Preface

Introduction to the STSC technology report

This report reviews the STSC’s recommendations for the selection and usage of methods, technologies, and tools for software quality engineering (SQE). As a group, these loosely related activities are employed throughout the software life cycle to positively influence and quantify the quality of the delivered software. With the exception of test, SQE cannot be exclusively associated with any major life cycle activity. It includes oversight functions such as Software Quality Assurance and Product Assurance. It includes assessment vehicles such as ISO 9000 and CPAIPI. It includes analysis functions such as reliability predication and causal analysis. And it includes direct application of defect detection methods such as formal inspection and Cleanroom.

This technical report is intended to help the reader understand some of the various SQE methods and technologies available so that they can select methods and technologies appropriate to their specific organizations and projects. Two major sources were used in the production of this report:

· NASA Software Quality Assurance Audits Guidebook, November 1990 (complete report available at http://satc.gsfc.nasa.gov/audit/audgb.txt)

· NIST Special Publication 500-209, Software Error Analysis, Wendy W. Peng and Dolores R. Wallace, March , 1993 (complete report available at http://hissa.ncsl.gov/HHRFdata/Artifacts/ITLdoc/209/error.htm)

I. Introduction and education to the SQE domain

A. Introduction

Software Quality Engineering (SQE), as a discipline, evolved from the more generic activities begun in the 1950s by the federal government when it began to require of defense contractors formal programs of quality assurance and quality control. By the 1970s, this concept had expanded beyond the defense contractors to other industry sectors as company management began to recognize their product liability responsibilities and the need to insure product safety. As computers became important products in their own right and integrally involved in the development of other products, the need for software quality assurance and control extended this natural progression.

Initially software quality assurance (SQA) was patterned after quality assurance as implemented for hardware products. For hardware, the focus was on testing selected samples of the product at the completion of the development cycle. Gradually, it was recognized that this philosophy was not appropriate for software for several reasons:

· Hardware quality assurance addressed mass production of identical items. Software programs are one-of-a-kind.

· Full scale testing of products employed for hardware was not practical for even simple software programs. The number of paths and combinations of paths through computer programs were astronomical and grew exponentially as the complexity of programs increased, making exhaustive testing impossible.

· Finally, through experience it was learned that quality cannot be “tested-in” but had to be “built-in.” This required a focus on both the software product and the process used to build it and this focus needed to follow the entire life cycle.

This dual focus was expressed in terms of Quality Control, a focus on the product to identify defects and correct them; and Quality Assurance, a focus on the process to determine the adequacy and effectiveness of and the level of adherence to its implementation.

B. Why SQE

Almost all software projects measures and track progress against schedules. Most projects measure and track progress against costs. Few projects measure and track progress against quality goals. It falls to software quality engineering to be the guardian for the quality of the product.

Many questions may be asked about which of the possible SQE activities would be appropriate to support a project. For simplicity we will answer the question for four major categories of SQE activities.

Why SQA oversight?

The purpose of SQA is to provide management with unbiased feedback on process compliance so process lapses can be addressed in a timely fashion. It provides management with an early warning of risks to product quality and can provide recommendations to address the situation. The tool used to accomplish this function is usually SQA audits.

Why embedded SQE processes?

The purpose of embedded SQE processes is product quality control. The activities are part of the development lifecycle which will “build-in” the desired product quality. This focus allows identification and elimination of defects as early in the life cycle as possible. Examples of techniques used to achieve this quality control function include design and code inspections, walkthroughs, reviews; and software testing.

Why causal analysis and defect prevention processes?
The purpose of these activities is to identify product defects and the process breaks that allowed defects to be inserted into the product. By addressing the causes of product defects, development and maintenance costs can be controlled through reduced rework. Many different tools are used to perform this defect analysis and correction.

Why defect and reliability prediction?

The determination of when a product is ready for release can be made simpler if there is an objective measurement available. Defect and reliability predictions can be used to determine when the desired quality level has been attained. They can also aid management in estimating maintenance support budgets. Statistical process control and reliability analysis techniques are used to accomplish these functions. Use of these technique requires extensive error history data.

With few exceptions, there is no one correct way to apply SQE methods. Since none of the SQE activities are involved in actually producing the software, SQE functions often come under the budget cutter’s knife or are curtailed to meet schedule deadlines.

C. Philosophy

Software engineers who agree on the need for improved software quality will often strongly disagree on the means of achieving better quality. The debate centers on an “us versus them” argument. Software developers suggest that better quality will come from more time devoted to design, code, or better requirements. Those software engineers with quality responsibility suggest that testing or auditing by an independent organization is the only sure way to better quality. As in many arguments, there is truth in both positions.

1. Independent oversight

Oversight of software development activities is used to counteract the natural drift away from an orderly process toward an ad hoc, chaotic environment. Documented and required development processes are often incorrectly applied or totally ignored. Software engineers charged with executing the processes to create the software can have a conflict of interest in achieving quality. They are evaluated and rewarded based on meeting schedules and budgets (rarely on quality), and so tend to do what is necessary to get the job done even though it may violate the letter of a given process. This can lead to serious corner cutting in the process.

