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Introduction

The United State’s quality guru, W.
Edwards Deming, won the respect of
Japanese management after World War II
by preaching a philosophy of commit-
ment to quality and continuous improve-
ment of company-wide processes. His
recognition that quality cannot be
inspected in, but must be designed in,
raised an awareness in American business-
es. The companies that are industry lead-
ers and retain their customer base contin-
uously evaluate their processes, services,
and delivery mechanisms and improve
them [1, 2].

We think Deming was right. We also
think that the pioneers in the software
field were on the right track. Their publi-
cations indicated both the right software
development problems to be solved and
the right way to solve them. These publi-
cations include:

• D.L. Parnas [3] with his definition
and justification of modularity via infor-
mation hiding.

• Wayne Stevens, Larry Constantine,
and Glenford Myers [4] with their defini-
tion and justification of minimizing
dependencies via composite design.

• Edsgar Djikstra [5] with his defini-
tion and justification of structured pro-
gramming.

This paper focuses on modular and
composite design, and structured pro-
gramming — and the need for quality

controls to insure such. Adherence to
these three principles at the design and
coding phases insures a higher quality
product — even before it goes to test.
These software development guidelines
were known in the 1960’s, early enough
to have avoided the year 2000 bug (Y2K).

We choose to focus on the “quality”
principles that, had they been followed,
would have avoided the Y2K problem.
These include both architectural and cod-
ing quality principles, defined below: 

Architectural Quality
Architectural quality insures that software
is designed to be modular, to minimize
dependencies and states, and to maximize
reusability. Architectural quality reduces
the number of modules created by recog-
nizing functional similarities and design-
ing one generic module in place of several
“one-offs.” 

A component that is reused is
designed to be state independent. An
anti-virus software product, for example,
gives the user the ability to configure an
automatic action if a virus is found. The
user will want to choose the automatic
action for real-time virus scanning, for
screen-saver scanning, for scheduled scans
— and for servers and clients. The con-
figure automatic actions component
should be designed, coded, tested, and
translated once, but reused in all of the
scenarios presented above. Driven by the

need for reusability, the component will
be designed to work the same regardless
of which scan type is being defined. It
will be state independent; independent of
the context from which it was triggered.  
A good architecture also separates data
from functionality. An example is a data-
driven diagnostic tree where each node
contains a trigger, an expected response,
and further directions based on the actual
response. A second example is a data-
driven installation component. We have
seen a successful setup architecture that
compartmentalizes the functionality
(add/delete/start/stop services;
copy/delete files; etc.) then lists the actual
files to be managed as data. Different
applications can be installed, upgraded,
and uninstalled with no code changes to
the setup component, requiring only
changes to the data.  

How to Design-In 

Architectural Quality
We propose developing a Graphical User
Interface (GUI) prototype based on mar-
keting requirements. It is our experience
that such a prototype hastens identifica-
tion of reusable objects, is a good tool for
communicating the design, and can be
mapped to marketing requirements (one
should be able to identify in the proto-
type how each function in the marketing
document can be triggered). The
approved prototype is examined for
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objects that appear multiple times, such
as the configure automatic actions com-
ponent. Common functions are com-
bined into one component/module. The
goal is to minimize components and
maximize reuse. Components are repre-
sented in the architecture. Architectural
constructs include:

1. Executive modules: Modules in 
which high-level logic is packaged, 
making it possible for direct trace-
ability back to the specification.

2. Fan-in modules: Normally, the term 
describes a situation where multiple 
modules call a single module. This 
concept is used for module reuse and
for building libraries of reusable 
functions. We use the term fan-in to 
describe a method of removing 
dependencies. When dependencies 
have been identified across various 
pieces of code, the code is extracted 
from the modules in which it appears
and fan-in is used to package that 
code, and dependency, in one place. 

3. Massage modules: These modules 
are used when a fan-in module can 
almost be used. That is, a condition 
is slightly different than that 
expected by the fan-in module. The 
massage module then modifies the 
format so that a nonconforming 
condition is made to conform, and 
the fan-in module can be used.  

4. Informational strength modules: If 
the dependencies within a set of 
modules are so different that they 
cannot be related by fan-in or 
massage modules, they can be 
packaged in informational strength 
modules. These modules have 
multiple interfaces and multiple 
entry points allowing each 
dependency to be considered as a 
separate program. 

