NOT MEASUREMENT
SENSITIVE��
	MIL-STD-498
 	5 December 1994

 	Superseding
	DOD-STD-2167A
 	29 February 1988
 	DOD-STD-7935A
	31 October 1988
	DOD-STD-1703(NS)
	12 February 1987

	MILITARY STANDARD

	SOFTWARE DEVELOPMENT

	AND DOCUMENTATION
�

�seq Figure * arabic�1�
AMSC NO. N7069 AREA: IPSC/MCCR
 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
�FOREWORD

1.	This Military Standard is approved for use by all Departments and Agencies of the Department of Defense.

2.	Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to SPAWAR 10-12, 2451 Crystal Drive (CPK-5), Arlington, VA 22245-5200. The comments may be submitted by letter or by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document.

3.	This standard merges DOD-STD-2167A and DOD-STD-7935A to define a set of activities and documentation suitable for the development of both weapon systems and Automated Information Systems. A conversion guide from these standards to MIL-STD-498 is provided in Appendix I. Other changes include improved compatibility with incremental and evolutionary development models; improved compatibility with non-hierarchical design methods; improved compatibility with computer-aided software engineering (CASE) tools; alternatives to, and more flexibility in, preparing documents; clearer requirements for incorporating reusable software; introduction of software management indicators; added emphasis on software supportability; and improved links to systems engineering. This standard supersedes DOD-STD-2167A, DOD-STD-7935A, and DOD-STD-1703 (NS).

4.	This standard can be applied in any phase of the system life cycle. It can be applied to contractors, subcontractors, or Government in-house agencies performing software development. For uniformity, the term "acquirer" is used for the organization requiring the technical effort, the term "developer" for the organization performing the technical effort, and the term "contract" for the agreement between them. The term "software development" is used as an inclusive term encompassing new development, modification, reuse, reengineering, maintenance, and all other activities resulting in software products.

5.	This standard is not intended to specify or discourage the use of any particular software development method. The developer is responsible for selecting software development methods that support the achievement of contract requirements.

6.	This standard implements the development and documentation processes of ISO/IEC DIS 12207. It interprets all applicable clauses in MIL-Q-9858A (Quality Program Requirements) and ISO 9001 (Quality Systems) for software.

7.	This standard includes all activities pertaining to software development. It invokes no other standards. It can be applied on its own or supplemented with other standards, such as those identified in Section 6. If other standards are applied, the acquirer is responsible for resolving any conflicts that arise.

8.	Data Item Descriptions (DIDs) applicable to this standard are listed in Section 6. These DIDs describe the information required by this standard.

9.	This standard and its Data Item Descriptions (DIDs) are meant to be tailored by the acquirer to ensure that only necessary and cost-effective requirements are imposed on software development efforts. General tailoring guidance can be found in Section 6 and in DOD-HDBK-248. Tailoring guidance specific to this standard can be found in Appendixes G and H and in guidebooks and handbooks planned for this standard.
�CONTENTS

Paragraph				Page

�toc \f C \e 1-4 �1.	SCOPE			1
	1.1		Purpose		1
	1.2		Application		1
			1.2.1	Organizations and agreements		1
			1.2.2	Contract-specific application		1
			1.2.3	Tailoring		1
			1.2.4	Interpretation of selected terms		1
						1.2.4.1	Interpretation of "system"		1
						1.2.4.2	Interpretation of "participate" in system development		2
						1.2.4.3	Interpretation of "develop," "define," etc		2
						1.2.4.4	Interpretation of "record"		2
	1.3		Order of precedence		2

2.	REFERENCED DOCUMENTS		3

3.	DEFINITIONS		4

4.	GENERAL REQUIREMENTS		8	
	4.1		Software development process		8	
	4.2		General requirements for software development		8
			4.2.1	Software development methods		8
			4.2.2	Standards for software products		8
			4.2.3	Reusable software products		8
						4.2.3.1	Incorporating reusable software products		8
						4.2.3.2	Developing reusable software products		9
			4.2.4	Handling of critical requirements		9
						4.2.4.1	Safety assurance		9
						4.2.4.2	Security assurance		9
						4.2.4.3	Privacy assurance		9
						4.2.4.4	Assurance of other critical requirements		9
			4.2.5	Computer hardware resource utilization	 10
			4.2.6	Recording rationale	 10
			4.2.7	Access for acquirer review		10

5.	DETAILED REQUIREMENTS		11
	5.1		Project planning and oversight		12
			5.1.1	Software development planning		12
			5.1.2	CSCI test planning		12
			5.1.3	System test planning		12
			5.1.4	Software installation planning		12
			5.1.5	Software transition planning		12
			5.1.6	Following and updating plans		13
	5.2		Establishing a software development environment		13
			5.2.1	Software engineering environment		13
			5.2.2	Software test environment		13
			5.2.3	Software development library		13	
�CONTENTS - Continued

Paragraph				Page

			5.2.4	Software development files		13
			5.2.5	Non-deliverable software		13
	5.3		System requirements analysis		13
			5.3.1	Analysis of user input		14
			5.3.2	Operational concept		14
			5.3.3	System requirements		14
	5.4		System design		14
			5.4.1	System-wide design decisions		14
			5.4.2	System architectural design		14
	5.5		Software requirements analysis		15
	5.6		Software design		15
			5.6.1	CSCI-wide design decisions		15
			5.6.2	CSCI architectural design		15
			5.6.3	CSCI detailed design		15
	5.7		Software implementation and unit testing		16
			5.7.1	Software implementation		16
			5.7.2	Preparing for unit testing		16
			5.7.3	Performing unit testing		16
			5.7.4	Revision and retesting		16
			5.7.5	Analyzing and recording unit test results		16
	5.8		Unit integration and testing		16
			5.8.1	Preparing for unit integration and testing		17
			5.8.2	Performing unit integration and testing		17
			5.8.3	Revision and retesting		17
			5.8.4	Analyzing and recording unit integration and test results		17
	5.9		CSCI qualification testing		17
			5.9.1	Independence in CSCI qualification testing		17
			5.9.2	Testing on the target computer system		17
			5.9.3	Preparing for CSCI qualification testing		17
			5.9.4	Dry run of CSCI qualification testing		18
			5.9.5	Performing CSCI qualification testing		18
			5.9.6	Revision and retesting		18
			5.9.7	Analyzing and recording CSCI qualification test results		18
	5.10	CSCI/HWCI integration and testing		18
			5.10.1	Preparing for CSCI/HWCI integration and testing		18
			5.10.2	Performing CSCI/HWCI integration and testing		18
			5.10.3	Revision and retesting		18
			5.10.4	Analyzing and recording CSCI/HWCI integration and test results		19
	5.11	System qualification testing		19
			5.11.1	Independence in system qualification testing		19
			5.11.2	Testing on the target computer system		19
			5.11.3	Preparing for system qualification testing		19
			5.11.4	Dry run of system qualification testing		19
			5.11.5	Performing system qualification testing		19
			5.11.6	Revision and retesting		19
			5.11.7	Analyzing and recording system qualification test results		20
�CONTENTS - Continued

Paragraph				Page

	5.12	Preparing for software use		20
			5.12.1	Preparing the executable software		20
			5.12.2	Preparing version descriptions for user sites		20
			5.12.3	Preparing user manuals		20
						5.12.3.1	Software user manuals		20
						5.12.3.2	Software input/output manuals		20
						5.12.3.3	Software center operator manuals		21
						5.12.3.4	Computer operation manuals		21
			5.12.4	Installation at user sites		21
	5.13	Preparing for software transition		21
			5.13.1	Preparing the executable software		21
			5.13.2	Preparing source files		21
			5.13.3	Preparing version descriptions for the support site		21
			5.13.4	Preparing the "as built" CSCI design and related information		21
			5.13.5	Updating the system design description		22
			5.13.6	Preparing support manuals		22
						5.13.6.1	Computer programming manuals		22
						5.13.6.2	Firmware support manuals		22
			5.13.7	Transition to the designated support site		22
	5.14	Software configuration management		23
			5.14.1	Configuration identification		23
			5.14.2	Configuration control		23
			5.14.3	Configuration status accounting		23
			5.14.4	Configuration audits		23
			5.14.5	Packaging, storage, handling, and delivery		23
	5.15	Software product evaluation		24
			5.15.1	In-process and final software product evaluations		24
			5.15.2	Software product evaluation records		24
			5.15.3	Independence in software product evaluation		24
	5.16	Software quality assurance		24
			5.16.1	Software quality assurance evaluations		24
			5.16.2	Software quality assurance records		24
			5.16.3	Independence in software quality assurance		25
	5.17	Corrective action		25
			5.17.1	Problem/change reports		25
			5.17.2	Corrective action system		25
	5.18	Joint technical and management reviews		25
			5.18.1	Joint technical reviews		26
			5.18.2	Joint management reviews		26
	5.19	Other activities		26
			5.19.1	Risk management		26
			5.19.2	Software management indicators		27
			5.19.3	Security and privacy		27
			5.19.4	Subcontractor management		27
			5.19.5	Interface with software IV&V agents		27
			5.19.6	Coordination with associate developers		27
			5.19.7	Improvement of project processes		27	
�CONTENTS - Continued

Paragraph				Page

6.	NOTES		28
	6.1	Intended use		28
	6.2	Data requirements		28
	6.3	Relationship between standard and CDRL		29
	6.4	Delivery of tool contents		29
	6.5	Tailoring guidance		29
	6.6	Cost/schedule reporting		29
	6.7	Related standardization documents		29
	6.8	Subject term (key word) listing		29

APPENDIXES
Appendix				Page

	A	LIST OF ACRONYMS		32
		A.1		Scope		32
		A.2		Applicable documents		32
		A.3		Acronyms		32

	B	INTERPRETING MIL-STD-498 FOR INCORPORATION OF REUSABLE
		SOFTWARE PRODUCTS		33
		B.1		Scope		33
		B.2		Applicable documents		33
		B.3		Evaluating reusable software products		33
		B.4		Interpreting MIL-STD-498 activities for reusable software
					products		33

	C	CATEGORY AND PRIORITY CLASSIFICATIONS FOR PROBLEM REPORTING		36
		C.1		Scope		36
		C.2		Applicable documents		36
		C.3		Classification by category		36
		C.4		Classification by priority		36

	D	SOFTWARE PRODUCT EVALUATIONS		38
		D.1		Scope		38
		D.2		Applicable documents		38
		D.3 	Required evaluations		38
		D.4 	Criteria definitions		38

	E	CANDIDATE JOINT MANAGEMENT REVIEWS		44
		E.1		Scope		44
		E.2		Applicable documents		44
		E.3		Assumptions		44
		E.4		Candidate reviews		44
�CONTENTS - Continued

APPENDIXES
Appendix				Page

	F	CANDIDATE MANAGEMENT INDICATORS		46
		F.1		Scope		46
		F.2		Applicable documents		46
		F.3		Candidate indicators		46

	G	GUIDANCE ON PROGRAM STRATEGIES, TAILORING, AND BUILD
		PLANNING		47
		G.1	Scope		47
		G.2	Applicable documents		47
		G.3	Candidate program strategies		47
		G.4	Selecting an appropriate program strategy		48
		G.5	Relationship of MIL-STD-498 to program strategies		48
		G.6	Planning software builds and tailoring MIL-STD-498		48

	H	GUIDANCE ON ORDERING DELIVERABLES		56
		H.1		Scope		56
		H.2		Applicable documents		56
		H.3		Ordering deliverables		56
		H.4		Scheduling deliverables		56
		H.5		Format of deliverables		56
		H.6		Tailoring the DIDs		56

	I	CONVERSION GUIDE FROM DOD-STD-2167A AND DOD-STD-7935A		57
		I.1		Scope		57
		I.2		Applicable documents		57
		I.3		Mapping of key terms		57
		I.4		Mapping of DIDs		57

INDEX 		61

�CONTENTS - Continued

FIGURES

Figure						Page

	1	 One possible mapping of MIL-STD-498 activities to multiple builds		11
	2	 Related standardization documents		30
	3	 Interpreting MIL-STD-498 for incorporation of reusable software		34
	4	 Categories to be used for classifying problems in software products		37
	5	 Priorities to be used for classifying problems		37
	6	 Software products and associated evaluation criteria		39
	7	 Key features of three DOD program strategies		47
	8	 Sample risk analysis for determining the appropriate program strategy		49
	9	 One possible way of applying MIL-STD-498 to the Grand Design
		 program strategy		50
	10	 One possible way of applying MIL-STD-498 to the Incremental
		 program strategy		51
	11	 One possible way of applying MIL-STD-498 to the Evolutionary
		 program strategy		52
	12	 One possible way of applying MIL-STD-498 to a reengineering project		53
	13	 Example of build planning for a MIL-STD-498 project		54
	14	 Mapping of key terms		57
	15	 Mapping of DOD-STD-7935A DIDs to MIL-STD-498 DIDs		58
	16	 Mapping of DOD-STD-2167A DIDs to MIL-STD-498 DIDs		59
	17	 Mapping of MIL-STD-498 DIDs to DOD-STD-2167A and
		 DOD-STD-7935A DIDs		60��
�tc "1. SCOPE"\l�1. SCOPE

1.1		Purpose�tc "1.1	Purpose"\l�. The purpose of this standard is to establish uniform requirements for software development and documentation.

1.2		Application�tc "1.2	Application"\l�. MIL-STD-498 is intended to be applied as follows.

1.2.1	Organizations and agreements�tc "1.2.1	Organizations and agreements"\l�. This standard can be applied to contractors, subcontractors, or Government in-house agencies performing software development. For uniformity, the term "acquirer" is used for the organization requiring the technical effort, "developer" for the organization performing the technical effort, "contract" for the agreement between these parties, Statement of Work" (SOW) for the list of tasks to be performed by�the developer, "Contract Data Requirements List" (CDRL) for the list of deliverable software products, and "subcontractor" for any organization tasked by the developer to perform part �of the required effort. "Software development" is used as an inclusive term encompassing�new development, modification, reuse, reengineering, maintenance, and all other activities resulting in software products.

1.2.2	Contract-specific application�tc "1.2.2	Contract-specific application"\l�. This standard is invoked by citing it on a contract. It applies to each software product and to each type of software covered by the contract, regardless of storage medium, to the extent specified in the contract. Examples of types of software include deliverable versus non-deliverable, software designed to meet user needs versus software in the engineering and test environments, and software designed to meet one user need versus software designed to meet another. The acquirer is expected to specify the types of software to which the standard applies and to tailor the standard appropriately for each type of software. If the standard is invoked without such a statement of selective application, it will be understood to apply in its entirety to all deliverable software, with requirements concerning the software development environment applicable to the software development environment for the deliverable software. While this standard is written in terms of Computer Software Configuration Items (CSCIs), it may be applied to software not designated as a CSCI, with the term "CSCI" interpreted appropriately. Software installed in firmware is subject to all of the aforementioned provisions. This standard does not apply to the hardware element of firmware.

1.2.3	Tailoring�tc "1.2.3	Tailoring"\l�. This standard and its Data Item Descriptions (DIDs) are meant to be tailored for each type of software to which they are applied. While tailoring is the responsibility of the acquirer, suggested tailoring may be provided by prospective and selected developers. General tailoring guidance can be found in Section 6 and in DOD-HDBK-248. Tailoring guidance specific to this standard can be found in Appendixes G and H and in guidebooks and handbooks planned for this standard.

1.2.4	Interpretation of selected terms�tc "1.2.4	Interpretation of selected terms"\l�. The following terms have a special interpretation as used in this standard.

1.2.4.1		Interpretation of "system"�tc "1.2.4.1		Interpretation of system"\l�. The following interpretations apply:

a.		The term "system," as used in this standard, may mean: (1) a hardware-software system (for example, a radar system) for which this standard covers only the software portion, or (2) a software system (for example, a payroll system) for which this standard governs overall development.
�
b.		If a system consists of subsystems, all requirements in this standard concerning systems apply to the subsystems as well. If a contract is based on alternatives to systems and subsystems, such as complex items, the requirements in this standard concerning the system and its specification apply to these alternatives and their specifications.

1.2.4.2		Interpretation of "participate" in system development. The term "participate" in paragraphs regarding system-level activities is to be interpreted as follows: If the software covered by this standard is part of a hardware-software system for which this standard covers only the software portion, the term "participate" is to be interpreted as "take part in, as described in the software development plan." If the software (possibly with its computers)�is considered to constitute a system, the term "participate" is to be interpreted as "be responsible for."

1.2.4.3		Interpretation of "develop," "define," etc. Throughout this standard, requirements�to "develop," "define," "establish," or "identify" information are to be interpreted to include�new development, modification, reuse, reengineering, maintenance, or any other activity or combination of activities resulting in software products.

1.2.4.4		Interpretation of "record". Throughout this standard, requirements to "record" information are to be interpreted to mean "set down in a manner that can be retrieved and viewed." The result may take many forms, including, but not limited to, hand-written notes, hard-copy or electronic documents, and data recorded in computer-aided software engineering (CASE) and project management tools.

1.3		Order of precedence. In the event of conflict between the requirements of this standard and other applicable standardization documents, the acquirer is responsible for resolving the conflicts.
�
2. REFERENCED DOCUMENTS

This section does not apply to this standard, since no documents are referenced in Sections�3, 4, or 5. Section 6 contains a list of standardization documents that may be used with this standard.
� �3. DEFINITIONS

Note: In addition to the definitions provided here, Section 1 describes MIL-STD-498's interpretation or special usage of the following terms: acquirer, contract, Contract Data Requirements List, define, develop, developer, establish, identify, participate, record, software development, Statement of Work, subcontractor, subsystem, and system.

3.1		Acceptance. An action by an authorized representative of the acquirer by which the acquirer assumes ownership of software products as partial or complete performance of a contract.

3.2		Acquirer. An organization that procures software products for itself or another organization.

3.3		Approval. Written notification by an authorized representative of the acquirer that a developer's plans, design, or other aspects of the project appear to be sound and can be used as the basis for further work. Such approval does not shift responsibility from the developer�to meet contractual requirements.

3.4		Architecture. The organizational structure of a system or CSCI, identifying its components, their interfaces, and a concept of execution among them.

3.5		Associate developer. An organization that is neither prime contractor nor�subcontractor to the developer, but who has a development role on the same or related�system or project.

3.6		Behavioral design. The design of how an overall system or CSCI will behave, from a user's point of view, in meeting its requirements, ignoring the internal implementation of the system or CSCI. This design contrasts with architectural design, which identifies the internal components of the system or CSCI, and with the detailed design of those components.

3.7		Build. (1) A version of software that meets a specified subset of the requirements that the completed software will meet. (2) The period of time during which such a version is developed. Note: The relationship of the terms "build" and "version" is up to the developer;�for example, it may take several versions to reach a build, a build may be released in several parallel versions (such as to different sites), or the terms may be used as synonyms.

3.8		Computer database. See database.

3.9		Computer hardware. Devices capable of accepting and storing computer data, executing a systematic sequence of operations on computer data, or producing control outputs. Such devices can perform substantial interpretation, computation, communication, control, or other logical functions.

3.10	Computer program. A combination of computer instructions and data definitions that enable computer hardware to perform computational or control functions.

3.11	Computer software. See software.
 �
3.12	Computer Software Configuration Item (CSCI). An aggregation of software that satisfies an end use function and is designated for separate configuration management by the acquirer. CSCIs are selected based on tradeoffs among software function, size, host or target computers, developer, support concept, plans for reuse, criticality, interface considerations, need to be separately documented and controlled, and other factors.

3.13	Configuration Item. An aggregation of hardware, software, or both that satisfies an�end use function and is designated for separate configuration management by the acquirer.

3.14	Database. A collection of related data stored in one or more computerized files in a manner that can be accessed by users or computer programs via a database management system.

3.15	Database management system. An integrated set of computer programs that provide the capabilities needed to establish, modify, make available, and maintain the integrity of a database.

3.16	Deliverable software product. A software product that is required by the contract to�be delivered to the acquirer or other designated recipient.

3.17	Design. Those characteristics of a system or CSCI that are selected by the developer in response to the requirements. Some will match the requirements; others will be elaborations of requirements, such as definitions of all error messages in response to a requirement to display error messages; others will be implementation related, such as decisions about what software units and logic to use to satisfy the requirements.

3.18	Developer. An organization that develops software products ("develops" may include new development, modification, reuse, reengineering, maintenance, or any other activity that results in software products). The developer may be a contractor or a Government agency.

3.19	Document/documentation. A collection of data, regardless of the medium on which�it is recorded, that generally has permanence and can be read by humans or machines.

3.20	Evaluation. The process of determining whether an item or activity meets specified criteria.

3.21	Firmware. The combination of a hardware device and computer instruc�tions and/or computer data that reside as read�only software on the hardware device.

3.22	Hardware Configuration Item (HWCI). An aggregation of hardware that satisfies an�end use function and is designated for separate configuration management by the acquirer.

3.23	Independent verification and validation (IV&V). Systematic evaluation of software products and activities by an agency that is not responsible for developing the product or performing the activity being evaluated. IV&V is not within the scope of this standard.

3.24	Interface. In software development, a relationship among two or more entities (such�as CSCI-CSCI, CSCI-HWCI, CSCI-user, or software unit-software unit) in which the entities share, provide, or exchange data. An inter�face is not a CSCI, software unit, or other system component; it is a relationship among them.

3.25	Joint review. A process or meeting involving representatives of both the acquirer and the developer, during which project status, software products, and/or project issues are examined and discussed.
3.26	Non-deliverable software product. A software product that is not required by the contract to be delivered to the acquirer or other designated recipient.
3.27	Process. An organized set of activities performed for a given purpose; for example,�the software development process.
3.28	Qualification testing. Testing performed to demonstrate to the acquirer that a CSCI�or a system meets its specified requirements.
3.29	Reengineering. The process of examining and altering an existing system�to reconstitute it in a new form. May include reverse engineering (analyzing a system and producing a representation at a higher level of abstraction, such as design from code), restructuring (transforming a system from one representation to another at the same level of abstraction), redocumentation (analyzing a system and producing user or support documentation), forward engineering (using software products derived from an existing system, together with new requirements, to produce a new system), retargeting (transforming�a system to install it on a different target system), and translation (transforming source code from one language to another or from one version of a language to another).
3.30	Requirement. (1) A characteristic that a system or CSCI must possess in order to be acceptable to the acquirer. (2) A mandatory statement in this standard or another portion of the contract.
3.31	Reusable software product. A software product developed for one use but having other uses, or one developed specifically to be usable on multiple projects or in multiple roles on one project. Examples include, but are not limited to, commercial off-the-shelf software products, acquirer-furnished software products, software products in reuse libraries, and pre-existing developer software products. Each use may include all or part of the software�product and may involve its modification. This term can be applied to any software product�(for example, requirements, architectures, etc.), not just to software itself.
3.32	Software. Computer programs and computer databases. Note: Although some definitions of software include documentation, MIL-STD-498 limits the definition to computer programs and computer databases in accordance with Defense Federal Acquisition Regulation Supplement 227.401.
3.33	Software development. A set of activities that results in software products. Software development may include new development, modification, reuse, reengineering, maintenance, or any other activities that result in software products.
3.34	Software development file (SDF). A repository for material pertinent to the development of a particular body of software. Contents typically include (either directly or �by reference) considerations, rationale, and constraints related to requirements analysis, design, and implementation; developer-internal test information; and schedule and status information.
3.35	Software development library (SDL). A controlled collection of software, documen�tation, other intermediate and final software products, and associated tools and procedures used to facilitate the orderly development and subsequent support of software.

3.36	Software development process. An organized set of activities performed to translate user needs into software products.

