
Open Forum

November 2002 www.stsc.hill.af.mil 23

Disciplined document reviews are
somewhat analogous to medical

instrument sterilization. Today, we would
not tolerate doctors using unsterilized
equipment to conduct surgery. However, it
was common practice, for example, during
the Civil War to use a surgical instrument
such as a saw without proper sanitation
between limb amputations. This caused
more soldiers to die of infections than
from the initial wounds. Once scientists
learned about bacteria and other microbes,
the medical industry began requiring that
equipment be sterilized to avoid infecting
patients.

Today, we have plenty of experience
data that shows disciplined document
review practices are vital to delivering sys-
tems on-time and within budget [1, 2].
However, many software development
organizations still have no problem using
yesterday’s practice of whipping together a
set of requirements and delivering it to the
developers and testers without an ade-
quate review. They do not take the time
nor use effective tools to look for docu-
ment defects. Either they do not see any
obvious bugs, or they must figure the bugs
can be fixed later. Consequently, they do
not seem to mind delivering a document
with serious diseases, so to speak.
However, it is a well-known fact that
defects cost more to fix the longer they
remain in the system documentation (and
code) [3].

Yesterday’s state-of-the-practice is
often today’s malpractice. Let me go on
record as saying that organizations not
implementing a disciplined document
review program will one day be considered
to be conducting software malpractice.
Disciplined document reviews are that
important!

Disciplined document reviews are also
known as peer reviews, inspections, and
structured walk-throughs. While there are
some differences in definitions for these
terms in various standards and guidelines
[4] in the industry, the intent is to identify
defects to determine if the document is

ready for release to the next phase of
development or for delivery to the cus-
tomer. The author should prepare the doc-
ument to the point that he or she believes
that there are few, if any, defects remain-
ing, and that it is considered ready for
release to the next phase of development
or delivery. Another major purpose for
these reviews is to identify process
improvement opportunities to avoid mak-
ing the same mistakes on future efforts.

Human Disease Analogies
In any discipline, we provide names to
characterize the topics, objects, and proj-
ects that we need to discuss. Naming a
concept helps us gain an initial under-
standing of the issue. If naming document
maladies after human diseases could help
software engineers better understand and
deal with the documentation problems
confronting them, then I propose doing
so. There are several document diseases
that I have seen in my research at the
Software Technology Support Center
(STSC) and during my support of STSC
clients. Since many of us are not readily
conversant with human diseases, here are a
few definitions for review [5]:
• Rickets. A deficiency disease resulting

from a lack of vitamin D, marked by
defective bone growth and occurring
chiefly in children.

• Sclerosis. A thickening or hardening
of a bodily part, especially from dis-
ease or excessive growth of tissue.

• -itis. Inflammation or disease of [a
body part or parts].

• Scurvy. A disease resulting from a
deficiency of vitamin C and marked by
bleeding under the skin.

• Glaucoma. A disease of the eye
marked by high intraocular pressure
and partial or total vision loss.

• Cancer. Malignant neoplasms that
manifest invasiveness and have a ten-
dency to metastasize to new sites.
After this quick review, surely you can

see that relating these names to document
defects could invoke a feeling of alarm

that would require immediate treatment to
keep project costs and quality under con-
trol. The following sections discuss sever-
al document diseases to to treat immedi-
ately on your projects.

Requirements Rickets
Requirements rickets is a deficiency of
important requirements resulting from a
lack of exposing requirements to adequate
analysis and review. For example, require-
ments state that a behavior shall occur
given a specific condition. But they do not
tell you what to do when the condition is
not met. This is a common cause of
requirements rickets: The symptom is
missing requirements. Granted, an itera-
tive or evolutionary development life cycle
does not expect all requirements to be
defined at the start. But when you define
the requirements that you do know about,
be sure they are adequately specified.

Another example of requirements
rickets occurs when we state that we want
a usable system and then do not provide
any objective scale of measure for usabili-
ty. We are missing vital information, with-
out which we can neither build the desired
system nor evaluate whether it has been
successfully accomplished. Example scales
of measure for usability include the aver-
age time to learn to use specific product
features and the average time to perform
specific product features by experienced
personnel [1].

Source Code Sclerosis
Source code sclerosis is a hardening of the
source code, making it very difficult to
correct or upgrade without breaking some
other existing capability. Many old legacy
systems are built with breakable design
architectures and poor coding practices
(for example, inadequate comments,
unstructured code, or poorly named vari-
ables). These systems require intensive
care to revive them to prolong their lives
many times. We often spend 70 percent or
more of the entire life cycle doing mainte-
nance on many of these systems [6].

Document Diseases and Software Malpractice
Gregory T. Daich

Software Technology Support Center/SAIC

This article proposes some names for software documentation diseases based on human diseases that will surely invoke a feel-
ing of alarm to motivate developers to plan immediate treatment to keep project costs and quality under control. To ignore
and leave these documentation diseases untreated may one day be considered software malpractice. This article can help to iden-
tify serious documentation maladies early when treatment is possible to maintain a lean, healthy, and on-time project.