Independent oversight, through various methods, encourages adherence to the official process. The official process should represent the current best method of accomplishing development of the software. Deviations from the process are viewed as using less proven, more costly, or less effective methods, which are counter to management objectives.

2. Independent SQA

The conflicts of interest that influence software developers are even more common for management. Therefore, it is essential that SQA have a reporting path to management that is above or free from the daily conflicts generated by schedule, budget, and quality. Locating an appropriate level of management where SQA will have frequent access, active support, and be above the conflicts of interest is a difficult but necessary step. Having SQA report to a manager charged with developing the product that SQA must audit risks having SQA ignored or, worse, pressured either directly or indirectly to accept what is expedient rather than what is correct.

At the same time embedded SQE activities such as formal inspections or Cleanroom are managed directly by the development manager. Audits of these processes by an independent SQA should encourage compliance and provide a timely warning to higher management when persistent process deviations occur.

3. Embedded SQE

Achieving high quality levels in software requires the focused involvement of programmers and software engineers with appropriate skills in the production of the software. The generalized skills of an SQA analyst can provide little direct help in determining the technical correctness of the product. Since embedded SQE activities (formal inspections, testing, etc.) are performed by personnel already involved in the development processes, it brings the best technical skills to bear on finding product defects. Embedded SQE requires the application of highly tuned processes, which can result in superior quality levels when compared to any other SQA approach. Independent oversight plays an important role where embedded SQE carries the quality banner through use of methods that encourage and assure discipline in the application of the embedded processes.

4. Product Assurance

While SQA provides monitoring of the processes used to produce the product, assurance that the product functions as required is the role of product assurance. For software, verifying that the product operates correctly is typically the job of testing. An independent test function, or testing which is witnessed by an independent entity, such as SQA, provides product assurance. Other options include tests witnessed by customers or expert review of test results. Formal inspection is a type of “in process” product assurance, bringing together experts to review the product at transition points from one development stage, such as design or code, to another.

D. Methods and supporting technologies

The primary technique used to perform the independent SQA function is auditing. It is used to examine the conformance of a development process to procedures and the conformance of products to standards. Embedded SQE activities take a variety of forms but all have essentially the same purpose, that is, detecting and removing errors.

1. Independent SQA

a) Concepts and Definitions

An SQA audit is an activity that is performed to determine the adherence to, and adequacy of, a project’s established software development standards and procedures and the effectiveness of their implementation. The main objective on an SQA audit is to determine the adherence to established standards and procedures; checking their adequacy or effectiveness is a secondary objective that usually is not requested of an auditor.

Standards are defined as the established criteria to which software products are compared. Software standards include documentation standards, design standards, and coding standards. Procedures are defined as the established criteria to which the development and control processes are compared. Procedures, then, are the step-by-step directions that are to be followed to accomplish some development or control process; for example, Configuration Management (CM) or nonconformance reporting and corrective action (NRCA). In other words, standards and procedures are requirements for software management, engineering, and assurance; SQA audits verify their existence and assess a project’s compliance with them.

SQA audits also can compare the actual status of a product with reported status. Status auditing is most effective if there are objective and consistent criteria for evaluating the level of product completeness. For example, Unit Development Folders (DFs) have a cover sheet for recording the progress of a unit through its development stages; the folder contains the actual product. If a project uses DFs, then an audit can compare the actual product to the cover sheet and to the progress report.

The actual processes and products examined by an audit will vary depending on the objectives of the audit. The objective of the audit can vary, and is determined by the organization that called the audit. A general audit provides a comprehensive overview, while a limited audit might be an examination of certain procedures, such as CM, or a check on certain requirement, such as “Are coding standards being followed?”

An audit may be described as internal or external, depending on the organization of origin of the auditor(s). An internal audit is an audit conducted by the SQA staff of the software developer. Internal audits are intended to be preventive in nature; to detect problems before they become major.

An external audit is one performed by an independent auditor who is outside of the developing organization. External audits are most often requested by the acquiring organization, as a means of obtaining an independent opinion about the work in progress. External audits tend to be more comprehensive in nature than internal audits, and usually encompass a broad area of the development activity.

b) SQA Audit

An SQA audit has four phases: planning and preparation, site visit (audit conduct), reporting, and follow-up. During the planning and preparation phase, the auditor gains an understanding of the project. Based on the scope of the audit, the auditor determines the specific questions that need to be answered, as well as the persons to be interviewed and the records and products to be examined to answer the questions. The interviews are conducted, and records and products are examined during the site visit. The reporting phase consists of the exit debriefing of the audited project, the preparation of a written report on the audit, and clarifying issues and providing related information as needed. Follow-up is done by the project, as the problems and deficiencies found in the audit are remedied. Follow-up may include reauditing to assess the adequacy of the remedies.

c) Product Examination

The intent of examination of products is two-fold: to see if standards are being followed, and to see if status is accurately reported. Documents are measured against documentation requirements to make sure that all required documents exist, and against documentation standards to ensure that they have the correct content and style. The auditor must read enough of the documents to form an opinion on the above; for example, the auditor must be able to determine that a document presented as showing the design indeed contains design information. On the other hand, the auditor is not responsible for the technical correctness of the documents.