3.37	Software engineering. In general usage, a synonym for software development. As used in this standard, a subset of software development consisting of all activities except qualification testing. The standard makes this distinction for the sole purpose of giving separate names to the software engineering and software test environments.

3.38	Software engineering environment. The facilities, hardware, software, firmware, procedures, and documentation needed to perform software engineering. Elements may include but are not limited to computer-aided software engineering (CASE) tools, compilers, assemblers, linkers, loaders, operating systems, debuggers, simulators, emulators, documentation tools, and database management systems.

3.39	Software product. Software or associated information created, modified, or incor�porated to satisfy a contract. Examples include plans, requirements, design, code, databases, test information, and manuals.

3.40	Software quality. The ability of software to satisfy its specified requirements.

3.41	Software support. The set of activities that takes place to ensure that software�installed for operational use continues to perform as intended and fulfill its intended role in system operation. Software support includes software maintenance, aid to users, and related activities.

3.42	Software system. A system consisting solely of software and possibly the computer equipment on which the software operates.

3.43	Software test environment. The facilities, hardware, software, firmware, procedures, and documentation needed to perform qualification, and possibly other, testing of software. Elements may include but are not limited to simulators, code analyzers, test case generators, and path analyzers, and may also include elements used in the software engineering environment.

3.44	Software transition. The set of activities that enables responsibility for software development to pass from one organization, usually the organization that performs initial software development, to another, usually the organization that will perform software support.

3.45	Software unit. An element in the design of a CSCI; for example, a major subdivision �of a CSCI, a component of that subdivision, a class, object, module, function, routine, or database. Software units may occur at different levels of a hierarchy and may consist of �other software units. Software units in the design may or may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities.

3.46	Support (of software). See software support.

3.47	Transition (of software). See software transition.

3.48	Definitions of acronyms used in this standard. See Appendix A.
�
 4. GENERAL REQUIREMENTS

4.1		Software development process. The developer shall establish a software development process consistent with contract requirements. The software development process shall include the following major activities, which may overlap, may be applied iteratively, may be applied differently to different elements of software, and need not be performed in the order listed below. Appendix G provides examples. The developer's software development process shall be described in the software development plan.

	a.	Project planning and oversight (section 5.1)
	b.	Establishing a software development environment (5.2)
	c.	System requirements analysis (5.3)
	d.	System design (5.4)
	e.	Software requirements analysis (5.5)
	f.	Software design (5.6)
	g.	Software implementation and unit testing (5.7)
	h.	Unit integration and testing (5.8)
	i.	CSCI qualification testing (5.9)
	j.	CSCI/HWCI integration and testing (5.10)
	k.	System qualification testing (5.11)
	l.	Preparing for software use (5.12)
	m.	Preparing for software transition (5.13)
	n.	Integral processes:
		1)	Software configuration management (5.14)
		2)	Software product evaluation (5.15)
		3)	Software quality assurance (5.16)
		4)	Corrective action (5.17)
		5)	Joint technical and management reviews (5.18)
		6)	Other activities (5.19)

4.2		General requirements for software development.�tc "4.2	General requirements for software development"\l� The developer shall meet the following general requirements in carrying out the detailed requirements in section 5 of this standard.

4.2.1	Software development methods. The developer shall use systematic, documented methods for all software development activities. These methods shall be described in, or referenced from, the software development plan.

4.2.2	Standards for software products.�tc "4.2.2	Standards for software products"\l� The developer shall develop and apply standards for representing requirements, design, code, test cases, test procedures, and test results. These standards shall be described in, or referenced from, the software development plan.

4.2.3	Reusable software products.�tc "4.2.3	Reusable software products"\l� The developer shall meet the following requirements.

4.2.3.1		Incorporating reusable software products. The developer shall identify and evaluate reusable software products for use in fulfilling the requirements of the contract. The scope �of the search and the criteria to be used for evaluation shall be as described in the software development plan. Reusable software products that meet the criteria shall be used where practical. Appendix B provides required and candidate criteria and interprets this standard for incorporation of reusable software products. Incorporated software products shall meet the data rights requirements in the contract.

4.2.3.2		Developing reusable software products. During the course of the contract, the developer shall identify opportunities for developing software products for reuse and shall evaluate the benefits and costs of these opportunities. Opportunities that provide cost �benefits and are compatible with program objectives shall be identified to the acquirer.

Note: In addition, the developer may be required by the contract to develop software products specifically for reuse.

4.2.4	Handling of critical requirements. The developer shall meet the following requirements.

4.2.4.1		Safety assurance. The developer shall identify as safety-critical those CSCIs or portions thereof whose failure could lead to a hazardous system state (one that could result�in unintended death, injury, loss of property, or environmental harm). If there is such �software, the developer shall develop a safety assurance strategy, including both tests and analyses, to assure that the requirements, design, implementation, and operating procedures for the identified software minimize or eliminate the potential for hazardous conditions. The strategy shall include a software safety program, which shall be integrated with the system safety program if one exists. The developer shall record the strategy in the software development plan, implement the strategy, and produce evidence, as part of required software products, that the safety assurance strategy has been carried out.

4.2.4.2		Security assurance. The developer shall identify as security-critical those CSCIs or portions thereof whose failure could lead to a breach of system security. If there is such software, the developer shall develop a security assurance strategy to assure that the requirements, design, implementation, and operating procedures for the identified software minimize or eliminate the potential for breaches of system security. The developer shall record the strategy in the software development plan, implement the strategy, and produce evidence, as part of required software products, that the security assurance strategy has been carried out.

4.2.4.3		Privacy assurance. The developer shall identify as privacy-critical those CSCIs or portions thereof whose failure could lead to a breach of system privacy. If there is such software, the developer shall develop a privacy assurance strategy to assure that the requirements, design, implementation, and operating procedures for the identified software minimize or eliminate the potential for breaches of system privacy. The developer shall record the strategy in the software development plan, implement the strategy, and produce evidence, as part of required software products, that the privacy assurance strategy has been carried out.

4.2.4.4		Assurance of other critical requirements. If a system relies on software to satisfy other requirements deemed critical by the contract or by system specifications, the developer shall identify those CSCIs or portions thereof whose failure could lead to violation of those critical requirements; develop a strategy to assure that the requirements, design, implementation, and operating procedures for the identified software minimize or eliminate the potential for such violations; record the strategy in the software development plan; implement the strategy; and produce evidence, as part of required software products, that the assurance strategy has been carried out.

�
 4.2.5	Computer hardware resource utilization. The developer shall analyze contract require�ments concerning computer hardware resource utilization (such as maximum allowable use �of processor capacity, memory capacity, input/output device capacity, auxiliary storage device capacity, and communications/network equipment capacity). The developer shall allocate computer hardware resources among the CSCIs, monitor the utilization of these resources for the duration of the contract, and reallocate or identify the need for additional resources as necessary to meet contract requirements.

�tc "
"\l�4.2.6	Recording rationale. The developer shall record rationale that will be useful to the support agency for key decisions made in specifying, designing, implementing, and testing the software. The rationale shall include trade-offs considered, analysis methods, and criteria used to make the decisions. The rationale shall be recorded in documents, code comments, or other media that will transition to the support agency. The meaning of "key decisions" and the approach for providing the rationale shall be described in the software development plan.

4.2.7	Access for acquirer review. The developer shall provide the acquirer or its authorized representative access to developer and subcontractor facilities, including the software engineering and test environments, for review of software products and activities required by the contract.
�
5. DETAILED REQUIREMENTS

The order of the requirements in this section is not intended to specify the order in which they must be carried out. Many of the activities may be ongoing at one time; different software products may proceed at different paces; and activities specified in early subsections may depend on input from activities in later subsections. If the software is developed in multiple builds, some activities may be performed in every build, others may be performed only in selected builds, and activities and software products may not be complete until several or all builds are accomplished. Figure 1 provides an example of how each activity may be applied �in one or more builds. Non-mandatory notes throughout section 5 tell how to interpret each activity on a project involving multiple builds. A project involving a single build will �accomplish all required activities in that build. Appendix G provides guidance for planning builds, determining which activities apply to each build, and scheduling these activities.

�Builds�����Activity�Build 1�Build 2�Build 3�Build 4��5.1 Project planning and oversight�	x�	x�	x�	x��5.2 Establishing a software development environment�	x�	x�	x�	x��5.3 System requirements analysis�	x�	x�	���5.4 System design�	x�	x�	x���5.5 Software requirements analysis�	x�	x�	x�	x��5.6 Software design�	x�	x�	x�	x��5.7 Software implementation and unit testing�	x�	x�	x�	x��5.8 Unit integration and testing�	x�	x�	x�	x��5.9 CSCI qualification testing��	x�	x�	x��5.10 CSCI/HWCI integration and testing��	x�	x�	x��5.11 System qualification testing��	�	x�	x��5.12 Preparing for software use�	x�	x�	x�	x��5.13 Preparing for software transition����	x��Integral processes:������ 5.14 Software configuration management �	x�	x�	x�	x�� 5.15 Software product evaluation�	x�	x�	x�	x�� 5.16 Software quality assurance�	x�	x�	x�	x�� 5.17 Corrective action �	x�	x�	x�	x�� 5.18 Joint technical and management reviews�	x�	x�	x�	x�� 5.19 Other activities�	x�	x�	x�	x��
FIGURE 1. One possible mapping of MIL-STD-498 activities to multiple builds.
�
5.1		Project planning and oversight. The developer shall perform project planning and oversight in accordance with the following requirements.

	Note: 	If a system or CSCI is developed in multiple builds, planning for each build should be interpreted to include: a) overall planning for the contract, b) detailed planning for the current build, and c) planning for future builds covered under the contract to a level of �detail compatible with the information available.

5.1.1	Software development planning. The developer shall develop and record plans for conducting the activities required by this standard and by other software-related requirements in the contract. This planning shall be consistent with system-level planning and shall include all applicable items in the Software Development Plan (SDP) DID (see 6.2).

Note 1: 	The wording here and throughout MIL-STD-498 is designed to: 1) Emphasize that the development and recording of planning and engineering information is an intrinsic part of the software development process, to be performed regardless of whether a deliverable is required; 2) Use the DID as a checklist of items to be covered in the planning or engineering activity; and 3) Permit representations other than traditional documents for recording the information (e.g., computer-aided software engineering (CASE) tools).

Note 2:	 If the CDRL specifies delivery of the information generated by this or any other paragraph, the developer is required to format, assemble, mark, copy, and distribute the deliverable in accordance with the CDRL. This task is recognized to be separate from the task of generating and recording the required information and to require additional time and effort on the part of the developer.

Note 3:	 The software development plan covers all activities required by this standard. Portions of the plan may be bound or maintained separately if this approach enhances the usability of the information. Examples include separate plans for software quality assurance and software configuration management.

5.1.2	CSCI test planning. The developer shall develop and record plans for conducting CSCI qualification testing. This planning shall include all applicable items in the Software Test Plan (STP) DID (see 6.2).

5.1.3	System test planning. The developer shall participate in developing and recording plans for conducting system qualification testing. For software systems, this planning shall include all applicable items in the Software Test Plan (STP) DID (see 6.2). (The intent for software systems is a single software test plan covering both CSCI and system qualification testing.)

5.1.4	Software installation planning. The developer shall develop and record plans for performing software installation and training at the user sites specified in the contract. This planning shall include all applicable items in the Software Installation Plan (SIP) DID (see 6.2).

5.1.5	Software transition planning. The developer shall identify all software development resources that will be needed by the support agency to fulfill the support concept specified in the contract. The developer shall develop and record plans identifying these resources and describing the approach to be followed for transitioning deliverable items to the support agency. This planning shall include all applicable items in the Software Transition Plan (STrP) DID (see 6.2).

5.1.6	Following and updating plans. Following acquirer approval of any of the plans in this section, the developer shall conduct the relevant activities in accordance with the plan. The developer's management shall review the software development process at intervals specified in the software development plan to assure that the process complies with the contract and adheres to the plans. With the exception of developer-internal scheduling and related staffing information, updates to plans shall be subject to acquirer approval.

5.2		Establishing a software development environment. The developer shall establish a software development environment in accordance with the following requirements.

Note: 	If a system or CSCI is developed in multiple builds, establishing the software development environment in each build should be interpreted to mean establishing the environment needed to complete that build.

5.2.1	Software engineering environment. The developer shall establish, control, and maintain a software engineering environment to perform the software engineering effort. The developer shall ensure that each element of the environment performs its intended functions.

5.2.2	Software test environment. The developer shall establish, control, and maintain a software test environment to perform qualification, and possibly other, testing of software. �The developer shall ensure that each element of the environment performs its intended functions.

5.2.3	Software development library. The developer shall establish, control, and maintain a software development library (SDL) to facilitate the orderly development and subsequent support of software. The SDL may be an integral part of the software engineering and test environments. The developer shall maintain the SDL for the duration of the contract.

5.2.4	Software development files. The developer shall establish, control, and maintain a software development file (SDF) for each software unit or logically related group of software units, for each CSCI, and, as applicable, for logical groups of CSCIs, for subsystems, and for the overall system. The developer shall record information about the development of the software in appropriate SDFs and shall maintain the SDFs for the duration of the contract.

5.2.5	Non-deliverable software. The developer may use non-deliverable software in the development of deliverable software as long as the operation and support of the deliverable software after delivery to the acquirer do not depend on the non-deliverable software or provision is made to ensure that the acquirer has or can obtain the same software. The developer shall ensure that all non-deliverable software used on the project performs its intended functions.

5.3		System requirements analysis. The developer shall participate in system requirements analysis in accordance with the following requirements.

Note: If a system is developed in multiple builds, its requirements may not be fully defined until the final build. The developer's planning should identify the subset of system requirements to be defined in each build and the subset to be implemented in each build. System requirements analysis for a given build should be interpreted to mean defining the system requirements so identified for that build.
�
5.3.1	Analysis of user input. The developer shall participate in analyzing user input provided by the acquirer to gain an understanding of user needs. This input may take the form of need statements, surveys, problem/change reports, feedback on prototypes, interviews, or other user input or feedback.

5.3.2	Operational concept. The developer shall participate in defining and recording the operational concept for the system. The result shall include all applicable items in the Operational Concept Description (OCD) DID (see 6.2).

5.3.3	System requirements. The developer shall participate in defining and recording the requirements to be met by the system and the methods to be used to ensure that each requirement has been met. The result shall include all applicable items in the System/ Subsystem Specification (SSS) DID (see 6.2). Depending on CDRL provisions, requirements concerning system interfaces may be included in the SSS or in interface requirements specifications (IRSs).

Note: If a system consists of subsystems, the activity in 5.3.3 is intended to be�performed iteratively with the activities in 5.4 (System design) to define system requirements, design the system and identify its subsystems, define the requirements for those subsystems, design the subsystems and identify their components, and so on.

5.4		System design. The developer shall participate in system design in accordance with the following requirements.

Note: If a system is developed in multiple builds, its design may not be fully defined until the final build. The developer's planning should identify the portion of the system design �to be defined in each build. System design for a given build should be interpreted to mean defining the portion of the system design identified for that build.

5.4.1	System-wide design decisions. The developer shall participate in defining and recording system-wide design decisions (that is, decisions about the system's behavioral design and other decisions affecting the selection and design of system components). The result shall include all applicable items in the system-wide design section of the System/Subsystem Design Description (SSDD) DID (see 6.2). Depending on CDRL provisions, design pertaining to interfaces may be included in the SSDD or in interface design descriptions (IDDs) and design pertaining to databases may be included in the SSDD or in database design descriptions (DBDDs).

Note: 	 Design decisions remain at the discretion of the developer unless formally converted to requirements through contractual processes. The developer is responsible for fulfilling all requirements and demonstrating this fulfillment through qualification testing (see 5.9, 5.11). Design decisions act as developer-internal "requirements," to be implemented, imposed on subcontractors, if applicable, and confirmed by developer-internal testing, but their fulfillment need not be demonstrated to the acquirer.

5.4.2	System architectural design. The developer shall participate in defining and recording the architectural design of the system (identifying the components of the system, their interfaces, and a concept of execution among them) and the traceability between the system components and system requirements. The result shall include all applicable items in the architectural design and traceability sections of the System/Subsystem Design Description (SSDD) DID (see 6.2). Depending on CDRL provisions, design pertaining to interfaces may be included in the SSDD or in interface design descriptions (IDDs).
�
5.5		Software requirements analysis. The developer shall define and record the software requirements to be met by each CSCI, the methods to be used to ensure that each requirement has been met, and the traceability between the CSCI requirements and system requirements. The result shall include all applicable items in the Software Requirements Specification (SRS) DID (see 6.2). Depending on CDRL provisions, requirements concerning CSCI interfaces may be included in SRSs or in interface requirements specifications (IRSs).

Note: If a CSCI is developed in multiple builds, its requirements may not be fully defined until the final build. The developer's planning should identify the subset of each CSCI's requirements to be defined in each build and the subset to be implemented in each build. Software requirements analysis for a given build should be interpreted to mean defining �the CSCI requirements so identified for that build.

5.6		Software design. The developer shall perform software design in accordance with the following requirements.

Note: If a CSCI is developed in multiple builds, its design may not be fully defined until the final build. Software design in each build should be interpreted to mean the design necessary to meet the CSCI requirements to be implemented in that build.

5.6.1	CSCI-wide design decisions.�tc "5.6.1	CSCI-wide design decisions"\l� The developer shall define and record CSCI-wide design decisions (that is, decisions about the CSCI's behavioral design and other decisions affecting the selection and design of the software units comprising the CSCI). The result shall include all applicable items in the CSCI-wide design section of the Software Design Description (SDD) DID (see 6.2). Depending on CDRL provisions, design pertaining to interfaces may be included in SDDs or in interface design descriptions (IDDs) and design pertaining to databases may be included in SDDs or in database design descriptions (DBDDs).

5.6.2	CSCI architectural design. The developer shall define and record the architectural design of each CSCI (identifying the software units comprising the CSCI, their interfaces, and �a concept of execution among them) and the traceability between the software units and the CSCI requirements. The result shall include all applicable items in the architectural design and traceability sections of the Software Design Description (SDD) DID (see 6.2). Depending on CDRL provisions, design pertaining to interfaces may be included in SDDs or in interface design descriptions (IDDs).

Note: Software units may be made up of other software units and may be organized into as many levels as are needed to represent the CSCI architecture. For example, a CSCI may be divided into three software units, each of which is divided into additional software units, and so on.

5.6.3	CSCI detailed design. The developer shall develop and record a description of each software unit. The result shall include all applicable items in the detailed design section of the Software Design Description (SDD) DID (see 6.2). Depending on CDRL provisions, design pertaining to interfaces may be included in SDDs or in interface design descriptions (IDDs) and design of software units that are databases or that access or manipulate databases may be included in SDDs or in database design descriptions (DBDDs).
�
5.7		Software implementation and unit testing. The developer shall perform software implemen�tation and unit testing in accordance with the following requirements.
Note: The term "software" includes both computer programs and computer databases. The term "implementation" means converting software design into computer programs and computer databases. If a CSCI is developed in multiple builds, software implementation and unit testing of that CSCI will not be completed until the final build. Software implementation and unit testing in each build should be interpreted to include those units, or parts of units, needed to meet the CSCI requirements to be implemented in that build.
5.7.1	Software implementation. The developer shall develop and record software corre�sponding to each software unit in the CSCI design. This activity shall include, as applicable, coding computer instructions and data definitions, building databases, populating databases and other data files with data values, and other activities needed to implement the design. For deliverable software, the developer shall obtain acquirer approval to use any programming language not specified in the contract.
Note: Software units in the design may or may not have a one-to-one relationship with �the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities.
5.7.2	Preparing for unit testing. The developer shall establish test cases (in terms of inputs, expected results, and evaluation criteria), test procedures, and test data for testing the software corresponding to each software unit. The test cases shall cover all aspects of the unit's detailed design. The developer shall record this information in the appropriate software development files (SDFs).
5.7.3	Performing unit testing. The developer shall test the software corresponding to each software unit. The testing shall be in accordance with the unit test cases and procedures.
5.7.4	Revision and retesting. The developer shall make all necessary revisions to the software, perform all necessary retesting, and update the software development files (SDFs) and other software products as needed, based on the results of unit testing.
5.7.5	Analyzing and recording unit test results. The developer shall analyze the results of unit testing and shall record the test and analysis results in appropriate software development files (SDFs).
5.8		Unit integration and testing. The developer shall perform unit integration and testing �in accordance with the following requirements.
Note 1: Unit integration and testing means integrating the software corresponding to two �or more software units, testing the resulting software to ensure that it works together as intended, and continuing this process until all software in each CSCI is integrated and tested. The last stage of this testing is developer-internal CSCI testing. Since units may consist of other units, some unit integration and testing may take place during unit testing. The requirements in this section are not meant to duplicate those activities.
Note 2: If a CSCI is developed in multiple builds, unit integration and testing of that CSCI will not be completed until the final build. Unit integration and testing in each build should be interpreted to mean integrating software developed in the current build with other software developed in that and previous builds, and testing the results.
�
5.8.1	Preparing for unit integration and testing. The developer shall establish test cases (in terms of inputs, expected results, and evaluation criteria), test procedures, and test data for conducting unit integration and testing. The test cases shall cover all aspects of the CSCI-wide and CSCI architectural design. The developer shall record this information in the appropriate software development files (SDFs).

5.8.2	Performing unit integration and testing. The developer shall perform unit integration �and testing. The testing shall be in accordance with the unit integration test cases and procedures.

5.8.3	Revision and retesting. The developer shall make all necessary revisions to the software, perform all necessary retesting, and update the software development files (SDFs) and other software products as needed, based on the results of unit integration and testing.

5.8.4	Analyzing and recording unit integration and test results. The developer shall analyze the results of unit integration and testing and shall record the test and analysis results in appropriate software development files (SDFs).

5.9		CSCI qualification testing. The developer shall perform CSCI qualification testing in accordance with the following requirements.

Note 1: CSCI qualification testing is performed to demonstrate to the acquirer that CSCI requirements have been met. It covers the CSCI requirements in software requirements specifications (SRSs) and in associated interface requirements specifications (IRSs). This testing contrasts with developer-internal CSCI testing, performed as the final stage of unit integration and testing.

Note 2: If a CSCI is developed in multiple builds, its CSCI qualification testing will not be completed until the final build for that CSCI, or possibly until later builds involving items �with which the CSCI is required to interface. CSCI qualification testing in each build �should be interpreted to mean planning and performing tests of the current build of each CSCI to ensure that the CSCI requirements to be implemented in that build have been met.

5.9.1	Independence in CSCI qualification testing. The person(s) responsible for qualification testing of a given CSCI shall not be the persons who performed detailed design or implementation of that CSCI. This does not preclude persons who performed detailed design or implementation of the CSCI from contributing to the process, for example, by contributing test cases that rely on knowledge of the CSCI's internal implementation.

5.9.2	Testing on the target computer system. CSCI qualification testing shall include testing on the target computer system or an alternative system approved by the acquirer.

5.9.3	Preparing for CSCI qualification testing. The developer shall define and record the test preparations, test cases, and test procedures to be used for CSCI qualification testing and the traceability between the test cases and the CSCI requirements. The result shall include all applicable items in the Software Test Description (STD) DID (see 6.2). The developer shall prepare the test data needed to carry out the test cases and provide the acquirer advance notice of the time and location of CSCI qualification testing.

�
5.9.4	Dry run of CSCI qualification testing. If CSCI qualification testing is to be witnessed �by the acquirer, the developer shall dry run the CSCI test cases and procedures to ensure that they are complete and accurate and that the software is ready for witnessed testing. The developer shall record the results of this activity in appropriate software development files (SDFs) and shall update the CSCI test cases and procedures as appropriate.

