A Fire Control Architecture for
Future Combat Systems

Dr. Malcolm Morrison, Dr. Joel Sherrill, and Ron O’Guin

OAR Caorporation

Deborah A. Butler
U.S. Army Aviation and Missile Command

The Future Combat Systems (FCS) program is developing a versatile, reconfigurable system of systems capable of perform-
ing a wide range of missions for the U.S. Army. In support of the FCS, the Fire Control-Node Engagement Technology
(FC-NET) program is developing a versatile, modular fire control software architecture capable of satisfying the flexibility
and rapid mission reconfiguration requirements of the FCS. The FC-NET software architecture achieves its flexibility
through domain-centric software components that encapsulate weapon-specific hardware devices and algorithms. This article
illustrates the structure and organization of the architecture using the Munitions domain as an example. A side benefit of
developing and testing the FC-NET architecture is the production of reusable artifacts that offer potential cost and schedule
savings on future FCS evolution and system integration efforts.

he U.S. Army’s Future Combat Systems

(FCS) program is developing a net-
work-centric ensemble of systems capable
of performing a range of missions, from
warfighting to peacekeeping. Capabilities
envisioned for FCS include direct and indi-
rect fires, air defense, reconnaissance and
surveillance, transport, and resupply [1].
Current FCS vehicle concepts range from
unmanned aerial vehicles to manned 20-
ton wheeled or tracked vehicles to small
robots that weigh only a few pounds [2].

Developing systems that bring the FCS
vision to reality requires the collaborative
efforts of numerous communities.
Architecture descriptions of the FCS will
enable those communities to quickly and
efficiently engineer, procure, and deploy
advanced systems. The Fire Control-Node
Engagement Technology (FC-NET) soft-
ware architecture is being developed by the
U.S. Army Aviation and Missile Research,
Development, and Engineering Center as a
foundation for fire control systems that
support FCS. The essential characteristic of
FCS is mission adaptability, and FC-NET
provides a fire control software architec-
ture that is equally adaptable.

Fire control in general encompasses all
operations required to apply fire on a target
[3]. Fire control systems are categorized as
either tactical or technical. Tactical fire con-
trol systems are Command, Control, and
Intelligence systems that focus on the plan-
ning and evaluation aspects of fire control.
Tactical fire control systems are responsible
for such activities as identifying targets
based on data from multiple sources, prior-
itizing targets, assigning specific weapons
for use against specific targets, and assess-
ing damage after engagements.

Technical fire control systems are nor-
mally embedded in a weapon system and
focus on the computational and mechani-
cal operations required for that weapon
system to hit a specific target with a specif-

August 2003

ic munition. Technical fire control systems
are responsible for interacting with tactical
fire control systems to obtain information
about targets. This information may be
used to direct fire or to further refine firing
solutions using organic sensors under the
control of the technical fire control system.

Once sensors have acquired a potential
target, the technical fire control system
assists in tracking the target until a decision
is made to engage and fire upon the target.
Platforms and vehicles provide mobility for
aiming weapons and sensors. Technical fire
control systems augment the soldier’s capa-
bility, enabling the soldier to fire on more
targets both more quickly and more accu-
rately. Figure 1 illustrates this role of tech-
nical fire control systems as force multipli-
ers for the individual soldier.

FC-NET is a technical fire control soft-
ware architecture. The architecture’s flexi-
bility ensures that FC-NET-based technical
fire control systems can readily interact
with tactical fire control systems and fully

exploit the information that the tactical sys-
tems provide. However, the architecture’s
structure emphasizes the technical actions
required to place munitions on targets.

As used in the remainder of this article,
the term fire control should be interpreted as
meaning technical fire control.

The FC-NET Architecture
FC-NET captures technical fire control
functionality in a modular software archi-
tecture that provides a plug-and-fight capabil-
ity for FCS. The following sections provide
a brief description of how the architecture
was developed from domain models, how
it is represented as a set of software com-
ponents, and how it is expected to evolve.

