Managing Software Defects in an
Object-Oriented Environment

Houman Younessi

Rensselaer Polytechnic Institute-Hartford Graduate Campus

Managing defects when developing object-oriented systems has its own challenges. In this article, the impact of adopting the
object-oriented paradigm on how we manage defects at various phases of the software process is discussed. Specific issues relat-
ing to both the structural implications and the environmental and process considerations are named and discussed, with solu-

tions provided.

The benefits of the object-oriented
(O0) paradigm are well publicized.
Less so are the areas where this paradigm
actually creates challenges and difficulties.
One such area is defect management.
This article looks at why object-orienta-
tion might present such challenges, and
what it is like to manage defects in an OO
environment.

In general, OO systems score lower in
terms of testability compared to proce-
dural systems [1]. The reasons for such
low testability can be traced to the struc-
tural composition of OO systems dis-
cussed in the following sections. Each
section begins a brief definition of the
issue under discussion, a short synopsis
or some explanation closely relating to the
issue at hand, and a description of the
defect management problems that are rel-
evant. Each problem is numbered along
with its corresponding solution(s), for
example, (1) Abstraction Reduces
Observability. Keep in mind there may be
more than one corresponding solution to
each preceding problem.

Abstraction

Abstraction is that essential property that
allows the selection of a logical and
coherent conceptual boundary so that the
object is identifiable by its essential char-
acteristics; these are those characteristics
that define what it is and what it does
without heed to how such is accom-
plished. While abstraction is of potential-
ly great benefit to the modeler, the
designer, the user, the maintainer, and the
reuser, it is often of hindrance to the
defect manager.

Problems

(1) Abstraction Reduces Observability
[1]. Observability, or internal state visibil-
ity, is the ability to examine the internal
state of an object at any one time. Given
that abstraction, in essence, masks access
to a lot of this information, it dramatical-
ly reduces observability.

(2) Partial/Distributed Implemen-
tation. An abstract class is one in which

September 2003

the implementation of at least one feature
is deferred to another class. This creates a
problem in testing because all the features
are not there.

Solutions

(1) Inspector Routines. These are pub-
lic routines written to examine the value
of each relevant attribute that otherwise
will not be accessible. This may be helpful
but unfortunately it is cumbersome to

“While abstraction is of
potentially great benefit
to the modeler, the
designer, the user, the
maintainer, and the
reuser, it is often of
hindrance to the
defect manager.”

create such classes. Even if these meth-
ods are present, they may be defective,
making the job of testing that much more
difficult.

(1) Memento Design Pattern. A varia-
tion of the approach above is to design
each class as part of a Memento Design
Pattern [2].

(1) Encapsulation Breaking Mechan-
isms. Friend functions in C++ belong to
this category. These can be defined to cut
across the encapsulation wall of an
object. They can then access the internal
state of an object, yet have inherent side
effects that make their use inadvisable in
an OO system.

(2) Inspection. Inspection has proven
effective in defect management of partial
or distributed implementations. Inspec-
tion techniques specialized for object
technologies have been developed [3].

(2) Leaf Class Testing. This is a testing
technique that evaluates the abstraction
structure using its concrete implementa-
tions [1, 3].

Encapsulation

In encapsulation, an object is defined as a
collection of interrelated concerns
wrapped into a logically cohesive unit. In
OO, applying encapsulation is not
restricted to the composition of classes
and objects but also applies at higher lev-
els, for example to form packages and
sub-systems.

Problems

(1) Scope Escalation. The routine no
longer can be considered the logical unit
for testing. That honor now must go to
the class. This does not in any way mean
that the routines of a class are not tested,
but that unit testing in OO must be done
in the context of a class.

(2) Hierarchy Integration. How can
you test whether the higher encapsulation
levels are communicating with each other
in the expected fashion?

Solutions

(1) Inspection. Inspection techniques
specialized to OO could focus on the
algorithmic, initialization, and temporal
characteristics of individual routines in a
way that is not possible when testing.