5.9.5	Performing CSCI qualification testing. The developer shall perform CSCI qualification testing of each CSCI. The testing shall be in accordance with the CSCI test cases and procedures.

5.9.6	Revision and retesting. The developer shall make necessary revisions to the software, provide the acquirer advance notice of retesting, conduct all necessary retesting, and update the software development files (SDFs) and other software products as needed, based on the results of CSCI qualification testing.

5.9.7	Analyzing and recording CSCI qualification test results. The developer shall analyze and record the results of CSCI qualification testing. The results shall include all applicable items in the Software Test Report (STR) DID (see 6.2).

5.10	CSCI/HWCI integration and testing. The developer shall participate in CSCI/HWCI integration and testing activities in accordance with the following requirements.

Note 1:		CSCI/HWCI integration and testing means integrating CSCIs with interfacing HWCIs and CSCIs, testing the resulting groupings to determine whether they work �together as intended, and continuing this process until all CSCIs and HWCIs in the system are integrated and tested. The last stage of this testing is developer-internal system testing.

Note 2: If a system or CSCI is developed in multiple builds, CSCI/HWCI integration and testing may not be complete until the final build. CSCI/HWCI integration and testing in each build should be interpreted to mean integrating the current build of each CSCI with �the current build of other CSCIs and HWCIs and testing the results to ensure that the system requirements to be implemented in that build have been met.

5.10.1	Preparing for CSCI/HWCI integration and testing. The developer shall participate in developing and recording test cases (in terms of inputs, expected results, and evaluation criteria), test procedures, and test data for conducting CSCI/HWCI integration and testing. �The test cases shall cover all aspects of the system-wide and system architectural design. The developer shall record software-related information in appropriate software development files (SDFs).

5.10.2	Performing CSCI/HWCI integration and testing. The developer shall participate in CSCI/HWCI integration and testing. The testing shall be in accordance with the CSCI/HWCI integration test cases and procedures.

5.10.3	Revision and retesting. The developer shall make necessary revisions to the �software, participate in all necessary retesting, and update the appropriate software development files (SDFs) and other software products as needed, based on the results of CSCI/HWCI integration and testing.
�
5.10.4	Analyzing and recording CSCI/HWCI integration and test results. The developer shall participate in analyzing the results of CSCI/HWCI integration and testing. Software-related analysis and test results shall be recorded in appropriate software development files (SDFs).
5.11	System qualification testing. The developer shall participate in system qualification testing in accordance with the following requirements.
Note 1:	 System qualification testing is performed to demonstrate to the acquirer that system requirements have been met. It covers the system requirements in the system/subsystem specifications (SSSs) and in associated interface requirements specifications (IRSs). This testing contrasts with developer-internal system testing, performed as the final stage of CSCI/HWCI integration and testing.
Note 2: If a system is developed in multiple builds, qualification testing of the completed system will not occur until the final build. System qualification testing in each build should be interpreted to mean planning and performing tests of the current build of the system �to ensure that the system requirements to be implemented in that build have been met.
5.11.1	Independence in system qualification testing. The person(s) responsible for fulfilling �the requirements in this section shall not be the persons who performed detailed design or implementation of software in the system. This does not preclude persons who performed detailed design or implementation of software in the system from contributing to the process, for example, by contributing test cases that rely on knowledge of the system's internal implementation.
5.11.2	Testing on the target computer system. The developer's system qualification testing shall include testing on the target computer system or an alternative system approved by the acquirer.
5.11.3	Preparing for system qualification testing. The developer shall participate in devel�-�oping and recording the test preparations, test cases, and test procedures to be used for system qualification testing and the traceability between the test cases and the system requirements. For software systems, the results shall include all applicable items in the Software Test Description (STD) DID (see 6.2). The developer shall participate in preparing the test data needed to carry out the test cases and in providing the acquirer advance notice �of the time and location of system qualification testing.
5.11.4	Dry run of system qualification testing. If system qualification testing is to be �witnessed by the acquirer, the developer shall participate in dry running the system test cases and procedures to ensure that they are complete and accurate and that the system is ready �for witnessed testing. The developer shall record the software-related results of this activity �in appropriate software development files (SDFs) and shall participate in updating the system test cases and procedures as appropriate.
5.11.5	Performing system qualification testing. The developer shall participate in system qualification testing. This participation shall be in accordance with the system test cases and procedures.
5.11.6	Revision and retesting. The developer shall make necessary revisions to the �software, provide the acquirer advance notice of retesting, participate in all necessary retesting, and update the software development files (SDFs) and other software products as needed, based on the results of system qualification testing.
�
5.11.7	Analyzing and recording system qualification test results. The developer shall par�ticipate in analyzing and recording the results of system qualification testing. For software systems, the result shall include all applicable items in the Software Test Report (STR) DID (see 6.2).

5.12	Preparing for software use. The developer shall prepare for software use in accor�dance with the following requirements.

Note: If software is developed in multiple builds, the developer's planning should identify what software, if any, is to be fielded to users in each build and the extent of fielding (for example, full fielding or fielding to selected evaluators only). Preparing for software use �in each build should be interpreted to include those activities necessary to carry out the fielding plans for that build.

5.12.1	Preparing the executable software. The developer shall prepare the executable soft�ware for each user site, including any batch files, command files, data files, or other software files needed to install and operate the software on its target computer(s). The result shall include all applicable items in the executable software section of the Software Product Specification (SPS) DID (see 6.2).

Note: 	To order only the executable software (delaying delivery of source files and associated support information to a later build), the acquirer can use the SPS DID, tailoring out all but the executable software section of that DID.

5.12.2	Preparing version descriptions for user sites. The developer shall identify and record the exact version of software prepared for each user site. The information shall include all applicable items in the Software Version Description (SVD) DID (see 6.2).

5.12.3	Preparing user manuals. The developer shall prepare user manuals in accordance �with the following requirements.

Note: Few, if any, systems will need all of the manuals in this section. The intent is for �the acquirer, with input from the developer, to determine which manuals are appropriate �for a given system and to require the development of only those manuals. All DIDs permit substitution of commercial or other manuals that contain the required information. The manuals in this section are normally developed in parallel with software development, �ready for use in CSCI testing.

5.12.3.1	Software user manuals. The developer shall identify and record information needed by hands-on users of the software (persons who will both operate the software and make use of its results). The information shall include all applicable items in the Software User Manual (SUM) DID (see 6.2).

5.12.3.2	Software input/output manuals. The developer shall identify and record information needed by persons who will submit inputs to, and receive outputs from, the software, relying on others to operate the software in a computer center or other centralized or networked software installation. The information shall include all applicable items in the Software Input/Output Manual (SIOM) DID (see 6.2).
�
5.12.3.3	Software center operator manuals. The developer shall identify and record infor�mation needed by persons who will operate the software in a computer center or other centralized or networked software installation, so that it can be used by others. The information shall include all applicable items in the Software Center Operator Manual (SCOM) DID (see 6.2).

5.12.3.4	Computer operation manuals. The developer shall identify and record information needed to operate the computers on which the software will run. The information shall �include all applicable items in the Computer Operation Manual (COM) DID (see 6.2).

5.12.4	Installation at user sites. The developer shall:

	a.	Install and check out the executable software at the user sites specified in the contract.
	b.	Provide training to users as specified in the contract.
	c.	Provide other assistance to user sites as specified in the contract.

5.13	Preparing for software transition. The developer shall prepare for software transition �in accordance with the following requirements.

Note: If software is developed in multiple builds, the developer's planning should identify what software, if any, is to be transitioned to the support agency in each build. Preparing for software transition in each build should be interpreted to include those activities necessary to carry out the transition plans for that build.

5.13.1	Preparing the executable software. The developer shall prepare the executable soft�ware to be transitioned to the support site, including any batch files, command files, data �files, or other software files needed to install and operate the software on its target computer(s). The result shall include all applicable items in the executable software section �of the Software Product Specification (SPS) DID (see 6.2).

5.13.2	Preparing source files. The developer shall prepare the source files to be transitioned to the support site, including any batch files, command files, data files, or other files needed �to regenerate the executable software. The result shall include all applicable items in the source file section of the Software Product Specification (SPS) DID (see 6.2).

5.13.3	Preparing version descriptions for the support site. The developer shall identify and record the exact version of software prepared for the support site. The information shall include all applicable items in the Software Version Description (SVD) DID (see 6.2).

5.13.4	Preparing the "as built" CSCI design and related information. The developer shall update the design description of each CSCI to match the "as built" software and shall define and record: the methods to be used to verify copies of the software, the measured computer hardware resource utilization for the CSCI, other information needed to support the software, and traceability between the CSCI's source files and software units and between the �computer hardware resource utilization measurements and the CSCI requirements concerning them. The result shall include all applicable items in the qualification, software support, and traceability sections of the Software Product Specification (SPS) DID (see 6.2).
�
Note: In hardware development, the final product is an approved design from which hardware items can be manufactured. This design is presented in the product specification. In software development, by contrast, the final product is the software, not�its design, and "manufacturing" consists of electronically duplicating the software, not recreating it from the design. The "as built" design is included in the software product specification not as the product but as information that may help the support agency understand the software in order to modify, enhance, and otherwise support it.

5.13.5	Updating the system design description. The developer shall participate in updating the system design description to match the "as built" system. The result shall include all applicable items in the System/Subsystem Design Description (SSDD) DID (see 6.2).

5.13.6	Preparing support manuals. The developer shall prepare support manuals in accor�dance with the following requirements.

Note: Not all systems will need the manuals in this section. The intent is for the acquirer, with input from the developer, to determine which manuals are appropriate for a given system and to require the development of only those manuals. All DIDs permit substitution of commercial or other manuals that contain the required information. The manuals in this section supplement the system/subsystem design description (SSDD) and the software product specifications (SPSs), which serve as the primary sources of information for software support. The user manuals cited in 5.12.3 are also useful to support personnel.

5.13.6.1	Computer programming manuals. The developer shall identify and record infor�-�mation needed to program the computers on which the software was developed or on which �it will run. The information shall include all applicable items in the Computer Programming Manual (CPM) DID (see 6.2).

5.13.6.2	Firmware support manuals. The developer shall identify and record information needed to program and reprogram any firmware devices in which the software will be �installed. The information shall include all applicable items in the Firmware Support Manual (FSM) DID (see 6.2).

5.13.7	Transition to the designated support site. The developer shall:

	a.	Install and check out the deliverable software in the support environment designated �in the contract.
	b.	Demonstrate to the acquirer that the deliverable software can be regenerated (compiled/linked/loaded into an executable product) and maintained using commercially available, acquirer-owned, or contractually deliverable software and hardware designated in the contract or approved by the acquirer.
	c.	Provide training to the support agency as specified in the contract.
	d.	Provide other assistance to the support agency as specified in the contract.
�
5.14	Software configuration management. The developer shall perform software config�uration management in accordance with the following requirements.

Note: If a system or CSCI is developed in multiple builds, the software products of each build may be refinements of, or additions to, software products of previous builds. �Software configuration management in each build should be understood to take place in the context of the software products and controls in place at the start of the build.

�tc ""\l�5.14.1	Configuration identification. The developer shall participate in selecting CSCIs, as performed under system architectural design in 5.4.2, shall identify the entities to be placed under configuration control, and shall assign a project-unique identifier to each CSCI and each additional entity to be placed under configuration control. These entities shall include the software products to be developed or used under the contract and the elements of the software development environment. The identification scheme shall be at the level at which entities will actually be controlled, for example, computer files, electronic media, documents, software units, configuration items. The identification scheme shall include the version/ revision/release status of each entity.

5.14.2	Configuration control. The developer shall establish and implement procedures designating the levels of control each identified entity must pass through (for example, author control, project-level control, acquirer control); the persons or groups with authority to �authorize changes and to make changes at each level (for example, the programmer/analyst, the software lead, the project manager, the acquirer); and the steps to be followed to request authorization for changes, process change requests, track changes, distribute changes, and maintain past versions. Changes that affect an entity already under acquirer control shall be proposed to the acquirer in accordance with contractually established forms and procedures, �if any.

Note: A number of requirements in this standard refer to "project-level or higher configuration control." If "project-level" is not a level of control selected for the project, �the software development plan should state how these requirements map to the selected levels.

5.14.3	Configuration status accounting. The developer shall prepare and maintain records �of the configuration status of all entities that have been placed under project-level or higher configuration control. These records shall be maintained for the life of the contract. They �shall include, as applicable, the current version/revision/release of each entity, a record of changes to the entity since being placed under project-level or higher configuration control, and the status of problem/change reports affecting the entity.

5.14.4	Configuration audits. The developer shall support acquirer-conducted configuration audits as specified in the contract.

Note: These configuration audits may be called Functional Configuration Audits and Physical Configuration Audits.

5.14.5	Packaging, storage, handling, and delivery. The developer shall establish and implement procedures for the packaging, storage, handling, and delivery of deliverable software products. The developer shall maintain master copies of delivered software products for the duration of the contract.
�
5.15	Software product evaluation. The developer shall perform software product evaluation in accordance with the following requirements.
Note: If a system or CSCI is developed in multiple builds, the software products of each build should be evaluated in the context of the objectives established for that build. A software product that meets those objectives can be considered satisfactory even though �it is missing information designated for development in later builds.
5.15.1	In-process and final software product evaluations. The developer shall perform in-process evaluations of the software products generated in carrying out the requirements of �this standard. In addition, the developer shall perform a final evaluation of each deliverable software product before its delivery. The software products to be evaluated, criteria to be used, and definitions for those criteria are given in Appendix D.
5.15.2	Software product evaluation records. The developer shall prepare and maintain �records of each software product evaluation. These records shall be maintained for the life �of the contract. Problems in software products under project-level or higher configuration control shall be handled as described in 5.17 (Corrective action).
5.15.3	Independence in software product evaluation. The persons responsible for evaluating �a software product shall not be the persons who developed the product. This does not preclude the persons who developed the software product from taking part in the evaluation (for example, as participants in a walk-through of the product).
5.16	Software quality assurance. The developer shall perform software quality assurance �in accordance with the following requirements.
Note: If a system or CSCI is developed in multiple builds, the activities and software products of each build should be evaluated in the context of the objectives established for that build. An activity or software product that meets those objectives can be considered satisfactory even though it is missing aspects designated for later builds. Planning for software quality assurance is included in software development planning (see 5.1.1).
5.16.1	Software quality assurance evaluations. The developer shall conduct on-going evaluations of software development activities and the resulting software products to:
	a.	Assure that each activity required by the contract or described in the software development plan is being performed in accordance with the contract and with the software development plan.
	b.	Assure that each software product required by this standard or by other contract provisions exists and has undergone software product evaluations, testing, and corrective action as required by this standard and by other contract provisions.
5.16.2	Software quality assurance records. The developer shall prepare and maintain �records of each software quality assurance activity. These records shall be maintained for the life of the contract. Problems in software products under project-level or higher configuration control and problems in activities required by the contract or described in the software development plan shall be handled as described in 5.17 (Corrective action).
�
5.16.3	Independence in software quality assurance. The persons responsible for conducting software quality assurance evaluations shall not be the persons who developed the software product, performed the activity, or are responsible for the software product or activity. This does not preclude such persons from taking part in these evaluations. The persons responsible for assuring compliance with the contract shall have the resources, responsibility, authority, and organizational freedom to permit objective software quality assurance evaluations and to initiate and verify corrective actions.

5.17	Corrective action. The developer shall perform corrective action in accordance with �the following requirements.

5.17.1	Problem/change reports. The developer shall prepare a problem/change report to describe each problem detected in software products under project-level or higher configuration control and each problem in activities required by the contract or described in �the software development plan. The problem/change report shall describe the problem, the corrective action needed, and the actions taken to date. These reports shall serve as input �to the corrective action system.

5.17.2	Corrective action system. The developer shall implement a corrective action system �for handling each problem detected in software products under project-level or higher configuration control and each problem in activities required by the contract or described in �the software development plan. The system shall meet the following requirements:

	a.	Inputs to the system shall consist of problem/change reports.

	b.	The system shall be closed-loop, ensuring that all detected problems are promptly reported and entered into the system, action is initiated on them, resolution is �achieved, status is tracked, and records of the problems are maintained for the life of the contract.

	c.	Each problem shall be classified by category and priority, using the categories and priorities in Appendix C or approved alternatives.

	d.	Analysis shall be performed to detect trends in the problems reported.

	e.	Corrective actions shall be evaluated to determine whether problems have been resolved, adverse trends have been reversed, and changes have been correctly implemented without introducing additional problems.

5.18	Joint technical and management reviews. The developer shall plan and take part in joint (acquirer/developer) technical and management reviews in accordance with the following requirements.

	Note: If a system or CSCI is developed in multiple builds, the types of joint reviews held �	and the criteria applied will depend on the objectives of each build. Software products that 	�	meet those objectives can be considered satisfactory even though they are missing 	
	information designated for development in later builds.
�
5.18.1	Joint technical reviews. The developer shall plan and take part in joint technical �reviews at locations and dates proposed by the developer and approved by the acquirer. These reviews shall be attended by persons with technical knowledge of the software �products to be reviewed. The reviews shall focus on in-process and final software products, rather than materials generated especially for the review. The reviews shall have the �following objectives:

	a.		Review evolving software products, using as criteria the software product evaluation criteria in Appendix D; review and demonstrate proposed technical solutions; provide insight and obtain feedback on the technical effort; surface and resolve technical issues.

	b.		Review project status; surface near- and long-term risks regarding technical, cost, and schedule issues.

	c.		Arrive at agreed-upon mitigation strategies for identified risks, within the authority of those present.

	d.		Identify risks and issues to be raised at joint management reviews.

	e.		Ensure on-going communication between acquirer and developer technical personnel.
5.18.2	Joint management reviews. The developer shall plan and take part in joint management reviews at locations and dates proposed by the developer and approved by the acquirer. These reviews shall be attended by persons with authority to make cost and schedule decisions and shall have the following objectives. Examples of such reviews are identified in Appendix E.

	a.	Keep management informed about project status, directions being taken, technical agreements reached, and overall status of evolving software products.

	b.	Resolve issues that could not be resolved at joint technical reviews.

	c.	Arrive at agreed-upon mitigation strategies for near- and long-term risks that could not be resolved at joint technical reviews.

	d.	Identify and resolve management-level issues and risks not raised at joint technical reviews.

	e.	Obtain commitments and acquirer approvals needed for timely accomplishment of the project.

5.19	Other activities. The developer shall perform the following activities.

5.19.1	Risk management. The developer shall perform risk management throughout the software development process. The developer shall identify, analyze, and prioritize the areas of the software development project that involve potential technical, cost, or schedule risks; develop strategies for managing those risks; record the risks and strategies in the software development plan; and implement the strategies in accordance with the plan.
�
5.19.2	Software management indicators. The developer shall use software management indicators to aid in managing the software development process and communicating its status to the acquirer. The developer shall identify and define a set of software management indicators, including the data to be collected, the methods to be used to interpret and apply �the data, and the planned reporting mechanism. The developer shall record this information �in the software development plan and shall collect, interpret, apply, and report on those indicators as described in the plan. Candidate indicators are given in Appendix F.

5.19.3	Security and privacy. The developer shall meet the security and privacy requirements specified in the contract. These requirements may affect the software development effort, �the resulting software products, or both.

5.19.4	Subcontractor management. If subcontractors are used, the developer shall include �in subcontracts all contractual requirements necessary to ensure that software products are developed in accordance with prime contract requirements.

5.19.5	Interface with software IV&V agents. The developer shall interface with the �software Independent Verification and Validation (IV&V) agent(s) as specified in the contract.

5.19.6	Coordination with associate developers. The developer shall coordinate with �associate developers, working groups, and interface groups as specified in the contract.

5.19.7	Improvement of project processes. The developer shall periodically assess the processes used on the project to determine their suitability and effectiveness. Based on these assessments, the developer shall identify any necessary and beneficial improvements to the process, shall identify these improvements to the acquirer in the form of proposed updates �to the software development plan and, if approved, shall implement the improvements on the project.

�
6. NOTES

	(This section contains information of a general or explanatory nature that may be �	helpful, but is not mandatory.)

6.1		Intended use. This standard contains requirements for the development and documentation of software. Its application is described in 1.2.

6.2		Data requirements. The following Data Item Descriptions (DIDs) must be listed, as applicable, on the Contract Data Requirements List (DD Form 1423) when this standard is applied on a contract, in order to obtain the data, except where DOD FAR Supplement 227.405-70 exempts the requirement for a DD Form 1423.

	Reference Para� DID Number � DID Title ��	5.1.1�DI-IPSC-81427�Software Development Plan (SDP)��	5.1.2, 5.1.3�DI-IPSC-81438�Software Test Plan (STP)��	5.1.4�DI-IPSC-81428�Software Installation Plan (SIP)��	5.1.5�DI-IPSC-81429�Software Transition Plan (STrP)�� 	5.3.2�DI-IPSC-81430�Operational Concept Description (OCD)��	5.3.3�DI-IPSC-81431�System/Subsystem Specification (SSS)��	5.3.3, 5.5�DI-IPSC-81434�Interface Requirements Specification (IRS)��	5.4.1, 5.4.2, 5.13.5�DI-IPSC-81432�System/Subsystem Design Description (SSDD)��	5.4.1, 5.4.2, 5.6.1,� 5.6.2, 5.6.3�DI-IPSC-81436�Interface Design Description (IDD)��	5.5�DI-IPSC-81433�Software Requirements Specification (SRS)��	5.6.1, 5.6.2, 5.6.3�DI-IPSC-81435�Software Design Description (SDD)��	5.4.1, 5.6.1, 5.6.3�DI-IPSC-81437�Database Design Description (DBDD)��	5.9.3, 5.11.3�DI-IPSC-81439�Software Test Description (STD)��	5.9.7, 5.11.7�DI-IPSC-81440�Software Test Report (STR)��	5.12.1, 5.13.1, 5.13.2,� 5.13.4�DI-IPSC-81441�Software Product Specification (SPS)��	5.12.2, 5.13.3�DI-IPSC-81442�Software Version Description (SVD)��	5.12.3.1�DI-IPSC-81443�Software User Manual (SUM)��	5.12.3.2�DI-IPSC-81445�Software Input/Output Manual (SIOM)��	5.12.3.3�DI-IPSC-81444�Software Center Operator Manual (SCOM)��	5.12.3.4�DI-IPSC-81446�Computer Operation Manual (COM)��	5.13.6.1�DI-IPSC-81447�Computer Programming Manual (CPM)��	5.13.6.2�DI-IPSC-81448�Firmware Support Manual (FSM)��
The above DIDs were those cleared as of the date of this standard. The current issue of DOD 5010.12, Acquisition Management Systems and Data Requirements Control List (AMSDL), must be researched to ensure that only current, cleared DIDs are cited on the Form 1423.
�
6.3		Relationship between standard and CDRL. If the CDRL calls for a DID different from the one named in corresponding paragraph(s) of this standard, all references to the DID in the standard should be interpreted to mean the one in the CDRL.

6.4		Delivery of tool contents. Depending on contract provisions, the developer may be permitted to satisfy CDRL requirements by delivering: 1) a repository or database containing the information specified in the cited DID; 2) a means of accessing that repository or �database, such as a CASE tool, if not already available to the recipients designated on the CDRL; and 3) a hard-copy or electronically stored table of contents, specifying how and where to access the information required in each paragraph of the DID.

6.5		Tailoring guidance. This standard and its Data Item Descriptions (DIDs) are applied at the discretion of the acquirer. In each application, the standard and DIDs should be tailored �to the specific requirements of a particular program, program phase, or contractual structure. Care should be taken to eliminate tasks that add unnecessary costs and data that do not add value to the process or the product. Tailoring for the standard takes the form of deletion of activities, alteration of activities to more explicitly reflect the application to a particular effort, �or addition of activities to satisfy program requirements. This tailoring is specified in the Statement of Work. Tailoring for the DIDs consists of deleting requirements for unneeded information and making other changes, such as combining two documents under one cover, that do not increase the required workload. DID tailoring for deliverables is specified in Block 16 of the CDRL.

