
28 CROSSTALK The Journal of Defense Software Engineering April 2003

Isabella, a software development exec-
utive, listened quietly while Ravi, the

project lead, reported what terrific suc-
cess the project team was having with
the eXtreme Programming (XP)
methodology. Sitting next to him, the
project sponsor smiled and nodded.
Months before, when the software
group had proposed using agile soft-
ware development on the project,
Isabella had approved their request
without realizing that they intended to
use something with extreme in its name.
She also had not realized that the only
requirements and planning documents
that she would see would be very high-
level – too sketchy in her opinion to
control the project.

When Ravi finished regaling the
meeting participants with stories of the
project’s wonderful atmosphere of
camaraderie, Isabella asked whether the
system would be ready to install by the
deadline. Ravi said that he could see no
reason why it would not and flipped for-
ward to the slide of his recently revised
high-level schedule. Isabella felt her
stomach churn as she searched the
schedule for deliverables and found only
activities. Terms like refactor, user stories,
and iteration made her wonder whether
they were building software at all or, like
their earlier experiments in object-ori-
ented design, were endlessly refining
object components that no one would
ever use.

She asked Mary, the project sponsor,
what she thought of the project. Mary
replied that she was very pleased with
the demos that she had seen so far.
When Isabella asked her if she thought
the project was on schedule, Mary
turned to Ravi for the answer. Isabella
had heard enough. After the meeting
had ended, she told Ravi privately that
from now until the end of the project
she would meet with him weekly, instead
of monthly, to review the project’s sta-
tus. She ordered him to bring complete
requirements specifications and a
detailed project plan to the next meeting
for her review. After some heated dis-

cussion, Ravi stormed out of the room.
Later, Isabella told one of the other

executives, “You would think that after
all the money we have spent on training
this organization in project manage-
ment, at least a few of them would
understand the concept of project
scope.”

Agile Scope Management
Project scope management can take on a
whole new philosophy and appearance
with agile software development. This
can be a formidable challenge for tradi-

tionally trained managers like Isabella.
Although the intent of agile software
development is to produce the best
product possible in the least amount of
time and for the least amount of cost,
the result is often scope management
that appears to be more improvisation
than controlled execution. In these
cases, the traditional decomposition
approach to project planning and pre-
diction is not possible.

In traditional software development
methodologies, product scope is typical-
ly defined in a top-down manner, start-
ing with high-level requirements that are
decomposed to more specific require-
ments. The project manager can use a

parallel approach for defining project
scope by building a work breakdown
structure. This approach gives manage-
ment a progressively more accurate esti-
mate of the time and cost to complete
the project, i.e., as the product and work
are specified in greater detail, the project
estimate becomes more accurate. Once
the project’s scope baseline has been set,
software managers’ main concern for
managing scope is to guard constantly
against scope creep, especially in the
form of product feature changes.

These methods work well when the
product definition is not too complex,
controversial, or volatile. However, in
many cases, the product is excessively dif-
ficult to define, and these methods are
unreliable, misleading, and conflict-rid-
den. It is no wonder that software devel-
opers are willing to adopt a lighter, poten-
tially more effective approach, such as
agile software development. But where
does this leave scope management?

The Agile Software Development
Manifesto values working software over
comprehensive documentation and
responding to change over following a
plan [1]. As Alistair Cockburn explains,
requirements can be imperfect, and
design documents and project plans can
be out of date, yet the project can still
succeed by applying such principles as
communication and community. This
can leave the traditional software project
manager adrift in a sea of change, cling-
ing to a frail life raft lashed together
from in-person visits, whiteboard sketch-
es, invention, and light-and-sloppy meth-
ods [2]. As scary as this image is, it is not
new. Gause and Weinberg explored the
notion that requirements documents are
less important than the process of defin-
ing them back in 1989 [3].