Domain Modeling

A domain is defined by systems that per-
form similar missions. For example, bullets,
rockets, and missiles all belong to the
Munition domain. A domain model is an
abstraction of the systems within a

Figure 1: Technical Fire Control Is a Force Multiplier

WEAPON
SYSTEM

GUNNER Targeting

Estimator

Target Acquisition

Manager
Target Selection

Weaponeering ‘ }

Weapons Assignment

Tracker

Track DB

Correlator

Target Engagement

Damage Assessment

Weapon Suite
“ =
=

Sensor Suite

Sensor

TARGETS

-t

wwwistsc.hill.af.mil 9

Network-Centric Architecture

Launcher
Devices

Munition
Devices

Tracking
Sensors

Track
Acq.
Sensors

Loader
Devices

Platform
Devices

Navigation
Devices

g g g

g 3 g 3

N

Logistician

Fire Control System

iy

Security Officer

e

Weapon Weapon
System

=l

Commander

=}

Soldier

oy

Instructor

=t

Technician

=i

Targetin:

Safety Officer

g 3 g

Weather
Sensors

Chemical
Sensors

Biological
Sensors

3 3 3 i

Security
Sensors

Radiation
Sensors

Navigator

Recon.
Sensors

Safety
Sensors

Figure 2: Fire Control Domain and Interactions

domain. A domain model is built for the
purpose of understanding the domain’s
requirements, information, and processes.
The top-level domain for the FC-NET
architecture is military fire control systems.
Therefore, the FC-NET architecture
domain model is a model of the require-
ments, information, and processes associ-
ated with military fire control systems.

The FC-NET domain modeling activi-
ty examined the information required by a
fire control system to execute a fire mis-
sion. Since fire control systems are com-
posed of a variety of sensors and electro-
mechanical devices, it was critical to classi-
fy the devices based upon the information
they provide and the roles they play. This
focus on devices helped draw a strong
boundary between the problem space
addressed by the FC-NET architecture and
that of subsystems with which a fire con-
trol system must interact. Examples of
such subsystems include battlefield man-
agement, avionics control, vehicle control,
and user interfaces.

Figure 2 identifies the roles and devices
that interact with the top-level fire control
system domain. Within the fire control sys-
tem domain, a number of other lower-level
domains (or sub-domains) have been iden-
tified such as Weapon and Munition. Each
of these lower-level domains represents a
significant area of functionality and serves
a coherent role in a military fire control sys-
tem. Each lower-level domain is further
decomposed into units called components.

Components
A component is a logically coherent, dis-
tributable unit of software composition.

10 CrossTaLk The Journal of Defense Software Engineering

The behavior of a domain emerges from
the interactions among its components and
between its components and the external
environment. The following criteria were
used to determine if an area of functional-
ity should be encapsulated into a single
component:

e Logically Coherent. Is there a collec-
tion of functional capabilities that
should be grouped because of interde-
pendencies?

 Distributable. Could this functionality
be distributed?

» Vendor Provided. Could a vendor pro-
vide this functionality as a standard
component?

e Special Expertise. Does a subject-
matter expert normally write this func-
tionality?

» Updateable. Could updates to this
functionality occur independently of
updates in other areas of functionality?

» Optional. Is this functionality only
required in some systems?

The following example makes using
these criteria clearer. A computationally
intensive algorithm for target recognition
might execute on a separate processor
from software controlling the sensor
devices. In this case, it would be desirable
to be able to make sensor control and tar-
get recognition separate components to
provide flexibility to the system designer
in assigning these to separate processors.
Itis also likely that a subject-matter expert
would provide the target recognition algo-
rithm. The subject matter expert would
normally not be responsible for the soft-
ware interfacing with sensor devices.

Ideally, the manufacturer of the sensor
device would provide this functionality.
Finally, it is reasonable to expect improve-
ments to both target recognition algo-
rithms and sensor devices. It is likely that
these would occur independently of one
another.