6.6		Cost/schedule reporting. Developer cost/schedule reports should be prepared at the CSCI level. The cost reports should indicate budgeted versus actual expenditures and should conform to the Work Breakdown Structure (WBS) applicable to the development effort. These reports should also indicate to the acquirer planned, actual, and predicted progress.

6.7		Related standardization documents. Figure 2 identifies a set of standardization documents related to software development. These and other standardization documents may be imposed or quoted in the Statement of Work to supplement the requirements in MIL-STD-498. MIL-STD-498 does not invoke these documents. The acquirer should use caution to ensure that supplemental standards are appropriate to the project and that any conflicts among these standards or with MIL-STD-498 are identified and resolved.

6.8		Subject term (key word) listing. The following list of key words may be used to catalog or characterize key topics in this standard.

�	Builds/incremental development
	Computer software configuration item
	Database
	Joint technical/management reviews
	Operational concept
	Reusable software
	Risk management
	Security/privacy
	Software
	Software configuration management
	Software development

	Software documentation
	Software implementation
	Software management indicators
	Software product evaluation
	Software quality assurance
	Software requirements analysis
	Software safety
	Software support
	Software testing
	Software unit
	Tailoring
�Topic and
MIL-STD-498 Paragraph�	Related Standardization Documents
	(Determine latest version before use)��Behavioral design
(5.4.1, 5.6.1)�MIL-STD-1801, User Computer Interface
MIL-HDBK-761, Human Engineering Guidelines for Management Information
	Systems��Computer security
(4.2.4.2)�DOD-5200.28 STD, DoD Trusted Computer System Evaluation Criteria
��Configuration management (5.14)�ANSI/IEEE Std 828, Standard for Software Configuration
	Management Plans
ANSI/IEEE Std 1042, Guide to Software Configuration Management
MIL-STD-973, Configuration Management
MIL-HDBK-61 Guidelines for Configuration Management��Continuous acquisition and life-cycle support (CALS)�MIL-STD-1840, Automated Interchange of Technical Information
MIL-STD-1556, Government-Industry Data Exchange Program
MIL-HDBK-59, Continuous Acquisition and Life-Cycle Support Program
	Implementation Guide
MIL-HDBK-800, Documentation Streamlining
MIL-D-28000, Digital Representation for Communication of Product Data:
	IGES Application Subset and IGES Application Protocols
MIL-M-28001, Markup Requirements and Generic Style Specification for
	Electronic Printed Output and Exchange of Text
MIL-R-28002, Requirements for Raster Graphics Representation in Binary
	Format
MIL-D-28003, Digital Representation for Communication of Illustration Data:
	CGM Application Profile��Joint technical and management reviews
(5.18, App. E)�ANSI/IEEE Std 1028, Standard for Software Reviews and Audits
MIL-STD-499, Engineering Management
MIL-STD-1521, Technical Reviews and Audits for Systems, Equipments,
	and Computer Software (audit portion superseded by MIL-STD-973)��Programming languages (5.7.1)�FIPS-PUB-119, Ada (Also issued as ANSI/ISO/IEC 8652;
	formerly ANSI/MIL-STD-1815, Ada Programming Language)��Software design
(5.4, 5.6)�ANSI/IEEE Std 1016, Recommended Practice for Software Design
	Descriptions
IEEE Std 1016.1, Guide for Software Design Descriptions
IEEE/ANSI Std 990, Recommended Practice for Ada as a Program
	Design Language��Software development environment
(5.2)�IEEE Std 1209, Recommended Practice for the Evaluation and
	Selection of CASE Tools
DOD-STD-1467 (AR), Software Support Environment
MIL-HDBK-782 (AR), Software Support Environment Acquisition��Software development planning (5.1.1)�ANSI/IEEE Std 1058.1, Standard for Software Project Management
	Plans��Software development process
(4.1, App. G)�ISO/IEC 12207 (when issued), Software Life-Cycle Processes
ANSI/IEEE Std 1074, Standard for Developing Software Life
	Cycle Processes
MIL-STD-1803 (USAF), Software Development Integrity Program
Guidebook on MIL-STD-498 (when issued)
MIL-HDBK-498 (when issued)��Note: MIL-STD-498 does not invoke any of these documents.

FIGURE 2. Related standardization documents.
�
Topic and
MIL-STD-498 Paragraph�	Related Standardization Documents
	(Determine latest version before use)��Software management indicators
(5.19.2, App. F)�ISO/IEC 9126, Quality Characteristics and Guidelines for Their Use
ANSI/IEEE Std 982.2, Guide: Use of Standard Measures to Produce
	Reliable Software
IEEE Std 1045, Standard for Software Productivity Metrics
IEEE Std 1061, Standard for Software Quality Metrics Methodology��Software problem categories/priorities (Appendix C)�IEEE Std 1044, Standard Classification for Software Anomalies��Software product
evaluation (5.15)�ANSI/IEEE Std 1012, Standard for Software Verification
	and Validation Plans
IEEE Std 1059, Guide for Verification and Validation Plans��Software quality
assurance
(5.16)�ISO 9001, Quality System - Model for Quality Assurance in
	Design/Development, Production, Installation, and Servicing
ISO 9000-3, Guidelines for the Application of ISO 9001 to the Development,
	Supply, and Maintenance of Software
ANSI/IEEE Std 730, Standard for Software Quality Assurance Plans
IEEE Std 1298/A3563.1, Software Quality Management System
DOD-STD-2168, Defense System Software Quality Program
MIL-HDBK-286, A Guide for DOD-STD-2168��Software requirements
(5.3.3, 5.5)�ANSI/IEEE Std 830, Recommended Practice for Software
	Requirements Specifications
MIL-STD-490, Specification Practices��Software safety (4.2.4.1)�MIL-STD-882, System Safety Program Requirements
MIL-HDBK-272, Safety Design and Evaluation Criteria for Nuclear Weapons
	Systems
IEEE Std 1228, Standard for Software Safety Plans��Software support
(all paragraphs)�IEEE Std 1219, Standard for Software Maintenance
MIL-HDBK-347, Mission-Critical Computer Resources Software Support��Software testing
(5.1.2, 5.1.3,
5.7 - 5.11)�ANSI/IEEE Std 829, Standard for Software Test Documentation
ANSI/IEEE Std 1008, Standard for Software Unit Testing
ANSI/IEEE Std 1012, Standard for Software Verification
	and Validation Plans
IEEE Std 1059, Guide for Verification and Validation Plans��Software user documentatiion (5.12.3)�ANSI/IEEE Std 1063, Standard for Software User Documentation��Systems engineering
(5.1.3, 5.3, 5.4, 5.10, 5.11)�MIL-STD-499, Engineering Management
MIL-HDBK-805, Microcomputer Software and Hardware Guidelines��Tailoring
(1.2.3, 6.5,
App. G, H)�DOD-HDBK-248, Guide for Application and Tailoring of Requirements for
	Defense Materiel Acquisitions
MIL-HDBK-498 (when issued)��Training (5.12.4, 5.13.7)�MIL-STD-1379, Military Training Programs��Work breakdown structure (6.6)�MIL-STD-881, Work Breakdown Structures for Defense Materiel Items��Note: MIL-STD-498 does not invoke any of these documents.

FIGURE 2. Related standardization documents - continued.
�APPENDIX A
LIST OF ACRONYMS

A.1	Scope. This appendix provides a list of acronyms used in this standard, with their associated meanings. This appendix is not a mandatory part of the standard. The information provided is intended for guidance only.

A.2	Applicable documents. This section is not applicable to this appendix.

A.3	Acronyms.

	CASE				Computer-Aided Software Engineering
	CDRL				Contract Data Requirements List
	COM					Computer Operation Manual
	CPM					Computer Programming Manual
	CSCI					Computer Software Configuration Item
	DBDD				Database Design Description
	DID						Data Item Description
	DoD					Department of Defense
	FSM					Firmware Support Manual
	HWCI				Hardware Configuration Item
	IDD						Interface Design Description
	IRS						Interface Requirements Specification
	IV&V					Independent Verification and Validation
	OCD					Operational Concept Description
	SCOM				Software Center Operator Manual
	SDD					Software Design Description
	SDF					Software Development File
	SDL					Software Development Library
	SDP					Software Development Plan
	SIOM				Software Input/Output Manual
	SIP						Software Installation Plan
	SOW					Statement of Work
	SPS					Software Product Specification
	SRS					Software Requirements Specification
	SSDD				System/Subsystem Design Description
	SSS					System/Subsystem Specification
	STD					Software Test Description
	STP					Software Test Plan
	STR					Software Test Report
	STrP					Software Transition Plan
	SUM					Software User Manual
	SVD					Software Version Description
	SW						Software
	WBS					Work Breakdown Structure
�INTERPRETING MIL-STD-498 FOR INCORPORATION OF REUSABLE SOFTWARE PRODUCTS

B.1		Scope. This appendix interprets MIL-STD-498 when applied to the incorporation of reusable software products. This appendix is a mandatory part of this standard, subject to tailoring by the acquirer.
B.2		Applicable documents. This section is not applicable to this appendix.
B.3		Evaluating reusable software products. The developer shall specify in the software development plan the criteria to be used for evaluating reusable software products for use in fulfilling the requirements of the contract. General criteria shall be the software product's �ability to meet specified requirements and to be cost-effective over the life of the system. �Non-mandatory examples of specific criteria include, but are not limited to:
	a.	Ability to provide required capabilities and meet required constraints
	b.	Ability to provide required safety, security, and privacy
	c.	Reliability/maturity, as evidenced by established track record
	d.	Testability
	e.	Interoperability with other system and system-external elements
	f.	Fielding issues, including:
		1)	Restrictions on copying/distributing the software or documentation
		2)	License or other fees applicable to each copy
	g.	Maintainability, including:
		1)	Likelihood the software product will need to be changed
		2)	Feasibility of accomplishing that change
		3)	Availability and quality of documentation and source files
		4)	Likelihood that the current version will continue to be supported by the supplier
		5)	Impact on the system if the current version is not supported
		6)	The acquirer's data rights to the software product
		7)	Warranties available
	h.	Short- and long-term cost impacts of using the software product
	i.	Technical, cost, and schedule risks and tradeoffs in using the software product
B.4	Interpreting MIL-STD-498 activities for reusable software products. The following rules apply in interpreting this standard:
a.	Any requirement that calls for development of a software product may be met by a reusable software product that fulfills the requirement and meets the criteria established in the software development plan. The reusable software product may be used as-is or modified and may be used to satisfy part or all of the requirement. For example, a requirement may be met by using an existing plan, specification, or design.
b.	When the reusable software product to be incorporated is the software itself, some �of the requirements in this standard require special interpretation. Figure 3 provides this interpretation. Key issues are whether the software will be modified, whether unmodified software constitutes an entire CSCI or only one or more software units, �and whether unmodified software has a positive performance record (no firm criteria exist for making this determination). The figure is presented in a conditional manner: �If an activity in the left column is required for a given type of software, the figure tells how to interpret the activity for reusable software of that type.
��	Interpret the activity as follows for each type of existing, reusable software:������If this
MIL-STD-498
activity is
required:�For CSCIs to be used unmodified��For software units to be used unmodified��For software
units being modified for/ during project���Positive performance record�No or poor
performance record�Positive performance record�No or poor
performance
record���5.1 Project planning and oversight�
 Include the activities in this figure in project plans������5.2 Establishing software devel environment�Establish and apply a software test environment, software development library, and software development files as appropriate to perform the activities in this figure����Apply full requirements��5.3 System requirements analysis�Consider software's capabilities in defining the operational concept & system requirements�������Use test/ performance records to confirm ability to meet needs�Test to confirm ability to meet needs�Use test/ performance records to confirm ability to meet needs�Test to confirm ability to meet needs�Use tests or records to determine potential to meet needs��5.4.1 System-wide design�Consider the software's capabilities and characteristics in designing system behavior and in making other system-wide design decisions ������5.4.2 System architectural design�Include the CSCI in the system architecture; allocate system requirements to it��Consider the unit's capabilities and characteristics �in designating CSCIs and allocating system requirements to them����5.5 Software
requirements
analysis�Specify the project-specific requirements the CSCI must meet; verify via records or retest that the CSCI can meet them��Consider the unit's capabilities and characteristics �in specifying the requirements for the CSCI of �which it is a part����5.6.1 CSCI-�wide design�No requirement: the CSCI-wide design decisions have already been made (recording the "as built" design is under 5.13)��Consider the unit's capabilities and characteristics �in designing CSCI behavior and making other �CSCI-wide design decisions����5.6.2 CSCI architectural design�No requirement: the CSCI's architecture is already defined (recording the "as built" design is under 5.13)��Include the unit in the CSCI architecture and �allocate CSCI requirements to it����5.6.3 CSCI detailed design�No requirement: the CSCI's detailed design is already defined (recording the "as built" design is under 5.13)��No requirement: the unit is�already designed (recording the �"as built" design is under 5.13)��Modify the �unit's design�as needed��5.7.1 Software implementation
�No requirement: the software for the CSCI's units is already implemented��No requirement: the software for the unit is already implemented ��Modify the software for �the unit��5.7.2-5.7.5�Unit testing�No requirement: the CSCI's units are already tested�Perform selectively if in question and units are accessible�No requirement: the unit is already tested
�Perform this testing���FIGURE 3. Interpreting MIL-STD-498 for incorporation of reusable software.
��	Interpret the activity as follows for each type of existing, reusable software:������If this
MIL-STD-498
activity is
required:�For CSCIs to be used unmodified��For software units to be used
unmodified��For software
units being modified for/ during project���Positive
performance
record�No or poor
performance record�Positive performance record�No or poor
performance
record���5.8 Unit integration and testing�No requirement:�the CSCI's units�are already �integrated�Perform selectively if in question and units are accessible �Perform except where integra-tion is already tested/proven�Perform this testing���5.9 CSCI qualification testing�No requirement:
CSCI is already �tested & proven�Perform this testing�Include the unit in CSCI qualification testing����5.10 CSCI/HWCI integration and�testing�Perform, except where integration is already tested/proven�Include the CSCI in CSCI/HWCI integration and testing�Include the unit in
CSCI/HWCI integration and testing����5.11 System qualification testing�Include the CSCI in
system qualification testing��Include the unit in system qualification testing����5.12 Preparing for software use�Include the software for the CSCI or unit in the executable software; include in version descriptions; handle any license issues; cover use of the CSCI or unit, as appropriate, via existing, new, or revised user/operator manuals; install the CSCI or unit as part of the overall system; include its use, as appropriate, in the training offered������5.13 Preparing for software transition�Include the software for the CSCI or unit in the executable software; prepare source files for the CSCI or unit, if available; include in version descriptions; handle any license issues; prepare or provide "as built" design descriptions for software whose design is known; install the CSCI or unit at the support site; demonstrate regenerability if source is available; include in the training offered������5.14 Software configuration management�Apply to all software products prepared, modified, or used in incorporating this software������5.15 Software product evaluation�Apply to all software products prepared or modified in incorporating this software; for software products used unchanged, apply unless a positive performance record or evidence of past evaluations indicates that such an evaluation would be duplicative������5.16 Software quality assurance�Apply to all activities performed and all software products prepared, modified, or used in incorporating this software������5.17 Corrective action�Apply to all activities performed and all software products prepared or modified in incorporating this software������5.18 Joint reviews�Cover the software products prepared or modified in incorporating this software������5.19 Other activities�Apply the full requirements of this section������FIGURE 3. Interpreting MIL-STD-498 for incorporation of reusable software - continued.
�CATEGORY AND PRIORITY CLASSIFICATIONS
	FOR PROBLEM REPORTING

C.1	Scope. This appendix contains requirements for a category and priority classification scheme to be applied to each problem submitted to the corrective action system. This appendix is a mandatory part of the standard, subject to the following conditions: 1) these requirements may be tailored by the acquirer, and 2) the developer may use alternate category and priority schemes if approved by the acquirer.

C.2	Applicable documents. This section is not applicable to this appendix.

C.3	Classification by category. The developer shall:

		a.		Assign each problem in software products to one or more of the categories in Figure 4.

		b.		Assign each problem in activities to one or more of the categories in Figure 1 (shown at the start of Section 5).

C.4	Classification by priority. The developer shall assign each problem in software products or activities to one of the priorities in Figure 5.
�
Category�	 Applies to problems in: ��a.	Plans �One of the plans developed for the project��b.	Concept�The operational concept��c.	Requirements�The system or software requirements��d.	Design�The design of the system or software��e.	Code �The software code��f.	Database/data file�A database or data file��g.	Test information�Test plans, test descriptions, or test reports��h.	Manuals�The user, operator, or support manuals��i.	Other�Other software products��

FIGURE 4. Categories to be used for classifying problems in software products.

Priority�	 Applies if a problem could:��	 1�a.	Prevent the accomplishment of an operational or mission essential capability
b.	Jeopardize safety, security, or other requirement designated "critical"��	 2�a.	Adversely affect the accomplishment of an operational or mission essential capability and no work-around solution is known
b.	Adversely affect technical, cost, or schedule risks to the project or to life �cycle support of the system, and no work-around solution is known��	 3�a.	Adversely affect the accomplishment of an operational or mission essential capability but a work-around solution is known
b.	Adversely affect technical, cost, or schedule risks to the project or to life �cycle support of the system, but a work-around solution is known��	 4�a.	Result in user/operator inconvenience or annoyance but does not affect a �required operational or mission essential capability
b.	Result in inconvenience or annoyance for development or support personnel, �but does not prevent the accomplishment of those responsibilities��	 5�Any other effect��

FIGURE 5. Priorities to be used for classifying problems.
� SOFTWARE PRODUCT EVALUATIONS�

D.1	Scope. This appendix identifies the software products that are to undergo software product evaluations, identifies the criteria to be used for each evaluation, and contains a default set of definitions for the evaluation criteria. This appendix is a mandatory part of the standard, subject to the following conditions: 1) these requirements may be tailored by the acquirer, 2) the developer may use alternate criteria or definitions if approved by the acquirer, and 3) if the development of a given software product has been tailored out of the standard, the requirement to evaluate that product does not apply.

D.2	Applicable documents. This section is not applicable to this appendix.

D.3 	Required evaluations. Figure 6 identifies the software products that are to undergo software product evaluations and states the criteria to be applied to each one. Each software product and criterion is labelled for purposes of identification and tailoring. For convenience, they may be treated as subparagraphs of this paragraph (referring to the first criterion, for example, as D.3.1.a). The software products are expressed in lower case letters to convey generic products, not necessarily in the form of hard-copy documents. Evaluations of system-level products are to be interpreted as participation in these evaluations. Some of the criteria are subjective. Because of this, there is no requirement to prove that the criteria have been met; the requirement is to perform the evaluations using these criteria and to identify possible problems for discussion and resolution.

D.4 	Criteria definitions. The following paragraphs provide definitions for the criteria in Figure 6 that may not be self-explanatory. The criteria are listed in alphabetical order, matching as closely as possible the wording used in Figure 6.

D.4.1	Accurately describes (an item). This criterion, applied to user/operator/programmer instructions and to the "as built" design and version descriptions, means that the instructions �or descriptions are correct depictions of the software or other item described.

D.4.2	Adequate test cases, procedures, data, results. Test cases are adequate if they cover all applicable requirements or design decisions and specify the inputs to be used, the expected results, and the criteria to be used for evaluating those results. Test procedures are adequate if they specify the steps to be followed in carrying out each test case. Test data are adequate if they enable the execution of the planned test cases and test procedures. Test or dry run results are adequate if they describe the results of all test cases and show that all criteria have been met, possibly after revision and retesting.

D.4.3	Consistent with indicated product(s). This criterion means that: (1) no statement or representation in one software product contradicts a statement or representation in the other software products, (2) a given term, acronym, or abbreviation means the same thing in all of the software products, and (3) a given item or concept is referred to by the same name or description in all of the software products.

D.4.4	Contains all applicable information in (a specified DID). This criterion uses the DIDs �to specify the required content of software products, regardless of whether a deliverable document has been ordered. Allowances are to be made for the applicability of each DID topic. The formatting specified in the DID (required paragraphing and numbering) are not relevant to this evaluation.

��seq Text_Box * arabic�1�
�Evaluation Criteria��������Software
Product�Contains
all applic. info in:�Meets
SOW, if applic.�Meets
CDRL, if applic.�Under-
stand-
able�Intern.
consis-
tent�Follows
SW dev plan�
	Additional Criteria
��1. 	Software
development plan (5.1.1)�a.	SDP
	DID�	b.�	c.�	d.�	e.�	f.
(Up-
dates)�g.	Covers all activities/deliverables in SOW and CDRL
h.	Consistent with other project plans
i.	Presents a sound approach to the development��2.	Software test plan
	(5.1.2, 5.1.3)�a.	STP
DID�	b.�	c.�	d.�	e.�	f.�g.	Covers all software-related qualification activities in
the SOW
h.	Covers all requirements for the items under test
i.	Consistent with other project plans
j.	Presents a sound approach to the testing��3.	Software
 installation plan (5.1.4)�a.	SIP
	DID�	b.�	c.�	d.�	e.�	f.�g.	Covers all user site installation activities in the SOW
h.	Consistent with other project plans
i.	Presents a sound approach to the installation��4.	Software transition
plan
	(5.1.5)�a.	STrP
	DID�	b.�	c.�	d.�	e.�	f.�g.	Covers all transition-related activities in the SOW
h.	Consistent with other project plans
i.	Presents a sound approach to the transition��5.	Operational concept
	(5.3.2)�a.	OCD
	DID�	b.�	c.�	d.�	e.�	f.�g.	Feasible��6.	System requirements
 (5.3.3)�a.	SSS,
IRS
	DIDs�	b.�	c.�	d.�	e.�	f.�g.	Covers the operational concept
h.	Feasible
i.	Testable��7.	System-wide design
decisions
(5.4.1)�a.	SSDD,
IDD, DBDD
	DIDs�	b.�	c.�	d.�	e.�	f.�g.	Consistent with system requirements
h.	Feasible��8.	System architectural
 design (5.4.2)�a.	SSDD,
IDD
	DIDs�	b.�	c.�	d.�	e.�	f.�g.	Covers the system requirements
h.	Consistent with the system-wide design decisions
i.	Feasible��9.	CSCI requirements
	(5.5)�a.	SRS,
IRS
	DIDs�	b.�	c.�	d.�	e.�	f.�g.	Covers system requirements allocated to the CSCI
h.	Feasible
i.	Testable��
FIGURE 6. Software products and associated evaluation criteria.