Traditional scope definition has
always been a thin security blanket that
cannot protect software projects from
the crashing waves of scope change in
volatile projects. Even under contract,
software scope is subject to disputes and
threats of litigation. Traditional scope
documents such as requirements defini-

Project Expectations:
The Boundaries for Agile Development

Diana Mekelburg
Extreme Project Management

How can you manage agile development when its practitioners value “working software over comprehensive documentation”
and “responding to change over following a plan”? Control the boundaries. Manage the project expectations instead of wait-
ing for requirements and plans to miraculously stabilize.

“Traditional scope
definition has always
been a thin security
blanket that cannot

protect software
projects from the
crashing waves of
scope change in
volatile projects.”



Project Expectations:The Boundaries for Agile Development

April 2003 www.stsc.hill.af.mil 29

tions and project plans do give software
management a starting point for negoti-
ating scope changes. Without these, the
manager of an agile software develop-
ment project seems to have little to
bring to the negotiation table.

Outcome Expectations and
Scope Management
The flaw in both traditional and agile
approaches is the assumption that proj-
ect success is determined by delivering
specific product features, whether they
are defined hierarchically through
decomposition and change management
or through collaborative iterations.
Software development projects are suc-
cessful only when they have met the
stakeholders’ expectations, the most
important of which are not limited to
specific product features.

There are three classes of stakeholder
expectations: business outcome, project
conduct, and product. Software develop-
ment invariably focuses on product
expectations as early in the project as pos-
sible. Meeting specific product expecta-
tions is more predictable, manageable,
and, for software builders, more enjoyable
than trying to meet either business out-
come or project conduct expectations.
However, this focus on the product exac-
erbates scope management problems,
especially in iterative development such as
XP. Repeated efforts to get the product
functionality just right can lead to extra-
neous functionality or more elaborate
functionality that works against stake-
holders’ other expectations. The key to
controlling scope in iterative development
is committing to business outcome expec-
tations as the outer boundaries of scope.

Business outcome expectations are
the effects that stakeholders expect the
software development project to have
on internal operations and/or on mar-
ketplace or other external environments.
An example of an operational outcome
expectation is reducing inventory errors
in manufacturing. An example of an
external outcome is capturing a segment
of the personal digital assistant (PDA)
market. Outcome expectations may
align with corporate strategic goals,
depending on the clarity, viability, or
influence of the strategic goals.

Delivering the right software product
features depends ultimately on whether
those features support the business out-
come expectations. This is especially
important in agile projects. Without sta-
ble requirements to bolster or burden
them, agile software development proj-

ects need clearly defined and committed
business outcome expectations to con-
tain them.

A key control device in XP, for
example, is the story. Each increment of
the product is planned to implement a
story that represents a set of user func-
tionality. The project sponsor, other
users, and the development team decide
jointly which story is to be implemented
next, and how it will be implemented in
product features. The sequence of sto-
ries can wander far from the original
intentions for the project. Similarly, the
features chosen to implement each story
are defined iteratively and can also wan-
der. In cases where either the develop-
ment team or the customer is commit-
ted to some limited budget or timeframe
for the overall project, this wandering
can lead to problems in funding and
deadlines.

XP and many other types of agile
projects are expected to shift direction.

Requirements volatility is a primary rea-
son for selecting extreme methodology.
However, changes can be contained. If
the project team has collected, validated,
and committed to meet a set of compat-
ible and feasible business outcome expec-
tations, they can use them to open nego-
tiations about which shifts in direction to
apply. They compare each iteration plan
and/or user story to the committed
expectations. Product functionality that is
in line with the overall committed expec-
tations are changed routinely, while
changes that contradict or modify the
committed expectations are handled as
major changes in project scope.

The project team, which includes
the project sponsor, commits to select-
ed business outcome expectations early
in the project and repeats this process
throughout the project as major
changes in the business environment
occur. The wording for a business out-
come expectation is, “As a result of this
project, [some group] will be able to [do
something].” This simple statement is
supported by a collection of justifica-
tions, criteria, and evaluations.
Outcome expectations do not refer to a
specific product feature, nor do they
define specific business functions. This
allows the project team leeway in select-
ing the best detail solutions to meet the
expectations.