5.  Transaction (event) processors: 
Transaction processors use the menu 
to identify the desired state and 
transfer the system to that state, 
defining it as an independent sub-
system. Each transaction processor 
system has its own set of independ-
ent states.

The finalized architecture points out
all modules that need coding. The GUI
prototype will demonstrate how the code

should look and feel. The combination
allows for novel task assignment. Senior
engineers should be working on proof-of-
concept and new technology research.
Junior engineers should be assigned to
the basic coding tasks, and should repre-
sent the critical path. That way, if they
get behind on the schedule, senior engi-
neers can be pulled back to help catch
up. If proof-of-concept, the most difficult
to predict schedule for, takes longer than
expected (within bounds) the critical path
time is not affected.

We recognize that composite design
stressing independence usually involves
tradeoffs with performance and efficiency.  

Code Quality
Code is produced for the modules identi-
fied in the architecture. Quality code
reduces dependencies, is correct, is logi-
cal, and is easy to certify. Code quality is
controlled by constraint to three canoni-
cal forms (sequence, iteration, and selec-
tion) defined later. Code quality is certi-
fied via manual pattern matching of each
piece of code. We know of one company
where two different reviewers look at
code. If it does not follow the proposed
constructs, or if it is not easily under-
stood, it is looked at by a third reviewer
who usually sends it back for redesign.
Code quality should be verified before a
module is sent to the test group.  

Further, coded algorithms should be
reviewed and certified for correctness.
The quality controls proposed by this
paper guarantee architectural quality and
code quality as defined above.

Legacy Software Wisdom
As mentioned in the introduction, we
consider three discoveries in software
development over the last 35 years to be
most significant. Each of these discover-
ies has been based on the work of oth-
ers, and each has influenced various
methodologies.

Modularity via Information Hiding
The major concept Parnas introduced
was “information hiding” as the basis of
modularity. This has been interpreted as
the hiding of a function, leading to
reusability. Reusability is maximized
when dependencies are minimized. This

leads to our approach.

Minimizing Dependencies 
via Composite Design
Composite design, based on the 1974
paper and presented by Myers [6, 7, 8],
addresses the development of architec-
tures focused on minimizing dependen-
cies. While module strength, module
coupling, and other design issues have
been enumerated by those describing
composite design or structured analysis
and design or the “Yourdon
Methodology,” no one after Myers
attempted to explain the reasons for the
various module strengths and couplings
in terms of dependencies — except, per-
haps, Lawrence Peters [9] and Vern
Crandall [2]. The elimination of depend-
encies, initially considered an integral
part of composite design, is a guiding fac-
tor to insure architectural quality. We
think it has a far more critical impact
than might be expected.

Structured Programming  
Another concept we will discuss regards
the work of Djikstra. While he deserves
the credit for publicizing structured pro-
gramming, others have had an influence.
The original paper leading to this
approach to programming comes from
professors C. Boehm and G. Jacopini
[10] from Italy. (Actually, the concepts
originally appeared in a 1938 textbook
on linear algebra, but we cannot find the
reference.)

The late Harlan Mills of IBM proba-
bly had as much to do with popularizing
structured programming as anyone. He
simplified the proofs of Djikstra, who
proved the second half of the structure
theorem, and publicized the approach
throughout IBM — and the English-
speaking world. Structured programming
is based on the definition of a proper
program in conjunction with the struc-
ture theorem, and the correctness theo-
rem. These theorems and definition are
paraphrased below:

Definition of a Proper Program
•  It contains a single entry and a single

exit for the entire structure and for 
any structures inside.

•  It contains no “dead code,” i.e. it 
contains no code or logic structures 
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that cannot be reached or have no 
effect on the results. 

• It contains no “eternal loops,” i.e. all 
loops are finite and cannot continue 
to run forever. 

Some interpret a proper program
“single entry/single exit” to mean “no GO
TO’s.” GO TO’s, however, may be neces-
sary to implement structured program-
ming forms in some languages such as
assembly language and Basic.

Structure Theorem as Understood
by R.C. Linger, H.D. Mills, 
and B.I. Witt [11] 

•  It can be shown that any proper 
program is the equivalent of one 
composed of sequence, iteration, and
selection, plus some logical 
functions. In other words, any proper
program can be written using only 
these three canonical forms.