� EMBED MSWordArt.2 \s ���
�

�Evaluation Criteria��������Software
Product�Contains
all applic. info in:�Meets
SOW, if applic.�Meets
CDRL, if applic.�Under-
stand-
able�Intern.
consis-
tent�Follows
SW dev plan�
Additional Criteria
��10.	CSCI-wide design
decisions
	(5.6.1)�a.	SDD,
IDD, DBDD
	DIDs�	b.�	c.�	d.�	e.�	f.�g.	Consistent with CSCI requirements
h.	Feasible��11.	CSCI architectural
design
	(5.6.2)�a.	SDD,
IDD
	DIDs�	b.�	c.�	d.�	e.�	f.�g.	Covers CSCI requirements
h.	Consistent with CSCI-wide design decisions
i.	Feasible��12.	CSCI detailed
design
	(5.6.3)�a.	SDD,
IDD, DBDD
	DIDs�	b.�	c.�	d.�	e.�	f.�g.	Covers CSCI requirements allocated to each unit
h.	Consistent with CSCI-wide design decisions��13.	Implemented
software
	(5.7.1)�	N/A
�	b.�	c.
�	d.�	e.�	f.�g.	Covers the CSCI detailed design��14.	CSCI qualification
test descriptions
	(5.9.3)�a.	STD
	DID�	b.�	c.�	d.�	e.�	f.�g.	Covers all CSCI requirements
��15.	CSCI qualification
 test results
	(5.9.7)�a.	STR
	DID�	b.�	c.�	d.�	e.�	f.�g.	Covers all planned CSCI qualification test cases
h.	Shows evidence that the CSCI meets its requirements��16.	System qualification
 test descriptions (5.11.3) �a.	STD
	DID�	b.�	c.�	d.�	e.�	f.�g.	Covers all system requirements��17.	System qualification
test results
	(5.11.7)�a.	STR
	DID�	b.�	c.�	d.�	e.�	f.�g.	Covers all planned system qualification test cases
h.	Shows evidence the system meets its requirements��18.	Executable software
 (5.12.1, 5.13.1)�	N/A�	b.�	c.
�	d.�	e.�	f.�g.	Meets delivery requirements
h.	All software necessary for execution is present
i.	Version exactly matches version that passed testing
j.	Deliverable media accurately labelled��
FIGURE 6. Software products and associated evaluation criteria - continued.
� EMBED MSWordArt.2 \s ���

�

�Evaluation Criteria��������Software
Product�Contains
all applic. info in:�Meets
SOW, if applic.�Meets
CDRL, if applic.�Under-
stand-
able�Intern.
consis-
tent�Follows
SW dev plan�
Additional Criteria
��19.	Software version
descriptions
(5.12.2, 5.13.3) �a.	SVD
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately identifies the version of each software
 component (file, unit, CSCI, etc.) delivered
h.	Accurately identifies the changes incorporated��20.	Software user
manuals
	(5.12.3.1)�a.	SUM
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes software installation and use to
the intended audience of this manual��21.	Software input/
output manuals (5.12.3.2)�a.	SIOM
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes software input/output to the
intended audience of this manual��22.	Software center
operator manuals (5.12.3.3)�a.	SCOM
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes software installation and
operation to the intended audience of this manual��23.	Computer operation
manuals
	(5.12.3.4)�a.	COM
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes the operational characteristics of
the computer��24.	Source files
	(5.13.2)�a.	SPS
	DID�	b.�	c.
�	d.�	e.�	f.�g.	Meets delivery requirements
h.	All required software is present
i.	Version exactly matches version that passed testing
j.	Deliverable media accurately labelled��25.	"As built" CSCI
design and related information
	(5.13.4)�a.	SPS
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes the "as built" design of the CSCI
h.	Accurately describes compilation/build procedures
i.	Accurately describes modification procedures
j.	Source files cover all units in the CSCI design
k.	Measured resource utilization meets CSCI requirements��26.	"As built" system
design
	(5.13.5) �a.	SSDD
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes the "as built" system design��
FIGURE 6. Software products and associated evaluation criteria - continued.
� EMBED MSWordArt.2 \s ���
� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���
�

�Evaluation Criteria��������Software
Product�Contains
all applic. info in:�Meets
SOW, if applic.�Meets
CDRL, if applic.�Under-
stand-
able�Intern.
consis-
tent�Follows
SW dev plan�
Additional Criteria
��27.	Computer
programming manuals
	(5.13.6.1)�a.	CPM
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes the programming features of the
computer��� EMBED MSWordArt.2 \s ���
28.	Firmware support
manuals
	(5.13.6.2)�a.	FSM
	DID�	b.�	c.�	d.�	e.�	f.�g.	Accurately describes firmware programming features��29.	Sampling of
software development files
(5.7.2, 5.7.3,
5.8.1, 5.8.4, 5.9.4, 5.10.1, 5.10.4, 5.11.4)�	N/A�	b.�	N/A�	d.�	e.�	f.�g.	Contents are current with the ongoing effort
h.	Adequate unit test cases/procedures/data/results
i.	Adequate unit integration test cases/procedures/
data/results
j.	Adequate CSCI qualification dry run results
k.	Adequate CSCI/HWCI integration test cases/
procedures/data/results
l.	Adequate system qualification dry run results��
FIGURE 6. Software products and associated evaluation criteria - continued.

� EMBED MSWordArt.2 \s ���

�D.4.5	Covers (a given set of items). A software product "covers" a given set of items if �every item in the set has been dealt with in the software product. For example, a plan covers the SOW if every provision in the SOW is dealt with in the plan; a design covers a set of requirements if every requirement has been dealt with in the design; a test plan covers a set �of requirements if every requirement is the subject of one or more tests. "Covers" �corresponds to the downward traceability (for example, from requirements to design) in the requirement, design, and test planning/description DIDs.

D.4.6	Feasible. This criterion means that, in the knowledge and experience of the �evaluator, a given concept, set of requirements, design, test, etc. violates no known principles �or lessons learned that would render it impossible to carry out.

D.4.7	Follows software development plan. This criterion means that the software product shows evidence of having been developed in accordance with the approach described in the software development plan. Examples include following design and coding standards described in the plan. For the software development plan itself, this criterion applies to updates to the initial plan.

D.4.8	Internally consistent. This criterion means that: (1) no two statements or representations in a software product contradict one another, (2) a given term, acronym, or abbreviation means the same thing throughout the software product, and (3) a given item or concept is referred to by the same name or description throughout the software product.

D.4.9	Meets CDRL, if applicable. This criterion applies if the software product being evaluated is specified in the CDRL and has been formatted for delivery at the time of evaluation. It focuses on the format, markings, and other provisions specified in the CDRL, rather than on content, covered by other criteria.

D.4.10		Meets SOW, if applicable. This criterion means that the software product fulfills any Statement of Work provisions regarding it. For example, the Statement of Work may place constraints on the operational concept or the design.

D.4.11		Presents a sound approach. This criterion means that, based on the knowledge and experience of the evaluator, a given plan represents a reasonable way to carry out the required activities.

D.4.12		Shows evidence that (an item under test) meets its requirements. This criterion means that recorded test results show that the item under test either passed all tests the first time or was revised and retested until the tests were passed.

D.4.13		Testable. A requirement or set of requirements is considered to be testable if an objective and feasible test can be designed to determine whether each requirement has been met.

D.4.14		Understandable. This criterion means "understandable by the intended audience." For example, software products intended for programmer-to-programmer communication need not be understandable by non-programmers. A product that correctly identifies its audience (based on information in Block 3 of the corresponding DID) and is considered understandable to that audience meets this criterion.
�CANDIDATE JOINT MANAGEMENT REVIEWS

E.1	Scope. This appendix describes a candidate set of joint management reviews that might be held during a software development project. This appendix is not a mandatory part �of this standard. The information provided is intended for guidance only.

E.2	Applicable documents. This section is not applicable to this appendix.

E.3	Assumptions. This appendix makes the following assumptions:

	a.	The acquirer has reviewed the subject products in advance, and one or more joint technical reviews have been held to resolve issues, leaving the joint management review as a forum to resolve open issues and reach agreement as to the acceptability of each product.

	b.	Any of the reviews may be conducted incrementally, dealing at each review with a subset of the listed items or a subset of the system or CSCI(s) being reviewed.

E.4	Candidate reviews. Given below is a set of candidate joint management reviews that might be held during a software development project. There is no intent to require these reviews or to preclude alternatives or combinations of these reviews. The objectives supplement those given in 5.18.2.

E.4.1	Software plan reviews. These reviews are held to resolve open issues regarding one or more of the following:

	a.	The software development plan
	b.	The software test plan
	c.	The software installation plan
	d.	The software transition plan

E.4.2	Operational concept reviews. These reviews are held to resolve open issues regarding the operational concept for a software system.

E.4.3	System/subsystem requirements reviews. These reviews are held to resolve open issues regarding the specified requirements for a software system or subsystem.

E.4.4	System/subsystem design reviews. These reviews are held to resolve open issues regarding one or more of the following:

	a.	The system- or subsystem-wide design decisions
	b.	The architectural design of a software system or subsystem

E.4.5	Software requirements reviews. These reviews are held to resolve open issues regarding the specified requirements for a CSCI.
�E.4.6	Software design reviews. These reviews are held to resolve open issues regarding one or more of the following:

	a.	The CSCI-wide design decisions
	b.	The architectural design of a CSCI
	c.	The detailed design of a CSCI or portion thereof (such as a database)

E.4.7	Test readiness reviews. These reviews are held to resolve open issues regarding one or more of the following:

	a.	The status of the software test environment
	b.	The test cases and test procedures to be used for CSCI qualification testing or system
qualification testing
	c.	The status of the software to be tested

E.4.8	Test results reviews. These reviews are held to resolve open issues regarding the results of CSCI qualification testing or system qualification testing.

E.4.9	Software usability reviews. These reviews are held to resolve open issues regarding one or more of the following:

	a.	The readiness of the software for installation at user sites
	b.	The user and operator manuals
	c.	The software version descriptions
	d.	The status of installation preparations and activities

E.4.10	Software supportability reviews. These reviews are held to resolve open issues regarding one or more of the following:

	a.	The readiness of the software for transition to the support agency
	b.	The software product specifications
	c.	The software support manuals
	d.	The software version descriptions
	e.	The status of transition preparations and activities, including transition of the software
development environment, if applicable

E.4.11	Critical requirement reviews. These reviews are held to resolve open issues regarding the handling of critical requirements, such as those for safety, security, and privacy.
�CANDIDATE MANAGEMENT INDICATORS

F.1		Scope. This appendix identifies a set of management indicators that might be used �on a software development project. This appendix is not a mandatory part of this standard. The information provided is intended for guidance only.

F.2		Applicable documents. This section is not applicable to this appendix.

F.3		Candidate indicators. Given below is a set of candidate management indicators that might be used on a software development project. There is no intent to impose these indicators or to preclude others.

	a.	Requirements volatility: total number of requirements and requirement changes over time.

	b.	Software size: planned and actual number of units, lines of code, or other size measurement over time.

	c.	Software staffing: planned and actual staffing levels over time.

	d.	Software complexity: complexity of each software unit.

	e.	Software progress: planned and actual number of software units designed, implemented, unit tested, and integrated over time.

	f.	Problem/change report status: total number, number closed, number opened in the current reporting period, age, priority.

	g.	Build release content: planned and actual number of software units released in each build.

	h.	Computer hardware resource utilization: planned and actual use of computer hardware resources (such as processor capacity, memory capacity, input/output device �capacity, auxiliary storage device capacity, and communications/network equipment capacity) over time.

	i.	Milestone performance: planned and actual dates of key project milestones.

	j.	Scrap/rework: amount of resources expended to replace or revise software products after they are placed under project-level or higher configuration control.
	
	k.	Effect of reuse: a breakout of each of the indicators above for reused versus new software products.
�GUIDANCE ON PROGRAM STRATEGIES, TAILORING, AND BUILD PLANNING

G.1	Scope. This appendix identifies three of the program strategies used by DoD and shows how MIL-STD-498 can be applied under each of these strategies and on a project involving reengineering. This appendix is not a mandatory part of the standard. The information provided is intended for guidance only.

G.2	Applicable documents. Documents cited in this appendix are as follows:

	a.		DODI 5000.2, Defense Acquisition Management Policies and Procedures

	b.		DODI 8120.2, Automated Information System Life-Cycle Management Process,
			Review, and Milestone Approval

G.3	Candidate program strategies. DODI 8120.2 describes three basic program strategies plus a generic strategy called "other," encompassing variations, combinations, and alternatives to the three. DODI 5000.2 identifies similar strategies, called acquisition strategies. The �three basic strategies are summarized below and in Figure 7.

a.		Grand design. The "grand design" strategy (not named in DODI 5000.2 but treated as one strategy) is essentially a "once-through, do-each-step-once" strategy. Simplistically: determine user needs, define requirements, design the system, implement the system, test, fix, and deliver.

b.		Incremental. The "incremental" strategy (called "Preplanned Product Improvement" �in DODI 5000.2) determines user needs and defines the system requirements, then performs the rest of the development in a sequence of builds. The first build incorporates part of the planned capabilities, the next build adds more capabilities, and so on, until the system is complete.

c.		Evolutionary. The "evolutionary" strategy (called "evolutionary" in both DOD Instructions) also develops a system in builds, but differs from the incremental strategy in acknowledging that the user need is not fully understood and all requirements cannot be defined up front. In this strategy, user needs and system requirements are partially defined up front, then are refined in each succeeding build.

Program Strategy
�Define All
Requirements First?�Multiple
Development
Cycles?�Field Interim
Software?��Grand Design�Yes�No�No��Incremental (Preplanned Product Improvement)�Yes�Yes�Maybe��Evolutionary�No�Yes�Yes��
FIGURE 7. Key features of three DOD program strategies.
�G.4	Selecting an appropriate program strategy. The program strategy is selected by the acquirer, but may be proposed by prospective or selected developers. Figure 8 illustrates a risk analysis approach for selecting an appropriate strategy. The approach consists of listing risk items (negatives) and opportunity items (positives) for each strategy; assigning each item �a risk or opportunity level of High, Medium, or Low; and making a decision on which strategy �to use based on a trade-off among the risks and opportunities. The fill-ins shown are sample considerations only. An actual analysis may use others. The "DECISION" entry on the �bottom line shows which strategy was selected.

G.5	Relationship of MIL-STD-498 to program strategies. The program strategy usually applies to the overall system. The software within the system may be acquired under the same strategy or under a different one, such as requiring that all software be finalized in the first build of the system. Figures 9, 10, and 11 show how MIL-STD-498 might be applied �under each of the program strategies identified in G.3. Figure 12 shows how MIL-STD-498 might be applied on a reengineering project. All four figures are, by necessity, simplified. For example, they show MIL-STD-498 activities in sequence when they might actually be ongoing, overlapping, or iterative; they show each software product as a single entity, without �depicting early drafts or updates; and they represent each software product by the name of �the corresponding DID, when the actual software product is the information called for by the DID, not necessarily in the form of a hard-copy document.

G.6	Planning software builds and tailoring MIL-STD-498. Planning the software builds on �a project and tailoring MIL-STD-498 for each build may be accomplished in several ways. The acquirer might, for example, select an overall program strategy and tailor the standard for the overall contract, leaving it to the developer to lay out the software builds and propose the tailoring for each build. Alternatively, the acquirer might lay out the software builds and �specify the tailoring for each as part of the contract. The approach selected will be project-dependent. The paragraphs below provide guidelines for planning the builds and tailoring the standard without attempting to divide these activities between the acquirer and developer.

G.6.1	Identifying builds and their objectives. The first step in software build planning is to �lay out a series of one or more builds and to identify the objectives of each build. The top �part of Figure 13 illustrates such planning. In the example, the system/subsystem �specification (SSS) already exists and fulfillment of its requirements is divided into four builds, two of which will be prototypes delivered to a selected set of users, and two of which will actually be fielded. A further objective of Build 4 is transitioning the software to the �designated support agency. An actual project would expand on these objectives.

G.6.2	Identifying the MIL-STD-498 activities to be performed in each build. The next step �in build planning is identifying which MIL-STD-498 activities apply in each build and determining the extent to which they apply. The lower part of Figure 13 shows the start of such planning. Listed on the left are the paragraphs of MIL-STD-498. The worksheet entries indicate in which builds each activity is to be performed and include any notes regarding the nature of each activity in each build. For example, the figure shows that each build will �include software development planning (5.1.1), but that the nature of that planning changes �in each build. Some activities will not apply at all in a given build, some will apply identically �in all builds, and some will apply differently in different builds. Since some aspects of the project, such as number and type of CSCIs, may not have been identified at the time the worksheet is being filled out, completion of the worksheet may itself be incremental. The following guidelines apply:
�
Grand Design��Incremental��Evolutionary���Risk Item
(Reasons against this strategy)�Risk
Level�Risk Item
(Reasons against this strategy)�Risk
Level�Risk Item
(Reasons against this strategy)�Risk
Level���SYMBOL 45 \f "Symbol" \s 8 \h�	Requirements are not well understood

�SYMBOL 45 \f "Symbol" \s 8 \h�	System too large to do all at once

�SYMBOL 45 \f "Symbol" \s 8 \h�	Rapid changes in mission technology anticipated--may change the requirements

�SYMBOL 45 \f "Symbol" \s 8 \h�	Limited staff or budget available now�H

M

H

M��SYMBOL 45 \f "Symbol" \s 8 \h�	Requirements are not well understood

�SYMBOL 45 \f "Symbol" \s 8 \h�	User prefers all capabilities at first delivery

�SYMBOL 45 \f "Symbol" \s 8 \h�	Rapid changes in mission technology are expected--may change the requirements �H

M

H�

�SYMBOL 45 \f "Symbol" \s 8 \h�	User prefers all capabilities at first delivery�

M

��	Opportunity Item
	(Reasons to use this strategy)�Opp.
Level�	Opportunity Item
	(Reasons to use this strategy)�Opp.
Level�	Opportunity Item
	(Reasons to use this strategy)�Opp.
Level���SYMBOL 45 \f "Symbol" \s 8 \h�	User prefers all capabilities at first delivery

�SYMBOL 45 \f "Symbol" \s 8 \h�	User prefers to phase out old system all at once�M

L��SYMBOL 45 \f "Symbol" \s 8 \h�	Early capability is needed

�SYMBOL 45 \f "Symbol" \s 8 \h�	System breaks naturally into increments

�SYMBOL 45 \f "Symbol" \s 8 \h�	Funding/staffing will be incremental
�H

M

H��SYMBOL 45 \f "Symbol" \s 8 \h�	Early capability is needed

�SYMBOL 45 \f "Symbol" \s 8 \h�	System breaks naturally into increments

�SYMBOL 45 \f "Symbol" \s 8 \h�	Funding/staffing will be incremental

�SYMBOL 45 \f "Symbol" \s 8 \h�	User feedback and monitoring of technology changes is needed to understand full requirements
�H

M

H

H������DECISION: USE THIS STRATEGY���
FIGURE 8. Sample risk analysis for determining the appropriate program strategy.

�
ÚÄÄ¿
³ Project planning and oversight ³
ÀÄÄÙ
 SDP STP SIP/STrP

 ÚÄÄÄÄÄÄÄÄÄÄ¿
 ÚÄÄÄÄÄÄÄÄÁÄ¿ CSCI ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄ¿
 CSCI 1: ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ Prepare ³
 ÚÄÄÄÄÄÄÄÁÄÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÚÄÄ´ for SW ³
 ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR ³ ³ ³ Use ³
 ÚÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ ³ ³ Executable SW
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ SDD/IDD/DBDD ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ SVDs
 ³ SRS/IRS ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÁÄÄ¿ System ³ ³ User/op manual
 ³ ÚÄÄÄÄÄÄÄÁÄÄ¿ CSCI ³ ³ ³ CSCI/HWCI³ Qual ÃÄÄ´
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÅÄÄÄÄÄ´ Integ/ ³ Test ³ ³
 ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ CSCI 2: ÚÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
ÚÄÄÄÄÄÄÄÄÁÄ¿ System ³ ³ ÚÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÙSTD STR ³ ³ Prepare ³
³ System ³ Design ³ ³ ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR ³ ÀÄÄ´ for SW ³
³ Req ³ ÃÄÅÄÄÄÄÄÄÄÄÄÄÄÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD ³ ³ Transition³
³ Analysis ÃÄÄÄÄÄÄÄÄÙ ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ
ÀÄÄÄÄÄÄÄÄÄÄÙ SSDD/IDD³ ÀÄÄÄÄÄÄÄÄÄÄÙ SDD/IDD/DBDD ³ Executable SW
 OCD SSS/IRS ³ SRS/IRS ³ Source files
 ³ ³ SVDs
 ³ ³ SPSs
 ³ ÚÄÄ¿ ³ Updated SSDDs
 ÀÄÄÄÄÄÄÄÄÄÄ´ HWCI(s) (Not covered by MIL-STD-498) ÃÄÄÄÄÄÄÄÄÄÄÄÙ Support manuals
 ÀÄÄÙ

ÚÄÄ¿
³ SW devel environment, SW configuration management, SW product evaluation, SW quality assurance, corrective action, joint reviews, risk management, ³
³ software management indicators, security/privacy, interface with IV&V, coordination with associate developers, improvement of project processes ³
ÀÄÄÙ

Note: All activities may be more ongoing, overlapping, and iterative than the figure is able to show.

FIGURE 9. One possible way of applying MIL-STD-498 to the Grand Design program strategy.