In this example, the criteria suggest that
target recognition capabilities and sensor
device control be placed in separate com-
ponents. The separation of functionality
illustrated by this example is supported by
FC-NET’s adherence to an open system
model with standard component interface
definitions.

The FC-NET architecture identifies
components within each of the lower-level
fire control domains. The specifications for
individual components are defined in terms
of the attributes they possess, the services
they offer, and the asynchronous notifica-
tions they may generate.

Attributes may be thought of as data
elements. However, they are only accessible
to clients of the enclosing component via
services that access or modify the attrib-
utes. These accessing services are known
informally as get and set and implicitly exist
for every attribute of a component. In
multi-threaded environments, accessing
services are assumed to be thread-safe and
provide atomic access to attributes.

Services define operations that can be
performed by the component. Services
may modify the values of attributes and
may invoke the services of other compo-
nents. Services may perform computations
or effect changes in the external environ-
ment. For example, a fire control system
must provide an Aim service that results in
parts of a weapon system being physically
repositioned so that munitions can be fired
at targets.

Notifications are asynchronous mes-
sages generated by a component when an
event of interest occurs. Other compo-
nents subscribe to receive those notifica-
tions in which they have an interest. For
example, the Department of Defense
defines a hang fire as a non-desired delay in
the functioning of a firing system [3]. A
hang fire occurs when a weapon is fired but
the munition does not physically leave its
launcher. A notification is used to pass
knowledge of this event to other compo-
nents that need to know when a hang fire
occurs.

For ease of modeling, the FC-NET
domain model classifies components with-
in each domain into one of five categories:
functional controls, knowledge stores,
device groups, algorithm containers, and
facades.

Functional controls encapsulate sets of

August 2003

functionality that have a similar purpose
and perform a specific role within a fire
control system. Since functional control
components have specific roles, they are
named according to their role. Functional
controls always have services but some-
times do not have attributes or notifica-
tions.

Knowledge stores encapsulate groupings of
related information. Each knowledge store
component provides controlled access to
its information, even in the face of concur-
rency. In general, knowledge stores are
global repositories of system data. All
knowledge stores are named according to
the type of data they encapsulate.
Knowledge stores tend to have attributes
and implicit accessing services for reading
and modifying the attributes, but rarely
have any explicit services or notifications.

Device groups encapsulate collections of
sensors or controllers that are used for sim-
ilar functions. Specific devices are not
defined within a device group. Since device
groups represent hardware components,
they are named according to the generic
hardware that they represent. Device
groups tend to have attributes, services,
and relatively many notifications.

Algorithm containers encapsulate compu-
tations that are highly complex, likely to be
system-specific, and typically written by
subject-matter experts. In the fire control
domain, examples include weapon/target
pairing, target identification, and ballistic
computations. Algorithm containers tend
to contain very few services and no attrib-
utes or notifications. Algorithm containers
normally operate in demand mode — exe-
cuting only in response to requests from
other components or as a result of system
events.

Facades provide high-level interfaces
that make complex subsystems easier to
use by encapsulating the data and function-
ality of the subsystems. A facade is espe-
cially useful when the subsystem is highly
complex, adheres to another domain
model, or is produced by an outside organ-
ization. Although fagades tend to have
moderately complex interfaces, the imple-
mentation of a facade usually consists of
straightforward mappings between subsys-
tem and fagade attributes, services, and
notifications. An example of a facade in the
FC-NET architecture is the Vehicle com-
ponent. The Vehicle component is respon-
sible for presenting the fire control system
with a unified interface to all the subsys-
tems that are part of (or are attached to)
the vehicle on which the weapons are
mounted. Common examples of such
vehicle-mounted subsystems include power
plant control and monitoring systems,

August 2003

A Fire Control Architecture for Future Combat Systems

speed and position sensors, meteorological
sensors, and nuclear, biological, and chem-
ical detection systems.

