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Software is increasingly important to the development of effective network-centric Department of Defense
combat systems. Next-generation combar systems such as total ship computing environments, coordinated
unmanned air vehicle systems, and national missile defense will use many geographically dispersed sensors,
provide on-demand situational awareness and actuation capabilities for human operators, and respond
[lexibly to unanticipated run-time conditions. These combat systems will also increasingly run unobtru-
stvely and autonomously, shielding operators from unnecessary details while communicating and respond-
ing to mission-critical information ar an accelerated operational tempo. In such environments, it is hard
to predict system configurations or workloads. This article describes how adaptive and reflective middle-
ware systems (ARMS) are being developed ro bridge the gap between military application programs and
the underlying operating systems and communication software in order to provide reusable services whose
qualities are critical to network-centric combat systems. ARMS software can adapt in response to dynam-
ically changing conditions for the purpose of utilizing the available computer and communication resources
to the highest degree possible in support of mission needs.

ew and planned Department of

Defense (DoD) combat systems are
inherently network-centric, distributed
real-time and embedded (DRE) systems of
systems. Combat systems have historically
been developed via multiple technology
bases, where each system brings its own
networks, computers, displays, software,
and people to maintain and operate it.
Unfortunately, not only are these stove-
pipe architectures proprietary, but by
tightly coupling many functional and
quality of service (QoS) aspects they
impede these DRE system features:
*  Assurability is needed to guarantee effi-

cient, predictable, scalable, and
dependable QoS from sensors to
shooters.

*  Adaprability is needed to (re)configure
combat systems dynamically to sup-
port varying workloads or missions
over their life cycles.

»  Affordability is needed to reduce initial
nonrecurring combat system acquisi-
tion costs and recurring upgrade and
evolution costs.

In recognition of the importance of
enhancing affordability, recent DoD pro-
grams such as the Aegis destroyer program
[1], the New Attack Submarine program
[2], the Weapons Systems Open
Architecture program [3], and the
Unmanned Combat Air Vehicle (UCAV)
program [4] have adopted strong open sys-
tems approaches to system design and
commercial-off-the-shelf (COTS) refresh
strategies. Ultimately, open systems
approaches are more likely to be robust
with respect to change over the long life
cycles typical of military systems. For
example, the affordability of certain types
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of DoD systems such as logistics and mis-

sion planning have been improved by

using COTS technologies.

However, many of today’s procure-
ment efforts aimed at integrating COTS
into mission-critical DRE combat systems
have largely failed to support life-cycle
affordability, assurability, and adaptability
effectively since they focus mainly on ini-
tial nonrecurring acquisition costs and do
not reduce recurring software life-cycle
costs, such as COTS refresh and subset-
ting combat systems for foreign military
sales [5]. Likewise, many COTS products
lack support for controlling key QoS
properties such as predictable latency, jit-
ter, and throughput; scalability; depend-
ability; and security. The inability to con-
trol these QoS properties with sufficient
confidence compromises combat system
adaptability and assurability, e.g., a pertur-
bation in the behavior of a COTS product
that would be acceptable in commercial
applications could lead to loss of life and
property in military applications.

Historically, conventional COTS soft-
ware has been unsuitable for use in mis-
sion-critical DRE combat systems due to
either of the following:

e It is flexible and standard, but inca-
pable of guaranteeing stringent QoS
demands, which restricts assurability.

e It is partially QoS-enabled, but inflex-
ible and non-standard, which restricts
adaptability and affordability.

As a result, the rapid progress in
COTS software for mainstream business
information technology (IT) has not yet
become as broadly applicable for mission-
critical DRE combat systems. Until this
problem is resolved effectively, DRE sys-

tem integrators and warfighters will not be
able to take advantage of future advances
in COTS software in a dependable, time-
ly, and cost effective manner. Developing
the new generation of assurable, adapt-
able, and affordable COTS software tech-
nologies is therefore essential for U.S.
national security.