�

BUILD 1: Establish system and software requirements and install software implementing a subset of those requirements at user sites
ÚÄÄ¿
³ Project planning and oversight ³
ÀÄÄÙ
 SDP (focus on Build 1) STP for Build 1 ÚÄÄÄÄÄÄÄÄÄÄ¿ SIP for Build 1; Preliminary STrP ÚÄÄÄÄÄÄÄÄÄÄ¿
 ÚÄÄÄÄÄÄÄÄÁÄ¿ CSCI ³ ³ Prepare ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄ´ for SW ³
 CSCI 1: ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ ³ Use ³
 ÚÄÄÄÄÄÄÄÁÄÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR for Build 1 ³ ³ Executable SW
 ÚÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD for Build 1 ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ SVDs
 ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÁÄÄ¿ System ³ ³ User/op manuals for
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ Partial SDD/IDD/DBDD ÚÄÄÄÄÄÄÄÁÄÄ¿ CSCI ³ ³ ³ CSCI/HWCI³ Qual ÃÄÄ´ Build 1
 ³ SRS/IRS* ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÅÄÄÄÄÄ´ Integ/ ³ Test ³ ³
 ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÚÄÄÄÄÄÄÄÄÁÄ¿ System ³ ³ CSCI 2:ÚÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÙSTD STR ³ ³ (No ³
³ System ³ Design ³ ³ ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR for ³ for Build 1 ÀÄÄ´ Software ³
³ Req ³ ÃÄÅÄÄÄÄÄÄÄÄÄÄÄÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD for Build 1 ³ ³ Transition)³
³ Analysis ÃÄÄÄÄÄÄÄÄÙ ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ Build 1 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ
ÀÄÄÄÄÄÄÄÄÄÄÙ SSDD/IDD*³ ÀÄÄÄÄÄÄÄÄÄÄÙ Partial SDD/IDD/DBDD ³
 OCD* SSS/IRS* ³ SRS/IRS* ³ (All activities may be more
 ³ ³ ongoing, overlapping, and iterative
 *Intended to be ³ ÚÄÄ¿ ³ than the figure is able to show)
 complete and stable ÀÄÄÄÄÄÄÄÄÄÄ´ HWCI(s) (Not covered by MIL-STD-498) ÃÄÄÄÄÄÄÄÄÄÄÄÙ
 ÀÄÄÙ
ÚÄÄ¿
³ SW devel environment, SW configuration management, SW product evaluation, SW quality assurance, corrective action, joint reviews, other activities ³
ÀÄÄÙ

BUILD 2: Install the completed software at user sites and transition the software to the software support agency
ÚÄÄ¿
³ Project planning and oversight ³
ÀÄÄÙ
 SDP updated STP updated for Build 2 ÚÄÄÄÄÄÄÄÄÄÄ¿ SIP for Build 2; completed STrP ÚÄÄÄÄÄÄÄÄÄÄ¿
 for Build 2 ÚÄÄÄÄÄÄÄÄÁÄ¿ CSCI ³ ³ Prepare ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄ´ for SW ³
 CSCI 1: ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ ³ Use ³
 ÚÄÄÄÄÄÄÄÁÄÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR for Build 2 ³ ³ Executable SW
 ÚÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD for Build 2 ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ SVDs
 ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÁÄÄ¿ System ³ ³ User/op manuals for
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙComplete SDD/IDD/DBDD ÚÄÄÄÄÄÄÄÁÄÄ¿ CSCI ³ ³ ³ CSCI/HWCI³ Qual ÃÄÄ´ Build 2
 ³ SRS/IRS* ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÅÄÄÄÄÄ´ Integ/ ³ Test ³ ³
 ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
ÚÄÄÄÄÄÄÄÄÁÄ¿ System ³ ³ CSCI 2:ÚÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÙSTD STR ³ ³ Prepare ³
³ System ³ Design ³ ³ ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR for ³ for Build 2 ÀÄÄ´ for SW ³
³ Req ³ ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD for Build 2 ³ ³ Transition³
³ Analysis ÃÄÄÄÄÄÄÄÄÙ ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ Build 2 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ
ÀÄÄÄÄÄÄÄÄÄÄÙ SSDD/IDD* ³ ÀÄÄÄÄÄÄÄÄÄÄÙComplete SDD/IDD/DBDD ³ Executable SW
 OCD* SSS/IRS* ³ SRS/IRS* ³ Source files
 ³ ³ SVDs
*Updated only if ³ ÚÄÄ¿ ³ SPSs, updated SSDDs
necessary; not intended ÀÄÄÄÄÄÄÄÄÄÄ´ HWCI(s) (Not covered by MIL-STD-498) ÃÄÄÄÄÄÄÄÄÄÄÄÙ Support manuals
to change ÀÄÄÙ
ÚÄÄ¿
³ SW devel environment, SW configuration management, SW product evaluation, SW quality assurance, corrective action, joint reviews, other activities ³
ÀÄÄÙ
FIGURE 10. One possible way of applying MIL-STD-498 to the Incremental program strategy.�
�BUILD 1: Establish preliminary system/software requirements and install a prototype implementing a subset of those requirements at selected user sites
ÚÄÄ¿
³ Project planning and oversight ³
ÀÄÄÙ
 SDP (focus on Build 1) (No STP for Build 1: ÚÄÄÄÄÄÄÄÄÄÄ¿ SIP for Build 1; Preliminary STrP ÚÄÄÄÄÄÄÄÄÄÄ¿
 no qual testing) ÚÄÄÄÄÄÄÄÄÁÄ¿ (No ³ ³ Prepare ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄ´ for SW ³
 CSCI 1: ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test) ³ ³ ³ ³ Use ³
 ÚÄÄÄÄÄÄÄÁÄÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ (No STR for Build 1) ³ ³ Executable SW
 ÚÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ(No STD for Build 1) ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ SVDs
 ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÁÄÄ¿(No Sys ³ ³ User/op manuals for
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ Partial SDD/IDD/DBDD ÚÄÄÄÄÄÄÄÁÄÄ¿ (No ³ ³ ³ CSCI/HWCI³ Qual ÃÄÄ´ Build 1
 ³ Partial SRS/IRS ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÅÄÄÄÄÄ´ Integ/ ³ Test) ³ ³
 ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test) ³ ³ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÚÄÄÄÄÄÄÄÄÁÄ¿ System ³ ³ CSCI 2:ÚÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ(No STD/STR³ ³ (No ³
³ System ³ Design ³ ³ ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ (No STR for ³ for Build 1)ÀÄÄ´ Software ³
³ Req ³ ÃÄÅÄÄÄÄÄÄÄÄÄÄÄÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ(No STD for Build 1) ³ ³ Transition)³
³ Analysis ÃÄÄÄÄÄÄÄÄÙ ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ Build 1) ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ
ÀÄÄÄÄÄÄÄÄÄÄÙ SSDD/IDD*³ ÀÄÄÄÄÄÄÄÄÄÄÙ Partial SDD/IDD/DBDD ³
 OCD* SSS/IRS* ³ Partial SRS/IRS ³ (All activities may be more
 ³ ³ ongoing, overlapping, and iterative
 *Preliminary/ ³ ÚÄÄ¿ ³ than the figure is able to show)
 partial ÀÄÄÄÄÄÄÄÄÄÄ´ HWCI(s) (Not covered by MIL-STD-498) ÃÄÄÄÄÄÄÄÄÄÄÄÙ
 ÀÄÄÙ
ÚÄÄ¿
³ SW devel environment, SW configuration management, SW product evaluation, SW quality assurance, corrective action, joint reviews, other activities ³
ÀÄÄÙ

BUILD 2: Refine and complete the requirements; install the completed software at user sites; transition the software to the software support agency
ÚÄÄ¿
³ Project planning and oversight ³
ÀÄÄÙ
 SDP updated STP for Build 2 ÚÄÄÄÄÄÄÄÄÄÄ¿ SIP for Build 2; completed STrP ÚÄÄÄÄÄÄÄÄÄÄ¿
 for Build 2 ÚÄÄÄÄÄÄÄÄÁÄ¿ CSCI ³ ³ Prepare ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄ´ for SW ³
 CSCI 1: ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ ³ Use ³
 ÚÄÄÄÄÄÄÄÁÄÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR for Build 2 ³ ³ Executable SW
 ÚÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD for Build 2 ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ SVDs
 ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÁÄÄ¿ System ³ ³ User/op manuals for
 ³ ÀÄÄÄÄÄÄÄÄÄÄÙ SDD/IDD/DBDD* ÚÄÄÄÄÄÄÄÁÄÄ¿ CSCI ³ ³ ³ CSCI/HWCI³ Qual ÃÄÄ´ Build 2
 ³ SRS/IRS* ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÅÄÄÄÄÄ´ Integ/ ³ Test ³ ³
 ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Integ/ ³ Test ³ ³ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
ÚÄÄÄÄÄÄÄÄÁÄ¿ System ³ ³ CSCI 2:ÚÄÄÄÄÄÄÄÄÁÄ¿ Software ³ Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÙSTD STR ³ ³ Prepare ³
³ System ³ Design ³ ³ ³ Software ³ Design ³ Unit Test ÃÄÄÄÄÄÄÄÄÙ STR for ³ for Build 2 ÀÄÄ´ for SW ³
³ Req ³ ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄ´ Req ³ ÃÄÄÄÄÄÄÄÄÄÄÄÙ STD for Build 2 ³ ³ Transition³
³ Analysis ÃÄÄÄÄÄÄÄÄÙ ³ ³ Analysis ÃÄÄÄÄÄÄÄÄÄÄÙ Build 2 ³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ
ÀÄÄÄÄÄÄÄÄÄÄÙ SSDD/IDD*³ ÀÄÄÄÄÄÄÄÄÄÄÙ SDD/IDD/DBDD* ³ Executable SW
 OCD* SSS/IRS* ³ SRS/IRS* ³ Source files
 ³ ³ SVDs
 * Refined from Build 1 ³ ÚÄÄ¿ ³ SPSs, updated SSDDs
 and completed ÀÄÄÄÄÄÄÄÄÄÄ´ HWCI(s) (Not covered by MIL-STD-498) ÃÄÄÄÄÄÄÄÄÄÄÄÙ Support manuals
 ÀÄÄÙ
ÚÄÄ¿
³ SW devel environment, SW configuration management, SW product evaluation, SW quality assurance, corrective action, joint reviews, other activities ³
ÀÄÄÙ

FIGURE 11. One possible way of applying MIL-STD-498 to the Evolutionary program strategy.

�
(ÄÄREENGINEERINGÄÄÄ(

 (ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄFORWARD ENGINEERINGÄÄÄ(

ÚÄÄÄ¿
³ Project planning and oversight ³
ÀÄÄÄÙ
 SDP STP SIP/STrP

 (REDOCUMENTATION((ÄÄTRANSLATIONÄÄ(
 ÚÄÄÄÄÄÄÄÄÄÄ¿
 CSCI 1: Translate ÚÄÄÄÄÄÄÄÄÁÄ¿ CSCI ³
 to Ada ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÄÄÄÄÄ¿
 ÚÄÄÄÄÄÄÄÄÄÄÄÁÄÄ¿Software ³ Integ/ ³ Test ³ ³
 ÚÄÄÄÄÄÄÄÁÄÄ¿Software ³Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³
 ³SW Req'ts ³Design: ³Unit Test:ÃÄÄÄÄÄÄÄÄÙ STR ³
 Ú´Analysis: ³revise and ³translate ³ STD ³
 ³³redocument³redocument ³software ³ ³ ÚÄÄÄÄÄÄÄÄÄÄ¿
 ³³derived ³derived desÃÄÄÄÄÄÄÄÄÄÄÙ ³ ³ Prepare ³
 ³³req'ts ÃÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³ for SW ³
 ³ÀÄÄÄÄÄÄÄÄÄÄÙ SDD/IDD/DBDD ³ ÚÄ´ Use ³
 ³ SRS/IRS ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ
 ³ ³ ³ Executable SW
 ³ (REDOCUMENTATION((ÄÄRESTRUCTURINGÄÄ(³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ³ SVDs
 ³ ÚÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÁÄÄ¿ System ³ ³ User/op manuals
 ³ CSCI 2: Restructure ÚÄÄÄÄÄÄÄÄÁÄ¿ CSCI ³ ³ ³ CSCI/HWCI³ Qual ÃÄ´
 (REVERSE ENGINEERING(³ to object-oriented ÚÄÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÅÄ´ Integ/ ³ Test ³ ³
 ³ ÚÄÄÄÄÄÄÄÄÄÄÄÁÄÄ¿Software ³ Integ/ ³ Test ³ ³ ³ Test ÃÄÄÄÄÄÄÄÄÙ ³
ÚÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÄÁÄ¿Software ³Implemen/ ³ Test ÃÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÙSTD STR ³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
³ System ³ ÚÄÄÄÄÄÄÁÄ¿SW ³ ³ System ³ ³ ³SW Req'ts ³Design: ³Unit Test: ÃÄÄÄÄÄÄÄÄÙ STR ³ ³ ³ Prepare ³
³ Req ÃÄ´Software³Req ÃÄÄ´ Design ÃÄÅÄÄÄÄÄÄÄÄ´Analysis: ³restructure/³restructure³ STD ³ ÀÄ´ for SW ³
³ Analysis³ ³Design ³Analysis³ ³ ³ ³ ³redocument³redocument ³software ³ ³ ³ Transition³
ÀÄÄÄÄÄÄÄÄÄÙ ³ ÃÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÙ ³ ³derived ³derived des ÃÄÄÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ
 OCD SSS/IRSÀÄÄÄÄÄÄÄÄÙ Derived SSDD/IDD³ ³req'ts ÃÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ Executable SW
 ³ Derived ³ req'ts ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÙ SDD/IDD/DBDD ³ Source files
 ³ design ³ of legacy ³ ³ SRS/IRS ³ SVDs
 ³ of legacy³ software ³ ³ ³ SPSs
 ³ software ³ ³ ³ (REDOCUMENTATION((ÄÄRETARGETINGÄÄ(³ Updated SSDDs
 (((³ ÚÄÄÄÄÄÄÄÄÄÄ¿ ³ Support manuals
Determine Collect existing Design ³ CSCI 3: Retarget to ÚÄÄÄÄÄÄÄÄÁÄ¿ CSCI ³ ³
req'ts software products; reeng'd ³ new computer ÚÄÄÄÄÄÄÄÄÄÄÄÁÄ¿ Unit ³ Qual ÃÄÄÄÄÙ
for analyze them; derive system ³ ÚÄÄÄÄÄÄÄÄÄÄÄÁÄÄ¿Software ³ Integ/ ³ Test ³
reeng'd SW design/req'ts; based on ³ ÚÄÄÄÄÄÄÄÄÁÄÄ¿Software ³Implemen/ ³ Test ÃÄÄÄÄÄÄÄÄÙ
system derive system findings ³ ³SW Req'ts ³Design: ³Unit Test:ÃÄÄÄÄÄÄÄÄÙ STR
 design/req'ts for ÀÄÄÄÄ´Analysis: ³revise and ³retarget ³ STD
 a software system ³revise and ³redocument ³software ³
 ³redocument ³derived desÃÄÄÄÄÄÄÄÄÄÄÙ
 ³derived reqÃÄÄÄÄÄÄÄÄÄÄÄÙ (All activities may be more
 ÀÄÄÄÄÄÄÄÄÄÄÄÙ SDD/IDD/DBDD ongoing, overlapping, and
 SRS/IRS iterative than the figure
 is able to show)

ÚÄÄ¿
³ SW devel environment, SW configuration management, SW product evaluation, SW quality assurance, corrective action, joint reviews, risk management, ³
³ software management indicators, security/privacy, interface with IV&V, coordination with associate developers, improvement of project process ³
ÀÄÄÙ

	FIGURE 12. One possible way of applying MIL-STD-498 to a reengineering project.
�
	
BUILD PLANNING WORKSHEET ��Build�������	1�	2�	3�	4��1. Identify at right the objectives of each build

2. Indicate below which activities are �to be accomplished during the development of each build. Add �clarifying notes as needed.��Deliver to selected users an operational prototype that meets the following system-level requirements:
SSS-1, SSS-5, ...
SSS-1250�Deliver to selected �users an operational prototype that meets �he requirements of �Build 1 plus: SSS-2,
SSS-3, SSS-15, ...,
SSS-1249�Deliver to all users a tested system that �meets the requirements of Builds 1 and 2 plus:
SSS-4, SSS-7,
SSS-10, ..., SSS-1248�Deliver to all users a tested system that �meets all system-level requirements; transition to designated support agency��Para�	Activity�	�����5.1�PROJECT PLANNING AND OVERSIGHT������5.1.1�Plan the software �development effort�Yes: Plan Build 1 in detail; Builds 2-4 in general�Yes: Plan Build 2 in detail; Builds 3-4 in general�Yes: Plan Build 3 in �detail; Build 4 in general�Yes: Plan Build 4 in �detail
��5.1.2�Plan for CSCI qualification testing�No: No CSCI qual testing in this build�No: No CSCI qual testing in this build�Yes: Plan for CSCI qual testing in this build�Yes: Update for CSCI qual testing in this build��5.1.3
�Plan for system qualification testing�No: No system qual testing in this build�No: No system qual testing in this build�Yes: Plan for system �qual testing in this build�Yes: Update for system qual testing in this build��5.1.4�Plan for installing software at user sites�No: Let users install on their own�No: Let users install on their own�Yes: Plan to install at �user sites�Yes: Update as needed for installation of Bld 4��5.1.5�Plan for transitioning software to the support agency�Yes: Very preliminary planning only�Yes: Update preliminary plans�Yes: Update preliminary plans�Yes: Finalize transition planning��5.1.6�Follow plans; perform management review�Yes: For those plans that are in effect�Yes: For those plans �that are in effect�Yes: For those plans �that are in effect�Yes: For those plans �that are in effect��5.2�ESTABLISHING A SOFTWARE DEVEL ENVIRONMENT������5.2.1�Establish a software engineering environment�Yes: As needed for Build 1�Yes: Update as needed for Build 2�Yes: Update as needed for Build 3�Yes: Update as needed for Build 4��5.2.2�Establish a software test environment�Yes: As needed for Build 1 testing�Yes: As needed for �Build 2 testing�Yes: Set up fully for �Build 3 qualification testing�Yes: Update as needed for Build 4 qualification testing��
FIGURE 13. Example of build planning for a MIL-STD-498 project.
�a.	Different decisions will apply to different types of software on a project. These differences can be shown within the entries of one worksheet or by using different worksheets for different types of software on a project.

b.	If early builds are devoted to experimentation, developing "throw-away" software to arrive at a system concept or system requirements, it may be appropriate to forgo certain formalities, such as coding standards, that will be imposed later on the "real" software. If the early software will be used later, such formalities may be appropriate from the start. These decisions are project-dependent.

G.6.3	Recording tailoring decisions. Tailoring decisions made by the acquirer before the project begins are specified in the Statement of Work. Tailoring proposed by the developer may be communicated via feedback on draft solicitations, proposals written in response to solicitations, the software development plan, joint reviews during the project, or by other �means of communication. Refinements to the tailoring decisions may be ongoing as the project proceeds. Those involving contractual changes should be handled accordingly.

G.6.4	Scheduling the selected activities in each build. Another important step in build planning is scheduling the activities in each build. As with tailoring, the acquirer may set forth general milestones and have the developer provide specifics or may provide specific schedules. The following guidelines apply:

a.	A common mistake is to treat all CSCIs as though they must be developed in "lock-step," reaching key milestones at the same time. Allowing CSCIs to be on different schedules can result in more optimum development.

b.	A similar mistake is to treat software units as though they must be developed in "lock-step," all designed by a certain date, implemented by a certain date, etc. Flexibility �in the scheduling of software units can also be effective.

c.	The activities in MIL-STD-498 need not be performed sequentially. Several may be taking place at one time, and an activity may be performed continually or intermittently throughout a build or over multiple builds. The activities in each build should be laid out in the manner that best suits the work to be done.
�
APPENDIX H
GUIDANCE ON ORDERING DELIVERABLES

H.1	Scope. This appendix provides guidance to the acquirer on the deliverables to be required on a software development project. This appendix is not a mandatory part of this standard. The information provided is intended for guidance only.

H.2	Applicable documents. This section is not applicable to this appendix.

H.3	Ordering deliverables. MIL-STD-498 has been worded to differentiate between the planning/engineering activities that make up a software development project and the generation of deliverables. A key objective of this wording is to eliminate the notion that the acquirer must order a given deliverable in order to have planning or engineering work take place. Under MIL-STD-498, the planning and engineering work takes place regardless of which deliverables are ordered, unless a given activity is tailored out of the standard. In addition, joint technical reviews have been included to review the results of that work in its natural form, without the generation of deliverables. Deliverables should be ordered only �when there is a genuine need to have planning or engineering information transformed into �a deliverable, recognizing that this transformation requires time and effort that would �otherwise be spent on the engineering effort. Block 3 of each DID provides information �helpful in deciding whether the corresponding deliverable should be ordered.

H.4	Scheduling deliverables. MIL-STD-498 has been structured to support a variety of program strategies and to provide the developer flexibility in laying out a software �development process that will best suit the work to be done. All of this flexibility can be canceled by rigid scheduling of deliverables on the CDRL. If the CDRL lays out a strict "waterfall" sequence of deliverables, little room is left to propose innovative development processes. If the CDRL forces all CSCIs into lock-step with each other, little room is left to develop the CSCIs in an optimum order. To the maximum extent possible, the CDRL should avoid such pre-determination, leaving the door open for incremental delivery of software products, staggered development of CSCIs, and other variations to optimize the software development effort. The developer's software development plan will lay out a proposed schedule that meets the constraints in the CDRL. Final agreement on scheduling can take place at that time.

H.5	Format of deliverables. Traditional deliverables take the form of paper documents exactly following DID formats. While this form works well for some deliverables, it is not the only form, and alternatives should be considered. One variation from paper documents is �word processing files containing those documents. This format saves paper, but still requires the developer to format the information as required by the DID. Another variation is �specifying that a paper or word processor document is to include all DID contents but may �be in the developer's format. Yet another variation is allowing deliverables to take forms that are not traditional documents at all, such as data in computer-aided software engineering (CASE) tools. These variations in required format can be specified on the CDRL, minimizing the time spent transforming actual work products into deliverables.

H.6	Tailoring the DIDs. Tailoring the DIDs consists of deleting requirements for unneeded information and making other changes that do not increase the required workload, such as combining two documents under one cover. DID tailoring for deliverables is specified in Block 16 of the CDRL.
�CONVERSION GUIDE FROM
DOD-STD-2167A AND DOD-STD-7935A

I.1		Scope. This appendix provides a conversion guide from DOD-STD-2167A and DOD-STD-7935A, the two standards that were merged to form MIL-STD-498. It maps key terms from each of these standards to their counterparts in MIL-STD-498 and shows the relationship of the DIDs required by these standards to their counterparts in MIL-STD-498. This appendix is not a mandatory part of the standard. The information provided is intended for guidance only.

I.2		Applicable documents. This appendix references the following standards, both of which are superseded by this standard:

	a.	DOD-STD-2167A, Defense System Software Development, 29 February 1988

	b.	DOD-STD-7935A, DoD Automated Information System Documentation Standards,
		31 October 1988

I.3		Mapping of key terms. Figure 14 identifies selected terms in MIL-STD-498 and states their counterparts in DOD-STD-2167A and DOD-STD-7935A.

	MIL-STD-498 Term�	DOD-STD-2167A Counterpart�	DOD-STD-7935A Counterpart��Acquirer�Contracting agency�User Group (no distinction made �between acquirer and user roles)��Developer�Contractor (covers Government agency or contractor)�Development Group (covers �Government agency or contractor)��Implementation�Coding�Development, production, coding, database generation��Installation (at user sites)�Deployment�Deployment, implementation, �installation��Software unit�Computer software component �and computer software unit �Software unit��Computer Software Configuration Item (CSCI)�Computer Software Configuration Item (CSCI)�Program, computer program��Software support�Software support�Software maintenance��Software system (consisting of software and possibly
computers)�System (No specific term used to distinguish this type of system)�Automated Information System,
system��Hardware-software system (where the hardware may be other than computers)�System (No specific term used to distinguish this type of system)�(This type of system not covered �by DOD-STD-7935A)��
FIGURE 14. Mapping of key terms.
�
I.4		Mapping of DIDs. Figure 15 identifies the DOD-STD-7935A DIDs and tells which �MIL-STD-498 DIDs contain their contents. Figure 16 provides a similar mapping from the DOD-STD-2167A DIDs to the MIL-STD-498 DIDs. Figure 17 provides the reverse mapping, identifying the MIL-STD-498 DIDs and telling which DOD-STD-2167A and/or DOD-STD-7935A DIDs formed the basis for each.

	DOD-STD-7935A DID�	Incorporated into These MIL-STD-498 DIDs��Functional Description (FD)�System concepts into Operational Concept Description (OCD)
System requirements into System/Subsystem Specification (SSS)
Development planning into Software Development Plan (SDP)��System/Subsystem Specification
 (SS)�System requirements into System/Subsystem Specification (SSS)
System design into System/Subsystem Design Description (SSDD)��Software Unit Specification (US)�Requirement information into Software Requirements Specification
	(SRS) and Interface Requirements Specification (IRS)
Design information into Software Design Description (SDD) and
	Interface Design Description (IDD)��Database Specification (DS)�Database Design Description (DBDD)��Test Plan (PT)�High-level planning into Software Test Plan (STP)
Detailed planning into Software Test Description (STD)��Test Analysis Report (RT)�Software Test Report (STR)��Users Manual (UM)�Software Input/Output Manual (SIOM)��End User Manual (EM)�Software User Manual (SUM)��Computer Operation Manual (OM)�Software Center Operator Manual (SCOM)��Maintenance Manual (MM)�Planning information into Software Transition Plan (STrP)
Software description into Software Design Description (SDD)
Maintenance procedures into Software Product
	Specification (SPS)��Implementation Procedures (IP)�Software Installation Plan (SIP)��

FIGURE 15. Mapping of DOD-STD-7935A DIDs to MIL-STD-498 DIDs.
�
�	DOD-STD-2167A DID�	Incorporated into These MIL-STD-498 DIDs��Software Development Plan (SDP)�Software Development Plan (SDP)��System/Segment Specification (SSS)�System/Subsystem Specification (SSS)��System/Segment Design Document (SSDD)�Operational concept into Operational Concept Description
 	(OCD)
System design into System/Subsystem Design Description
 	(SSDD)��Software Requirements Specification (SRS)�Software Requirements Specification (SRS)��Interface Requirements Specification (IRS)�Interface Requirements Specification (IRS)��Software Design Document (SDD)�Software Design Description (SDD)��Interface Design Document (IDD)�Interface Design Description (IDD)��Software Test Plan (STP)�Software Test Plan (STP)��Software Test Description (STD)�Software Test Description (STD)��Software Test Report (STR)�Software Test Report (STR)��Computer System Operator's Manual (CSOM)�Computer Operation Manual (COM)��Software User's Manual (SUM)�Software User Manual (SUM)��Computer Resources Integrated Support Document (CRISD)�Planning information into Software Transition Plan (STrP)
Modification procedures into Software Product Specification
 	(SPS)��Software Product Specification (SPS)�Software Product Specification (SPS)��Software Programmer's Manual (SPM)�Computer Programming Manual (CPM)��Firmware Support Manual (FSM)�Firmware Support Manual (FSM)��Version Description Document (VDD)�Software Version Description (SVD)��

FIGURE 16. Mapping of DOD-STD-2167A DIDs to MIL-STD-498 DIDs.