Examples of these component cate-
gories are provided in a later section of this
article that presents a decomposition of the
Munition domain.

Architecting for the Future

FCS is being designed as a highly adaptable
and flexible fighting platform, but it is still
largely conceptual. The modular, compo-
nent-based modeling approach described
earlier provides the architectural adaptabili-
ty and flexibility required if FC-NET is to
support an evolving FCS. Although the
exact physical nature of FCS is not known
with certainty at present, initial concept
definitions hint at possible configurations.

Possible FCS Configurations

For this discussion, a weapon is defined as
the composition of a platform, one or
more launchers, and one or more muni-
tions. Weapons may be fixed or mobile. If
mobile, the weapon platform must be
mounted on some type of vehicle. The
overall movement capability of a weapon
depends on both the movement capabili-
ties of a vehicle and the articulation capa-
bilities of a platform. Likewise, sensors
used to acquire and track targets require
movement capabilities similar to the
weapons they help control. Conceptual
depictions of FCS to date embody, at min-
imum, the three different weapon and vehi-
cle configurations shown in Figure 3.

Figure 3(a) reflects the simplest case
where a weapon and its sensors are bore-
sighted along the same line. In this config-
uration, all sensors and weapons effectively
are aimed at the same point and moved at
the same time. Thus, aiming at and tracking
a target with a sensor results in the weapon
aiming at and tracking that same target.

A step up on the complexity scale has
each sensor or weapon located on a single
vehicle but capable of independent move-
ment. This configuration is shown in
Figure 3(b). When weapons and sensors
are mounted on the same vehicle, their
actions must be coordinated to avoid inter-
ference and ensure proper aiming and
alignment.

The most complex and most flexible
configuration allows sensors and weapons
to have completely independent move-
ment. This situation is depicted in Figure
3(c) and reflects the growing utilization of
unmanned ground and aerial vehicles.
Coordination of sensors and weapons is
still an issue, but the coordination may
need to be effected across significant dis-
tances.

Personality Modules

Isolation of the fire control system from
the underlying hardware configuration is
handled in FC-NET by using Personality
Modules (PMs). Similar to the device driv-
ers used by popular operating systems, PMs
encapsulate device-specific hardware char-
acteristics. A PM implements an architec-
ture-defined interface to the fire control
system. The PM translates abstract fire
control commands into device-specific
commands understood by the attached
device. Figure 4 (see next page) presents an
example.

The fire control system sends a Fire
command to the software component that
controls a missile launcher. The software
component passes the fire command to the
launcher hardware through a launcher-spe-
cific PM. The PM translates the fire com-
mand into a sequence of relay activation
commands that control electrical signals to
the launcher at the connector pin level.

Fire Control Foundation Classes
Although weapon system physical configu-
rations may vary widely, the fundamental
operations required to place fire on targets
remain relatively constant. Any fire control
system must acquire and track targets, com-
pute firing solutions, and deliver munitions
against targets. The FC-NET exploits this
functional consistency wherever possible
to support the FCS in all of its anticipated
weapon configurations.

The modular, domain-oriented struc-
ture of the FC-NET architecture promotes
commonality at an abstract level. The archi-
tecture is designed to encourage and

Figure 3: Possible FCS Configurations

Munition

I Launcher I I Sensor I
I Platform I
| Vehicle |
(a)
Munition
I Launcher I I Sensor I
I Platform I I Platform I
| Vehicle |
(b)
Platform Platform
| vehice | | vehicle |
(c)

wwwi.stsc.hill.af.mil 11

Network-Centric Architecture

FC-NET

Fire
o

\ 5
. Launcher

Component
Personality
Module

Figure 4: Personality Module Example

+12V on J2-7

(Launcher-Specific Actions)

accommodate reuse. The architecture itself
with its defined interfaces and services can
be reused, as can implementations of com-
ponents written in conformance with the
architecture. As the FC-NET architecture
is developed, a reference implementation
of the architecture and a set of fire control
foundation classes will be created along the
lines of Microsoft Foundation Classes
(MFC) [4]. An example of a potential fire
control foundation class is geospatial posi-
tion. Targets have positions, weapons have
positions, and munitions have positions
during their flight from weapon to target. A
reusable position foundation class has been
defined that provides position-related serv-
ices such as transformations between coor-
dinate systems. The position foundation
class can be instantiated or extended by any
fire control system implementer.