Although the near-term use of COTS
software in DRE systems will be limited in
scope and domain, the prospects for the
longer term are much brighter. Given the
proper advanced research and develop-
ment (R&D) context and an effective
process for transitioning R&D results, the
COTS market can adapt, adopt, and
implement the types of robust hardware
and software capabilities needed for mili-
tary applications. This process takes a
good deal of time to get right and be
accepted by user communities, and a good
deal of patience to stay the course. When
successful, however, this process results in
standards that codify the best-of-breed
practices and technologies and the patterns
and frameworks that reify the knowledge of
how to apply these practices and technolo-
gies.

Ke?/ Technical Challenges and
Solutions

Today’s economic and organizational con-
straints — along with increasingly complex
requirements and competitive pressures —
make it infeasible to build complex dis-
tributed real-time system software entirely
from scratch. It has long been accepted
that the use of commercial operating sys-
tems and communication support soft-
ware is cost-effective for all but the most
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resource-constrained DRE  systems. In-
creasingly, this same logic is being applied
to middleware, which is reusable serv-
ice/protocol component and framework
software that services end-to-end and aggre-
gate combat systems needs [6]. Middle-
ware bridges the gap between these areas:

* Application-level requirements and
mission doctrine.

* The lower-level, underlying, localized
viewpoints of the operating systems
and communications support mecha-
nisms.

From the application perspective,
when middleware and the services it con-
stitutes are combined with traditional net-
work and operating system components, it
forms the new infrastructure for develop-
ing modern network-centric combat sys-
tems. In both commercial and military
systems, middleware performs functions
that are essential to meeting application-
level requirements. In military systems,
moreover, the qualities of the services pro-
vided by the middleware are critical to the
qualities of service that are presented to
the end users — the warfighters.

Thus, there is a pressing need to devel-
op, validate, and ultimately standardize a
new generation of adaptive and reflective
middleware systems (ARMS) technologies
that will be readily available and able to
support stringent combat system func-
tionality and QoS requirements. Some of
the most challenging computing and com-
munication requirements for new and
planned DoD combat systems can be
characterized as follows:

*  Multple QoS properties must be satis-
fied in real-time.

* Different levels of service are appropri-
ate under different configurations,
environmental conditions, and costs.

* The levels of service in one dimension
must be coordinated with and/or trad-
ed off against the levels of service in
other dimensions to meet mission
needs, e.g., the security and depend-
ability of message transmission must
be traded off against latency and pre-
dictability.

* The need for autonomous and time-
critical application behavior necessi-
tates a flexible distributed system sub-
strate that can adapt robustly to
dynamic changes in mission require-
ments and environmental conditions.
Adaptive middleware [3] is software

whose functional and QoS-related proper-

ties can be modified in either of these ways:

e Statically, e.g., to reduce footprint,
leverage capabilities that exist in spe-
cific platforms, enable functional sub-
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setting, and minimize hardware and
software infrastructure dependencies.
* Dynamically, e.g., to optimize system
responses to changing environments
or requirements, such as changing
component interconnections, power-

levels, CPU/network bandwidth,
latency/jitter, and dependability
needs.

In DRE combat systems, adaptive
middleware must make these modifica-
tions dependably, i.e., while meeting strin-
gent end-to-end QoS requirements.

Reflective middleware [7] goes a step
further in providing the means for exam-
ining the capabilities it offers while the
system is running, thereby enabling auto-
mated adjustment for optimizing those
capabilities. Thus, reflective middleware
supports more advanced adaptive behav-
ior, i.e., the necessary adaptations can be
performed autonomously based on condi-
tions within the system, in the system’s
environment, or in combat system doc-
trine defined by operators and administra-
tors.

Middleware Structure

and Functionality

Networking protocol stacks can be decom-
posed into multiple layers such as the
physical, data-link, network, transport,
session, presentation, and application lay-
ers. Similarly, middleware can be decom-
posed into multiple layers such as those
shown in Figure 1.

We describe each of these middleware
layers and outline some of the COTS tech-
nologies in each layer that are suitable (or
are becoming suitable) to meet the strin-
gent QoS demands of DRE combat sys-

tems.