(1) Context Testing. This is the idea of
giving up individual testing of the individ-
ual routines and instead testing them in
the context of their operation and collab-
orations. This is of course risky, as the
routines will only be tested in known con-
texts.

(2) Inspection. Inspection allows evalua-
tion of interaction of packages at integra-
tion level.

(2) Multi-Table Class-Responsibility-
Collaboration (CRC). This is a simula-
tion technique that allows the evaluation
of the design of a system from the per-
spective of package integration and
reduction of coupling [3]. The technique
is applied during design evaluation.

wwwi.stsc.hill.af.mil 13

Defect Management

Genericity

Genericity is the principle of type inde-
pendence. To facilitate reuse, it is most
useful to write components (e.g., classes)
that work with a variety of types under a
variety of situations. While not all pro-
gramming languages provide for generic-
ity at the moment, it is likely that its
implementation and use would increase
in the future. Eiffel [4] is one of the few
OO languages that implement this con-
cept effectively.

The rules are quite straightforward.
We simply declare the type to be of some
generic identifier and then use that same
identifier as a placeholder or name when-
ever a given type is referred to. As such,
generic classes are not classes in the
strictest sense; they are templates for
classes that hold at least one unspecified
type. Only when all the unspecified types
are pinned down does a class emerge. This
means that you can write a generic class
but you cannot create an object of that
generic class. For that to happen, you
have to first specify all the generic type
placeholders using valid extant types,
thus creating a true class. Only then can
you create (instantiate) an object. Using
genericity, it will then become possible to
provide a wide range of libraries of very
useful reusable classes such as container
(object structure) and graphical user
interface classes.

Problem

(1) Type/Behavior Variability. The
varying behavior of an object based on
the type or combination of types with
respect to which it has been instantiated

Figure 1: Testing Class Hierarchies

Abstract_Class_A

®Wabstract_do_X()
®Mabstract_do_Y()

z

Abstract_Class_B

Specialization
Mabstract_do_W() P

®concrete_do_V()|-—

A
o

T over-riding
_| concrete_do_V and
Abstract_Class_C " concrete_do_Z

#abstract_do_T()
%concrete_do_Z()
®concrete_do_V/()
%concrete_do_X()

T

- —
Class_D ——___ | Generalization
-

Mconcrete_do_Y/()
Mconcrete_do_W()
Mconcrete_do_R()
Mconcrete_do_T()

14 CrossTaLk The Journal of Defense Software Engineering

creates a test case explosion.

Solution

There is no established calculus here, and
problems may emerge from many unex-
pected corners. No good sure-fire solu-
tion exists here. Care, a good deal of
anticipation of potential problem areas,
and lots of testing with a wide range of
potential types is best. Some guidelines
(not really solutions) to this end appear
in [4].

Inheritance

Inheritance is a kind of relationship
between classes. It is one of the central
features of object orientation. While it is
not necessary to have inheritance in
order to have an OO system, most such
systems do incorporate inheritance.
Inheritance can bring a lot of advantages;
the most frequently cited is, of course,
facilitating reuse.

A class should implement a particular
type A sub-class, therefore, it is best to
implement a corresponding sub-type. In
other words, our class hierarchy should
mirror our type hierarchy. This is usually
called generalization. Other forms of
inheritance do exist that do not follow
this mirror image principle, including
specialization and restriction, which do
provide particular testing challenges.

Problems

(1) Substitutability Problem. Although
a sub-type does satisfy and only strength-
ens (extends) the preconditions of its
parent type, a sub-class does not neces-
sarily do so. As such, a sub-type (general-
ization) can substitute for the parent
class but objects built on specialization
or restriction cannot. Such substitutions
are, however, among the most common
errors in OO.

For example, there is a case of restric-
tion when you take a class such as SIM-
PLE_INTEREST_ACCOUNT and sup-
press the interest calculating features of
it altogether to sub-class it into the new
type NO_INTEREST_ACCOUNT.
This new type does not have interest cal-
culating features and thus cannot act as a
sub-type of SIMPLE_INTEREST_
ACCOUNT although it is a sub-class of
it. This creates a problem in testing in
that you do not quite know whether to
test the suppressed features (as they are
still part of the inheritance structure and
implementation) or to ignore them (as
they are not part of the type being imple-
mented).