Code also is examined to determine if it meets standards. Code standards are likely to include rules for internal documentation, size of modules, styling formats, and other such items that the auditor can verify. Rules for coding constructs or variable naming conventions are more difficult to verify. If the project has a code standards checker, the auditor may run it on some code. If the standards checker is to be run at a certain step in the development process, or if peer reviews are used to verify coding standards, the auditor must have access to those records.

d) Records Examined

During the process of checking records and products, the auditor usually cannot examine each and every item; therefore, some sampling process must be used. The auditor must decide on sample sizes that can be accommodated. The sample size must be balanced between completeness of coverage (some items from each product or set of records) and depth of coverage (number of items from a specific product or set of records). The specific products or records to be included in the sample should be chosen by some “randomizing” method, and the project staff should not be informed in advance which items will be examined.

The auditor examines records to see if a procedure is being correctly followed. Records examined should demonstrate that principal processes are being performed correctly. Following are examples of specific records SQA would examine based on two different types of audit being performed:

· CM Audit - During an audit of CM, the auditor should look at the complete change control cycle, beginning with the initial processing of a change request; through analysis of impact and dispositioning; design, code, and testing; updating of documentation; submission of the modified products to the library; and closure of the change request. Records to be examined include the change request as processed by the Change Control Board, the work authorizing documents issued as a result of approved changes, the code documentation products that are intended to reflect the approved changes and the program library records that capture the changes to code and data. Throughout the auditor should be alert for and document any evidence of unauthorized changes.

· Verification and Validation (V&V) Audit - The auditor should verify that test procedures were followed and that all nonconformances observed during testing were recorded. In addition to testing, the auditor should assess other methods of V&V, if used. For example, if inspections or another form of peer reviews are used to find problems, the auditor should verify that the records of the review show that they were done and that corrections and changes agreed to in the review are made in the product.

2. Embedded SQE

Although research continues to identify better processes for error prevention, with current practices, errors will probably occur during software development and maintenance. Hence, there is the need for error analysis. Error analysis for software includes the activities of detecting errors, collecting and recording the error data, analyzing and removing single errors, and analyzing collective error data to remove classes of errors. The collective error data may be used with statistical process control (SPC) techniques to improve the product and the processes used in developing, maintaining and assuring the quality of software.

Software development and maintenance involves many processes resulting in a variety of products collectively essential to the operational software. These products include the statement of the software requirements, software design descriptions, code (source, object), test documentation, user manuals, project plans, documentation of software quality assurance activities, installation manuals, and maintenance manuals. These products will probably contain errors. Various techniques can be used to detect those errors. These techniques may be performed by any organization responsible for developing and assuring the quality of the product.

a) Error Detection Techniques Categories

Error detection techniques generally fall into three main categories of analytic activities: static analysis, dynamic analysis, and formal analysis. Static analysis is “the analysis of requirements, design, code, or other items either manually or automatically, without executing the subject of the analysis to determine its lexical and syntactic properties as opposed to its behavioral properties” (Clark). This type of technique is used to examine items at all phases of development. Examples of static analysis techniques include inspections, reviews, code reading, algorithm analysis, and tracing. Other examples include graphical techniques such as control flow analysis, and finite state machines, which are often used with automated tools. Traditionally, static analysis techniques are applied to the software requirements, design, and code, but they may also be applied to test documentation, particularly test cases, to verify traceability to the software requirements and adequacy with respect to test requirements (Wallace).

Dynamic analysis techniques involve the execution of a product and analysis of its response to sets of input data to determine its validity and to detect errors. The behavioral properties of the program are also observed. The most common type of dynamic analysis technique is testing. Testing of software is usually conducted on individual components (e.g., subroutines, modules) as they are developed, on software subsystems when they are integrated with one another or with other system components, and on the complete system. Another type of testing is acceptance testing, often conducted at the customer’s site, but before the product is accepted by the customer. Other examples of dynamic analyses include simulation, sizing and timing analysis, and prototyping, which may be applied throughout the lifecycle.

Formal methods involve rigorous mathematical techniques to specify or analyze the software requirements specification, design, or code. Formal methods can be used as an error detection technique. One method is to write the software requirements in a formal specification language (e.g., VDM, Z), and then to verify the requirements using a formal verification (analysis) technique, such as proof of correctness. Another method is to use a formal requirements specification language and then execute the specification with an automated tool. This animation of the specification provides the opportunity to examine the potential behavior of a system without completely developing a system first.

b) Error Handling

After an anomaly has been discovered using any error detection technique, the anomaly must be analyzed. Analysis will not only aid in the removal of errors related to the anomaly, but will also help to detect other similar errors which have not yet manifested themselves. In addition, information obtained from this analysis can provide valuable feedback that may improve subsequent efforts and development processes in the future.

