
Programming Languages

4 CROSSTALK The Journal of Defense Software Engineering February 2003

Aprogramming language allows a devel-
oper to translate logical real-world

actions into operations that can be per-
formed on computer hardware. In effect, it
is a way to translate concrete real-world
desires into computer-world operations.

Programming languages advance by
extending the number of operations pro-
grammers can perform without thinking
about them – thus making it easier to say
the things they want to say. In effect, these
advances hide the complexity of what is
going on underneath the hood and raise
the level of abstraction that programmers
think about when they program.

If a programmer wants to say some-
thing to the computer, and he/she finds
that the current language has difficulty in
saying it, then he/she develops a new lan-
guage or extends an existing language.
Advances in programming languages tend
to increase the intellectual distance
between program statements and what the
computer hardware actually does. The lan-
guage then does more of our work, while
decreasing the distance between the pro-
grams written and the real world, allowing
us to solve real-world problems in the con-
text and language of the real world. On a
subtler note, programming languages, soft-
ware, computer scientists, etc. exert an
influence on the real world also, drawing it
ever closer to the software realm (see
Figure 1).

Inevitably, a new programming lan-
guage enables a programmer to express an
idea or concept in a simpler, more readable
manner than what had come before. This
simpler, more readable manner allows us
to create code that is easier to verify, easier
to code, and easier to debug. In essence,
the more powerful a programming lan-
guage is, the easier it is to express complex
ideas in a simple manner.

Typical Generations of
Programming Languages
The first generation of programming lan-
guages, machine codes, is the actual binary

codes that the computer hardware directly
executes. To program directly in machine
code, one must be completely familiar with
the individual computer being pro-
grammed, including its architecture and its
native Central Processing Unit (CPU)
instruction set. Programming in a different
computer’s machine language is like
switching from Spanish to German.

The second generation of program-
ming languages, assembly languages, was
little more than mnemonics (symbols) on
top of machine language instructions.

Typically, one assembly language operation
is translated into a single, equivalent
machine-code operation. When program-
ming Assembler, we still need to under-
stand how the CPU works, and what the
command set is. However, we can forget
about the codes underlying the instruc-
tions and think about the CPU-level activ-
ity that is necessary to accomplish the task.

Third generation programming lan-
guages are CPU and machine-code inde-
pendent. Early third generation languages,
like Fortran and COBOL, are not com-
pletely pure, as many of their data types
and control structures derived directly
from machine-code operations. Later lan-
guages, like Ada and Pascal, were designed
specifically to be machine-independent.

There is no general agreement on what
the fourth, fifth, and future generations of
programming languages are. Some argue

that non-procedural languages (or declara-
tive languages), artificial intelligence lan-
guages, code generation applications, or
object-oriented languages are all con-
tenders. Part of the reason there is no gen-
eral agreement is that unlike computer
hardware generations, later programming
languages did not supplant earlier pro-
gramming languages but instead solved
domain specific problems or complement-
ed existing third generation languages.

At one time, it was projected that there
existed more than 450 languages being
used to develop Department of Defense
(DoD) applications [1]. Web sites like
< h t t p : / / o o p. r o s we b. r u / O t h e r > ,
<www2.latech.edu/~acm/HelloWorld.sht
ml>, <http://directory.google.com/ Top
/Computers/Programming/Languages>,
and <http://sk.nvg.org/lang/lang.html>
list more than 2,000 programming lan-
guages and <www.levenez.com/lang>
shows the evolutionary path of many pro-
gramming languages in terms of which
languages begot others.

However, rather than debate what
exactly constitutes a fourth, fifth, or future
generation of programming languages,
this article describes several general evolu-
tionary trends that have influenced pro-
gramming languages, as well as some spe-
cific recent advances.

Machine-Independent
Programming
An ongoing evolutionary trend with one
of the longest histories is that of reducing
the dependency of programming lan-
guages on any particular computer’s hard-
ware. The evolutionary goal of machine-
independent programming has been to be
able to write a program once that could
then be run on multiple types of hardware.
This would free the application program
from the particular hardware on which it
was developed.