Not all expectations can be met.
Many compete for resources, a few
directly contradict each other, and some
are not justifiable. The most challenging
step in committing to the project’s out-
come expectations is selecting the
expectations to be met. Expectations
that are rejected or deferred introduce
risks to the project in terms of distrac-
tions and competition. The primary
objective of commitment is a consistent
vision of the project’s success in terms
of the expectations that the project is
committed to meet. A secondary but
crucial objective is to develop a plan for
mitigating or responding to the risks of
deciding not to meet other expectations.

Product Expectations and
Outcome Expectations
The relationship between software prod-
ucts and business outcomes is often com-
plex or tenuous, depending on a number
of organizational factors. Few sponsors or
users can envision the bridge between
technology and big-picture business out-
come, no matter how well they learn to
match technology to immediate function-
ality. As the manager of an agile project,
you can either evaluate these product-out-
come relationships overtly early in the
project, or you can rely on users and the
project sponsor to keep the project on
track by guessing.

To control project scope, every prod-
uct expectation must support a committed
business outcome expectation. In any
product-centric methodology such as XP,
every story and every product feature
must be checked against the committed
business outcome expectations. When
they do not match, either the product fea-
ture (or business function) is out of scope
and irrelevant, or the committed expecta-
tion is out of sync with reality.

“The project team,
which includes the

project sponsor, commits
to selected business

outcome expectations
early in the project
and repeats this

process throughout the
project as major changes

in the business
environment occur.”



Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering April 2003

Conduct Expectations 
Conduct expectations are what the stake-
holders expect to experience as part of the
project. For agile development, the partic-
ipation of the project sponsor, for exam-
ple, can be extremely important. However,
if the project sponsor expects to take a
hands-off or infrequent visitor approach
to overseeing the project, methodologies
such as XP cannot be used effectively.

Conduct expectations include execu-
tives’ perception of how predictable the
completion of the project will be, and
how much control and/or documentation
the project will produce. In Isabella’s story
at the beginning of this article, she expects
more documentation and supporting data
for the project manager’s predictions. If
the project team had identified her expec-
tations about the project’s conduct as well
as the project sponsor’s and the project
team’s expectations, Ravi would not have
been taken by surprise. Isabella would
have had a chance to negotiate some com-
promise reporting.

As with product expectations, project
conduct expectations must support the
committed business outcome expecta-
tions. For example, if Isabella’s concern
for meeting the deadline is tied to a crucial
business outcome, then expanding the

usual project management activities for an
XP project could have been justifiable.

Conclusion
Agile software development challenges
software managers and sponsors to give
up their reliance on comprehensive docu-
mentation and intermediate work prod-
ucts. However, without boundaries, the
iterative definition and development of
product functionality can range out of
control. By committing to compatible and
feasible business outcome expectations,
development teams can manage the scope

of agile projects successfully – to the sat-
isfaction of sponsors, executives, and
users.◆

References
1. Cockburn, Alistair. Agile Software

Development. Addison-Wesley, 2002:
213.

2. Cockburn, Alistair. Agile Software
Development. Addison-Wesley,
2002: 177.

3. Gause, Donald, and Gerald
Weinberg. Exploring Requirements.
Dorset House, 1989: xvi.

About the Author

Diana Mekelburg,
Project Management
Professional and Certi-
fied Software Quality
Engineer, is an infor-
mation systems man-

agement consultant, trainer, and
coach. She has taught project/pro-
gram management classes to more
than 500 people. Mekelburg has
managed software development in a
variety of organizations, including
information technology, contract,

and commercial during three decades
of software development, from
mainframe to e-commerce. She has
participated as an assessor on two
large-scale Software Engineering
Institute Capability Maturity Model®

(CMM®) assessments and has taught
CMM classes to more than 200 peo-
ple.

Extreme Project Management
Phone: (713) 385-1118
E-mail: dmek@extreme-pm.com