The handling of an anomaly generally follows three steps: identification, investigation, and resolution. However, exact procedures for dealing with an anomaly will depend on many factors. First, it may be that the anomaly is not actually an error. For example, the anomaly may be the result of misinterpreting test results. In these situations, an explanation about why the anomaly is not an error should be recorded, and no further action is required. Second, the procedures will depend on the activity used to detect the anomaly. For example, anomalies discovered during walkthroughs and code reading are often fixed immediately, without having to go through the formal error resolution process. During integration testing, all anomaly reports may be collected and then addressed to locate probable cause and recommend fixes. Third, the severity level of the anomaly will determine how soon the error should be fixed. Generally, the more severe the error, the sooner it needs to be fixed.

The general policy for handling anomalies should include rules/regulations concerning the administration of the entire error removal policy (e.g., who must fill out problem reports, where or to whom this information is distributed, how to close out problem reports, who enters the collected information into the error database).

General project information that supports the error removal process should be maintained. This information may include, but is not limited to, descriptions of the design methodology, the verification plan used in design, the test plan, the configuration control plan, identification of tools used to design and test software (e.g., CASE tools), and the programming language used.

Error resolution consists of the steps to correct the error. The policy of the project determines if the person who investigates the error will also correct the error. The procedures for distribution and retention of the error information are also identified by the policy. Typically, the recipient of the error information is the project manager, SQA manager, corporate database manager, and the customer. The amount of formalism (e.g., whether the plan needs to be documented) depends on the scope, risk, and size of the project. For small errors in small projects, this scheme may not be necessary.

c) Error Data Collection and Analysis Techniques

Techniques for collecting and analyzing sets of error data during the lifecycle aid in understanding, evaluating, and improving the development and maintenance process or aid in evaluating or estimating product quality. Software measures provide insights about both process and product. Measures may feed into statistical process control (SPC) techniques; SPC techniques may be used for both process and product evaluation. Software reliability estimation techniques are usually applied only to the product. Most of these techniques operate on error history profiles of error data discovered by error detection techniques.

1) Error History Profile/ Database

An error history profile is needed to perform error analysis effectively. An organizational database can be used both to track the status of a project and to track the use of error analysis techniques. Data collected for the purpose of resolving single errors (e.g., source cause, type, severity), should be placed in the error database to enable the establishment of anomaly histories. Other data collected specifically for the purpose of measurement or statistical process control should also be entered into the database. The database serves as a baseline for validation as well as improvement. Past mistakes can be avoided from lessons learned. Maintaining a database serves the following purposes:

· To identify which development processes work well (or poorly) for an application domain,

· To support process improvement for the current project as well as for future projects,

· To identify whether the processes are being applied properly (or at all),

· To identify error classes by cause,

· To estimate the error growth rate throughout development, and therefore to be able to adjust plans for assurance activities, and

· To measure the quality of the software at delivery.

Error data collected from an error detection technique in one phase can support process improvement in an earlier lifecycle phase (for future projects), as well as in a later phase.

Data histories can help a manager to recognize when there is a significant deviation from project plans during development. Past error data can be used to estimate the number of expected errors at different times in the development cycle. For instance, if the reported error count for a particular product was smaller than was expected, compared with similar past projects, this may suggest that the development team generated an unusually low number of errors. However, further investigation may reveal that the project was behind schedule, and to save time, planned inspections were not held. Thus, many existing errors remained undetected, so that the low error count did not reflect the true quality of the product. This example illustrates how a history profile enables an organization to recognize and correct a process problem to avoid delivering a product with residual errors.

2) Data Collection Process

Data must be collected properly in order for any error analysis technique to be effective. The recommended steps of the data collection process are listed below (AIAA):

1. Establish the objectives.

2. Prepare a data collection plan. The plan may include the following recommended elements:

· Data definition and type. Specify/define the data to be collected and the type (i.e., attribute or variable data). An attribute is a characteristic that an item may or may not possess. It is obtained by noting the presence or absence of a characteristic and counting occurrences of the characteristic with a specified unit. For example: a module may or may not contain a defect. This type takes on only discrete (integer) values. Variable data is obtained by recording a numerical value for each item observed. Variable data can be either continuous or discrete. Examples: cost of fixing an error (continuous), lines of code (discrete).

· Analysis technique. Identify the technique requiring the data. Each technique has unique data requirements, so the technique to be used should be specified prior to data collection.

· Measurement method. Measurements can be taken by equipment, observation, or selecting data from existing records. The reliability, determined by accuracy and precision, of the measurement method must be established prior to data collection.

· Sampling Procedure. The data collection interval, amount of data to be collected, and the sampling method should be specified (e.g., random sampling using a random number table). When determining the data collection interval, issues such as process volume, process stability, and cost should be considered.

· Personnel. Identify persons responsible for specific data collection tasks.

· Forms for data reporting (e.g., electronic spreadsheet, paper forms, etc.)

· Recording and processing of data. One method for processing data is blocking, the separating of data into potential comparison categories during the recording of data. Blocking can be accomplished by recording each category separately, or through labeling information that enables future sorting.

· Monitoring. Describe how the data collection process is to be monitored.

3. Apply tools. Automated tool should be considered whenever possible, in order to minimize impact on the project’s schedule. Factors to consider include the following: availability of the tool, reliability of the tool, cost of purchasing or developing the tool, and whether it can handle any necessary adjustments.