Control structures were the first to be
freed from the tyranny of the computer
hardware. The initial control structures

Evolutionary Trends of Programming Languages

Dr. David A. Cook
Software Technology Support Center/Shim Enterprises, Inc.

Programming languages are the tools that allow communication between the computer and the developer. Far from being a
static tool, programming languages evolve – they are created, constantly change, and frequently disappear over the course of
their use. This article discusses the needs and forces that have shaped the evolution of programming languages, and discusses
various evolutionary paths of programming languages in current use.

Lt. Col. Thomas M. Schorsch
United States Air Force Academy

There does not now,
nor will there ever,

exist a programming
language in which it is

the least bit hard to write
bad programs [2].
— Lawrence Flon

February 2003 www.stsc.hill.af.mil 5

Evolutionary Trends of Programming Languages

were simple jump statements where
instructions followed each other sequen-
tially until a jump command caused it to
start executing a different sequence. In
Fortran, the GOTO command, both to
line numbers and later to symbolic labels
evolved out of machine code jumps.
Fortran also had a primitive for loop, the
DO statement and an IF statement.

Algol popularized structured control
statements where the statement itself
could have substatements and ushered in
the structured programming revolution
and the GOTO-considered-harmful debate.
Prior to 1968, most of the commonly used
programming languages routinely used
GOTO. Starting in the late 1960s, the pro-
gramming community debated if the use
of GOTO was useful, necessary, and/or
harmful to good programming practices.

This debate started with the seminal
paper “GOTO Statement Considered
Harmful” [3]. In this paper, author Edsger
W. Dijkstra said, “The quality of program-
mers is a decreasing function of the densi-
ty of GOTO statements in the programs
they produce.” Although this topic was
hotly debated for several years, it is now
generally recognized that the GOTO state-
ment decreases program understandability
and quality. With the structured program-
ming revolution, thereafter followed case
statements, generalized loops, tasks and
co-routines, exception handling, and paral-
lel programming.

Another fruitful area of evolution
toward machine-independent program-
ming has been with data structures. Initial
data items were limited to those that had
direct hardware representations (i.e., vari-
ous-sized integer data types and then later
floating-point data types.) Later came logi-
cal data, characters, strings, Booleans, and
enumerated types. For years, COBOL was
the ultimate language in terms of repre-
senting and manipulating data. Arrays were
initially physically adjacent integers or
floating-point data; gradually, more gener-
alized arrays, records, and nested data
structures appeared. Later came strong
data typing, user-defined data types, and
dynamic data structures. Pointers, which
were present since the very beginning,
evolved to become more structured and
have often been left out of modern lan-
guages or have been restricted across a
number of dimensions.

Once language elements were divorced
from computer hardware elements, entire
languages could be made more compatible
across different hardware platforms. One
of the goals in designing the Ada pro-
gramming language was that an Ada pro-
gram could be transported to any other

computer and need only be recompiled on
a validated Ada compiler in order for it to
be executed. Another method for making
programming languages cross-platform
compatible was to develop a virtual com-
puter (called a virtual machine) that
replaced the computer hardware as the
target on which the programming lan-
guage ran.

The Rise of Virtual Machines
A virtual machine (VM) is a program that
creates an artificial or abstract computer
running on top of an existing computer.
The VMs hide the normal computer hard-
ware behind a simpler or different compu-
tational model. The earliest VMs enabled
computer scientists to create programming
languages specifically for new and differ-
ent computational models. Lisp (a func-
tional language) and Prolog (a logic lan-
guage) are the earliest programming lan-
guages to run on top of a VM.

Functional languages, in their purest
form, eliminate loops, GOTOs, assign-
ment statements, and all forms of side
effects. Their VM does not support such

constructs. Functional languages retain IF
statements and simulate loops with self-
referencing functions (i.e., recursive calls).

