
BACKTALK

September 2003 www.stsc.hill.af.mil 31

Back in 1974, I was an application pro-
grammer at the U.S. Air Force

Strategic Air Command (now STRAT-
COM) headquarters, Offutt Air Force
Base. I worked in support of targeting.
My end-user, which at the time was a
Marine lieutenant colonel, needed a sim-
ple program to filter out spurious data
from digitized photoreconnaissance data.
Recognizing my true worth as a top-notch
applications program-
mer (and not having
anybody else to sup-
port his needs), he
asked me to write the
program for him.

In gathering the requirements, I
noticed that there would be hundreds of
data sets each night. Obviously, I couldn’t
run 100 different jobs, so I grouped the
data together into one large nightly run. I
needed a card (yes, it was that long ago –
we used punched cards) to separate the
data streams, so I asked the end-user what
special characters would be present in the
final data. The user replied, “No special
characters are used at all.”

Since I couldn’t get real data to test
(security issues), I faked up some data
separating each data stream using a single
card with a ‘!’ in column one. My test
worked, and I cut the program over to the
operational side of the system.

The very next morning at 2 a.m., I
received a call from the computer opera-
tor (yes, it was that long ago – we had real
live operators to run the card decks)
telling me that my job terminated with
0.001 seconds of CPU time. Now, I am a
hotshot coder, but nothing ran that fast in
Cobol (yes, it was that ... oh, you know). I
threw on a uniform, went in, and after
getting permission to access the real data,
poured through my core dump (yes, it was
that ... never mind) and saw that the very
first data stream had multiple ‘!’s embed-
ded in it. My program had seen each ‘!’ as
a data stream separator, and did not find
enough data in each stream to analyze.

Being righteously indignant, I was
waiting for my user to show up at 0730. I
quickly pointed out to him that he had
asserted that there would be no special
characters, but ‘!’ was used frequently in
the data. His response was to say, “Well, ‘!’
isn’t special. We use it all the time.” At
that point, I became a Zen master when I
realized that the user and I did not speak

the same language. What I had logged as
a defect was, in reality, nothing more than
a simple miscommunication. Isn’t it funny
how that often tends to be the case?

One of the major failings in the way
we currently develop software is that so
many things can hide under the cover of
a defect. Forgot to include a feature? It’s a
defect. Have bad code? It’s another
defect. As a Personal Software ProcessSM

instructor, I teach that not all defects are
created equal. Some come from simple
problems and are simple to fix. Others
have complex causes and are complex to
fix. Frequently, we have defects resulting
from simple errors that are costly to fix.
And, very occasionally, we hit those that
have complex causes, but are simple to
fix.

In BackTalk, we sometimes write
columns that are cynical and sarcastic.
Sometimes we write columns that are
funny. And – as in this column – some-
times I get to point out the obvious. The
following are “obvious things about
defects you (1) probably already know, or
(2) should know, or (3) wish your
user/developer knew:”
1. If you have ever thought of it as

something that can go wrong, it’s not
unexpected any more, is it? It really
can’t be an error anymore – it’s some-
thing you thought of, made a value
judgment/risk assessment about, and
decided to ignore.

2. If any error can occur, it will eventual-
ly. At 3 Gigahertz, lots of instructions
are executed every second. Eventually,
the most bizarre timing occurrences
happen.

3. There is no such thing as foolproof.
Nature and genetics are producing 248
births each minute. Some of them are
bound to do foolish things at an
alarming rate. Don’t ever think,
“Nobody would be so dumb as to ...”
They are. They will. It’s your fault.

4. Quit hiding poor requirements as
defects. Make sure you do root-cause
analysis on each defect – and fix the
problem, not the symptom. If you
have lots of defects due to poor

requirements elicitation and valida-
tion, fix your requirements process
instead of just hiring additional devel-
opers to fix the so-called defects.

5. Don’t settle for large numbers of
defects. If your code is bad, train and
educate your developers to make bet-
ter code. If your design is bad, get
some true designers to help with your
architectural, data, and interface

design. Designing
code is not what
design is about. Most
of your errors will
occur due to poor
architectural design,

poorly thought-out interfaces, or inef-
ficient data. On the other hand, if
your defects are from poor require-
ments, see No. 4.

5. Developers, you have to give the users
what you agreed to give them. If you
need to slip requirements or postpone
deliverables, communicate that to the
users. If you surprise them with
incomplete or defect-ridden code, they
are going to be unhappy.

6. Users, you have to explain what you
need to get code that meets your
needs. If you won’t commit to what
you really need, then you won’t get
what you really need.

7. Developers, before you move to the
next step in your life cycle, verify and
validate what you have. There is no use
proceeding until you know that what
you have so far is correct.

8. Users, if you want it badly, you’ll get it
badly. If you ask for too much, it will
take too much time. You have to com-
promise. Understand that it takes time
to create a software product. You have
a choice – the more you push for fast
delivery, the less quality you will get.

9. No matter how bad the defect is, it
could have been worse. In fact, wait a
while, and you’ll remember your cur-
rent problem as the good old days.
(OK, I just couldn’t keep the cynicism
and sarcasm totally out).

– David A. Cook
david.cook@hill.af.mil

Software Technology Support Center/
Shim Enterprises Inc.

P.S.It’s a column about defects – of course
the list is misnumbered!

Defect Mismanagement


