
Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering July 2002

In many organizations, a measurement
process is a required element in man-

aging technology programs. To meet
this requirement, several groups have
initiated projects to develop and stan-
dardize a set of best practices for setting
up such a measurement process. Three
principle sources of measurement guid-
ance that have converged from these
groups’ efforts during the past two years
are as follows:
• The emerging ISO standard,

ISO/IEC 15939 Software Measure-
ment Process.

• The Practical Software and Systems
Measurement (PSM) Guidebook ver-
sion 4 [1].

• The Software Engineering Institute’s
Capability Maturity Model® (CMM®)
IntegrationSM (CMMISM) project [2].

Measurement guidance and principles
are consistent among these three docu-
ments, with the basic measurement
process model shown in Figure 1.

As shown in Figure 1, informational
needs drive the planning, performance,
and evaluation activities within the
measurement process. Informational

needs are the requirements of essential
measurement activities in the core meas-
urement process. Once informational
needs are defined, a measurement plan is
developed by decomposing them into
analysis results and performance measures
(information products), which contain
measures and associated guidance.
These information products are deliv-
ered to managers and drive improvement
actions.

By placing informational needs out-
side the scope of the core measurement
process itself, the measurement process
can be used to support a wide range of
management and executive functions.
While this makes measurement a flexi-
ble process, it also requires that infor-
mational needs be clearly reviewed, pri-
oritized, and documented before initiating
or expanding a measurement process.
Because identifying informational needs
is a critical step in ensuring measure-
ment process success, organizations
must take the time to correctly select
and define these needs.

This article presents common types
of informational needs that are found in

both commercial and government
organizations involved in systems and
software engineering. Many also address
the informational needs of key practices
from the CMMI. These common needs
should encourage you to extract poten-
tial measurement process requirements
from your organization’s management,
system or software, and support
processes. The following nine tech-
niques provide tools for extracting the
real informational needs within your
organization.

1. Identify Informational
Needs for Current
Management Practices
Organizations often develop a culture
that encompasses technical management
and engineering functions. This culture
develops simultaneously as process,
training, infrastructure, and habit evolve.
For example, in a systems acquisition
program, a monthly meeting may be
held to review the supplier’s progress
and address potential risks. This meeting
is a result of the culture and process
within the organization, which has
found that a periodic review of progress
has led to a greater probability of on-
time delivery.

From a measurement perspective,
the periodic meetings represent a set of
candidate informational needs that,
when satisfied, makes the culture more
effective and efficient. The information
needed at the periodic meetings
becomes a formal information need of the
measurement process.

One of the primary barriers to meas-
urement adoption is the misalignment
between how managers work and what
information the measurement process

Focusing Measurement on
Managers’ Informational Needs

Peter Baxter
Distributive Software

Establishing a measurement process has evolved from the days of, “If it moves, count it,” through the goal-question-metric
period to today’s information-needs-based approach for identifying and defining what to measure. Measurement process guid-
ance from ISO and Practical Software and Systems Measurement provides a robust and flexible framework for measurement,
but they only identify the purpose of measurement as the “informational needs” of managers. What are these information-
al needs? This article describes simple techniques for identifying informational needs within your organization, i.e., informa-
tional needs that become the requirements of your measurement process and lead to a useful and effective measurement process.

Plan

Scope of Measurement

Core Measurement Process

Experience
Base

INFORMATIONAL
NEEDS

IMPROVEMENT
ACTIONS

USER FEEDBACK

ANALYSIS RESULTS

ANALYSIS
RESULTS AND

PERFORMANCE
MEASURES

MEASUREMENT
PLAN

Technical
and Management

Processes

Establish
Capability

Perform

Evaluate

Figure 1: Measurement Process Model

® Capability Maturity Model, CMM, Software Capability
Maturity Model, and SW-CMM are registered in the U.S.
Patent and Trademark Office.

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

July 2002 www.stsc.hill.af.mil 23

Focusing Measurement on Managers’ Informational Needs

provides. By examining how managers
really work, and using that to drive the
measurement process, you are more
likely to achieve greater measurement
process adoption and success.

2. Identify Requirements’
Measurements
Without exception, systems and soft-
ware managers must measure the
requirements engineering activities of
the life cycle. Measuring requirements
engineering activities involves quantify-
ing the progression of software require-
ments from concept to formulation to
design to test. Assessing these require-
ments ensures that your product con-
tains all required functionality.