Logic languages on the other hand,
eschew direct control by the programmer
entirely in favor of a VM: An answer is not
so much computed as it is deduced from
programmer-supplied facts and rules. The
VM determines which facts to use and
which rules to apply to solve the problem.

To transport these programming lan-
guages to other hardware platforms, one
must only develop a VM for that system.
In the 1970s, to make it easier to port the
Pascal language to different computers, a
Pascal VM was developed that accepted an
intermediate language called P-code. The
intermediate language is so named because
it is an intermediate step between the orig-
inal programming language and the com-
puter hardware language. Pascal code was

compiled to P-code, which was then inter-
preted by the Pascal VM. At the time, this
concept did not catch on because execut-
ing an intermediate code program on a
VM was much slower than executing an
equivalent compiled program.

The Java programming language was
expressly designed to be compiled to a
VM. The Java virtual machine (JVM) is a
self-contained operating environment.

“This design has two advantages:
• System Independence. A Java

application will run the same on
any JVM, regardless of the
hardware and software underly-
ing the system.

• Security. Because the JVM has
no contact with the operating
system, there is little possibility
of a Java program damaging
other files or applications” [4].

The JVM is so small and compact that
it can easily be downloaded and installed
over the Web. While it still runs slower
than compiled code, the benefits have
been enormous. Microsoft has developed
a similar language called C# (pronounced
C sharp) with its intermediate language,
Microsoft Intermediate Language (MSIL)
and associated VM.

In the future, very few programming
languages will be compiled to machine
code directly. Instead, VMs like the Java
virtual machine or the Common Language
Runtime (CLR), the virtual machine for
C#, will be the intermediary. Only those
applications that need additional speed will
use just-in-time compilers to compile the
intermediate code (Java byte code, MSIL,
or others) into machine code. Thus, most
languages will have at least a two-step
translation process: compiler to compiler,
or compiler to interpreter. Remember, it
was not that long ago when assembly level

The Real World

Programming
Languages

Computer
Hardware

Increase

Decrease

The Real World

Programming
Languages

Computer
Hardware

Increase

Decrease

Figure 1: Distance Between Programming
Languages and the Real World Decreases

The tools we use
have a profound (and
devious!) influence on

our thinking habits, and,
therefore, on our thinking

abilities [5].
— Edsger Dijkstra

Programming Languages

6 CROSSTALK The Journal of Defense Software Engineering February 2003

programmers scoffed at languages that
needed compilers because they believed a
compiler could never produce code that
achieved the speed of a hand-coded
assembly.

In addition, the existence of VMs, and
the intermediate languages that run on
them, will be a boon for other languages as
it will make it easier to port new languages
to multiple machines. Rather than creating
a compiler or interpreter for a new lan-
guage that has computer hardware as the
target language, programmers merely pro-
duce intermediate code for a VM. The
JVM already has more than 160 experi-
mental, research-oriented, and commercial
languages that use Java byte code as the
intermediate language [6].

Programming Language
Interoperability
One reason so many programming lan-
guages have been developed is that lan-
guage developers designed different lan-
guages to solve different types of prob-
lems. In theory, a software developer
would be able to pick the right language
for the task. In practice, it has been diffi-
cult to integrate different programming
languages so developers tend to stick with
general-purpose languages.

To further their use, programming lan-
guage designers feel compelled to make
their languages more appealing by adding
new features and language constructs until
the languages become very complex to use
and master. No one knows what feature or
capability will be a success in the end, so
language designers add new features to
existing languages to make them more
competitive. Pl/1, the Algol family of lan-
guages, Ada-Ada 95, and C-C++ all suf-
fered from this problem. For example, Ada
was designed to be the programming lan-
guage for the DoD, supplanting almost all
others. Even with Ada, it was felt neces-
sary to periodically update the language to
ensure that it had features and capabilities
necessary to make it competitive in current
environments, hence Ada 95. Language
bloat through feature addition is a natural-
ly occurring phenomenon.