Under such circumstances, the testers
will have a tendency to look at the con-

tract for the restricted type and then only
test according to that contract, leaving
behind all the potential side effects of
the suppressed features.

(2) Mixing Inheritance Styles. Many
designers mix different forms of inheri-
tance in the one-class hierarchy.
Although like many of the previous
issues discussed, this is ultimately a
design issue, it does impact the way you
can effectively test a system. In other
words, it can contribute to defects in the
system and therefore within the scope of
our interest, albeit more from a preven-
tive aspect rather than a corrective one.

Imagine the situation depicted in

Figure 1: The issue here is that class (D)
is a sub-type of (C) and can be substitut-
ed for it. Class (C), which may be instan-
tiated (or not), is however not a sub-type
of (B), making (D) also not a sub-type of
(B). Class (B) is a sub-type of (A), but
nothing below it is, even though there
might be a lot of further levels. How
would you adequately test such a hierar-
chy?
(3) Deeply Nested Hierarchies. Even
generalization, the sub-typing form of
inheritance, presents challenges in defect
management. In such a hierarchy, the
tendency would be only for the leaf
nodes to be instantiable. This, however,
does not mean that all the features of all
of the abstract classes are deferred, far
from it. If a class cannot be instantiated,
it cannot be tested directly.

Testing a class indirectly must ensure

that the class is tested with respect to all
possible permutations of the hierarchy
down to each individual leaf level that
can be instantiated. In a deep hierarchy
that is also wide, this creates a combina-
torial issue. There are issues, even in the
case of a deep but narrow hierarchy. The
complete contract of a leaf class is really
the union of the contracts of all the par-
ent types, many of them with some
implemented operations; it is very possi-
ble to miss testing some of them.
(4) Multiple Inheritance. It is possible
for a class to inherit from more than one
super class directly. Multiple inheritance
itself can be of two principal types: sim-
ple multiple inheritance and meshed
inheritance also known as repeated
inheritance. Meshed or repeated inheri-
tance is the case where at least two of the
super classes have a common ancestry.

The most obvious issue with testing
in a multiple inheritance situation is that
a sub-class may inherit a feature with the
same name from more than one parent.
The child class could use one or the
other, but testing with respect to one may

September 2003

not be adequate when the other is used.
The object may interact with other
objects, including a shadow or alias of
itself with many strange and unexpected
consequences, including method run-
time clashes.

Solutions

(1) Inspect the Formal Contracts. If
each type is written as a contract with its
pre- and post-conditions and invariants
carefully expressed, it would be possible
to easily inspect the contracts of classes
in a hierarchy to see if one is a sub-type
of the other. There are simple rules that
can be applied during an inspection ses-
sion such as the precondition of the child class
must only extend or strengthen the precondition
of the parent class or leave them unchanged.
(1) Redesign. All hierarchies based on
specialization or restriction can be
rearranged into hierarchies of generaliza-
tion.

(1) Use of Context Testing. This is giv-
ing up testing the individual routines
individually and testing them in the con-
text of their operation and collabora-
tions. This is of course risky, as the rou-
tines will only be tested in known con-
texts.

(2) Redesign, Avoid Mixing Styles. It
is a simple matter of avoiding the mixing
of styles during design; you can always
convert to generalization (see above).

(2) Segregate Styles. If it is not practi-
cal to convert styles, say when you have
inherited the code and cannot redesign it,
then you should consider each type set as
a separate hierarchy and test accordingly.
This means that starting from the leaf
level, every time the inheritance style
changes, all levels below are to be con-
sidered (logically abstracted into) one
class in a current style relationship with
the class above the current location.