4. Provide training. Once tools and plans are in place, training should be provided to ensure that data collectors understand the purpose of the measurements and know explicitly what data is to be collected.

5. Perform trial run. A trial run of the data collection plan should be made to resolve any problems or misconceptions about the plan. This can save vast amounts of time and effort.

6. Implement the plan. Collect the data and review them promptly, so that problems can be resolved before the disappearance of information required to resolve them (e.g., if test results on a screen are not saved).

7. Monitor data collection. Monitor the process to ensure that objectives are met and that procedures are implemented according to the data collection plan.

8. Use the data. Use the data as soon as possible to achieve maximum benefit.

9. Provide feedback to all involved. Those involved need to know what impact their efforts had, and the end result. This will enable them to understand the purpose of their efforts and agree to undertake similar tasks in the future.

Additional recommendations for the data collection process (Rook):

· Data collection should be integrated into the development process (e.g., as part of the quality management system).

· Data collection should be automated whenever possible.

· Time-scales between data collection and data analysis should be minimized.

· The problem of motivating personnel to keep accurate records should not be underestimated. Proper training and quick analysis facilities are essential, but are not sufficient.

II. Applications of SQE technologies

A. Process maturity and product criticality and their influence on the application of SQE technologies

The methods used in developing software are a key factor in the quality and reliability of the finished product. Project managers should select methods that are capable of producing software that can meet quality and reliability requirements. The primary criteria for the selection of SQE technologies and how these technologies are applied must be consistent with the quality levels required and/or the criticality of the software. For example, safety critical systems require more rigorous SQE methods and independent oversight than the normal IS system.

Process maturity should also influence which SQE technologies are selected and to what level they are applied. Generally, the question is not whether embedded SQE or an independent SQA function should be used, but how much and what methods should be selected from each. Maturity in a software development organization implies the use of documented processes, compliance with those processes, and a culture that encourages process compliance. High maturity therefore may justify less SQA auditing. An immature organization is likely to exhibit weak compliance that calls for a more rigorous level of auditing as well as a greater need to focus on product quality through testing.

1.
Independent SQA

The key questions when considering the formation of an independent SQA function are:

Is independent SQA needed?

If so, what is SQA’s role and how much SQA is needed?

The first question may be decided by the criticality of the system. For a safety critical system, an independent SQA is one of many prudent measures that would be used to produce a trusted system. Development of safety critical software, such as that for a cardiac pace maker, without a robust SQA function would be technically, ethically, and legally unwise. For less critical systems the need for SQA must be considered in light of all the SQE methods used and the maturity of the organization. In all cases, the amount of SQA should be influenced by organization maturity. Organizations of high maturity can normally restrict the size and cost of an independent SQA function because these organizations have fundamentally sound development processes and a good record of process compliance. Consequently less auditing is necessary with the focus of most auditing on process compliance. In contrast, organizations of low demonstrated maturity and with little cultural support for compliance require larger and more aggressive independent SQA function with a strong focus on product quality as well as process compliance.

2.
Embedded SQE

The key question to consider in selecting SQE methods is what quality and reliability is required of the software? While other highly desirable goals may also be considered, such as reducing rework, the quality of delivered software is the most important. Multiple levels of testing (unit, integration, system, etc.) are commonly selected. Attaining an expected quality or reliability level may require more rigorous methods, such as formal inspections. Use of methods like formal inspection applies programmers and engineers to product assurance activities. This almost always results in levels of product quality and reliability that are unattainable by testing alone or through a combination of testing and independent SQA.

Embedded SQE must be applied in a rigorous and disciplined manner to be effective. The benefit of independent SQA in a organization that relies on embedded SQE methods is to encourage disciplined application of the embedded methods through auditing for compliance. The amount of auditing should be determined by the track record of process compliance.

B.
Why do you use it

1.
Independent SQA

One of the chief benefits independent SQA provides is the assurance it provides to management that formally established software development processes are being followed and that they are producing expected results. Process and product assurance activities performed throughout all lifecycle phases verify compliance with project standards and procedures. They provide objective evidence of the process performance. If these results are not satisfactory, they provide an early warning to allow management to begin risk analysis and to develop corrective action plans. Independent SQA provides a means of detecting current problems, preventing future problems, controlling risks, developing alternatives and solution which all lead to producing quality software products.

2.
Embedded SQE

The cost benefits of using specific error detection techniques or classes of techniques will differ from project to project. A balanced error detection program will depend on many factors, including the consequences of failure caused by an undetected error, the complexity of the software system, the types of errors likely to be committed in developing specific software, the effort needed to apply a technique, the automated support available, and the experience of the development and assurance staff. Another factor to consider is the interplay among techniques (e.g., whether the output of one technique can be used readily by another technique). If a specific error type is likely, then a technique known for finding that type of error should be selected. The application of formal verification techniques is appropriate when failure of the software would be disastrous. For planning a balanced program, an important requirement should be to ensure that analyses are applied to all the software products at all phases of the lifecycle in an orderly manner. The program should be frequently evaluated to ensure that the analyses are being used correctly and are aiding in error detection. SPC techniques may aid in this evaluation.