Just as the MFC are tightly coupled to
Microsoft’s Document-View application

Figure 5: FC-NET Munition Domain
Interaction

Launcher
Domain

control
munition

get aiming
Munition information
<

Predictor

control
munition

Munition
Devices

control
munition
devices

Munition
Devices

12 CrossTaLk The Journal of Defense Software Engineering

architecture, the FC-NET fire control
foundation classes will be tightly coupled to
the FC-NET fire control architecture.
Unlike the MFC, however, the FC-NET
will be a non-proprietary open system
portable to a variety of operating systems
and central processing unit families.

Sample FC-NET Architecture

Domain

Concepts discussed in earlier sections are
illustrated by examining the part of the FC-
NET architecture that addresses munitions.
The FC-NET view of the Munition
domain appears in Figure 5. The figure
shows that the Munition domain contains
three interacting software components:
Munition, Munition Predictor, and
Munition Devices. These components
interact in turn with munition-related hard-
ware devices and with other software com-
ponents in the Launcher domain. Similarly,
the Launcher domain is also composed of
interacting software components that inter-
face to hardware devices and to software
components in yet other domains in the
architecture.

Munition is a functional control compo-
nent that is responsible for munition tar-
geting and launching functions. Example
services provided by this component
include activating, arming, and launching a
munition. The Munition component is
responsible for sending notifications of
events that occur during the course of its
operations. For example, this component
generates notifications when a munition is
launched or stowed. These particular noti-
fications normally originate in the
Munition Devices component and the
Munition merely propagates the notifica-
tions out to other components in the sys-
tem. The Munition component also main-
tains information about munition attrib-
utes. This information includes basic char-
acteristics, configuration information, and
dynamic state. Example attributes include
munition type and model number. Guided
munitions may have attributes for laser des-
ignator code or waypoint list.

Munition Devices is a device group com-
ponent that provides an interface for con-
trolling the devices and sensors associated
with a munition. It is used by the Munition
component to access a munition’s physical
hardware. This component provides many
of the same abstract services as the
Munition component, such as aim, arm,
and launch, but implements these services
at a lower, hardware-aware level. The
Munition Devices component generates
the same notifications as the Munition
component but does so at a lower level.

Munition Predictor is an algorithm con-
tainer component that provides an inter-
face for determining the necessary aiming
conditions required to ensure that the
munition’s kill zone intersects the target.
The Munition Predictor is used by the
Munition component to compute the aim
point for a munition. Like all algorithm
containers, the Munition Predictor has no
attributes and generates no notifications.
The only services provided are computa-
tion of munition flight time, aim angle, and
lead.

Design Trade-offs

Every software design involves trade-offs,
and the FC-NET is no different in this
regard. The FC-NET fire control architec-
ture reflects the hardware structure and
operational environment of modern
weapon systems. The architecture is highly
modular and assumes a hierarchical control
model among components. The current
version of the architecture defines 47 com-
ponents, along with some additional data
types and support services that collectively
capture the behavior of 18 domains.

At first glance, this breadth and level of
decomposition might seem excessive.
Although this observation might hold true
for many current fire control systems, the
FC-NET was not designed for current fire
control system. The FC-NET was designed
for future fire control systems. In particu-
lar, it was designed for the FCS fire control
system. The architecture was driven by the
need to support the highly adaptable and
reconfigurable weapon system that the FCS
will be. Of particular concern is the poten-
tial for future weapon systems to be com-
posed from cooperating, autonomous
robots or physically distributed subsystems.