(3) Avoid Deeply Nested Hierarchies.
One solution is to avoid the problem
altogether. As a rule of thumb, hierar-
chies of more than four to five deep are
to be avoided unless they are structurally
necessary (e.g., graphical user interface).
(3) Use Flattening Tools. High quality
flattening tools — those that assist in pro-
ducing a unified contract by collapsing
the contracts involved in a hierarchy —
can be of help but the problem is also
one of logic and of testing, not of visu-
alization alone.

(4) Avoid Multiple Inheritance.
Current advice by many leading practi-
tioners in OO is to avoid multiple inher-
itance if it is not absolutely necessary
(very rarely is it so0).

(4) Inspection. Use inspection rather

September 2003

Managing Software Defects in an Object-Oriented Environment

than testing to trace through the logic of
multiple inheritance. Again, those inspec-
tion systems designed specifically for
OO would provide facilities to deal with
such issues.

Polymorphism

Polymorphism is the ability of an object
to be many forms. A powerful, impor-
tant, and useful mechanism available in
most OO programming environments,
polymorphism is considered the ability to
substitute one type for another, or in
other words bind a reference to multiple
instances of different types, and is often
closely linked to the concept of dynamic
binding. Dynamic binding allows the
binding of an object to be deferred to as

“It is important to
realize that virtually
every step in the
software process is an
occasion to introduce a
defect that would
ultimately manifest itself
in the product being
constructed.”

late as run time, thus permitting the use
of different object types, depending on
the context.

Problems

(1) Incorrect Binding in a Homo-
genous Hierarchy. In homogeneous
systems when various methods belong-
ing to a polymorphic structure are close-
ly related both conceptually and opera-
tionally, testing might not easily reveal a
binding to an incorrect method.

(2) Server-Side Change. A polymor-
phic server might change without any
regard to the client. Under such circum-
stances, an unchanged client may no
longer be able to bind with the server.

Solutions

(1) No Real Good Solution EXxists.
Extreme care and extensive value testing
are to be employed. Some techniques
such as evaluating against an explicit
post-condition might be helpful but this
is not a complete solution.

(2) Inspection. Logic of the binding

between the server and the client can be
clear during inspection.

(2) CRC. Anthropomorphization
through the use of CRCs assists in clari-
fying the role of the server and its obli-
gations. This is in essence a simulation
and is employed during design or
redesign. Of course, this technique is
ineffective when the server is changed
without knowledge of the client side.

Process Issues, Managing Defects
It is important to realize that virtually
every step in the software process is an
occasion to introduce a defect that would
ultimately manifest itself in the product
being constructed. Conversely, every step
of the software process should be con-
sidered an opportunity for defect man-
agement. As software engineers, you
must consider opportunities to prevent
defects and opportunities to detect and
therefore remove defects that have
already been injected.

Another important realization, how-
ever, is that no defect management tech-
nique by and of itself is purely a preven-
tive or a corrective one. For example,
engaging in design inspection might pro-
vide the potential to identify and correct
many defects that, if not resolved, would
lead to defects in code. From the per-
spective of the design activity, this is cor-
rective (as you are correcting the design)
whereas from the perspective of imple-
mentation, it is preventive (as you are
preventing the propagation of defects to
implementation).

A number of such solutions and the
software process stage in which they may
be used are shown in Table 1 (see page
16). Software engineers must therefore
select and utilize techniques that con-
tribute to production of high quality
requirements. These techniques assist in
preventing the injection of defects of
omission and commission into our spec-
ification document. This early preventive
treatment has the potential to save you
much defect management of the correc-
tive kind later in the process.