On a related note, developing a new
programming language has often been hin-
dered by the lack of existing libraries and
components for that language. Much of
the power of today’s programming lan-
guages comes from their ability to use
existing libraries of code. It is possible to
design bridges between new and old lan-
guages so that the other’s libraries can be
accessed, but it is an endless effort that
must be done for each one [7].

C++ was built as a superset of C to
take advantage of all of the existing C pro-
grammers and all of the existing libraries
of code. Many would argue that a com-
pletely new and clean design would have
resulted in a much better language. In the
same vein, there are probably millions of
lines of Fortran libraries in existence.
Fortran keeps evolving to include new fea-
tures, but backwards-compatibility with
existing libraries is still possible. Were it
not for all of the Fortran libraries in many
engineering application areas, the develop-
ers would probably have switched to a
newer language years ago. What is needed
is a mechanism that enables programming
languages to interoperate, and yet be inde-
pendent of any particular programming
language.

The first steps toward this goal were
for languages to be able to make external
calls, i.e., calls to a procedure or function
that is in a different language and to
exchange data in that call. Most modern
languages have a mechanism that enables
them to make an external call. However,
few programming languages have that

capability defined as part of their language
definition, and none have such clearly
defined routines for converting data ele-
ments between programming languages
like Ada does [8]. Programming language
and machine-independent data representa-
tion standards such as External Data
Representation, Network Data Represen-
tation, and eXtensible Markup Language
were developed to make it easier to
exchange data between different program-
ming languages on different computing
platforms.

Another step in the evolutionary path
has been to enable components to be built
in nearly any programming language that
can then be accessed by nearly any other
language. In essence, by making the code
libraries more open and non-language spe-
cific, it is easier for languages to rely on the
strengths of other languages instead of
incorporating all of the necessary features
themselves.

Current technologies that enable lan-
guage-independent programming are
Dynamic Link Library, Component Object
Module, and Common Object Request
Broker Architecture. Each of these tech-
nologies has enabled a service to be made
available, and yet shields the calling pro-
gramming language from the called pro-
gramming language. These technologies
enable functionality to be built and shared
independently of the language and
machine by developing a standardized call-
ing model that is programming-language
neutral.

The latest step in the language interop-
erability evolutionary trend is the dot-net
environment and the CLR. In this envi-
ronment, classes and objects in one lan-
guage can be used as first-class citizens in
another. Not only can one language call
services in another language, but it can
inherit from the classes of another lan-
guage, declare variables based on types
declared in another language, handle
thrown exceptions from a routine in a dif-
ferent language, and debug across lan-
guages [7].

The trick is, not only is there an inter-
mediate language, but an intermediate type
system exists as well that retains high-level
data-type information such as classes and
inheritance hierarchies. Once a program is
compiled into the dot-net architecture, its
language of origin disappears, and it
becomes language neutral. Consequently,
other dot-net aware languages (actually
their compilation systems) can access
those types. The language interoperability
evolutionary trend and the machine-inde-
pendent programming evolutionary trend
intersect under the dot-net architecture.

Increasing Modularity
Software designers reduce the complexity
of software by decomposing difficult
problems into smaller, easier to solve
pieces. Initially this concept of modularity
was supported in programming languages
by procedures, functions, and user-defined
data structures. Eventually, the evolution-
ary paths of control and data abstraction
merged into larger structures. The ideas of
encapsulation and information hiding,
which are two key parts of modularity, led
to evolutionary improvements in program-
ming languages to support those concepts.

Programming languages evolved to
provide support for modularity by making
it easier to create abstract data types (such
as a stack, set, queue, or hash table) by
allowing separate code units that can be
compiled and by syntactically supporting
modules, packages, and namespaces.
Object-oriented programming is a form of

Language serves not
only to express thought
but to make possible

thoughts which could not
exist without it [9].
— Bertrand Russell

Evolutionary Trends of Programming Languages

February 2003 www.stsc.hill.af.mil 7

modularity. Although the first object-ori-
ented language, Simula, was developed in
1965, other languages did not adopt that
paradigm until the mid-1980s.

