
Departments

30 CROSSTALK The Journal of Defense Software Engineering October 2003

The February issue of CrossTalk printed an article I
wrote on choosing a software language. At the beginning
of the article, I give some examples of how language
choices are being made. In the original submission, one of
the examples was the bookstore method, in which the
number of books in the bookstore were counted and that
was deemed to be the best language. However, this was
edited out of the final article. Perhaps the editor didn’t
believe it, or maybe it was cut to save some space.

At the 2003 Software Technology Conference in April,
one panel for a military program presented a brief on
their language choice for their program. One of the slides
they presented was a study of the number of books pub-
lished on the various languages. To understand why this is
a bad metric, I invite the reader to tour my home library.
I want to show you books on three of the over 10 lan-
guages represented.

First, I have three books on Java. One is obsolete,
because the language has changed since I bought it. The
one I want you to look at closely is by Deitel and Deitel;
it is a well written college textbook targeting the first soft-
ware language crowd. These days when I hear Simon and
Garfunkel singing about the words of the prophets being
written on the subway walls, I think I see them scribbling
the word Java. There will be many more additions to this
language in the next couple of years, like the addition of
generics. I think I will be buying more books on Java.

My older C++ books say that C++ is a superset of C
and so there is already a large base of programmers using
it. This is a blatant lie. It wasn’t true then and it is not true
now. One book is specific to Borland C++. Two books
are specific to Visual C++, but they are obsolete as that
platform has changed since I got them. My favorite is like
three books in one because it covers three types of C++:
switch (pick your version) {case version_one: do it this
way; break; case version_two; do it that way; break; case
version_three; do it like so; break;}. Old C++ books are
not useful because they don’t have information on excep-
tions or namespaces or other additions to the language.

I have two stacks of magazines that are devoted to this
language, and they are full of articles that tell me how to
use it safely by not using some of the features, or how to
be careful using other features. An interesting note about
these magazines is that a lot of the code in them is actu-
ally Delphi, a language that was advertised as C++ with-
out the problems. C++ claims to be a friend to object-ori-
ented programming, but the friend function violates the
paradigm; unless you believe the book that says it doesn’t.
These books claim that C++ is a strongly typed language,
but I disagree. Besides my books and magazines, I have a
notebook full of coding standards that tell how to make
this language readable and safe to use, but they are full of
contradictions.

I feel that these books and the C++ language have
deceived me. My theory is that this language is still being
used because of some weird Abilene paradox phenome-
non. In the Abilene paradox, a group of people went to

town to eat and when they got back, they discovered that
none of them really wanted to go, but they all went
because they thought the others wanted to go. In more
than one discussion with fellow engineers we all agree that
C++ is a poor language, but we all use it because every-
one else is using it. Engineers have to learn to read this
language. For example, of about 20 books in my library
on neural networks, 10 of them have example code in
C++, even though Ada tasks would be more suited for
building neuro nets. I don’t plan to buy any more books
on C++.

So, let’s look at my Ada books. I have about 25 of
them. Two of them I don’t like. Five of them are now
available on the Internet for free. There are three on the
Internet that I don’t have in hard copy, and I’m not count-
ing them. Seven of them are Ada95, and the rest are
Ada83 books. The old Ada books are still useful because
of the backwards compatibility of the language and the
fact that many of them are also about software engineer-
ing principles as well as the language. The one on distrib-
uted real-time systems is still a good book on distributed
real-time systems, even though Ada95 fixed many of the
issues that were raised.

These books compliment each other. Some authors are
better at explaining access types, others at explaining task-
ing, and still others at explaining scope rules. These books
are honest; they don’t contradict each other.
Unfortunately, our universities are slower to change and
adapt to new technology than our militaries, so not many
schools teach this language.

At the head of my linked list of want-to-have books is
“Real-Time Systems and Programming Languages: Ada95,
Real-Time Java and Real-Time Posix,” by Alan Burns and
Andrew J. Wellings. Should I file this with my Ada books
or my Java books?

It is not the number of books that are published that
count; it is their honesty, consistency, and the fact that
they are endurable that counts. This is a much harder met-
ric to measure. Last week in the bookstore, the number of
books on C# and Java were each more numerous than the
number of books on C++. Still, neither of these lan-
guages is as powerful or as stable as Ada. They are just
more popular. It pleased me to see that there were three
or four vendors at the STC from which I could buy Ada
compilers and programming environments.

Dennis Ludwig
Simulation and Analysis Facility
Wright-Patterson Air Force Base

CrossTalk invites readers to submit their thoughts, comments,
and ideas on its themes and articles as a “Letter to the Editor.”
Simply e-mail letters to <crosstalk.staff@hill.af.mil>.

LETTER TO THE EDITOR

Dear CrossTalk Editor,