Typically, program plans and projec-
tions are based on estimates of software
requirements, which are used as the
basis for software size estimates.
Because estimating requirements plays
such a large part in developing the initial
program plan, it is imperative to moni-
tor that requirements are proceeding as
expected. Consider a scenario where
you are developing 25 percent more
requirements than you planned – every
life cycle activity may then be 25 percent
or more over schedule and budget.

It is advisable to measure the num-
ber of requirements that each software
process generates or accepts. Measure
the number of system or top-level soft-
ware requirements (i.e., features or capa-
bilities), as well as the decomposition of
system requirements into more detailed
requirements. Measuring requirements
helps you to keep tabs on the scope of
your program. One of the most com-
mon issues detected by measuring
requirements is requirements creep: the
tendency to keep adding requirements
to a program without considering how
many additional resources or risks those
new requirements represent.

In order to track differences
between developed and planned
requirements, it is necessary to also
measure the status of each requirement
as it moves through life cycle activities.
A typical requirement status could be as
follows: defined, approved, allocated,
designed, implemented, tested, and ver-
ified. For example, in the CMMI
requirements management process area,
one of the typical work products identi-
fied for sub-process 1.3 Manage
Requirements Changes is requirements
status. A practical sample of how to
define requirements status and then
manage status changes can be found in

the “CMM Implementation Guide” [3].
A measure that shows the status of

all requirements is essential to monitor-
ing program status and acts as a score-
card to illustrate that requirements are
being implemented. Early in the pro-
gram schedule, ensure that requirements
become defined, approved, and allocat-
ed as the system architecture is final-
ized. Near the end of the program
schedule, you should see requirements
move from implemented status to test-
ed then to verified status. While valu-
able in detecting requirements volatility,
this measure also supports monitoring
effort, configuration management, and
quality.

3. Identify Risks That
Impacted Previous
Programs
In most organizations, as well as in the
experience of many managers, there is a

history of project lessons that should
not be repeated! This includes reasons
that projects were never completed, or
why projects were delivered late, over
budget, and without needed functional-
ity. These lessons learned in similar and
recent software programs are prime
candidates for measurement in the next
(now current) program.

With historical risks, focus on identi-
fying the cause of the risk rather than
the symptom or the response. For
example, with a project where the soft-
ware was delivered late, try to remember
and uncover the specific software com-
ponents that led to the lateness. Perhaps

the reason for the program delay was
that a key piece of commercial off-the-
shelf (COTS) software was not available
or that the integration took longer than
expected.

Consider also that software man-
agers are often aware of software prob-
lems but only react when a schedule
delay is required. In our own software
development, we have been burned by
technical and schedule problems related
to our COTS vendors, and we have
essentially let their problems impact our
projects. We now take an act early
approach where our product manager
immediately considers technical alterna-
tives once a problem is identified. In
your environment, consider whether
you want to measure to detect technical
problems for monitoring, or to take
management action on known ones. In
some cases, your measurement program
will need to do both.

4. Identify Risks for the
Current Program
During program planning, you may
establish a risk management plan. For
each risk, you typically develop risk
identification, mitigation, impact, and
probability. A measurement process can
support a risk management plan by
identifying risks that need to be mitigat-
ed and by quantifying the effect of mit-
igation activities. From a measurement
perspective, risks can become informa-
tional needs that drive the measurement
process. The measurement process can,
and should, address these needs.

Since there are costs associated with
measurement (as well as risk manage-
ment), you may want to select a subset
of risks to measure. You could use
probability and estimated mitigation
cost (or impact) as a discriminator in
selecting risks to measure. For example,
you may choose to measure only high-
and medium-probability risks where the
associated mitigation cost is greater
than $100,000.

A common risk within our organiza-
tion is that software developers will not
spend as much time as planned on a
given product baseline. In the past, we
found that senior developers were tem-
porarily borrowed for other product
development or support activities, for
example, to investigate the cause of a
field report from a customer. To
address this risk, we developed an infor-
mation need related to ensuring that
resource expenditures correspond to
our business priorities, i.e., first things
first.

“By placing
informational needs
outside the scope

of the core
measurement process

itself, the process
can be used to
support a wide

range of
management and

executive decisions.”

24 CROSSTALK The Journal of Defense Software Engineering July 2002

Software Engineering Technology

5. Measure What You Are
Trying to Improve
It is the author’s experience to fre-
quently see organizations implementing
large-scale, institutional change without
implementing the corresponding means
for managing the resultant process.
Tom DeMarco, consultant and author,
coined a phrase commonly heard in the
world of software management: “If
you don’t measure it, you can’t manage
it ” [4]. So, before you take a small step
to improve an isolated software task, or
a large step to improve an entire
process, consider how you will demon-
strate actual process improvement.