Host Infrastructure Middleware

Host infrastructure middleware encapsu-
lates and enhances native operating system
communication and concurrency mecha-
nisms to create portable and reusable net-
work programming components such as
reactors, acceptor-connectors, monitor
objects, active objects, and component
configurations [8]. These components
abstract away the accidental incompatibil-
ities of individual operating systems and
help eliminate many tedious, error-prone,
and non-portable aspects of developing
and maintaining networked applications
via low-level operating system program-
ming application program interfaces

(APIs), such as Sockets or POSIX

Pthreads. Examples of COTS host infra-

structure middleware that are relevant for

DRE combat systems include the follow-

ing:

e The Adaptive Communication Envi-
ronment (ACE) [9] is a portable and
efficient toolkit that encapsulates native
operating system network program-
ming capabilities such as inter-process
communication, static and dynamic
configuration of application compo-
nents, and synchronization. ACE has
been used in a wide range of DoD DRE
systems, including missile control,
avionics mission computing, software
defined radios, and radar systems.

* Real-Time Java Virtual Machines imple-
ment the Real-Time Specification for
Java (RTS]J) [10]. The RTSJ is a set of
extensions to Java that provide a largely
platform-independent way of executing
code by encapsulating the differences
between real-time operating systems
and CPU architectures. The key fea-
tures of RTS] deal with memory man-

Figure 1: Middleware Layers and Their Surrounding Context
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agement and concurrency. Although
RTS] implementations are still in
their infancy, they have generated
tremendous interest in the DoD
R&D and integrator communities
due to their potential for reducing
software development and evolution
costs significantly.

Distribution Middleware

Distribution middleware defines a higher-
level distributed programming model
whose reusable application program inter-
faces and mechanisms automate and
extend the native operating system net-
work programming capabilities encapsu-
lated by host infrastructure middleware.
Distribution middleware enables develop-
ers to program distributed applications
much like stand-alone applications, i.e.,
by invoking operations on target objects
or distributed components.

At the heart of distribution middle-
ware are QoS-enabled object request bro-
kers, such as the Object Management
Group’s (OMG) Common Object
Request Broker Architecture (CORBA)
[4, 11]. CORBA is distribution middle-
ware that allows objects to interoperate
across networks without hard-coding
dependencies on their location, program-
ming language, operating system plat-
form, communication protocols and
interconnects, and hardware characteris-
tics. In 1998 the OMG adopted the Real-
Time CORBA specification [12], which
extends CORBA with features that allow
DRE applications to reserve and manage
CPU, memory, and networking resources.
Real-Time CORBA implementations
have been used in dozens of DoD combat
systems, including avionics mission com-
puting [4], submarine combat control sys-
tems [13], signal intelligence and
Command, Control, Communications,
Computers, Intelligence, Surveillance,
and Reconnaissance systems, software
defined radios, and radar systems.

Common Middleware Services
Common middleware services augment
distribution middleware by defining high-
er-level, domain-independent, reusable
services that have proven necessary in
most distributed application contexts to
deal with multi-computer environments
effectively. In addition, these services pro-
vide components that allow application
developers to concentrate on program-
ming application logic, without the need
to write the plumbing code needed to
develop distributed applications using
lower level middleware features directly.
For example, whereas distribution
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middleware focuses largely on managing
end-system resources in support of an
object-oriented distributed programming
model, common middleware services
focus on allocating, scheduling, and coor-
dinating various end-to-end resources
throughout a distributed system using a
component programming and scripting
model. Developers can reuse these servic-
es to manage global resources and per-
form recurring distribution tasks that
would otherwise be re-implemented by
each application or integrator.