A final consideration for selecting techniques based on their cost benefit takes into account who will be conducting the analysis, and under what circumstances. For example, for auditors, techniques which examine interfaces across the entire program, control flow, and critical operational paths are more appropriate than those involving detailed line by line analysis (e.g., software code inspection). When an anomaly is found, however, the auditors may choose to examine in greater detail the areas suspected of contributing to the anomaly.

C.
When do you use it

1.
Selecting appropriate methods

Different methods may be appropriate based on the lifecycle phase a project is in. The following discussion presents some of these alternatives. A brief description of the lifecycle phase is followed by methods employed for independent SQA and for embedded SQE.

A) Concept and Initiation Phase

During the concept and initiation phase, the software concept is developed, the feasibility of the software system is evaluated, and, if a contract is to be used to acquire the software, procurement is initiated and a contract is awarded.

1) Independent SQA

Before selecting an organization to perform a project, the acquiring organization can request a pre-award SQA audit. The intent of this type of audit is slightly different from audits performed later in the life cycle. Since there are no activities underway on the software that that is to be developed, the auditor can only review the provider’s “corporate” or generic standards and procedures, and past projects. If possible, these should be examined in the context of the proposed project, so that their effectiveness can be judged. This type of audit of audit requires an experienced auditor.

The procedures and standards for the project are formulated during this phase. The SQA staff of the acquirer should ensure that standards and procedures adopted are appropriate for the project and are auditable, i.e., have a clear documentation trail, with easy-to-follow steps. They also should make sure that the contract allows external audits and requires internal audits.

1) Embedded SQE

Since there is no software product in the concept and initiation phase, there is no embedded SQE activity that is applicable. Planning for error analysis techniques to be used may be begun during this phase. Ideally, software development practices would be so advanced that no errors will enter the software system during development. However, current practices can help to reduce the number of error but not prevent all errors. Error analysis techniques should be chosen according to which type of errors they are best at locating. The selection of techniques should take into account the error profile and the characteristics of the development methodology. No project can afford to apply every technique, and no technique guarantees that every error will be caught. Instead, the most appropriate combination of techniques should be chosen to enable detection of as many errors as possible in the earlier phases.

B) Requirements Phase

During the software requirements phase, the software concept and allocated system requirements are analyzed and documented as software requirements. Test planning is begun, with a method for verifying each requirement identified and included in a preliminary test plan. Risks are identified and risk management control mechanisms are established. The size and scope of the remainder of the project is reevaluated, and changes in resources and schedules are made. Methods, standards, and procedures are detailed and put in place. The phase ends with a requirements review, at which the requirements are agreed to between the acquirer and developer and put under CM.

1) Independent SQA

Internal audits during this phase concentrate on the process of developing, documenting, and controlling the requirements. Some process should be in place to control the requirements. and draft documents as they are developed. This process probably will be relatively informal, and may include nonconformance reporting and corrective action (NRAC) and an action item tracking system. There may be procedures for reporting on progress, estimating system and project resources, and risk assessment. All of these can be audited to the extent that controlled processes are in place. In addition to procedures, an auditor should verify that requirements follow the format specified in the documentation standard.

An external audit, if one is performed during this phase, may look at the same items that are covered by an internal audit. In addition, an external audit can copy the same items as listed for a pre-award audit.

1) Embedded SQE

During the requirements phase, static analysis techniques can be used to check adherence to specification conventions, consistency, completeness, and language syntax. Commonly used static analysis techniques used include control flow analysis, data flow analysis, algorithm analysis, traceability analysis, and interface analysis. Control and data flow analysis are most applicable for real time and data driven systems. These flow analyses employ transformation of text describing logic and data requirements into graphic flows which are easier to examine. Algorithm analysis involves rederivation of equations or the evaluation of the suitability of specific numerical techniques. Traceability analysis involves tracing the requirements in the software requirements specification to system requirements. The identified relationships are then analyzed for correctness, consistency, completeness, and accuracy. Interface analysis in this phase involves evaluating the software requirements specification with the hardware, user, operator, and software interface requirements for correctness, consistency, completeness, accuracy, and readability.

Dynamic analysis techniques can be used to examine information flows, functional interrelationships, and performance requirements. Simulation is used to evaluate the interaction of large, complex systems with many hardware, user, and other interfacing software components. Prototyping helps customers and developers to examine probable results of implementing software requirements. Examination of a prototype may help to identify incomplete or incorrect requirements statements and may also reveal that the software requirements will not result in system behavior the customer wants. Prototyping is usually worthwhile when the customer has not previously used the functions of the computer system in automated form. In this case, the customer can change the requirements before costly implementation. Unless the project is small or an automated method can be used to build a prototype quickly, usually only carefully selected functions are studied by prototyping.

One approach for analyzing individual requirements is requirements parsing. This manual technique involves examination to ensure that each requirement is defined unambiguously by a complete set of attributes (e.g., initiator of an action, source of the action, the action, the object of the action, constraints). Because this technique identifies undefined attributes, it may prevent release of incomplete requirements to the designers. In those cases where the requirements are to be represented by a formal language specification, this analysis aids in clarifying a requirement before its transformation.