In addition to desiring to better
manage your new or changed software
process(es), be aware that there is an
even more important reason to meas-
ure the processes that you are attempt-
ing to improve – to develop a quantita-
tive understanding of why your soft-
ware process behaves as it does.
Developing this type of quantitative
process understanding requires being
able to mathematically describe the pri-
mary process factors. Once this mathe-
matical relationship is established, the
next step is to monitor and control the
effects of these process factors.
Furthermore, your estimates will
become more accurate as a result of
this better understanding.

Many measurement practitioners
confuse a general quantitative under-
standing of their process with the
quantitative management capability
included in the CMM Level 4
Optimized. In practice though, organi-
zations develop quantitative models for
activities ranging from requirements
engineering, inspections, defect detec-
tion and removal, to system testing
software release activities – and few of
them are rated at CMM Level 4. The
point here is that by developing an
understanding of your processes
through measurement, you will be in a
better position to estimate, control, and
manage them, and less likely to rely on
subjective guessing. (In other words, do
not wait until you are attempting a
CMM Level 4 assessment to start meas-
uring; start now and you will be that
much ahead of the game.)

6. Identify Software Quality
Measures
Some years ago, a former market-lead-
ing technology company decided to
counter its market slump by hiring a
technology vice president. At the first

meeting of his direct reports, he walked
around the table, put an airsickness bag
in front of each person and said, “Your
schedules make me sick.” He went on
to say that schedules without quality do
not mean anything.

In essence, it does not matter how
well you stick to the schedule if the sys-
tem or software product is unusable by
the customer. This vice president knew
what the market demands – it is unfor-
tunate that more companies do not take
quality seriously. If they did, they would
focus on building a quality product
rather than racing to get a substandard
product to market quickly.

System or software quality is more
than measuring the quality of the end
product. End product quality is the
result of the systems and software qual-
ity activities employed during develop-
ment. If you ignore the quality aspects
of systems and software development,

it is anybody’s guess what the quality of
the end product will be.

One technique for addressing soft-
ware quality is to use quality gates. This
involves establishing reasonable and
measurable thresholds at several points
during development and then ensuring
that the software or work products
meet them before continuing. A quality
gate could be all requirements
approved, all unit tests passed, all code
inspected, or all requirements (or sub-
set) tested. Microsoft, for example,
required developers to have no show-
stoppers or priority one bugs in their
code in order to release Windows NT
to beta testing [5]. Microsoft managers
plan on several zero defect releases dur-
ing the development of a product. You
should use the appropriate measures to

determine your progress in meeting
one of these quality gates.

7. Identify Assumptions
Used in Preparing the
Project Plan
A typical systems or software develop-
ment program plan includes a number
of assumptions about progress, quality,
and resources. Assumptions made dur-
ing program planning are excellent
informational needs for the measure-
ment process. If the assumption is not
realized, then many of the resulting
schedule and resource plans may need
to be examined, or re-planned.

For example, when performing an
estimation using the Cost Constructive
Model (COCOMO), the estimated
number of lines of code (or other soft-
ware sizing measure such as function
points) is a primary driver in establish-
ing the amount of effort. If your proj-
ect exceeds the number of lines of
code during development, this may
indicate that more effort is needed dur-
ing the down stream software activities
such as unit testing, system testing, or
integration.

8. Identify Resources
Consumed and Products
Produced to Understand
Process Performance
At the beginning of initiating a meas-
urement process, your organization will
typically not have historical process
data. In such cases, one of your goals
should be to understand the behavior
of the processes in the systems or soft-
ware life cycle. Consider that each
process in the life cycle consumes
resources and produces a product
(either an internal or a customer prod-
uct). You should establish basic meas-
urements to determine how many
resources are being consumed and how
much of the product is being produced.
You might consider doing this for the
processes that consume the majority of
your budget or schedule.

9. Identify the Information
Needed to Satisfy
Organizational Policy
In many system or software shops,
managers are required to use specific
techniques in monitoring and control-
ling their programs. In large defense
programs, for example, an earned value
management system is required. When

“There is an even
more important

reason to measure
the processes that
you are attempting

to improve – to
develop a quantitative
understanding of why
your software process
behaves as it does.”