Examples of common middleware
services include the OMG’s
CORBAServices [14] and the CORBA
Component Model (CCM) [15], which
provide domain-independent interfaces

““Today’s economic
and organizational
constraints — along
with increasingly
complex requirements
and competitive
pressures — make it
infeasible to build
complex distributed
real-time system
software entirely from
scratch.”

and distribution capabilities that can be

used by many distributed applications.
The OMG CORBAServices and CCM
specifications define a wide variety of
these services, including event notifica-
tion, naming, security, and fault toler-
ance. Not all of these standard services are
sufficiently refined today to be usable off
the shelf for DRE combat systems.
However, the form and content of these
common middleware services will contin-
ue to mature and evolve to meet the
expanding requirements of DRE.

Domain-Specific Middleware
Services

Domain-specific middleware services are
tailored to the requirements of particular
combat system domains, such as avionics
mission computing, radar processing,
weapons targeting, or command and deci-
sion systems. Unlike the previous three
middleware layers — which provide broad-
ly reusable horizontal mechanisms and
services — domain-specific middleware

services are targeted at vertical market seg-
ments. From a perspective,

domain-specific services are the least
mature of the middleware layers today.
This immaturity is due in part to the his-
torical lack of distribution middleware
and common middleware service stan-
dards, which are needed to provide a sta-
ble base upon which to create domain-
specific middleware services. Since they
embody knowledge of a domain, however,
domain-specific middleware services have
the most potential to increase the quality
and decrease the cycle time and effort that
DoD integrators require to develop par-
ticular classes of DRE combat systems.

A mature example of domain-specific
middleware services appears in the Boeing
Bold Stroke architecture [4]. Bold Stroke
uses COTS hardware and middleware to
produce a non-proprietary, standards-
based component architecture for military
avionics mission computing capabilities,
such as navigation, data link manage-
ment, and weapons control. A driving
objective of Bold Stroke was to support
reusable product-line applications, lead-
ing to a highly configurable application
component model and supporting mid-
dleware services. The domain-specific
middleware services in Bold Stroke are
layered upon common middleware servic-
es (the CORBA Event Service), distribu-
tion middleware (Real-Time CORBA and
the tactical air operations object request
broker [16]), and infrastructure middle-
ware advanced computing environment,
and have been demonstrated to be highly
portable for different COTS operating
systems (e.g., VxWorks), interconnects
(e.g., VME), and processors (e.g.,
PowerPC).

Recent Progress

Significant progress has occurred during
the last five years in DRE middleware
research, development, and deployment
within the DoD, stemming in large part
from the following trends:

Maturation of Standards
During the past decade, middleware stan-

dards have been established and have

matured considerably with respect to

DRE requirements. For example, the

OMG has recently adopted the following

DRE-related specifications:

e Minimum CORBA removes non-
essential features from the full OMG
CORBA specification to reduce foot-
print so that CORBA can be used in
memory-constrained embedded sys-
tems.
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* Real-Time CORBA includes features
that allow applications to reserve and
manage network, CPU, and memory
resources predictably end to end.

*  CORBA Messaging exports additional
QoS policies such as timeouts, request
priorities, and queuing disciplines to
applications.

e Fault-Tolerant CORBA uses entity
redundancy of objects to support
replication, fault detection, and fail-
ure recovery.

Robust and interoperable implemen-
tations of these CORBA capabilities and
services are now available from multiple
vendors. Moreover, emerging standards
such as Dynamic Scheduling Real-Time
CORBA, Real-Time CORBA publish-
subscribe  services, the Real-Time
Specification for Java, and the Distributed
Real-Time Specification for Java are
extending the scope of open standards for
a wider range of DoD applications.

Dissemination of Patterns,
Frameworks

A substantial amount of R&D effort dur-
ing the past decade has also focused on
the following means of promoting the
development and reuse of high quality
middleware technology:

* Datterns codify design expertise that
provides time-proven solutions to
commonly occurring software prob-
lems that arise in particular contexts
[17]. Patterns can simplify the design,
construction, and performance tun-
ing of DRE applications by codifying
the accumulated expertise of develop-
ers, architects, and systems engineers
who have already confronted similar
problems successtully.