The major value of the Structure 
Theorem is in its proof of the reduction
of the number of patterns necessary to
produce any process. It also certifies that
any “spaghetti program” can be “reverse
engineered” to the three canonical forms,
which helps greatly when searching out
Y2K-type problems.

We further propose implementing
the three canonical forms as suggested
below:
Sequence: Sequence should flow forward.
Do not use GO TO to jump back to
code with a lower sequence number. Do
not use C’s ++ notation because it is error
and typo prone. ‘X++’ can easily, more
dependably, and more understandably be
coded as ‘x = x + 1.’
Iteration: Use DO WHILE loops (pre-
test loops) exclusively. Do not use
REPEAT UNTIL or FOR loops.
Selection: Use case statements instead of
nested IF THEN ELSE structures, except
in the case of success-oriented nesting.
Success-oriented nesting requires a nested
IF THEN ELSE structure where the
innermost structure is the success situa-
tion. Test for the first or highest percent-
age error first in the nested set.

Limiting the coding structures to
three canonical forms, and further speci-
fying the already validated constructs
used to implement the three canonical

forms, provides an outline or pattern that
can be quickly and easily pattern matched
to prove correctness. One can easily out-
line the flow of any module to verify that
it represents a proper program. If the
solution has been correctly defined, then
pattern matching can quickly validate the
correctness of the code. This pattern-
matching process is manual, but studies
have confirmed that a manual code walk-
through is as effective in locating code
defects as any other method. 

Correctness Theorem, Linger, 
Mills, and Witt [11]
It can be shown that if the formula of a
program contains at most the three
canonical forms (sequence, iteration, and
selection), it can be proved correct by a
tour of the program tree. In other words,
if all steps of the program are correct in
its decomposition, then the program will
be correct.

If P is a proper program, then it can
be equivalently written using only three
canonical forms. This means that no mat-
ter how bad the “spaghetti” that appears
in a program, or any process in the world
— from a cooking recipe, to directions to
reach a destination, to instructions for
building computer programs — the logic
or logic structure can be replaced with
logic or logic structures involving simple
sequences of instructions, iterations
(loops), and selections (branches). This is
a very powerful concept.    

Architectural and Code Quality

Minimize Inefficient Testing

Some prescribe running software systems
for a year or more to “certify” the ade-
quate correction of the Y2K problem.
The software system is tested by repeated-
ly executing production runs, with the
hope that rarely executed code or rare
conditions will be triggered and point out
remaining Y2K defects. We propose that
the real test issue is not one of covering
the code, it is one of covering the states
the code generates. Most everyone who
has attempted to install and execute com-
plex software knows that the number of
states the software can take on approaches
infinity. As the number of states
approaches infinity, traditional testing
efficiency approaches zero, defined as the

percentage of the software states actually
tested.

Assuring that the dependencies have
been eliminated or “certified” as being
transparent to the millennium bug is a
better approach. Events that are inde-
pendent of other events cannot cause the
other events to fail.

The Year 2000 Bug 

was Preventable
The cost of fixing the Y2K bug already is
in the millions. The societal and business
costs are unknown, and even the most
conservative projections seem unbeliev-
able. Surely “Divine Providence” will not
let such a profound catastrophe affect
mankind, especially now that the Cold
War is over.  

The entire issue can be wrapped up
in terms of information hiding. The mil-
lennium bug is not that an algorithm was
coded over a period of more than 30
years, which would become defective
around the year 2000; the bug was that
the knowledge of the problem was dis-
tributed through millions of lines of
code. Had quality-oriented, well-known
“information hiding” strategies been
employed at the time they were known,
the year 2000 bug would have been a 10-
to 45-minute fix in even the largest pro-
grams, because all impacted code would
have been located at one point, and the
impact would have been restricted to
only the “code actually necessary to make
use of the need to restrict the year to two
digits to save ‘needed memory or storage
space.’”

