
Software projects often fail because too
many software folks think that soft-

ware engineering process is just bureaucra-
cy. Often software people lack software
engineering education, or when they had
it, they fought it. To compound the prob-
lem, they do not accept software best prac-
tices. Our challenge is to overcome the
natural biases of software professionals.

We tried lecturing on case histories of
failed software projects, but these lectures
and associated readings only convince
many students of others’ stupidity. They
do not internalize the lessons. Others
intellectually accept the existence of the
problems, but just reading about them
does not convert many at the gut level
where one sits up, takes notice, and does
things differently.

At the gut level, successful software
project managers instinctively anticipate
problems and take steps to avoid them.
The challenge is to educate software peo-
ple so that they do not have to hone their
instincts through the “school of hard
knocks.”

Our approach is to force students to
live through specific case histories, each
one chosen to get across a small number of
important issues. This method works.
Students internalize the software engineer-
ing lessons and follow best practices in
their next projects to avoid the traps they
experienced.

Here is how the approach works. First,
select a set of software process issues.
These are the ones we chose for our first
live-through case history:
• The need to have close customer/user

relations.
• The need for up-to-date documenta-

tion throughout the life of the project.
• The need to identify risks and to devel-

op contingency plans.
• The need to account for human foibles.

Second, choose a case history based on

a project facing these challenges. Do not
give students the entire case history up
front; rather, give them the same problem
as the actual developers who executed the
case history faced. Give the students no
more information about the problem than
the original developers had at the start.
You may simplify information to ease
understanding.

Background
Computer science is the study of the tech-
nology (state-of-the-art) involved in the
development of computer software. As it is
usually taught, computer science deals
with programming in the small, i.e., one-
person or few-person software projects.
Software engineering, on the other hand,
is the study of the method or process
(state-of-the-practice) whereby production
software is developed – programming in the
large. State-of-the-practice includes both
engineering practices and project manage-
ment or group dynamic processes.

Typical computer science programs
offer a software engineering or senior proj-
ect course as a capstone. Due to the very
different natures of technology vs.
method/process, and because computer
science students are typically technology-
oriented and process-averse, the typical
software engineering course reaches far
fewer future software developers than suits
the best interests of either the students or
the software industry. Thus we developed
a novel instructional method, the Live-
Thru Case History method for addressing
this problem. We have developed a first
live-through case history and have used it
successfully in the first few weeks of a two-
semester undergraduate software-engi-
neering course.

The result was that students were
shocked into an awareness of the issues
and how to deal with them in only six
weeks of twice-weekly class meetings. One

class meeting each week was devoted to
individual unstructured project meetings,
and the other to lectures on software engi-
neering topics, including other case histo-
ries.

Conducting the Case History
There would be just one live-through case
history in our senior project course, so we
had to choose one that would achieve the
greatest effect in the limited time available.
We chose the case history of a brief devel-
opment project that one of the authors
worked on in 1985 as a public service
project. The project was automating an
elementary school library’s manual system
for generating overdue-book notices.

The class of 40 students was divided
randomly into four equal-size develop-
ment teams. Students were given the same
details possessed by the original software
developers in the case history. The instruc-
tor role-played the customer, the school
librarian, and was available to respond to
students’ questions, both in class and by e-
mail. Students were told that the customer
would evaluate their work exactly as it
would be evaluated in the real world.

Results
As is frequently the case in real software
development projects, the overdue book
notice project had a hidden requirement.
That requirement was so obvious to the
customer that she failed to mention it;
overdue notices must be sorted first by
teacher name, then for each teacher by
class, and finally, within each class by stu-
dent’s family name. The system analyst
rejected the real software system when she
first saw it. The original developers failed
to elicit the hidden make-or-break require-
ment, and thus failed to satisfy it. Each of
the student teams fell into this same trap
thus learning the lesson of the need to find
any hidden requirements.

July 2001 www.stsc.hill.af.mil 25

Getting Software Engineering into Our Guts
Lawrence Bernstein and David Klappholz

Stevens Institute of Technology

Many if not most, computer science students are enamored of technology (state of the art), but averse to the disci-
pline of software process (state of the practice). Staying up late hacking code and eating pizza is great fun for them,
while following the discipline of software engineering best practice is decidedly not. We have developed a methodol-
ogy, Live-Thru Case Histories, for overcoming this aversion, and have found it to be very productive in a pilot study.
We are developing the methodology further for use both at universities and in industry.