* Frameworks are concrete realizations
of related patterns [18] that provide
an integrated set of components that
collaborate to provide a reusable
architecture for a family of related
applications. Middleware frameworks
include strategized selection and opti-
mization patterns so that multiple,
independently developed capabilities
can be integrated and configured
automatically to meet the functional
and QoS requirements of particular
DRE applications.

Historically, the knowledge required
to develop predictable, scalable, efficient,
and dependable mission-critical DoD
DRE combat systems has existed largely
in programming folklore, the heads of
experienced researchers and developers, or
buried deep within millions of lines of
complex source code. Moreover, docu-
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menting complex systems with today’s
popular software modeling methods and
tools, such as the Unified Modeling
Language (UML), only capture how a sys-
tem is designed, but do not necessarily
articulate why a system is designed in a
particular way, which complicates subse-
quent software evolution and optimiza-
tion.

Middleware patterns and frameworks
help address these problems by systemati-
cally capturing combat system design
expertise in a readily accessible and
reusable format, thereby raising the level
at which systems engineers and applica-
tion developers approach the decision
making and implementation of their sys-
tems. Two efforts to provide suitable guid-

““Given the proper
advanced R&D context
and an effective process

for transitioning R&D
results, the COTS market
can adapt, adopt, and
implement the types of ...
capabilities needed for
military applications ...’

ance for the development of military sys-

tems are the New Attack Submarine

(NAS) [2] and the Aegis Shipbuilding

Program. NAS developed a guidance doc-

ument detailing allowable standards for

the NAS C3I system, and the Aegis pro-
gram developed a guidance document for

Baseline 7 phase I [19]. These documents

were instrumental in guiding the design

of these systems.

Much of the pioneering R&D on
middleware patterns, frameworks, and
standards for DRE combat systems has
been conducted as part of the Defense
Advanced Research Projects Agency’s
(DARPA) Information Technology Office
Quorum Program [20], which played a
leading role in the following:

* Demonstrating the viability of host
infrastructure middleware and distri-
bution middleware for DoD combat
systems by providing the foundation
for managing key QoS attributes such
as real time behavior, dependability,
and system survivability from a net-
work-centric middleware perspective.

* Transitioning a number of new mid-

dleware perspectives and capabilities

into DoD acquisition programs [4,

21] and commercially supported

products.

* Establishing the technical viability of
collections of systems that can
dynamically adapt [3] their collective
behavior to varying operating condi-
tions, in service of delivering the
appropriate application level response
under these different conditions.

The Quorum program focused heavi-
ly on CORBA open systems middleware
and yielded many results that transitioned
into standardized service definitions and
implementations for the Real-Time [4]
and Fault-Tolerant [22] CORBA specifi-
cation and production. Quorum is an
example of how a focused government
R&D effort can leverage its results by
exporting them into, and combining
them with, other on-going public and pri-
vate activities by using a common open
middleware substrate. Prior to the viabili-
ty of standards-based COTS middleware
platforms, these same R&D results would
have been buried within custom or pro-
prietary systems, serving only as an exis-
tence proof, rather than as the basis for
realigning the DoD R&D and integrator
communities.

Successful DoD technology transition
most often results from a partnership
between technology developers and tech-
nology users. One of the most successful
examples of such partnerships is the joint
DARPA/Aegis High Performance Distrib-
uted Computing program (HiPer-D).
Through the use of prototyping and sys-
tem-scale experiments, this program has
demonstrated the effectiveness of a num-
ber of DARPA and standards-based
COTS technologies for building DRE
combat systems that are efficient, scalable,
fault tolerant, and flexible in their design
and operation.

Looking Ahead

Due to advances in COTS technologies
outlined earlier, host infrastructure mid-
dleware and distribution middleware have
now been demonstrated and deployed in a
number of mission-critical DRE combat
systems. Since off-the-shelf middleware
technology has not yet matured to cover
the realm of large-scale dynamically
changing systems, however, COTS DRE
middleware has been applied to relatively
small-scale and statically configured
embedded systems. To satisfy the highly
application- and mission-specific QoS
requirements in network-centric system-
to- system environments, DRE middleware
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must therefore be enhanced to support

common and domain-specific middle-

ware services that can manage the follow-
ing resources effectively:

* Communication bandwidth, e.g., net
work level status information and
management services, scalability to
102 subnets and 103 nodes, and
dynamic connections with controlled
and reserved bandwidth to enhance
real-time predictability.