A final unit of functional modularity is
the framework. A framework is much larg-
er than an abstract data type or a class hier-
archy. A graphical user interface (GUI)
framework, for example, contains all of
the necessary routines and classes to make
programming user interfaces easier.

Programming languages have evolved
to provide a wide variety of syntactic and
semantic supports for modularity and
information hiding, but not all forms of
modularity are equal. Coupling refers to
how many other modules a module refer-
ences. Cohesion refers to how single-
minded a module is – a way of measuring
how many things a module accomplishes.
A highly cohesive module is one that
solves a single problem; a low-coupled
module is one that is self-contained and
has few ties to other modules. A module
that is highly cohesive with low coupling is
easier to maintain because it has fewer
dependencies.

To date, programming languages pro-
vide little syntactic support to facilitate the
creation of highly cohesive and low-cou-
pled modules (other than just making it
possible). This is problematic because
there are some facets of a problem that
crosscut normal module boundaries.
When programmers combine different
facets of the problem into a single module,
the code is longer, less readable, and less
easy to maintain, reuse, and evolve.

Programming languages have instruc-
tion and data topologies that have evolved
as programming languages evolve [10].
During the first 20 years of computing,
programming languages supported mixing
code and data (assembly languages) or had
global data structures (Fortran common
statements) resulting in poor cohesion and
high coupling. In the next 20 years, mod-
ule-oriented programming languages
evolved that enabled programmers to
place related routines and data structures
within the same module and provide limit-
ed access via exported routines thus pro-
viding direct support for encapsulation
and information hiding, which can be used
to improve both cohesion and coupling.
The last 15 years have seen the rise of
object-oriented programming languages
that enable programmers to decrease the
coupling and increase the cohesiveness of
their program designs even further.

Unfortunately, different facets of a
problem often defy being easily separated
into cleanly modularized subunits.
Components of a system are usually

arrived at by decomposing a problem’s
functionality. Other aspects of the prob-
lem such as performance, security, com-
munication, synchronization, failure han-
dling, persistence, integrity and error-
checking rules, design patterns, and con-
currency often crosscut the boundaries of
the functional components. These cross-
cutting aspects necessarily increase the
coupling and decrease the cohesiveness
because our current programming lan-
guages have no other way to deal with
them.

For example, many typical applications
have error-handling code that crosscuts
module boundaries and spans the applica-
tion. Similar bits and pieces of error han-
dling code are scattered throughout the
application. A design change that affects
error-handling code will necessarily affect
all of those scattered bits and pieces [11].
All crosscutting modifications to the code
affect readability and maintainability,
increase coupling, and decrease cohesion.

Programming languages currently only
support composing different components
during run-time by procedure or method

invocation and during development time
by inheritance. Software developers are
forced to manually compose the different
aspects in the code, which can cause simi-
lar code to be scattered across an applica-
tion and can cause existing code to
become a tangled mess of differing con-
cerns. Aspect-oriented programming lan-
guages address the different facets in clean,
modularized ways. Aspect-oriented pro-
gramming languages separate different
aspects of the problem into different, eas-
ily maintainable modules and then auto-
matically weaves the aspects together
(using an interpreter, compiler, or pre-
processor) just prior to normal processing.

The most advanced general-purpose
aspect-oriented programming language,
AspectJ, is an extension of Java
(<https://aspectj.org>). AspectJ uses
pointcuts to specify join points in the nor-
mal Java code and uses Advice to specify
additional Java code to be executed at the

join points1. The pointcut and Advice code
are maintained separately and the AspectJ
compiler weaves the Advice Java code into
all the specified join-point code locations,
thus the different crosscutting concerns
can be developed and maintained separate-
ly eliminating a tangled mess of differing
concerns.

Aspect-oriented programming has
barely broken out of its research roots1,
but it is already having an influence on lan-
guage design. Currently there are aspect-
oriented programming extensions being
made to a variety of programming lan-
guages (several Java variants, C, C++, C#,
Ruby, Perl, Python, and several Smalltalk
variants). Links to those and other domain
specific, aspect-oriented programming lan-
guages can be found at <http://
aosd.net/tools.html>.

