see Tom Gilb’s book Software Inspections,
Addison-Wesley, 1993.

2. CMM stands for the Capability Maturity Model developed
by the Software Engineering Institute with the support of
many government and commercial organizations.

3. J-STD-016 is the Electronic Industries Association
Institute of Electrical and Electronics Engineers Standard
for Information Technology Software Life Cycle Processes
Software Development Acquirer-Supplier Agreement, 1995.

June 1999