* Distributed real-time scheduling and
allocation of DRE system artifacts
(such as CPUs, networks, UAVs, mis-
siles, torpedoes, radar, illuminators,
etc), e.g., fast and predictable behavior
of widely dispersed components that
use the managed communication capa-
bilities and bandwidth reservations.

* Distributed system dependability, e.g.,
policy-based selection of replication
options to control footprint and reac-
tive behavior to failures.

* Distributed system security, e.g.,
dynamically variable object access con-
trol policies and effective, combined
real-time dependability, and security
interactions.

Ironically, there is little or no scientific
underpinning for QoS-enabled resource
management, despite the demand for it in
most distributed systems [23]. Today’s sys-
tem designers develop concrete plans for
creating global, end-to-end functionality.
These plans contain high-level abstractions
and doctrine associated with resource man-
agement algorithms, relationships between
these, and operations upon these. There are
few techniques and tools, however that
enable users, i.e., commanders, administra-
tors, and operators, and developers, i.e.,
systems engineers and application design-
ers, and/or applications to express such
plans systematically, reason about and
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refine them, and have these plans enforced
automatically to manage resources at mul-
tiple levels in network-centric combat sys-
tems.

To address this problem, the R&D
community needs to discover and set the
technical approach that can significantly
improve the effective utilization of net-
works and end-systems that DRE combat
systems depend upon by creating middle-
ware and distributed resource management
technologies and tools that can automati-
cally allocate, schedule, control, and opti-
mize customizable — yet standards-compli-
ant and verifiably correct — software-inten-
sive systems. To promote a common tech-
nology base, the interfaces and (where
appropriate) the protocols used by the
middleware should be based on established
or emerging industry or DoD standards
that are relevant for DRE combat systems.
However, the protocol and service imple-
mentations should be customizable — stati-
cally and dynamically — for specific DoD
DRE combat system requirements.

To achieve these goals, middleware
technologies and tools need to be based
upon some type of layered architecture
along with QoS adaptive middleware serv-
ices such as the one shown in Figure 2 and
based on empirical investigations of this
type of capability [3].

The Quality Objects (QuO) [24] proj-
ect is an example of such a layered archi-
tecture designed to manage and package
adaptive QoS capabilities as common mid-
dleware services. The QuO architecture
decouples DRE middleware and applica-
tions along the following two dimensions:
* Functional paths are flows of informa-

tion between client and remote server

applications. In distributed systems,
middleware ensures that this informa-
tion is exchanged efficiently, pre-

dictably, dependably, and securely

between remote peers, and in a manner

that scales well to large configurations.

The information itself is largely appli-

cation-specific and determined by the

functionality being provided (hence
the term functional path).

* QoS attribute paths are responsible for
determining how well the functional
interactions behave end to end with
respect to key DRE system QoS prop-
erties such as the following:

1. How and when resources are com-
mitted to client/server interactions
at multiple levels of distributed sys-
tems.

2. The proper application and system
behavior if available resources are
less than the expected resources.

3. The failure detection and recovery
strategies necessary to meet end-to-
end dependability requirements
under anomalous conditions.

In next-generation combat systems, the
middleware — rather than operating sys-
tems or networks in isolation — will be
responsible for separating DRE system
QoS attribute properties from the func-
tional application properties. Middleware
will also coordinate the QoS of various
DRE system and application resources end
to end. The architecture in Figure 2
enables these properties and resources to
change independently, e.g., over different
distributed system configurations for the
same application.