There are costs associated with such a
modular and hierarchical architecture.
Architectural simplicity may be reduced, as
may implementation efficiency. The muni-
tion example presented earlier showed
three independent, interacting components
that together provide the necessary domain
behavior. Other device-centered domains
such as platforms and launchers also have

August 2003

separate functional control and device
group components. For simple devices,
one could argue that this is design overkill.
Given a dumb launcher device that does
nothing more than transfer firing voltages
to its mounted missiles, multiple compo-
nents could introduce needless inefficien-
cies. Performance penalties can be
incurred due to cross-component commu-
nications. Added complexity and risk can
be incurred if it is necessary to locally
cache data needed by multiple compo-
nents.

Contrast this dumb launcher example
with that of an intelligent launcher device
with an autoloader, both mounted on an
autonomous robot. Cross-component
communications and local data caching
become inevitable consequences of the
hardware configuration. The architectural
complexity that seemed excessive for the
first example actually provides a smoother
implementation path for the second.

Although complexity and inefficiency
are legitimate concerns, current trends in
processing speed and communication
bandwidth ameliorate these disadvantages.
Computer hardware gets faster and cheap-
er every year. The IBM PowerPC 750FX is
a 32-bit processor that operates at speeds
up to one gigahertz and is representative
of high-end processors being used in new
embedded systems [5]. Powerful proces-
sors can be teamed with Flash memory to
provide large amounts of primary storage
and virtual file systems. Advanced proces-
sors such as the PowerPC family have dra-
matically increased the capabilities of
recent embedded systems, and the trend
toward more powerful hardware is expect-
ed to continue.

In the case of distributed fire control
systems, communications among physical-
ly independent components can have a
major impact on overall system efficiency.
The speed and reliability of network data
transmission is almost always less than the
speed and reliability of data transmission
within a single processing unit. It is antici-
pated that distributed communication
architectures such as Real-Time CORBA
[6] will continue to mature and grow in
reliability, performance, and usability to
the point where communications issues
cease to be a major performance concern
for the architecture.

In light of these disadvantages, what
advantages does the FC-NET architecture
provide? Although we believe that there
are potentially many, this article focuses on
only three: adaptability, interchangeability,
and vendor-independence.

An adaptable architecture allows fire
control systems to be easily modified,

August 2003

A Fire Control Architecture for Future Combat Systems

extended, or reconfigured in the face of
changing requirements. Strategic defense
policy formulation requires long-term
planning. Long term in this context
involves time horizons of 10 or more
years as exemplified by Joint Vision 2010
[71 and Joint Vision 2020 [8].
Unfortunately, it is impossible to predict
with any certainty what will happen to
hardware and software technologies over
the same period. It is important to design
any new fire control system in such a man-
ner that new technologies can be readily
incorporated as they become available.
The highly modular character of the FC-
NET architecture provides numerous
locations where new technologies can be
inserted into the system with minimal
impact on other components in the fire
control system.

An architecture that provides easy
interchangeability of components allows
fire control systems to be readily modified,
extended, or reconfigured to better meet
current requirements. Individual compo-
nents of the fire control system can be
swapped out to incorporate improved
algorithms, more efficient component
implementations, or more sophisticated
decision aids that enhance the weapon sys-
tem’s ability to engage targets. As com-
mercial technologies mature and are
adopted by the Department of Defense,
new components that utilize these tech-
nologies can replace older components
based on more expensive military tech-
nologies.

For example, if a system moves from
MIL-STD-1553B-based communications
to Transmission Control Protocol/
Internet Protocol (TCP/IP), the FC-
NET architecture ensures that this change
only impacts boundary components
involved with hardware device communi-
cations. Most importantly, component
interchangeability supports the plug-and-
fight capability of the FCS to host differ-
ent combinations of weapons at different
times. For example, a FCS might be
quickly reconfigured by exchanging a
non-line-of-sight gun for a complement
of Netfires missiles and a remote armed
reconnaissance robot. The FC-NET is
designed to accommodate distributed fire
control systems, where fire control soft-
ware components physically reside in
weapon hardware. The required software
components are then automatically incor-
porated into the fire control system when
the weapon hardware is inserted into the
weapon system.