Scripting Languages
Scripting programming languages, also
called glue languages or integration lan-
guages, are not designed for developing
large-scale applications from scratch (or
with the help of a large class library). They
leave that task to mainstream, or system
programming languages. Instead, scripting
languages construct applications by gluing
together pre-written components. Scrip-
ting languages may seem in some ways to
be an evolutionary throwback, but in reali-
ty they are just programming languages
that are being optimized (evolved) along
different lines.

Scripting languages originated as com-
mand languages for computer operator
tasks. Job Control Language in the ’60s
and Rexx in the ’70s were early IBM main-
frame scripting languages. The original
Unix scripting language developed in the
’70s was sh, and has since been followed
by csh, bash, ksh, and others. The Unix
shell script languages made it easy to create
new applications by composing existing
applications that piped and filtered data
from one application to the next. The ease
with which new applications were created
was probably the most important reason
for Unix’s popularity among application
developers [13].

In the late ’80s, scripting languages
took a major evolutionary leap with the
development of Perl and Tcl. Perl grouped
together some of the Unix text processing
applications (sh, sed, and awk) and added
more sophisticated input and output state-
ments and control statements. Perl has
become the primary means of creating on-
the-fly common gateway interface scripts
for dynamic Web pages [14]. Tcl started
out as an embedded command language
for end-user tailoring of the application.

The city’s central
computer told you?

R2D2, you know better
than to trust a strange

computer [12].
— C3P0

Programming Languages

8 CROSSTALK The Journal of Defense Software Engineering February 2003

Tcl/Tk extended Tcl so that it can easily
create GUI’s in Windows, Mac OS, and
the Unix X windowing system.

In the almost 15 years since, many
other scripting languages followed (Visual
Basic, Python, JavaScript, Icon, Ruby, etc.)
for many purposes (rapid integration of
Web, database, and GUI components; sys-
tem management; automated testing; Web
scripting; etc.). The creators of these
scripting languages designed them to be
flexible and very powerful. Most scripting
languages are interpreted instead of com-
piled, dynamically typed, perform auto-
matic conversions between types when
needed, have loose and forgiving syntax,
have powerful text manipulation and
input/output capabilities, and can often
create and execute additional code on the
fly. These language features make script-
ing languages extremely useful for rapidly
interfacing with legacy applications,
acquiring and manipulating data from
those applications, and either displaying
the data to the user or sending it on to
some other application.

System programming languages (C,
Ada, Java, C++, etc.) are designed to
develop applications from scratch with
the help of a few class libraries. Scripting
languages assume the existence of the
necessary components and quickly and
easily join those components together to
form a larger application. System pro-
gramming languages have high overhead
in terms of their structure (try writing a
Hello World! program in Java). Scripting
languages can do quite a lot with just a
few lines. A single line of scripting code
may execute hundreds of machine code
instructions where a system language may
only execute tens of machine code
instructions [15].

Scripting languages will never replace
system languages, as scripting languages
are not very good at programming com-
plex algorithms and complex data struc-
tures, or for manipulating large data sets.
However, scripting languages have their
own strengths, including easily connecting
pre-existing components, robustly manip-
ulating a variety of data types from a vari-
ety of sources, rapidly developing GUIs,
straightforward text manipulation, and
creating and executing code on the fly.
Scripting languages are the duct tape of
the programming world.

Scripting languages are still very young
compared to system languages. In all like-
lihood, many more evolutionary improve-
ments will be made to them to make their
strengths even greater. We predict that the
easy work of complex algorithms, elabo-
rate data structures, and brute force pro-

cessing of large data sets will continue to
be accomplished by system programming
languages. More and more reusable com-
ponents and services will be constructed
using systems programming languages.
However, the more difficult part of pro-
gramming, that of developing a robust,
easy-to-use application that is easily
extended and modified as requirements
change and the operational environment
varies, will become more and more the job
of scripting languages. Both types of lan-
guages will continue to evolve, but toward
their strengths.