Languages based on formal methods, i.e., mathematically based languages, may be used to specify system requirements. The act of specifying the software requirements in a formal language forces reasoning about the requirements and becomes an error detection technique. When requirements have been written in a formal language, the task of simulation may be easier. Then, the behavior of the potential system can be observed through use of simulation. It may be the combination of formal specification with other error detection techniques (e.g., control flow analysis and data flow analysis) that provides the biggest payoff for using formal methods.

C) Architectural Design Phase

The objective of the architectural design phase is to develop an overall design for the software, allocating all of the requirements to software components. The software requirements are controlled and managed, and only a formal process changes documents baselined following the requirements phase. The phase ends with the preliminary design review, during which the acquirer and developer agree on the architecture of the system that is to be produced. Rework and actions resulting form the review are tracked and completed.

1) Independent SQA

Internal and external audits during this phase should include the design documentation, verifying that format standards are met. The auditor should assure that all requirements are being allocated to software components. It is especially important to audit the configuration control mechanisms for the requirements to make sure that unauthorized and uncontrolled requirement change and growth is not occurring. In addition, items such as those mentioned in the previous phase, i.e., status reporting, action item tracking, and nonconformance reporting should be audited.

1) Embedded SQE

Evaluation of the design provides assurance that the requirements are not misrepresented, omitted, or incompletely implemented, and that unwanted features are not designed into the product by oversight. Design errors can be introduced by implementation constraints related to timing, data structures, memory space and accuracy.

Static analysis techniques help to detect inconsistencies, such as those between the inputs and outputs specified for a high level module and the inputs and outputs of the submodules. The most commonly used static analysis techniques during this phase include algorithm analysis, database analysis, (design) interface analysis, and tracability analysis. As in the requirements phase, algorithm analysis examines the correctness of the equations and numerical techniques, but in addition, it examines truncation and rounding effects, numerical precision of work storage and variables (single vs. extended-precision arithmetic), and data typing influences. Database analysis is particularly useful for programs that store program logic in data parameters. Database analysis supports verification of the computer security requirement of confidentiality, by checking carefully the direct and indirect accesses to data. Interface analysis aids in evaluating the software design documentation with hardware, operator, and software interface requirements for correctness, consistency, completeness, and accuracy. Data items should be analyzed at each interface. Traceability analysis involves tracing the software design documentation to the software requirements documentation and vice versa.

Commonly used dynamic analysis techniques for this phase include sizing and timing analysis, prototyping, and simulation. Sizing and timing analysis is useful in analyzing real-time programs with response time requirements and constrained memory and execution space requirement. This type of analysis is especially useful for determining that allocations for hardware and software are made appropriately for the design architechture; it would be quite costly to learn in system test that the performance problems are caused by the basic system design. An automated simulation may be appropriate for larger designs. Prototyping can be used as an aid in examining the design architecture in general of a specific set of functions. For large complicated systems prototyping can prevent inappropriate designs from resulting in costly, wasted implementations.

Formal analysis involves tracing paths through the design specification and formulating a composite function for each, in order to compare these composite functions to that of the previous level. This process ensures that the design continues to specify the same functional solution as is hierarchically elaborated. This process can be applied manually, if the specification is sufficiently formal and exact, but is most feasible only for high-level design specifications. However, with automated tools, the functional effects of all levels of the design can be determined, due to the speed and capability of the tools for manipulating detailed specifications.

D) Detailed Design Phase

During the detailed design phase, the architectural design is expanded to the unit level. Interface control documents are completed and test plans are revised. Constraints and object system resource limits are reestimated and analyzed, and staffing and test resources are validated. The phase ends with the critical design review, and the detailed design is baselined.

1) Independent SQA

Audits during this phase should focus on the progress and documentation of the detailed design. If unit development folders (or other similar documentation) are used, they should be started during this phase and can be audited. As auditing is done, reported status should be compared with the actual status. Any discrepancies should be noted. Both the requirements and the architectural design should be under CM and the CM process should be audited. Other items listed in the descriptions of the other phases are still applicable.

1) Embedded SQE

See discussion under Architectural Design Phase.

E) Implementation Phase

During the implementation phase, the software is coded and unit tested. All documentation is produced in quasi-final form, including internal code documentation. At the end of the phase, all required products should be ready for delivery, subject to modification during integration and testing.

1) Independent SQA

Audits during this phase check the results of design and coding, CM activities and program library, nonconformance and corrective action process, and schedule and status of the project.

Internal audits should be frequent during this phase. The project staff is usually at its maximum, and there are a great number of simultaneous activities. SQA auditing is one of the more important ways for management to keep the process under control, assure that quality products are being developed, and that status is actually as reported. Completed products are being sent to test as they are ready, and the products and their control process should be audited. Audits should include code audits to make sure coding standards are being followed and that internal code documentation standards are met. If inspections or some other form of peer review are done, the auditor should check that they are completed on all products and that action items resulting from them are carried out.