The architecture in Figure 2 is based
on the expectation that QoS attribute
paths will be developed, configured, moni-
tored, managed, and controlled by a differ-
ent set of specialists (such as systems engi-
neers, administrators, operators, and per-
haps someday automated agents) and tools
than those customarily responsible for pro-
gramming functional paths in DRE sys-
tems. The middleware is therefore respon-
sible for collecting, organizing, and dissem-
inating QoS-related meta-information that
is needed to do the following;

* Monitor and manage how well the
functional interactions occur at multi-
ple levels of DRE systems.

* Enable the adaptive and reflective deci-
sion-making needed to support QoS
attribute properties robustly in the face
of rapidly changing mission require-
ments and environmental conditions.
Researching and developing these mid-

dleware capabilities is crucial to ensure that
the aggregate behavior of future network-
centric combat systems is dependable,
despite local failures, transient overloads,
and dynamic functional or QoS reconfigu-
rations.

To simultaneously enhance assurability,
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adaptability, and affordability, the middle-

ware techniques and tools developed in

future R&D programs increasingly need to
be application-independent, yet customiz-

able within the interfaces specified by a

range of open standards such as these:

¢ The OMG Real-Time CORBA specifi-
cations and The Open Group’s QoS
Task Force.

* The Java Expert Group Real-Time
Specification for Java (RTS]) and the
emerging Distributed RTS].

e The IEEE Real-Time Portable Oper-
ating System (POSIX) specification.

Conclusions

As a result of much previous R&D and
transition experience, network-centric sys-
tems today are constructed as a series of lay-
ers of intertwined technical capabilities and
innovations. The main emphasis at the
lower layers is in providing the core com-
puting and communication resources and
services that drive network-centric comput-
ing: the individual computers, the net
works, and the operating systems that con-
trol the individual host and the message
level communication.

At the upper layers, various types of
middleware are starting to bridge the previ-
ously formidable gap between the lower-
level resources and services and the abstrac-
tions that are needed to program, organize,
and control systems composed of coordi-
nated, rather than isolated, components.
Key capabilities in the upper layers include
common and domain-specific middleware
services that provide the following:

* Enforcing real-time behavior across
computational nodes.

* Managing redundancy across elements
to support dependable computing.

* Controlling end-to-end adaptive behav-
ior in responding to changes in operat
ing conditions while continuing to
meet application needs.

These new middleware services make
the coordinated use of multiple computing
elements feasible and affordable by control-
ling the hardware, network, and end-sys-
tem mechanisms that affect mission, sys-
tem, and application QoS delivery and
tradeoffs that are needed to deliver the right
QoS at the right time under the prevailing
conditions.

Adaptive and reflective middleware sys-
tems (ARMSY) is a key emerging paradigm
that will help to simplify the development,
optimization, validation, and integration of
DRE middleware in DoD combat systems.
In particular, ARMS will allow researchers
and system integrators to develop and
evolve complex combat systems assurably,

adaptively, and affordably through the fol-
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lowing;

* Devising optimizers, meta-program-
ming techniques, and multi-level dis-
tributed dynamic resource manage-
ment protocols and services for ARMS
that will enable DoD DRE systems to
configure standard COTS interfaces
without the penalties incurred by
today’s conventional COTS software
product implementations. Many net-
work-centric DoD combat systems
require these DRE middleware capabil-
ities.

* Standardizing COTS at the middleware
level, rather than just at lower hard-
ware/networks/operating system levels.
The primary economic benefits of mid-
dleware stem from extending standard-
ization up several levels of abstraction
so that DRE middleware technology is
readily available for COTS acquisition
and customization.

As COTS implementations of middle-
ware standards mature in their functional
quality and QoS, they are helping to lower
the total ownership costs of combat sys-
tems. For example, Real-Time and Fault-
Tolerant CORBA implementations are cre-
ating a common base of COTS technology
that enables complex DRE middleware
capabilities to be reconfigured and reused,
rather than reinvented repeatedly or
reworked from proprietary stovepipe archi-
tectures that are inflexible and expensive to
maintain, evolve, and optimize. Additional
information on middleware for DRE systems
is available at <www.ece.uci.edu/-schmidt/

TAO.html>. 9
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