Students also learned of the need for
high-quality documentation and contin-
gency planning due to the real-world phe-
nomenon of attrition through illness,
death, relocation, etc. At the project mid-
point, students were rotated. A student
from each team judged by the instructor
to be the team’s strongest developer and
another chosen randomly were removed
from the team and reassigned to a different
team.

To evaluate each team’s success in
adapting to the simulated attrition, stu-
dents were asked to describe what they
would have done differently after the case
study project was complete. About 75
percent of the students mentioned the
importance of up-to-date documentation.
Nearly 20 percent had developed insight
into appropriate staff utilization, includ-
ing the use of “understudies” and prepar-
ing for incorporating new team members.
They demonstrated the learned value of
these processes.

An evaluation of how well the students
internalized the need for solid require-
ments engineering was performed at the
end of the live-through case history.
Students completed a written exam based
on another case history that included a
more difficult requirements engineering
problem than that of the overdue book
notice project. About 75 percent of the
students demonstrated they had mastered
the notion of hidden requirements, and
about 33 percent showed they had
achieved reasonable competence in

requirements engineering; about 10 per-
cent showed extremely keen insight into
the problem.

The innovative process of live-through
case histories is more effective than the tra-
ditionally taught software engineering
course. In it, students were given lectures,
homework, and exams based on a well-
respected software engineering text. Then
they were asked to develop a project.
However when they approached the proj-
ect, they could not readily apply the
learned techniques. Once they understood
the need for the processes, they relearned
them as they tried to apply them.u

Directions
The authors request that those teaching
software engineering use the Live-Thru
Case Histories in their courses and report
on the results. These materials are available
at www.njcse.org/Projects/Live_Thru_Case_
Histories/Materials_For_Live_Thru_Case_Hist
ories.htm, along with a complete paper
describing the live through approach in
detail.

Please participate in gathering data to
support or refute the claims in this paper.
It is our intent to use the experience of
instructors in several venues to make anec-
dotal conclusions more meaningful and
perhaps statistically significant. We invite
those who agree with us to join a consor-
tium for the purpose of creating addition-
al case histories and helping to refine the
process.

26 CROSSTALK The Journal of Defense Software Engineering July 2001

Software Engineering Technology

About the Authors

DDaavviidd KKllaapppphhoollzz has
27 years of experience
teaching computer sci-
ence and performing
and supervising tech-
nology research spon-

sored by such organizations as
National Science Foundation,
Department of Energy, IBM
Research, and The New Jersey
Commission on Science and
Technology. He has been on the com-
puter science faculties of Columbia
University and Polytechnic University,
and is currently on the computer sci-
ence faculty at Stevens Institute of
Technology, in Hoboken, N.J., and
associate director of the New Jersey
Center for Software Engineering.

Department of Computer Science
Stevens Institute of Technology
Castle Point Station
Hoboken, NJ 07030
Phone: (908) 464-0805
E-mail: d.klappholz@worldnet.att.net

LLaawwrreennccee BBeerrnnsstteeiinn is a
former vice president of
AT&T where he man-
aged small-, medium-,
and large-scale software
projects, both commer-

cial and military, for 35 years. He is a
Fellow of both the Institute of
Electrical and Electronics Engineers
and the Association for Computing
Machinery. He is currently senior
industry professor of Software
Engineering at Stevens Institute of
Technology, in Hoboken, N.J., and
director of the New Jersey Center for
Software Engineering.

Department of Computer Science
Stevens Institute of Technology
Castle Point Station
Hoboken, NJ 07030
Phone: (973)258-9213
E-mail: lbernstein@worldnet.att.net

Things being investigated (piloted), knowledge became complete.

Their knowledge being complete, their process was updated.

Their process being updated, their practices were cultivated.

Their practices being cultivated, their projects were regulated.

Their projects being regulated, their organizations were rightly governed.

Their organizations being rightly governed, the whole corporation was

made tranquil and prosperous.

Adapted slightly by and with apologies from Tim Powell

The Great Learning Process (Confucius)

“Before software can be reusable
it first has to be usable.”

– Ralph Johnson