Follow this by employing corrective
techniques that attempt to identify and
help remove defects already extant in the
requirements document. Furthermore,
you should deal with techniques that
concern design, so you may generate
defect-free design as much as possible.
Designs, irrespective of the effort
expended to generate them, will rarely be
defect free. We still need to deal with
design defect identification techniques
such as design inspections. Program code
defect identification through testing and

wwwi.stsc.hill.af.mil 15

Defect Management

Software Engineering Preventive (P)

or Task Technique
Process Stage Corrective (C)*
Specification P 1. Construct Common Dictionary 1. Process Element Dictionary (PED)
2. Set Focus/Goal 2. Quality Matrix
3. Build Consensus 3. State-Behavior Modeling (SBM)
4. Cover Model Space 4. UML, Formal Specification (e.g., Object Z)
5. Cover Functionality 5. Use Cases
6. Cover Non-Functional 6. Architecture
Requirements
Specification C 1. Validate Requirements 1. Requirements Inspection
2. Verify Requirements 2. Requirements Inspection, CRC, Formal
Methods
Design P 1. Ensure Traceability 1. Requirements Traceability Table (RTT)
2. Cover Design Space 2. Architectural Patterns, Design Patterns,
Formal Derivation, Contracts
Design C 1. Validate Design 1. Requirements Traceability Check (RTC)
2. Verify Design 2. CRC, Formal Proofs, Design Inspection,

Design Simulation

Implementation

. Ensure Uniformity

. Ensure Traceability

. Ensure Design Proximity
. Ensure Accuracy

. Coding Standards

RTT
RTT, Feedback
Pair Programming

Implementation

. Defect Identification
2. Failure Detection
Integration

. Code Inspection, Static Analysis,

Automated Analysis

Dynamic Testing; Specification Testing, Use
Case-Based Testing

Integration Testing (e.g., Couple Testing,
Pair-WiseTesting or Binary Testing),
Regression Testing

* Indicates whether the technique in the right column has a preventive or corrective effect on the stage on the left.

Table 1: Defect Prevention Techniques

code inspection will also be needed for
the same reason.

Finally you must deal with integration
and defect management at the system
level. Specific techniques for all these lev-
els are available in the literature [3] and
due to space limitations shall not be fur-
ther discussed here.

Summary

This article presents a fault model for the
OO paradigm of software development.
This fault model concentrated on specif-
ic issues, whether product-based or
process-based, that pertained principally
to the object paradigm or resulted from
its application. In doing so, however, no
representations were made in terms of
the absence or impossibility of other
forms of faults that can arise independ-
ently of the paradigm utilized. As such,
the model as presented is partial and
focused.

The fault model describes the many
potentials for producing defective soft-
ware that might emerge as a consequence
of utilizing the OO approach. It also dis-
cusses the difficulties that might possibly
be encountered in managing and reduc-
ing the ultimate defect content of the

September 2003

OO code.]

References

1. Voas, J. “Object-Oriented Testability.”
3rd International Conference in
Achieving Quality in Software.
Chapman and Hall, 1996: 270-290.

2. Gamma, E., R. Helm, R. Johnson, and

J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Design.
Addison-Wesley, 1995.

3. Younessi, H. Object-Oriented Defect
Management of Software. Prentice
Hall, 2002.

4. Meyer, B. Eiffel: The Language.
Prentice Hall, 1992.

About the Author

Houman Younessi is
professor of Computer
Science at Rensselaer
Polytechnic Institute-
Hartford Graduate Cam-
pus. He is a leading
educator, practitioner,
and consultant in object technology.
Houman is the originator of the Single
Building Model methodology and also
a key member of the Object-Oriented
Process, Environment, and Notation
(OPEN) consortium and one of the
designers of the OPEN Process. He is
author of three books, including
“Object-Oriented Defect Manage-
ment of Software.” Younessi has been
instrumental in the formulation, evalu-

ation, and promulgation of the ISO
15504 Software Process Improvement
and Capability Determination stan-
dard for software process capability
measurement. Younessi is an interna-
tional speaker, and has spoken at the
International Conference on Software
Engineering, the Conference on Tech-
nology of Object-Oriented Systems
USA, and the Asia-Pacific Software
Engineering Conference.

Department of Computer Science
Rensselaer Polytechnic Institute
Hartford Graduate Campus

275 Windsor St.

Hartford, CT 06074

E-mail: houman@rh.edu

wwwi.stsc.hill.af.mil 16