�
�	MIL-STD-498 DID�	DOD-STD-2167A and DOD-STD-7935A Source DIDs��Software Development Plan (SDP)�2167A Software Development Plan (SDP)
7935A Functional Description (FD), section 7��Software Installation Plan (SIP)�7935A Implementation Procedures (IP)��Software Transition Plan (STrP)�2167A Comp Res Integ Sup Doc (CRISD) - planning info
7935A Maintenance Manual (MM) - planning info��Operational Concept Description (OCD)�2167A System/Segment Design Doc (SSDD), section 3
7935A Functional Description (FD), section 2��System/Subsystem Specification (SSS)�2167A System/Segment Specification (SSS)
7935A Functional Description (FD) - system req't info
7935A System/Subsystem Spec (SS) - system req't info��System/Subsystem Design Description (SSDD)�2167A System/Segment Design Document (SSDD)
7935A System/Subsystem Spec - system design info��Software Requirements Specification (SRS)�2167A Software Requirements Specification (SRS)
7935A Software Unit Specification (US) - req't info��Interface Requirements Specification (IRS)�2167A Interface Requirements Specification (IRS)
7935A SW Unit Specification (US) - interface req't info��Software Design Description (SDD)�2167A Software Design Document (SDD)
7935A Software Unit Specification (US) - design info
7935A Maintenance Manual (MM) - "as built" design info��Interface Design Description (IDD)�2167A Interface Design Document (IDD)
7935A SW Unit Specification (US) - interface design info��Database Design Description (DBDD)�7935A Database Specification (DS)��Software Test Plan (STP)�2167A Software Test Plan (STP)
7935A Test Plan (PT) - high-level information��Software Test Description (STD)�2167A Software Test Description (STD)
7935A Test Plan (PT) - detailed information��Software Test Report (STR)�2167A Software Test Report (STR)
7935A Test Analysis Report (RT)��Software Product Specification (SPS)�2167A Software Product Specification (SPS)
2167A CRISD - modification procedures
7935A MM - maintenance procedures��Software Version Description (SVD)�2167A Version Description Document (VDD)��Software User Manual (SUM)�2167A Software User's Manual (SUM)
7935A End User Manual (EM)��Software Center Operator Manual (SCOM)�7935A Computer Operation Manual (OM)��Software Input/Output Manual (SIOM)�7935A Users Manual (UM)��Computer Operation Manual (COM)�2167A Computer System Operator's Manual (CSOM)��Computer Programming Manual (CPM)�2167A Software Programmer's Manual (SPM)��Firmware Support Manual (FSM)�2167A Firmware Support Manual (FSM)���FIGURE 17. Mapping of MIL-STD-498 DIDs to DOD-STD-2167A and DOD-STD-7935A DIDs.�
This index covers both MIL-STD-498 and its DIDs. Paragraphs in the DIDs are indicated by the DID acronym followed by paragraph numbers; an overall DID is indicated by the DID acronym alone; paragraphs and figures in the standard have no preceding acronym. DID references that begin with "10.1" refer to paragraphs in Block 10, section 10.1 of the DID (General Instructions). All other DID references that do not cite a Block number refer to paragraphs in Block 10, section 10.2 of the DID (Content Requirements). Entries in bold indicate primary sources of information about a topic. The entry "et al" indicates that a topic (such as "software") appears too frequently to cite all references.

�acceptance 3.1, 3.30, E.3; IRS 3; SRS 3; SSS 3
access
	access for acquirer review 4.2.7; SDP 4.2.7
	access to information in a repository 6.4
acquirer (use of term "acquirer" in MIL-STD-498)
		Foreword-4, 1.2.1, 3.2, Fig 14
acquisition strategies (see program strategies)
acronyms Appendix A
allocation
	allocation of computer hardware resources 4.2.5;
			SDP 4.2.5; SDD 4.1; SSDD 4.1
	allocation of requirements Fig 3, Fig 6; SDD 4.1, 6;
			SRS 5; SSDD 4.1, 5; SSS 5
ANSI/IEEE/EIA 1498 Foreword-1
application of MIL-STD-498 1.2
approval (by the acquirer) 3.3, 5.1.6, 5.7.1, 5.9.2,
		5.13.7, 5.18.1, 5.18.2, 5.19.7, C.1, D.1
architecture 3.4 (also see CSCI architectural design,
		system architectural design)
"as built" design descriptions 5.13.4, 5.13.5, Fig 2,
		Fig 3, Fig 6, D.4.1, Fig 17; SDP 5.13.4, 5.13.5;
		SPS 3, 5.1
associate developer 3.5, 5.19.6, Fig 9-12; SDP 5.19.6
assurance 4.2.4; SDP 4.2.4 (also see software
		quality assurance)
	privacy assurance 4.2.4.3; SDP 4.2.4.3
	safety assurance 4.2.4.1; SDP 4.2.4.1
	security assurance 4.2.4.2; SDP 4.2.4.2
audits (configuration audits) 5.14.4; SDP 5.14.4

behavioral design 3.6, 5.4.1, 5.6.1, Fig 2, Fig 3;
		DBDD 3; OCD 3.3, 5.3; SDD 3; SSDD 3
builds 3.7, 5, Fig 1, G.3, G.5, Fig 10, Fig 11
	build planning guidance G.6, Fig 13
	notes on interpreting activities for multiple builds
			5.1-5.16, 5.18

category classifications for problem reporting 5.17.2,
		Fig 2, C.1, C.3, Fig 4; SDP 5.17.2 (also see
		corrective action)
code standards 4.2.2, D.4.7, G.6.2; SDP 4.2.2;
		SPS 5.3
coding (see software implementation and unit testing)
commercial off�the�shelf (COTS) (see reuse, reusable
		software products)
compilers, compilation/build procedures 3.38, 5.13.7,
	Fig 6; CPM 3; SPS 5.2, 5.3; STP 3.x.1; STrP 3.3 compliance with the contract 5.1.6, 5.16.3
computer�aided software engineering (CASE)
		Foreword-3, 1.2.4.4, 3.38, 5.1.1, 6.4, Fig 2,
		H.5; all DIDs: Block 7; STrP 3.3
computer center, software center 5.12.3.2, 5.12.3.3;
		OCD 7.1; SCOM; SDP 5.12.3; SIOM; SIP 4;
		SUM
computer hardware characteristics CPM 3, 4; FSM
		3.x.1, 3.x.4, 4.1; SRS 3.10.1; SSDD 4.1; SSS
		3.10.1; STrP 3.2
computer hardware resource utilization 4.2.5, 5.13.4,
		F.3; OCD 8.2; SDD 4.1; SDP 4.2.5; SPS 5.4,
		6; SRS 3.10.2; SSDD 4.1; SSS 3.10.2
Computer Operation Manual (COM) 5.12.3.4, 6.2,
		Fig 4, Fig 6, E.4.9, Fig 9-12, Fig 16, Fig 17;
		 COM; SDP 5.12.3
computer program 3.10
Computer Programming Manual (CPM) 5.13.6.1, 6.2,
		Fig 6, Fig 9-12, Fig 16, Fig 17; CPM; SDP
		5.13.6
Computer Software Configuration Item (CSCI) 1.2.2,
		3.12, 3.24, Fig 14, et al
	CSCI architectural design 3.4, 5.6.2, Fig 3,
			Fig 6, E.4.6; SDD 4; SDP 5.6.2; SPS 5.1
	CSCI detailed design 3.45, 5.6.3, 5.13.4, Fig 3,
			Fig 6, E.4.6; SDD 5; SDP 5.6.3, 5.13.4; SPS
		5.1 (also see Database Design Description,
			Interface Design Description)
	CSCI/HWCI integration and testing 4.1, Fig 1, 5.10,
			Fig 3, Fig 6, Fig 9-12; SDP 5.10
	CSCI qualification testing 3.28, 3.43, 4.1, Fig 1,
			5.1.2, 5.2.2, 5.9, 5.9.5, Fig 3, Fig 6, E.4.7,
			E.4.8, Fig 9-13; IRS 4; SDP 5.1.2, 5.9;
			SRS 4; STD; STP; STR
	CSCI requirements 5.5, 5.6.2, 5.7, 5.9, 5.9.3,
			Fig 2-4, Fig 6, Fig 9-12; DBDD 3, 4, 6; IDD 4;
			SDD 4.1, 5, 6; SDP 5.5; SPS 5.4, 6; SRS 3;
			STD 4.x.y.1, 5; STP 6 (also see software
			requirements analysis, Software Requirements
			Specification, Interface Requirements
			Specification)
	CSCI�wide design decisions 3.6, 5.6.1, Fig 3,
			Fig 6, E.4.6; SDD 3, 4.1; SDP 5.6.1, 5.13.4;
			SPS 5.1
configuration management (see software configuration
		management)
Continuous acquisition and life-cycle support (CALS)
		Fig 2; all DIDs: Block 7
�contract, contract�specific application 1.2.2
	use of term "contract" in MIL-STD-498
			Foreword-4, 1.2.1
	references to the contract Foreword-4, Foreword-5,
			1.2.1, 1.2.2, 1.2.4.1, 3.1, 3.3, 3.16, 3.18,
			3.26, 3.30, 3.39, 4.1, 4.2.3.1, 4.2.3.2,
			4.2.4.4, 4.2.5, 4.2.7, 5.1, 5.1.1, 5.1.4-5.1.6,
			5.2.3, 5.2.4, 5.4.1, 5.7.1, 5.12.4, 5.13.7,
			5.14.1-5.14.5, 5.15.2, 5.16.1-5.16.3, 5.17.1,
			5.17.2, 5.19.3-5.19.6, 6.2, 6.4, 6.5, B.3, G.6,
			G.6.3; all DIDs: Block 7 (7.1), 10.1.c, 10.1.h;
			SDP 4.1, 4.2.1, 4.2.2, 4.2.3.1, 4.2.3.2, 4.2.4-
			4.2.7, 5.1-5.19; SRS 3.11; SSS 3.16; STrP 7
Contract Data Requirements List (CDRL) 1.2.1, 5.1.1,
		6.3, 6.4, 6.5, Fig 6, D.4.9, H.4, H.5, H.6;
		all DIDs: Block 7, 10.1.c
contracting agency (see acquirer)
contractor (see developer)
conversion guide from DOD-STD-2167A and
		DOD-STD-7935A Appendix I
corrective action, corrective action system 4.1,
		Fig 1, 5.17, Fig 3, Appendix C, Fig 9-12;
		SDP 5.17 (also see problem reporting)
cost
	cost benefit, cost-effectiveness Foreword-9,
			4.2.3.2, 6.5, B.3
	cost/schedule reporting, cost/schedule risks
			5.18.1, 5.18.2, 5.19.1, 6.6, B.3, Fig 5
critical requirements 4.2.4, Fig 5; DBDD 3; IRS 3.y;
		SDD 3; SDP 4.2.4; SRS 3.18; SSDD 3; SSS 3.18
	critical requirements reviews E.4.11
	privacy assurance 4.2.4.3, 5.19.3, B.3, E.4.11
	safety assurance 4.2.4.1, Fig 2, B.3, Fig 5, E.4.11
	security assurance 4.2.4.2, 5.19.3, Fig 2, B.3,
			Fig 5, E.4.11

data elements/data element assemblies all DIDs: 10.1.h;
DBDD 3, 4.x, 5.x; IDD 3.x; IRS 3.x; SDD 3,
4.3.x, 5.x; SIOM 5.1; SRS 3.2.x, 3.3.x, 3.4,
3.5; SSDD 3, 4.3.x; SSS 3.2.x, 3.3.x, 3.4, 3.5
data rights 4.2.3.1, B.3; STP 3.x.4; STrP 3.2, 3.3,
		3.4 (also see licenses, licensing)
data standardization, standard data descriptions
		all DIDs: 10.1.h
Data Item Description (DID) Foreword-9, 1.2.3, 5.1.1,
		5.13.6, 6.2, 6.3, 6.4, 6.5, D.4.4, G.5, Appendix
		H, I.4, Fig 15-17
database 3.14, 3.15, 3.32, 3.45, 5.7.1, 5.12.1,
		5.13.1, 5.13.2, 6.4, Fig 4; SCOM 3.2, 3.3,
		5.5.x.3; SIOM 3.2, 3.4, 5.1; SIP 4.x.5; SPS
		3.1, 3.2; SRS 3.5, 3.10.3, 3.12; SSS 3.5,
		3.10.3; STD 4.x.y.6; STP 3.x.1; SUM 3.2, 3.3
database design, Database Design Description (DBDD)
		5.4.1, 5.6.1, 5.6.3, 6.2, Fig 9-12, Fig 15, Fig 17;
		DBDD; SDD 3, 4.1, 5, 5.x, 6; SPS 5.1, 5.3; �		SSDD 3, 4.1�define (interpretation of "define" in MIL-STD-498) 1.2.4.3

definitions of software product evaluation criteria D.4
definitions of terms 3
deliverables, deliverable software products 1.2.1, 1.2.2,
		3.16, 5.1.1 Notes 1-2, 5.2.5, 5.13.7, 5.14.5,
		5.15.1; all DIDs: Block 7
	guidance on ordering deliverables 6.5, Appendix H
design 3.17 (also see "as built" design descriptions,
		behavioral design, CSCI architectural design,
		CSCI detailed design, CSCI-wide design
		decisions, Database Design Description, Interface
		Design Description, software design, Software
		Design Description, system architectural design,
		System/Subsystem Design Description, system-
		wide design decisions)
design standards 4.2.2, D.4.7; DBDD 3, 4, 5; IDD 3;
		SDD 3, 4, 5; SDP 4.2.2; SPS 5.3; SSDD 3, 4
detailed requirements of MIL-STD-498 5
develop (interpretation of "develop" in MIL-STD-498)
		1.2.4.3
developer (use of term "developer" in MIL-STD-498)
		Foreword-4, 1.2.1, 3.18, Fig 14
documentation Foreword-3, 3.19, 5.1.1; all DIDs:
Block 7, 10.1.a, 10.1.i (also see Data Item Description)
DOD-STD-1703 Foreword-3
DOD�STD�2167A Foreword-3
	mapping between MIL-STD-498 DIDs and
			DOD-STD-2167A DIDS I.4, Fig 16, Fig 17
	mapping of key MIL-STD-498 terms to
			MIL-STD-2167A I.3, Fig 14
DOD�STD�7935A Foreword-3
	mapping between MIL-STD-498 DIDs and
			DOD-STD-7935A DIDs I.4, Fig 15, Fig 17
	mapping of key MIL-STD-498 terms to
			MIL-STD-7935A I.3, Fig 14
dry run of qualification tests 5.9.4, 5.11.4, Fig 6,
		D.4.2; SDP 5.9.4, 5.11.4

error reporting (see problem reporting)
evaluation 3.20 (also see Independent Verification and
		Validation, reusable software products, software
		product evaluations, software quality assurance,
		test case evaluation criteria)
Evolutionary program strategy Foreword-3, G.3, Fig 7,
		Fig 8, Fig 11
executable software Fig 6
	compilation/build procedures Fig 6; SPS 5.2, 5.3
	delivery of executable software SPS 3.1
	incorporating reusable software into the executable
			software Fig 3
	installing executable software 5.12.4
	preparing the executable software for software
			transition 5.13.1; SDP 5.13.1
	preparing the executable software for software use
			5.12.1; SDP 5.12.1
	regenerating executable software 5.13.2, 5.13.7;
			SPS 3.2
	version descriptions (see Software Version Description)
�firmware 1.2.2, 3.21, 3.38, 3.43; SPS 5.2; STP 3.x.2
Firmware Support Manual (FSM) 5.13.6.2, 6.2, Fig 6,
		Fig 9-12, Fig 16, Fig 17; FSM; SDP 5.13.6
forward engineering 3.29, Fig 12

general requirements of MIL-STD-498 4
Government in-house agencies (as developers)
		Foreword-4, 1.2.1
Grand Design program strategy G.3, Fig 7, Fig 8, Fig 9

Hardware Configuration Item (HWCI) 3.22, 3.24, 5.10;
	SDP 5.10; SRS 3.10.1; SSDD 4, 4.1; SSS 3.10.1
hardware-software systems 1.2.4.1, 1.2.4.2, Fig 14;
		SSDD 3; SSS 3.9, 3.10, 3.12

implementation (see software implementation and unit
		testing)
Incremental program strategy Foreword-3, G.3, Fig 7,
		Fig 8, Fig 10
in�process
	in-process and final software product evaluations
			5.15.1; SDP 5.15.1
	joint reviews of in-process and final software
			products 5.18.1
independence
	independence in software product evaluation
			5.15.3; SDP 5.15.3
	independence in software quality assurance 5.16.3;
			SDP 5.16.3
	independence in qualification testing 5.9.1, 5.11.1;
			SDP 5.9.1, 5.11.1
Independent Verification and Validation (IV&V) 3.23,
		5.19.5, Fig 9-12; SDP 5.19.5
installation
	installation at the support site 5.13.7; STrP 7
	installation at user sites 5.12.4, Fig 6, E.4.9, Fig 14;
 			SCOM 4; SDP 5.12.4; SIP; SSS 3.16; SUM
			4.1.3; SVD 3.6
	software installation planning 5.1.4, 6.2, Fig 6,
			E.4.1, Fig 9-13, Fig 15, Fig 17; SDP 5.1.4;
			SIP
integral software development processes 4.1
integration (see CSCI/HWCI integration and testing, unit
		integration and testing)
interface 3.24
	interface design, Interface Design Description (IDD)
			5.4.1, 5.4.2, 5.6.1, 5.6.2, 5.6.3, 6.2, Fig 6,
			Fig 9-12, Fig 15-17; DBDD 3, 5.x; IDD; SDD
			3, 4.3, 5, 5.x, 6; SPS 5.1; SSDD 3, 4.3, 5
	interface requirements, Interface Requirements
			Specification (IRS) 5.3.3, 5.5, 5.9, 5.11, 6.2,
			Fig 6, Fig 9-12, Fig 15-17; IRS; SRS 3.3, 3.4;
			SSS 3.3, 3.4; STD 5; STP 6
ISO/IEC DIS 12207 Foreword-6

joint technical and management reviews 3.25, 4.1, Fig 1
	 	5.18, Fig 2-3, Fig 9-12, G.6.3, H.3; SDP 5.18�	candidate joint management reviews Appendix E

key decisions (recording rationale for key decisions)
		3.34, 4.2.6, 5.2.4; all DIDs: Notes section;
		SDP 4.2.6
key word listing in MIL-STD-498 6.8
key terms (mapping of key MIL-STD-498 terms to
		DOD-STD-2167A, DOD-STD-7935A) I.3,
		Fig 14

licenses, licensing B.3, Fig 3; STP 3.x.4; STrP 3.2,
		3.3, 3.4 (also see data rights)
life cycle Foreword-4, Fig 2, Fig 5, G.2; SDP 3
logistics SRS 3.15; SSS 3.15 (also see Continuous
		acquisition and life-cycle support (CALS))

maintenance Foreword-4, 1.2.1, 1.2.4.3, 3.33, 3.41,
		Fig 14 (also see software support)
management indicators (see software management
		indicators)
management review 5.1.6; SDP 5.1.6
metrics (see software management indicators)

non-deliverable software products 1.2.2, 3.26, 5.2.5;
		SDP 5.2.5
Notes 6; all DIDs: Notes section

operational concept, Operational Concept Description
		(OCD) 5.3.2, 6.2, Fig 3, Fig 4, Fig 6, E.4.2,
		Fig 9-12, Fig 15-17; OCD; SDP 5.3.2
	operational concept reviews E.4.2

packaging, packaging requirements 5.14.5; SDP 5.14.5;
		SPS 3.3; SRS 3.17; SSS 3.17; STrP 7
participate (interpretation of "participate" in
		MIL-STD-498) 1.2.4.2
	participation in system-level activities 5.1.3, 5.3,
		5.4, 5.10, 5.11, 5.13.5, D.3; SDP 5.3, 5.4,
		5.10, 5.11
planning (see build planning, project planning, software
		development planning, software installation
		planning,	software transition planning, test
		planning)
priority classifications for problem reporting 5.17.2,
		C.1, C.4, Fig 5, F.3 (also see corrective action)
privacy 4.2.4.3, 5.19.3, B.3, E.4.11, Fig 9-12;
		all DIDs 1.3; COM 3.2.4; DBDD 3, 4.x, 5.x;
		FSM 3.x.5; IDD 3.x; IRS 3.x, 3.y; OCD 3.3,
		5.3; SCOM 3.2, 3.4, 3.6, 5.5.x; SDD 3, 4.3.x;
		SDP 3, 4.2.4.3, 5.19.3; SIOM 3.2, 3.4, 3.6,
		4.2.1, 4.3.1, 4.3.2; SIP 3.7, SRS 3.3.x, 3.8,
		3.18; SSDD 3, 4.3.x; SSS 3.3.x, 3.8, 3.18;
		STD 3, 4; STP 3.x.1, 3.x.2, 3.x.3, 4.2.x.y;
		STrP 3.1-3.4; SUM 3.2, 3.4, 3.6, 4.1.2; SVD
		3.1, 3.2, 3.6 (also see assurance)
problem reporting, problem/change reports 5.3.1,
		 5.14.3, 5.15.2, 5.16.2, 5.17.1, 5.17.2, Fig 2,
		Appendix C, Fig 4, Fig 5, F.3; SDP 5.17.1; STR
		3.1, 4.x.2.y; SVD 3.3, 3.7
process improvement 5.19.7, Fig 9-12; SDP 5.19.7
program (computer program) 3.10
�program strategies Appendix G, Fig 7, Fig 8,
		Fig 9-11,	H.4; SDP 3
programming languages 3.29, 4.2.2, 5.7.1, Fig 2;
		DBDD 5.X; SDD 5.x; SDP 4.2.2; SRS 3.12;
		SSS 3.12 (also see Computer Programming
		Manual)
project planning 4.1, Fig 1, 5.1, Fig 3, Fig 6,
		Fig 9-13; SDP 1.4, 5.1; SIP 1.4; STP 1.4;
		STrP 1.4 (also see software development
		planning)
project-unique identifiers 5.14.1; DBDD 3, 4,
		4.x, 5, 5.x; IDD 3, 3.1, 3.x; IRS 3, 3.1,
		3.x; SDD 3, 4, 4.1, 4.3.1, 4.3.x, 5, 5.x;
		SRS 3, 3.3.1, 3.3.x; SSDD 3, 4, 4.1, 4.3.1,
		4.3.x; SSS 3, 3.3.1, 3.3.x; STD 3.x, 4.x,
		4.x.y; STP 4.2.x, 4.2.x.y; STR 4.x, 4.x.2.y,
		4.x.3.y
prototypes 5.3.1, G.6.1, Fig 11, Fig 13