Conclusion
The evolutionary path of programming
languages has not been without its share
of dodos and passenger pigeons: the
Algol by-name parameter passing mecha-
nism and the dynamic scoping semantics
of Lisp to mention two. Many languages
are introduced with great fanfare and then
die unnoticed (PL/1, Modula-2). Some

language features (such as unrestricted
pointer use and GOTOS) are historical
relics: They are generally regarded as bad
and unsafe, but they continue to be
included in languages (C++).

As the developers’ needs have evolved,
so have the abilities of programming lan-
guages evolved. If a programming lan-
guage is not expressive enough, then it
must evolve to allow its users the ability to
articulate their abstractions or it will
become extinct.

At one time, many believed that a sin-
gle multi-purpose programming language
would allow developers to standardize.
However, the wide variety of problems
that need solving and the diverse philoso-
phies of developers have appropriately
led to different languages for different
purposes. Certain domains will continue
to have special-purpose languages that
focus on the features that are unique to
the applications of that domain; those
languages will continue to evolve and be
optimized for those domains (e.g.,

ProModel – a simulation language, and
MATLAB – an engineering language are
examples of this).

General-purpose languages will also
continue to evolve by incorporating new
features and programming paradigms.
These general-purpose languages must
also shed features that become outmoded,
and be redesigned to become leaner and
meaner in order to try to eliminate bloat
and regain simplicity. Programmers do
not need to use complex languages, there
is enough complexity in the world for
them already.

During all this evolution though, the
basic role of a programming language will
not change – allowing the developer to
easily express abstract ideas in a language
that a machine can execute. Future
advances in programming languages will
only be made possible by the evolutionary
advances (and cullings) being made today.
In the near future, the general evolution-
ary trends of increasing machine inde-
pendence, increasing programming lan-
guage interoperability, and increasing
modularity will continue.◆

“Are you quite sure that all those
bells and whistles, all those won-
derful facilities of your so called
powerful programming languages,
belong to the solution set rather
than the problem set” [17]?

— Edsger Dijkstra

“The limits of your language are
the limits of your world” [18].

— L. Wittgenstein

References
1. Hook, Audrey A., et al. “A Survey of

Computer Programming Languages
Currently Used in the Department of
Defense: An Executive Summary.”
CrossTalk 8.10 (Oct. 1995)
<www.stsc.hi l l .af.mil/crosstalk/
1995/10/ index.html>.

2. Flon, Lawrence. “On Research in
Structured Programming.” SIGPLAN
Notices 10:10 (Oct. 1975).

3. Dijkstra, Edsger W. “Go To Statement
Considered Harmful.” Communica-
tions of the ACM 11.3 (Mar. 1968):
147-148.

4. Webopedia. Online dictionary and
search engine for computer and
Internet technology <www.webope-
dia. com>.

5. Dijkstra, Edsger W. Selected Writings
on Computing: A Personal
Perspective. Springer-Verlag, 1982.

6. Tolksdorf, Robert. Programming
Languages for the Java Virtual

There will always be
things we wish to say in
our programs that in all
known languages can

only be said poorly [16].
— Alan J. Perlis

Evolutionary Trends of Programming Languages

February 2003 www.stsc.hill.af.mil 9

Machine. <http://grunge.cs.tu-berlin.
de/~tolk/vmlanguages. html>.

7. Meyer, Bertrand. “Polyglot Program-
ming.” Software Development May
2002.

8. Ada 95: The Language Reference
Method and Standards Libraries.
Appendix B. ANSI/ISO/IEC-
8652:1995 <www.adahome.com/rm
95>.

9. Russell, Bertrand. <www.angelfire.
com/realm/firelight63/Words_Russel
l_Bertrand.htm>.

10. Cook, Dr. David A. “Evolution of
Programming Languages and Why a
Language Is Not Enough to Solve
Our Problems.” CrossTalk 12.12
(Dec. 1999).