Open Forum

24 CROSSTALK The Journal of Defense Software Engineering November 2002

Some of these systems with source
code sclerosis need to be taken off life
support. They need to be redesigned and
rebuilt to cost-effectively meet operational
requirements. With the support of auto-
mated static analysis tools, effective docu-
ment reviews assures that maintainable
code is developed.

Ambiguousitis
Ambiguousitis is a disease of ambiguity
inherent in all natural languages and is as
common as the common cold. Sometimes
it provides some variety, mystery, or humor
to fictional prose but it always causes liter-
ary dizziness and confusion in software
documentation. People can legitimately
interpret the same specifications in differ-
ent ways. For example, consider the fol-
lowing statement: “If Transaction_A is
received, and it is the end of the week, or
it is the end of the month, produce
Summary_A Report.”

This text can be interpreted in at least
two distinct and valid ways using the
parentheses to clarify as follows:
• Interpretation 1: “If (Transaction_A is
received, and it is the end of the week) or
it is the end of the month, produce
Summary_A Report.”
• Interpretation 2: “If Transaction_A is
received, and (it is the end of the week or
it is the end of the month), produce
Summary_A Report.”

Making an assumption about what the
original text means is dangerous to the
health of the project. Interpretation 1
always produces Summary_A Report at
the end of the month. It also produces
Summary_A Report if it is the end of the
week and Transaction_A has been
received. Interpretation 2 produces
Summary_A Report only if Transac-
tion_A is received and either it is the end
of the week or it is the end of the month.
(Is that clear?) In other words, the results
are different depending on the reader’s
interpretation. This disease has caused
entire projects to die a slow and painful
death, though the symptoms were often
known very early and could have been
diagnosed and treated.

Source Document Scurvy
Source document scurvy is a malicious dis-
ease resulting from a deficiency of source
document references and is rampant in
many project documents. Its effects are
often tolerated as part of life when the
quality of our projects could be greatly
improved with the adoption of a few
effective antidotes. If you obtain informa-
tion from a source document, then provide
a useful citation to that document such as

a reference identifier with a page or section
number (if it is not obvious where the
information came from). It takes only a lit-
tle more time and saves countless review
and rework hours later.

Note that a reference section should
always be provided in all documentation,
and includes the titles, authors, dates, and
version numbers of all sources. No docu-
ment is an island. Some managers want the
documents that they have to review to
stand on their own. Thus the authors hide
vital reference information by not listing
all the applicable references. You can often
find inconsistencies between documents
when you check it under review against the
source document.

Document Glaucoma
Document glaucoma is a disease caused by
unclear or missing document and project
objectives. It is a frequent illness in special
reports, plans, or guidelines to support
software development or maintenance
efforts. When I am asked to review these
types of documents, I often cannot find a
statement of objectives. With no vision of
where we are really headed in some of
these documents, it is a wonder we make
any progress at all.

Software-related documentation writ-
ten by inexperienced authors often jumps
right into the body of the document with
no proper introduction. This may have
something to do with the mindset of some
developers that documentation is bad
because it slows us down. That is like say-
ing we do not have time to document our
plans or our requirements. We just have
time to build. “We’ll document later,” is a
common comment I have heard from a
variety of sources. This is a clear example
of document glaucoma; unclear project
objectives is its main symptom.

Content Cancers
Content cancers occur whenever an uncor-
rected, often malignant documentation
problem is not corrected prior to delivery
to the next phase of development. IBM
studied how design defects propagate to
multiple design defects, and how design
defect propagates to multiple coding
defects [6]. Again, documents written in
early project phases often transmit these
cancerous defects to follow-on phases
because they were not diagnosed and the
disease treated when authors had a chance
– shortly after writing the document. This
disease continues to grow maliciously to
damage schedules and costs and ultimately
kill projects. One particularly malignant
strain of this disease manifests itself in
“required” but trivial overkill documenta-

tion that does not support key project
objectives.

Disease Cure and Prevention
Unlike some human diseases, these docu-
ment diseases are completely diagnosable
and curable using technologies available
today. The technologies are not difficult
but are a collection of common-sense
activities that require training where effec-
tive practices can be experienced.
However, effective document reviews
require a significant process implementa-
tion effort following training. Many organ-
izations do not make this vital investment.

Some of these common-sense activi-
ties include the following [1, 7]:
• Checking the document against objec-

tive criteria to determine readiness for
review, and planning the review by a
trained document review leader.

• Conducting a kick-off meeting to
introduce the document to the review-
ers and to answer questions.

• Checking the document against
sources, checklists, standards and
checking for ambiguities, incomplete-
ness, inconsistencies, and missing
sources.

• Meeting as a team of reviewers to
report and check for additional defects.

• Conducting a process brainstorming
meeting to begin root cause analysis
shortly after the team review meeting.

• Correcting the document by the author
or author-representative and address-
ing all issues and defects.

• Auditing the author’s corrections.
• Verifying that objective document

readiness criteria have been met by the
review leader and recording metrics.
Once the review process is underway, it

needs to be constantly monitored to assure
that document review leaders are following
the process. Without active management
support and involvement, developers and
support staff often slip back into archaic,
skim-review malpractice (one quick gloss-
over reading without checking sources and
checklists). [1, 7, 8, 9, 10].