Industry leaders call attention to the
lack of programmers who know the early
programming environment, reasoning
that such knowledge is a prerequisite to
searching for Y2K defects. This should
not be an issue. For years, forward-look-
ing teachers have insisted on their stu-
dents programming in “pseudo-code,” the
eternal principle of “design before imple-
mentation.” That means that the entire
software industry should contain pro-
grammers who program in English and
code in any of thousands of implementa-
tion languages. The Structure Theorem of
Structured Programming guarantees that
any program, however large, which is a
“proper program,” can be “equivalently

Who is to Blame for the Y2K and Similar Bugs
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written” using only the canonical forms.
What this means is that any program —
be it COBOL or Basic, Assembly
Language or whatever — can be “reverse
engineered” into a structured equivalent,
which can easily be expressed in English.
This has been taught to secretaries and
clerks by one of the authors for more
than 20 years in companies where the
available personnel is limited. You do not
need to be a professional programmer to
“reverse engineer code.” But once these
people have performed their task, profes-
sional programmers can quickly decipher
the code structure and determine how it
functions. There are efficient, time-
proven ways to determine the logic struc-
ture around a potential millennium bug
and to create a solution.

Other Preventable Bugs
The “Christmas bug” occurred when a
new employee of a major corporation sent
an e-mail Christmas card to several of his
new colleagues. He included their aliases
in the address. As the card was received by
each friend, it was immediately forwarded
to all on the friend’s alias list, and their
aliases. This proliferation recursed until
the e-mail storm brought the entire mail
network to a screeching halt. Either a fail-
ure mode was not comprehended in the
original design, or recursion was improp-
erly implemented.

Mistakes can happen to trained users
under natural operating conditions.
Have you ever hit the wrong key on the
keyboard, or clicked the mouse at the
wrong point as it swooped across the
screen? Mistakes with huge consequences
are sometimes explained away as viruses.
Such accidents more appropriately repre-
sent failure modes that were not compre-
hended or appropriately planned for.
Recursion problems are common with
loops which process differently for each
iteration, and with calling sequences
which repeat themselves with different
results for each sequence.

Another victim tells of an $8,000
check that did not get deposited to the
right account. This caused his check to
bounce. A new check to cover the
bounced check was cashed twice, causing
a $16,000 overdraft. Due to constraints
on the banking software, all subsequent

bounced checks had to be processed by
hand. The knowledge of the overdraft
was automatically available to Visa and
MasterCard. They promptly cancelled.
Credit reporting agencies then produced
a damaging credit rating. The bank error
rippled through the entire banking and
credit rating system, and cost the bank
$50,000 to correct. Knowledge of the
first bounced check should have been
contained in one spot, and then process-
ing inactivated until an alert could be
addressed. Instead, the knowledge was
duplicated, without verification of the
problem, to an undetermined number of
places. Errors of this type appear in sys-
tems with extremely large numbers of
states. Testing is not comprehensive even
if it covers all code; it must cover all
states the code generates. As the number
of states increase, sometimes towards
infinity, the software’s complexity increas-
es to the point where comprehensive test-
ing is impossible to define or execute.
State proliferation occurs when program-
mers do not pay attention to dependen-
cies among input variables and functions. 

New Bug Watch: 

The Year 2038 Bug
American National Standards Institute
(ANSI) provides a standard for date/time
representation called time_t. This time
standard has received wide acceptance,
most notably in the Unix world. The
time value is represented by a 32-bit
signed integer that denotes the number of
elapsed seconds from Jan. 1, 1970. The
maximum time-period (or epoch as it is
called in date/time lingo) will rollover at
20:14:07 Jan. 18, 2038. Depending
on implementations of this ANSI stan-
dard, once again computers will be faced
with a date representation problem and
may not be able to distinguish between
2038 and 1970. The problem is com-
pounded by conversion functions and
interpretations of the standards. Some
known variations will actually run out as
soon as 2036. 

We propose that software develop-
ment managers and engineers discuss the
alternatives to time_t use (for both user
interface [UI] and non-UI implementa-
tion) now. The alternatives are easily

comprehended and easily implemented.   

Summary

We claim that the year 2000 and similar
bugs could have been avoided by adher-
ence to the architectural and coding qual-
ity standards insured by modularity,
structured programming, and composite
design. At every point where these bugs
occur, they were “designed in.” We pro-
pose that such defects be “designed out.”
We think such defects can be eliminated,
and at design time. If a bug must be
allowed to exist, its impact — and the
knowledge of its existence — should be
contained in only one module.

The cost of ignoring architectural
and code quality is now obvious. We
encourage those responsible for solving
the Y2K problem to concentrate on the
real problem. We encourage them to add
and execute quality controls at the design
and coding stages. We hope that execu-
tives and software engineers have learned
the awful cost of ignoring these simple
quality principles.
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