11. Kiczales, Gregor, et al. Aspect-
Oriented Programming. Proc. of In
ECOOP ’97 Object-Oriented Pro-
gramming, 11th European Confer-
ence. LNCS 1241: 220-242.

12. C3PO. “Star Wars – Episode V: The
Empire Strikes Back.”

13. Tcl Developer Xchange. History of
Scripting <www.tcl.tk/doc/script/
scriptHistory.html>.

14. Laird, Cameron, and Kathryn Soraiz.
“Choosing a Scripting Language.”
SunWorld. Oct. 1997 <http://sun
site.uakom.sk/sunworldonline/swol
-10-1997/swol-10-scripting.html>.

15. Ousterhout, John K. “Scripting:
Higher Level Programming for the
21st Century.” IEEE Computer Mar.
1998 <http://home.pacbell.net/
ouster/scripting.html>.

16. Perlis, Alan J. “Epigrams in Program-
ming.” ACM’s SIGPLAN Sept. 1982.

17. Dijkstra, Edsger W. A Discipline of
Programming. Englewood Cliffs, NJ:
Prentice Hall, 1976.

18. Ludwig, Wittgenstein. Tractatus
Logico-Philosophicus 5.6. Trans. by D.
F. Pears, B. F. McGuinness, London:
Routledge and Kegan Paul, 1961.

19. Clark, Lawrence R. “A Linguistic
Contribution to GOTO-less Pro-
gramming.” Datamation 1973.
Reprinted in Communications of the
ACM 27.4 (Apr. 1984): 349-350.

Note
1. A join point is similar in some

respects to the infamous and semi-
mythical COME FROM statement
[19], which was one of the salvos
fired in the famous GOTO-considered-
harmful debates mentioned earlier in
the article. For a formal and correct
definition of join points and point-
cuts, see <http://aspectj.org/
servlets/AJSite>.

About the Authors

David A. Cook, Ph.D.,
is the principal engineer-
ing consultant for Shim
Enterprises, Inc. Dr.
Cook has more than 27
years of experience in

software development and software
management. He was formerly an asso-
ciate professor of computer science at
the U.S. Air Force Academy (where he
was also the department research direc-
tor) and also the deputy department
head of the Software Professional
Development Program at the Air Force
Institute of Technology. He has a doc-
torate degree in computer science from
Texas A&M University, and he is an
authorized Personal Software Process
instructor.

Software Technology Support Center
7278 4th Street Bldg. 100
Hill AFB, UT 84056
Phone: (801) 775-3055
DSN: 775-3055
Fax: (801) 777-8069
E-mail: david.cook@hill.af.mil

Lt. Col. Thomas M.
Schorsch, Ph.D., is
deputy department head,
Computer Science de-
partment at the U.S. Air
Force Academy. He has

served in the Air Force for 17 years in a
variety of software-related capacities
from application programming to man-
aging the development and installation
of a new Cheyenne Mountain Com-
mand and Control System. Schorsch has
a bachelor’s of science degree from the
U.S. Air Force Academy, a master’s of
science degree from the University of
Colorado, and a doctorate degree from
the Air Force Institute of Technology, all
in computer science. His most well-
known CrossTalk publication is
“The Capability Im-Maturity Model”
<www.stsc.hill.af.mil/crosstalk/frames.
asp?uri=1996/11/xt96d11h.asp>.

U.S. Air Force Academy
Colorado Springs, CO 80840
DSN: 333-8793
E-mail: tom.schorsch@usafa.af.mil

If your experience or research has produced information that could be
useful to others, CrossTalk can get the word out. We are especially
l ki f i l Network-Centric Architecture for our August 2003

al schedule for this and the subsequent issue:

Call for Articles

work-Centric Architecture
August 2003

ission Deadline: March 17, 2003

Defect Management
September 2003

mission Deadline: April 21, 2003

Please ossTalk, available on the Internet at:
il/crosstalk

We accept article submissions on all software-related topics at any time,
along with Open Forum articles, Letters to the Editor, and BackTalk submissions.