Poor document review practices persist
in many organizations because there is no
documented policy and process for con-
ducting reviews; that is the way it has been
done for years. Conducting haphazard ad
hoc reviews allows critical project docu-
mentation to be transmitted unsterilized to
subsequent phases of development.

We all know that “An ounce of pre-
vention is worth a pound of cure.”
Effective document reviews also feed
information back to developers to help
improve the authoring process in the
future.

Document Diseases and Software Malpractice

November 2002 www.stsc.hill.af.mil 25

Effective document reviews will not
prevent all document diseases and will not
guarantee success, but they go a long way
toward maintaining healthy projects. They
require up to 15 percent more time during
the document authoring stages of devel-
opment, but they save time overall on
projects through significantly less rework
and retesting [1]. It is like taking the time
to eat well-balanced meals, participate in
an effective exercise program, and get
enough rest for your projects. You just
cannot expect to live a healthy project
lifestyle without effective and efficient
document review practices.

With effective review practices, you
can also expect more projects to reach full
maturity. You will have fewer incidents of
project euthanasia (cancellations) adminis-
tered (which is probably the best idea for
many suffering projects). You will also
have more lean and healthy projects deliv-
ered on-time and on-budget [2].

Although I do not really expect any
project to adopt my document disease
naming convention, it brought to light
some interesting issues about documenta-
tion maladies that are treatable today. One
rule in conducting disciplined document
reviews is to direct comments at the doc-
ument, not the author. Naming document
diseases this way may suggest that some
authors are carriers of certain diseases. We
do not really want to label authors this
way. However, it may be fair to say that
responsible managers who neglect imple-
menting effective reviews of critical docu-
mentation may be the real carriers of the
above document diseases.

The consequences of poor quality
documentation can still result in preventa-
ble project fatalities just like individuals
practicing poor health habits result in pre-
ventable fatalities. Again, to do anything
less than implementing disciplined docu-
ment reviews could eventually be software
malpractice.◆

Acknowledgements
I would like to thank the following people
for their comments regarding this article:
Pam Bowers, Ross Collard, Rick Craig,
David Dayton, Chelene Fortier, Tom Gilb,
Paul Hewitt, Tony Henderson, Cem
Kaner, Ed Kit, Bret Pettichord, Ron
Radice, Johanna Rothman, Bob Stahl,
Beth Starrett, Tracy Stauder, and Karl
Wiegers.

References
1. Gilb, Tom, and Dorothy Graham.

Software Inspection. Boston:
Addison-Wesley, 1993.

2. Dion, Raymond. “Process Improve-

ment and the Corporate Balance
Sheet.” CrossTalk Feb. 1994.

3. Boehm, Barry. Software Engineering
Economics. Prentice Hall, 1981: 17.

4. Institute of Electrical and Electronics
Engineers. “Standard for Software
Review Processes”. IEEE 1028-1997.

5. Webster’s II New Riverside University
Dictionary. The Riverside Publishing
Company, 1984.

6. Collard, Ross, et. al. System Testing
and Quality Assurance Techniques.
Collard & Associates, 2001.

8. Ebenau, Robert G., and Susan H.
Strauss. Software Inspection Process.
McGraw Hill, 1993.

9. Radice, Ronald A. High Quality Low
Cost Software Inspections. McGraw-
Hill, 1993.

7. Daich, Gregory T. “Disciplined
Document Reviews Course.” Software
Technology Support Center. Mar.
2002, Version 6.

10. Wiegers, Karl E. Peer Reviews in
Software: A Practical Guide. Addison-
Wesley, 2002.

About the Author
Gregory T. Daich is a
senior software engi-
neer with Science Ap-
plications International
Corporation currently
on contract with the

Software Technology Support Center
(STSC). He supports STSC’s Software
Quality and Test Group with more
than 25 years of experience in develop-
ing and testing software. Daich has
taught public and on-site seminars
involving software testing, document
reviews, and process improvement. He
consults with government and com-
mercial organizations on improving the
effectiveness and efficiency of soft-
ware quality practices. Daich has devel-
oped two Air Force training programs:
Software-Oriented Test and Evalua-
tion, and Disciplined Document
Reviews. He has a master’s degree in
computer science from the University
of Utah.

Software Technology Support Center
OO-ALC/MASEA
7278 4th St.
Bldg. 100
Hill AFB, UT 84056-5205
Phone: (801) 777-7172
E-mail: greg.daich@hill.af.mil

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUL2001 " TESTING & CM

AUG2001 " SW AROUND THE WORLD

SEP2001 " AVIONICS MODERNIZATION

JAN2002 " TOP 5 PROJECTS

FEB2002 " CMMI

MAR2002 " SOFTWARE BY NUMBERS

MAY2002 " FORGING THE FUTURE OF DEF

JUN2002 " SOFTWARE ESTIMATION

JULY2002 " Information Assurance

AUG2001 " SOFTWARE ACQUISITION

SEP2002 " TEAM SOFTWARE PROCESS

OCT2002 " AGILE SW DEVELOPMENT

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