An architecture that provides vendor-
independence allows fire control systems
to be composed of components created

by different vendors. Vendors can work
independently to produce fire control
components that interoperate with com-
ponents provided by other vendors or
the government, using whatever in-
house expertise or methodologies pro-
vide their competitive advantage. Since
every component developer writes to
defined component interfaces, integra-
tion costs are reduced and subcontract-
ing becomes an effective means of
incorporating best-of-breed technology
into a fire control system.

Program Status

An initial version of the FC-NET soft-
ware architecture has been produced [9].
The FC-NET program is in the first phase
of a five-phase 50-month effort that will
refine the software architecture through
application to four different weapon sys-
tems constructed from five different
weapons.

Each weapon system will be composed
of two or more weapons and will consist
of some combination of real and simulat-
ed hardware. The weapons selected for
these systems will be representative of the
types of weapons the FCS expects to
mount. Example weapons include the
Low Cost Precision Kill Missile, Common
Missile, Compact Kinetic Energy Missile,
and an Objective Crew Serve Weapon.
Each weapon system will feature realistic
gunner interaction by utilizing an integrat-
ed crew station provided by the Army’s
Tank and Automotive Research, Develop-
ment, and Engineering Center.

The first phase of the program culmi-
nated in a June 2003 demonstration of a
weapon system that operates in a simulat-
ed environment. It is expected that the
FC-NET reference implementation and
fire control foundation classes described
earlier will be produced as by-products of
implementing the different weapon sys-
tems developed during the course of the
program. One intent of the demonstration
projects was to expose opportunities for
improving the current architecture. Early
implementation experience has already
resulted in many minor changes to com-
ponent interfaces. More substantial
changes to the architecture will be consid-
ered at the conclusion of each program
phase.

Conclusion

The FC-NET fire control software archi-
tecture provides the flexibility needed to
support the FCS and other new and evolv-
ing weapon systems. This flexibility is
achieved through the encapsulation of
functionality in well-defined software

wwwistsc.hill.af.mil 13

Network-Centric Architecture

components and the isolation of hardware
characteristics in PMs. Fire control foun-
dation classes and a reference implementa-
tion of the architecture will be developed
in conjunction with this program. System
integrators can exploit these reusable arti-
facts to achieve cost and schedule
economies when developing fire control
systems for new configurations of the
FCS.O

References

1.

United States. Defense Advanced
Research Projects Agency. “DARPA
FCS Overview.” Washington: DARPA,
26 Mar. 2002 <www.darpa.mil/tto/
programs/fcs.html>.

McElwee, J, and J. Gully. “Future
Combat Systems: Partnering for Rapid
Innovation and Transformation.”
Boeing Integrated Defense Systems, 4
Apr. 2002 <www.boeing.com/defense
space/ic/fcs/bia/mcelwee.zip>.
United States. Joint Force. DoD
Dictionary of Military and Associated
Terms, Joint Publication 1-02. Wash-
ington: Director for Operational Plans
and Joint Force Development (J-7), 12
Apr. 2001 (as amended through 15
Oct. 2001) <www.dtic.mil/doctrine/
jel/doddict>.

Prosise, J. Programming Windows
With MFC. Redmond, WA: Microsoft
Press, 1999.

IBM Microelectronics Division.
“PowerPC 750FX Product Brief.”
IBM Corporation, Apr. 2002 <www.
3.ibm.com/chips/techlib/techlib.nsf/
products/PowerPC_750XF _
Microprocessor=>,

Schmidt, D. C., and F Kuhns. “An
Overview of the Real-Time CORBA
Specification.” IEEE Computer. June
2000 <www.cs.wustl.edu/~schmidt/
PDF/orc.pdf=>.