qualification methods IRS 3, 4; SPS 4; SRS 3, 4;
		SSS 3, 4; STP 4.2.x.y
qualification testing 3.28, 3.43, 5.2.2, 5.4.1, 5.9, 5.11
		(also see CSCI qualification testing, system
		qualification testing)
quality assurance (see software quality assurance)
quality factors (reliability, maintainability, etc.)
		B.3; DBDD 3; OCD 3.3, 5.3; SDD 3; SRS
		3.11; SSDD 3; SSS 3.11

rationale (recording rationale) 3.34, 4.2.6, 5.2.4;
		all DIDs: Notes section; SDP 4.2.6
record (interpretation of "record" in MIL-STD-498)
		1.2.4.4
redocumentation 3.29, Fig 12
reengineering Foreword-4, 1.2.1, 1.2.4.3, 3.29, 3.33,
		G.5, Fig 12; SDD 4.1; SSDD 4.1
requirement (definition of requirement) 3.30
requirements analysis (see software requirements
		analysis, system requirements analysis,
		traceability)
resource utilization (see computer hardware resource
		utilization)
restructuring 3.29, Fig 12
retargeting 3.29, Fig 12
reuse, reusable software products Foreword-4, 1.2.1,
		1.2.4.3, 3.31, 3.33, 4.2.3; SDP 4.2.3
	developing reusable software products 4.2.3.2;
			SDP 4.2.3.2; SDD 4.1; SSDD 4.1
	evaluating reusable software products 4.2.3.1,
			B.3; SDP 4.2.3.1
	incorporating reusable software products
			Foreword-3, 3.12, 4.2.3.1, Appendix B, Fig 3;
			all DIDs: 10.1.i; SDP 4.2.3.1; SDD 4.1;
			SSDD 4.1
reverse engineering 3.29, Fig 12
reviews (see joint technical and management reviews)
revision and retesting 5.7.4, 5.8.3, 5.9.6, 5.10.3,
		5.11.6; SDP 5.7.4, 5.8.3, 5.9.6, 5.10.3,
		5.11.6; STD 4.x.y, 4.x.y.3, 5; STP 4.1.3, 5

risk management 5.18.1, 5.18.2, 5.19.1, B.3, Fig 5,
		G.4, Fig 8-12; SDP 4, 5, 5.19.1

safety 4.2.4.1, Fig 2, B.3, Fig 5, E.4.11; COM 3;
		DBDD 3, 5.x; FSM 3.x.6; IDD 3.x; IRS 3.x, 3.y;
		OCD 3.3, 5.3; SCOM 4, 5; SDD 3, 4.3.x; SDP
		4.2.4.1; SIOM 4, 6; SIP 4.x.5, 5.x.2; SRS
		3.3.x, 3.7, 3.18; SSDD 3, 4.3.x; SSS 3.3.x,
		3.7, 3.18; STD 3, 4; STP 4.2.x.y; STrP 3.1;
		SUM 4, 5; SVD 3.6 (also see assurance)
schedules 3.34; SDP 3, 6, 7.2; SIP 3.1, 4.x.1, 5.x.1;
		STP 5; STrP 5, 7
	cost/schedule reporting, cost/schedule risks
			5.18.1, 5.18.2, 5.19.1, 6.6, B.3, Fig 5
	guidance on scheduling activities G.6.4
	guidance on scheduling deliverables H.4
scope of MIL-STD-498 1
security 4.2.4.2, 5.19.3, Fig 2, B.3, Fig 5, E.4.11,
		Fig 9-12; all DIDs 10.1.c, 1.3; COM 3.2.4;
		DBDD 3, 4.x, 5.x; FSM 3.x.5; IDD 3.x; IRS 3.x,
		3.y; OCD 3.3, 5.3; SCOM 3.3, 3.4.1, 3.4.2,
		3.7, 5.5.x; SDD 3, 4.3.x; SDP 3, 4.2.4.2,
		5.19.3, 7.2; SIOM 3.2, 3.4, 3.6, 4.2.1, 4.3.1,
		4.3.2; SIP 3.7, 4.x.2; SRS 3.3.x, 3.8, 3.18;
		SSDD 3, 4.3.x; SSS 3.3.x, 3.8, 3.18; STD 3, 4;
		STP 3.x.1, 3.x.2, 3.x.3, 4.2.x.y; STrP 3.1-3.5;
		SUM 3.2, 3.4, 3.6, 4.1.2; SVD 3.1, 3.2, 3.6
		(also see assurance)
software 3.32, et al
Software Center Operator Manual (SCOM) 5.12.3.3,
		6.2, Fig 6, Fig 9-12, Fig 15, Fig 17; SCOM
		(also see Software Input/Output Manual,
		Software User Manual)
software configuration management 3.12, 4.1, Fig 1,
		5.14, Fig 2, Fig 3, Fig 9-12; SDP 5.14
	configuration audits 5.14.4; SDP 5.14.4
	configuration control, author control, project-level
			control, acquirer control 5.14.1, 5.14.2,
			5.14.3, 5.15.2, 5.16.2, 5.17.1, 5.17.2, F.3;
			SDP 5.14.2
	configuration identification 5.14.1; SDP 5.14.1
	configuration status accounting 5.14.3; SDP 5.14.3
	packaging, storage, handling, and delivery (of
			software products) 5.14.5; SDP 5.14.5
software design, Software Design Description (SDD)
		3.17, 3.39, 3.45, 4.1, 4.2.6, Fig 1, 5.2.4, 5.6,
		5.7, 5.9.1, 5.11.1, 6.2, Fig 2, Fig 4, Fig 6, F.3,
		Fig 9-12, Fig 15-17; DBDD 5; SDD; SDP 5.6;
	SPS 5.1 (also see "as built" design descriptions,
		behavioral design, CSCI architectural design,
		CSCI detailed design, CSCI-wide design
decisions, Database Design Description, Interface Design Description, system architectural design, System/Subsystem Design Description, system-wide design decisions)
	software design reviews E.4.6
	software design standards 4.2.2, D.4.7; DBDD 3,
			4, 5; IDD 3; SDD 3, 4, 5; SDP 4.2.2; SPS
			5.3; SSDD 3, 4
�software development (meaning of term "software
		development" in MIL-STD-498) Foreword-4,
		1.2.1, 3.33
software development environment 1.2.2, 4.1, Fig 1,
		5.2, 5.14.1, Fig 2, Fig 3, E.4.10, Fig 9-13;
SDP 5.2 (also see software engineering environment, testing - software test environment)
software development files (SDF) 3.34, 5.2.4, 5.7.2,
		5.7.4, 5.7.5, 5.8.1, 5.8.3, 5.8.4, 5.9.4, 5.9.6,
		5.10.1, 5.10.3, 5.10.4, 5.11.4, 5.11.6, Fig 3,
		Fig 6; SDP 5.2.4
software development library (SDL) 3.35, 5.2.3, Fig 3;
		SDP 5.2.3
software development methods Foreword-5, 4.2.1;
		SDP 4.2.1
software development planning, Software Development
		Plan (SDP) 1.2.4.2, 4.1, 5.1.1, 5.14.2, 5.16.1,
		5.16.2, 5.17.1, 5.17.2, 5.19.1, 5.19.2, 5.19.7,
		6.2, Fig 2, B.3, Fig 4, Fig 6, D.4.7, E.4.1,
		Fig 9-13, G.6.3, H.4, Fig 15-17; SDP
software development process 3.36, 4.1, Fig 1, 5.19.1,
		5.19.2, 5.19.7, 6.5, Fig 2, Appendix G, H.4
software engineering environment 1.2.2, 3.37, 3.38,
		4.2.7, 5.2.1, 5.2.3, Fig 13; SDP 5.2.1;
		CPM 3
software implementation and unit testing 4.1, Fig 1,
		5.7, 5.9.1, 5.11.1, Fig 3, Fig 6, Fig 9-12, Fig 14;
		SDP 5.7
Software Input/Output Manual (SIOM) 5.12.3.2, 6.2,
	Fig 6, Fig 9-12, Fig 15, Fig 17; SIOM (also see
	Software Center Operator Manual, Software User
	Manual)
software installation planning, Software Installation Plan
		(SIP) 5.1.4, 6.2, Fig 4, Fig 6, E.4.1, Fig 9-13,
		Fig 15, Fig 17; SDP 5.1.4; SIP
software maintenance (see software support)
software management indicators Foreword-3, 5.19.2,
		Fig 2, Appendix F, Fig 9-12; SDP 5.19.2
software plan reviews E.4.1
software products 1.2.1, 3.16, 3.26, 3.31, 3.39, et al
		(also see standards for software products)
software product evaluation 4.1, Fig 1, 5.15, 5.16.1,
		Fig 2, Fig 3, Appendix D, Fig 6, Fig 9-12;
		SDP 5.15
	independence in software product evaluation
			5.15.3; SDP 5.15.3
	in-process and final software product evaluations
			5.15.1; SDP 5.15.1
	software product evaluation criteria 5.15.1, 5.18.1,
			Fig 6, D.4; SDP 5.15.1
	software product evaluation records 5.15.2;
			SDP 5.15.2
	software products subject to evaluation D.3, Fig 6
Software Product Specification (SPS) 5.12.1, 5.13.1,
		5.13.2, 5.13.4, 5.13.6, 6.2, Fig 6, E.4.10,
		Fig 9-12, Fig 15-17; SPS
software quality 3.40
software quality assurance 4.1, Fig 1, 5.16, Fig 2,
		Fig 3, Fig 9-12; SDP 5.16
	

	Independence in software quality assurance 5.16.3;
			SDP 5.16.3
	software quality assurance evaluations 5.16.1;
			SDP 5.16.1
	software quality assurance records 5.16.2;
			SDP 5.16.2
software requirements, Software Requirements
		Specification (SRS) 5.5, 5.9, 6.2, Fig 2-4, Fig 6,
		Fig 9-12, Fig 15-17; SRS; STP 6 (also see
		CSCI requirements)
	software requirements analysis 4.1, Fig 1, 5.5,
			Fig 3, Fig 9-12; SDP 5.5
	software requirements review E.4.5
software support Foreword-3, 3.35, 3.41, 3.44, 4.2.6,
		5.2.3, 5.2.5, 5.13.4, Fig 2, Fig 3, Fig 6, Fig 14;
		SPS 5; SRS 3.15; SSS 3.15; STrP (also see
		maintenance)
	support agency 3.44, 4.2.6 5.1.5, 5.13, 5.13.4,
			5.13.7, E.4.10, G.6.1, Fig 13; OCD 3.6, 5.5,
			7.1, 7.2, 7.3
	support concept 3.12, 5.1.5; OCD 3.5, 5.5
	support manuals 5.13.6, Fig 4, Fig 6, E.4.10;
			SDP 5.13.6; STrP 3.2, 3.3, 3.4
	support site 5.13.1-5.13.3, 5.13.7; SDP 5.13.3,
			5.13.7
	supportability reviews E.4.10
software systems 1.2.4.1, 1.2.4.2, 3.42, Fig 14;
		SSS 3.9, 3.10
software testing (see testing)
software transition 3.44
	software transition planning, Software Transition Plan
			(STrP) Fig 1, 5.1.5, 6.2, Fig 4, Fig 6, E.4.1,
			Fig 9-12, Fig 15-17; SDP 5.1.5; STrP
	software transition (preparing for) 4.1, Fig 1, 5.13,
			Fig 3, Fig 9-12; SDP 5.13
software unit 3.24, 3.45, 5.2.4, 5.6, 5.7, 5.8, 5.13.4,
		5.14.1, B.4, Fig 3, Fig 6, F.3, G.6.4, Fig 14,
		Fig 15, Fig 17; DBDD 5, 5.x, 6; SDD 3, 4.1,
		4.2, 4.3, 4.3.1, 5, 5.x, 6; SPS 5.4, 6; SRS
		3.12 (also see testing)
software use (preparing for) 4.1, Fig 1, 5.12, Fig 3,
		Fig 9-12
	software usability reviews E.4.9
Software User Manual (SUM) 5.12.3, 5.12.3.1, 6.2,
		Fig 2, Fig 3, Fig 4, Fig 6, E.4.9, Fig 9-12, Fig 15-
		17; SDP 5.12.3; SIP 3.5, 4.x.6, 5.x.2, 5.x.3;
		STrP 3.2-3.4; SUM (also see Software Center
		Operator Manual, Software Input/Output Manual)
Software Version Description (SVD) 5.12.2, 5.13.3,
		6.2, Fig 3, Fig 6, D.4.1, E.4.9, E.4.10, Fig 9-12,
		Fig 16, Fig 17; SDP 5.12.2, 5.13.3; SVD (also
		see version/revision/release)
source code, source files 3.29, 5.7.1, 5.12.1, 5.13.2,
		5.13.4, B.3, Fig 3, Fig 4, Fig 6, F.3; SDP 5.7.1,
		5.13.2; SPS 3.2, 3.3, 5.1; SVD 3.2
	delivery of source files SPS 3.2
staffing F.3, Fig 8; OCD 3.4, 5.4, 7.2; SDP 7;
		SIP 3.5, 3.6, 4.x.4; STP 3.x.6, 3.x.7; STrP 3.5
standardization documents related to MIL-STD-498 Fig 2

standards for software products 4.2.2, SDP 4.2.2;
		SPS 5.3 (also see code standards, software
		design standards)
states and modes of operation COM 3.2; DBDD 3, 4,
		5; IDD 3; IRS 3; OCD 3.3, 5.3, 6, 7.1, 7.2;
		SCOM 3.5; SDD 3, 4, 5; SIOM 3.5; SRS 3.1;
		SSDD 3, 4; SSS 3.1; SUM 3.5
Statement of Work (SOW) 1.2.1, 6.5, 6.7, Fig 6,
		D.4.5, D.4.10, G.6.3
subcontractor, subcontractor management Foreword-4,
		1.2.1, 3.5, 4.2.7, 5.4.1, 5.19.4; SDP 4.2.7,
		5.19.4
subsystem 1.2.4.1, 5.2.4, 5.3.3, E.4.3, E.4.4; SSDD;
		SSS (also see system/subsystem)
support (of software) (see software support, software
		transition planning)
system (also see operational concept)
	interpretation of "system" in MIL-STD-498 1.2.4.1,
			Fig 14
	system architectural design 3.4, 5.4.2, Fig 3, Fig 4,
			Fig 6, E.4.4; SDP 5.4.2, 5.13.5; SSDD 4
	system design 3.17, 4.1, Fig 1, 5.4, 5.13.5, Fig 3,
			Fig 4, E.4.4, Fig 9-12; SDP 5.4, 5.13.5
	system qualification testing 3.28, 3.43, 4.1, Fig 1,
			5.1.3, 5.2.2, 5.11, 5.11.5, Fig 3, Fig 6, E.4.7,
			E.4.8, Fig 9-13; IRS 4; SDP 5.11; SSS 4; STD;
			STP; STR
	system requirements 5.3.3, 5.4.2, 5.5, 5.11.3, Fig 3,
			Fig 4, Fig 6; DBDD 3, 4, 6; IDD 4; SDP 5.3.3;
			SSDD 3, 4, 4.1, 5; STD 4.x.y.1, 5; STP 6
			(also see Interface Requirements Specification,
			System/Subsystem Specification)
	system requirements analysis 4.1, Fig 1, 5.3, Fig 3,
			Fig 9-12; SDP 5.3
	system test planning 5.1.3; STP
	system�wide design decisions 3.6, 5.4.1, 5.10.1,
			Fig 3, Fig 6, E.4.4; SDP 5.4.1; SSDD 3, 4.1
	System/Subsystem Design Description (SSDD)
			5.4.1, 5.4.2, 5.13.5, 5.13.6, 6.2, Fig 6,
			Fig 9-12, Fig 15-17; SSDD
	system/subsystem design reviews E.4.4
	system/subsystem requirements reviews E.4.3
	System/Subsystem Specification (SSS) 5.3.3, 5.11,
			6.2, Fig 6, Fig 9-12, Fig 15-17; SSS

tailoring MIL-STD-498 and its DIDs Foreword-9, 1.2.2,
		1.2.3, 5.12.1, 6.5, Fig 2, G.6, G.6.3, H.3, H.6;
		all DIDs: 10.1.f
target computer system (testing on) 5.9.2, 5.11.2;
		SDP 5.9.2, 5.11.2
testing Fig 2, D.4.13; STD; STP; STR
	advance notice of qualification testing 5.9.3, 5.9.6,
			5.11.3, 5.11.6
	CSCI/HWCI integration and testing 4.1, Fig 1, 5.10,
			Fig 3, Fig 6, Fig 9-12; SDP 5.10
	CSCI qualification testing 3.28, 3.43, 4.1, Fig 1,
			5.1.2, 5.2.2, 5.9, 5.9.5, Fig 3, Fig 6, E.4.7,
			E.4.8, Fig 9-13; IRS 4; SDP 5.1.2, 5.9;
			SRS 4; STD; STP; STR

	developer-internal testing 3.34, 5.4.1, 5.8, 5.9,
			5.10, 5.11; SDP 5.9.4, 5.11.4
	dry run of qualification testing 5.9.4, 5.11.4, Fig 6,
			D.4.2
	revision and retesting 5.7.4, 5.8.3, 5.9.6, 5.10.3,
			5.11.6; SDP 5.7.4, 5.8.3, 5.9.6, 5.10.3,
			5.11.6; STD 4.x.y.3, 4.x.y.5; STP 4.1.3, 5
	Software Test Description (STD) 5.9.3, 5.11.3, 6.2,
			Fig 2, Fig 4, Fig 6, D.4.2, E.4.7, Fig 9-12,
			Fig 15-17; STD
	software test environment 1.2.2, 3.37, 3.43, 4.2.7,
			5.2.2, Fig 3, E.4.7, Fig 13; SDP 5.2.2; STP 3;
			STR 3.2
	software test planning, Software Test Plan (STP)
			5.1.2, 5.1.3, 6.2, Fig 4, Fig 6, E.4.1, Fig 9-12,
			Fig 15-17; SDP 5.1.2, 5.1.3; STP
	Software Test Report (STR) 5.9.7, 5.11.7, 6.2,
			Fig 4, Fig 6, D.4.2, E.4.8, Fig 9-12, Fig 15-17;
			SDP 5.9.7, 5.11.7; STR
	system qualification testing 3.28, 3.43, 4.1, Fig 1,
			5.1.3, 5.2.2, 5.11, 5.11.5, Fig 3, Fig 6, E.4.7,
			E.4.8, Fig 9-13; IRS 4; SDP 5.11; SSS 4;
			STD; STP; STR
	target computer system (testing on) 5.9.2, 5.11.2;
			SDP 5.9.2, 5.11.2
	test classes (timing, erroneous input, maximum
			capacity) STP 4.1.2, 4.2.x.y
	test information for developer-internal testing (test
			cases, test descriptions, test procedures,
			test results) 3.34, 3.39, 5.2.4, 5.7.2, 5.8.1,
			5.10.1, Fig 2-4, Fig 6, D.4.2
	test readiness reviews E.4.7
	test results reviews E.4.8
	unit testing 5.7, Fig 3, F.3, Fig 9-12; SDP 5.7
	unit integration and testing 4.1, Fig 1, 5.8, Fig 3,
			F.3, Fig 9-12; SDP 5.8
	witnessed testing 5.9.4, 5.11.4; STR 5
traceability 5.4.2, 5.5, 5.6.2, 5.9.3, 5.11.3, 5.13.4;
		DBDD 6; IDD 4; IRS 3, 5; SDD 6; SPS 5.4, 6;
		SRS 3, 5; SSDD 5; SSS 3, 5; STD 4.x.y.1, 5;
		STP 4.2.x.y, 6
training 5.1.4, Fig 2, Fig 3; OCD 7.1, 7.2;
		SIP 3.4, 3.5; SRS 3.14; SSS 3.14; STrP 5, 7
	support agency training 5.13.7; STrP 5, 7
	user training 5.12.4; SIP 3.4, 3.5; STP 3.x.8
transition (of software) (see software transition)
translation 3.29, Fig 12

unit, unit testing, unit integration and testing (see
		software unit, testing)
user manuals (see software user manuals)

version/revision/release 3.7, 5.14.1-5.14.3, B.3;
		all DIDs: 10.1.c; DBDD 3, 5.x; FSM 3.x.4; SDD
		4.1, 4.3.1; SDP 4.2.2, 5.17.1; SIP 4.x.2; SPS
		5.2; SRS 3.3.1, 3.10.3; SSDD 4.1, 4.3.1; SSS
		3.3.1, 3.10.3; STR 5; STrP 3.2-3.4; SVD

Work Breakdown Structure (WBS) 6.6, Fig 2
�
Custodians:			Preparing Activity:
	Army - SC			Navy - EC
	Navy - EC
	Air Force - 10	(Project IPSC-0230)
	DISA - DC
	DLA - DH

Review Activities:
	OSD - SO, IR, NT
	Army - AR, CR, MI, AV
	Navy - AS, SH, SA, TD, OM, MC
	Air Force - 02, 06, 11, 13, 17, 19
	DMA - MP
	DNA - DS
	NSA - NS

	Civil Agency coordinating activities:
	NASA - NA
	DOT - FAA, USCG
	COM - NIST
	CIA

	Other DoD activities:
	DSMC
	SEI

	Agencies other than US Government:
	DND Canada
	MoD Germany
	MoD UK
	US Industry - CODSIA
�STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL������	INSTRUCTIONS
1.	The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.

2.	The submitter of this form must complete blocks 4, 5, 6, and 7.

3.	The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of
requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.
������I RECOMMEND A CHANGE:�1. DOCUMENT NUMBER
	MIL-STD-498��2. DOCUMENT DATE (YYMMDD)
	941205���3. DOCUMENT TITLE
	 Software Development and Documentation������4. NATURE OF CHANGE (Identify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed.)

������5. REASON FOR RECOMMENDATION

������6. SUBMITTER������a. NAME (Last, First, Middle Initial)
��b. ORGANIZATION����c. ADDRESS (Include Zip Code)

��d. TELEPHONE (Include Area Code)
(1) Commercial
(2) AUTOVON
	(if applicable)��7. DATED SUBMITTED
 (YYMMDD)��8. PREPARING ACTIVITY������a. NAME
	Space & Naval Warfare Systems Command
��b. TELEPHONE (Include Area Code)
 (1) Commercial (2) AUTOVON
 (703)602-4491 332-4491����c. ADDRESS (Include Zip Code)
		SPAWAR 10-12
		2451 Crystal Drive (CPK-5)
		Arlington, VA 22245-5200��IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT:
	Defense Quality and Standardization Office
	5203 Leesburg Pike, Suite 1403, Falls Church, VA 22041-3466
	Telephone (703)756-2340 AUTOVON 289-2340����DD Form 1426, OCT 89	Previous editions are obsolete		198/290				
�

MIL-STD-498

�PAGE�viii�

MIL-STD-498

�PAGE�29�

MIL-STD-498

�PAGE�32�

MIL-STD-498

APPENDIX B

�page * arabic�35�

MIL-STD-498
APPENDIX B

MIL-STD-498
APPENDIX C

�page * arabic�37�

MIL-STD-498
APPENDIX D

�page �38�

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

	MIL-STD-498
	APPENDIX D

�page * arabic�43�

MIL-STD-498
APPENDIX E

�page * arabic�45�

MIL-STD-498
APPENDIX F

�page * arabic�46�

MIL-STD-498
APPENDIX G

� PAGE �48�

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

� EMBED MSWordArt.2 \s ���

MIL-STD-498
APPENDIX G

	�page * arabic�56�

MIL-STD-498

MIL-STD-498
APPENDIX I

�page * arabic�60�

	�page * arabic�61�

MIL-STD-498
INDEX

	MIL-STD-498

�page * arabic�73�

	