July 2002 www.stsc.hill.af.mil 25

Focusing Measurement on Managers’ Informational Needs

managers are required to use specific
management techniques, the organiza-
tion should provide the data that man-
agers need to effectively apply the tech-
nique. The measurement process is the
method that the organization uses to
deliver the information that managers
need to use the technique.

For example, many defense organi-
zations must use an earned value man-
agement system. In support of this, the
measurement process should deliver
required cost and schedule status infor-
mation to the program in the form of
cost performance index, schedule per-
formance index, to-complete perform-
ance index, earned value (and its com-
ponents), and variance at completion.
Without a measurement process to
ensure that the earned value data is col-
lected, analyzed, and delivered in a
timely fashion, even a very useful tech-
nique such as earned value can be
inconsistently or (often) incorrectly
applied.

Program or site policy and stan-
dards documentation provides many
informational needs for the measure-
ment process. While setting up a meas-
urement process, analyze the systems
and software management standards
and policy to see what management
techniques have been, or are being,
mandated. Then, extract the informa-
tional needs from these mandated stan-
dards and address them during meas-
urement process implementation.

Summary
Identifying informational needs is the
first step in establishing an effective
measurement process. The techniques
explained above provide tools for
extracting the real informational needs
within your organization. Once all
informational needs are identified, you
can assign a relative priority to them, in
case you need to balance the informa-
tional needs and the resources available
to the measurement process. The meas-
urement process will refine those infor-
mational needs into appropriate meas-
urement activities, specific measures,
and information products. Over time,
you should review the effectiveness of
the information products and individ-
ual informational needs as your organi-
zation adopts new technology and
processes.

This approach for identifying infor-
mational needs ensures that the meas-
urement information you and other
managers receive is effective in helping
you monitor and control your pro-

grams. By focusing measurement on
true informational needs, managers are
better armed to monitor and control
their programs and to assess the likeli-
hood of an on-time and on-budget
completion. In addition, by saving man-
agers time in gathering and analyzing
the information they need to manage,
managers can spend more time on their
real role: decision making.◆

References
1. Department of Defense and U.S.

Army. Practical Software and
Systems Measurement Guidebook.
Version 4.0b. Oct. 2000.

2. Software Engineering Institute.
Capability Maturity Model® Integra-
tion for Systems Engineering
/Software Engineering/Integrated
Product and Process Develop-
ment/Acquisition. Version 1.02d.
Carnegie Mellon University. Dec.
2000.

3. Caputo, Kim. CMM® Implemen-
tation Guide. Addison-Wesley, 1998.

4. DeMarco, Tom. Controlling Soft-
ware Projects. Prentice Hall, 1982.

5. Zachary, Pascal. Showstopper! The
Free Press/Macmillan, 1994: 243-
255.

About the Author

Peter Baxter is the
development manager at
Distributive Software,
where he directs meas-
urement services, prod-
ucts, and training. For the

past eight years, he has assisted numerous
government and commercial organiza-
tions in planning and implementing
measurement programs. He is a frequent
speaker and trainer on the subject of
applying measurement to software, infor-
mation technology, and systems engineer-
ing. He is the current chair of the
International Council of Systems
Engineering. Measurement Working
Group and a member of ISO
Subcommittee on Systems and Software
Engineering . The author welcomes com-
ments and discussion on this article.

Distributive Software
2300 Fall Hill Avenue, Suite 100
Fredericksburg,Virginia 22401
Phone: (540) 372-4500
Fax: (540) 372-6497
E-mail: pbaxter@distributive.com

July 18-20
Shareware Industry Conference

St. Louis, MO
www.sic.org

July 22-25
Joint Advanced Weapons Systems Sensors,

Simulation, and Support Symposium
(JAWS S3)

Colorado Springs, CO
www.jawswg.hill.af.mil

July 22-26
6th Annual Practical Software

Measurement Users’
Group Conference

Keystone, CO
www.psmsc.com

August 19-22
The 2nd Software Product

Line Conference
San Diego, CA

www.sei.cmu.edu/SPLC2/

September 9-13
International Conference on Practical

Software Quality Techniques
(PSQT) 2002 North

and International Conference on
Practical Software Testing Techniques

(PSTT) 2002 North
St. Paul, MN

www.psqtconference.com

November 18-21
International Conference on

Software Process Improvement
Washington, DC

www.software-process-institute.com

April 28-May 1, 2003
Software Technology Conference 2003

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