United States. Joint Chiefs of Staff.
Joint Vision 2010. Fort Belvoir, VA:

Defense Technical Information
Center, July 1996 <www.dtic.mil/
jv2010/jv2010.pdf>.

United States. Joint Chiefs of Staff.
Joint Vision 2020. Fort Belvoir, VA:

Defense Technical Information
Center, June 2000 <www.dtic.mil/
jv2020/jvpub2.htm>.

US. Army Aviation and Missile
Research, Development, and Engi-
neering Center. EC-NET Architecture
Description, v. 1.1. US. Army
AMCOM, June 2002.

14 CrossTaLk The Journal of Defense Software Engineering

About the Authors

= Joel Sherrill, Ph.D., is
director of Research
and Development for
OAR Corporation with
15 years experience in
the design, develop-
ment, and fielding of real-time embed-
ded applications in a variety of military,
commercial, and research domains. As
a principal author and current main-
tainer of the open-source real-time
operating system RTEMS, he has been
deeply involved in numerous RTEMS-
related efforts including the GNAT/
RTEMS validation. Sherrill is a found-
ing member of the Steering Committee
for the Free Software Foundation’s
GNU Compiler Collection.

OAR Caorporation

4910-L Corporate Drive
Huntsville, AL 35805

Phone: (256) 722-9985

Fax: (256) 722-0985

E-mail: joel.sherrill@oarcorp.com

Ron O’Guin is execu-
tive vice president for
OAR Corporation with
25 years experience in
the development of
real-time operating sys-
tems, real-time applications, visual sim-
ulations, and weapon systems trainers.
As a principal author of the open-
source real-time operating system
RTEMS, he has been deeply involved
in numerous RTEMS-related develop-
ment efforts. O’Guin has an extensive
background in missile system research
and is a principal developer of the Fire
Control-Node Engagement Technol-
ogy (FC-NET) Technical Fire Control
Architecture. He currently serves as
the software manager for the FC-NET
STO Program.

OAR Corporation

4910-L Corporate Drive
Huntsville, AL 35805

Phone: (256) 722-9985

Fax: (256) 722-0985

E-mail: ron.oguin@oarcorp.com

Malcolm Morrison,
Ph.D., is a senior soft-
ware engineer for OAR
Corporation with 15

; years experience as a
. developer of informa-

tion and weapon systems, an educator,
and consultant. His focus has been on
software process management impacts.
Morrison has served as a full-time facul-
ty member at the University of Alabama
in Huntsville and Salisbury University in
Maryland. He is a developer of the Fire
Control-Node Engagement Technology
Technical Fire Control Architecture.

OAR Corporation

4910-L Corporate Drive

Huntsville, AL 35805

Phone: (256) 842-6937

Fax: (256) 722-0985

E-mail: malcolm.morrison@
oarcorp.com

Deborah A. Butler is an
electronics engineer with
the Aviation and Missile
Research Development
' and Engineering Center

with more than 15 years
experience in the design, development,
and fielding of real-time military embed-
ded applications. As an experienced
hardware and software designer, Butler
has contributed to the successful design,
development, and demonstration of pro-
grams such as the Future Missile
Technology Integration Program, Long
Range Fiber Optic Guided missile,
Future Artillery Loiter Concept, Low
Cost Precision Kill, and Compact Kinetic
Energy Missile. She has an extensive
background in missile system research
and development and is the program
manager for the Fire Control-Node
Engagement Technology Science and
Technology Program.

U.S. Army Aviation and

Missile Command

ATTN: AMSAM-RD-MG-NC

(Deborah A. Butler)

Redstone Arsenal, AL 35898-5000

Phone: (256) 876-1303

Fax: (256) 842-9476

E-mail: deborah.butler@rdec.
redstone.army.mil

August 2003