An external audit is most effective if done early in the implementation phase. At this point in the lifecycle, all control procedures are in operation and all standards are in use. This external SQA audit assures that they are being followed correctly and that status is correctly reported. If any problems are noted, it is early enough for meaningful change and corrective action.

1) Embedded SQE

Use of static analysis techniques helps to ensure that the implementation phase products (e.g., code and related documentation) are of the proper form. Static analysis involves checking that the products adhere to coding and documentation standards or conventions, and that interfaces and data types are correct. This analysis can be performed either manually or with automated tools.

Frequently used static analysis techniques during this phase include code reading, inspections, walkthroughs, reviews, control flow analysis, database analysis, interface analysis, and traceability analysis. Code reading involves the examination by an individual, usually an expert other than the author, for obvious reasons. Inspections, walkthroughs, and reviews, which are all used to detect logic and syntax errors, are effective forerunners to testing. As in previous phases, control flow diagrams are used to show the hierarchy of main routines and their subfunctions. Database analysis is performed on programs with significant data storage to ensure that common data and variable regions are used consistently between all calling routines; that data integrity is enforced and no data or variable can be accidentally overwritten by overflowing data tables; and that data typing and use are consistent throughout the program. With interface analysis, source is evaluated within the hardware, operator, and software interface design documentation, as in the design phase. Traceability analysis involves tracing the source code to corresponding design specifications and vice versa.

One category of static analysis techniques performed on code is complexity analysis. Complexity analysis measures the complexity of code based on specific measurements (e.g., number of parameters passed, number of global parameters, number of operands/operators). Although not an error detection technique, complexity analysis can be used as an aid in identifying where use of error detection techniques should be concentrated and also in locating test paths and other pertinent information to aid in test case generation.

Dynamic analysis techniques help to determine the functional and computational correctness of the code. (See discussion under Integration and Test Phase for description of unit level testing.) Regression analysis is used to reevaluate requirements and design issues whenever any significant code change is made. This analysis ensures awareness of the original system requirements. Sizing and timing analysis is performed during incremental code development and analysis results are compared against predicted values.

A formal method used in the implementation phase is proof of correctness, which is applied to code.

F) Integration and Test Phase

The objectives of the integration and test phase are to integrate the software units into a completed system, discover and correct any nonconformance, and demonstrate that the system meets its requirements. The phase ending review is the test readiness review, during which the developer provides to the acquirer evidence that the software system is ready for acceptance testing. During this phase, the test plan is executed, the documentation is updated and completed, and the products are finalized for delivery.

1) Independent SQA

During this phase, internal audits include any and all of the items in previous phases. However, internal audits should concentrate on assuring that product changes made to correct nonconformances discovered during the testing are controlled, completed, and documented. Audits of the CM and NRCA processes, and computer program library are highly important. The SQA audit should include a check of the formal test procedures and the test results. Integration and test is often the most confusing and time-pressured part of a project, and there is a tendency to discard standards and procedures due to pressure.

External audits during this phase should concentrate on the same items as internal audits, with additional emphasis on assuring completeness; that is, that testing has not been shortchanged in order to meet schedules.

1) Embedded SQE

Dynamic analysis in the test phase involves different types of testing and test strategies. Traditionally there are four types of testing: unit, integration, system and acceptance. Unit testing may be either structural or functional testing performed on software units, modules, or subroutines. Structural testing examines the logic of the units and may be used to support requirements for test coverage, that is, how much of the program has been executed. For functional testing, testing usually need no information about the design of the program because test cases are based on the software requirements.

Integration testing is conducted when software units are integrated with other software units or with system components. During integration testing, various strategies can be employed (e.g., top-down testing, bottom-up testing, sandwich testing) but may depend on the overall strategy for constructing the system. Integration testing focuses on software, hardware, and operator interfaces.

Both system testing and acceptance testing execute the complete system. The primary difference is that the developer conducts system testing, usually in the development environment, while the customer conducts acceptance testing (or commissions the developer to conduct the acceptance testing in the presence of the customer). Acceptance testing is supposed to occur in a fully operational customer environment, but in some cases (e.g., nuclear power plants, flight control systems), some parts of the environment may need to be simulated.

For all four types of testing, different strategies may be used, according to the project’s characteristics. Some strategies include stress testing, boundary value testing, and mutation testing. Operational profile testing allows testers to select input data that are of special interest to the customer. For example, input data that causes execution of the most frequently used functions in operation may be the most important profile for testing for some systems. In other cases, it may be for important to choose an input profile that should not occur in reality. For nuclear power plants, this means choosing a profile that causes the software safety system to react; the system responses can be examined to determine system behavior in adverse circumstances.

A major problem with testing is knowing when to stop. Software reliability estimation techniques can be used to estimate the number of errors still present in the system, and to determine how much more testing is needed. Sensitivity analysis is intended to indicate where to test, and hence to determine how much to test. Because sensitivity analysis is derived from mutation testing which is intended for detecting small changes to a program, this technique depends on code that is already “close to correct” for its effectiveness.

G) Acceptance and Delivery Phase

During the acceptance and delivery phase, the formal acceptance procedure is carried out. As a minimum, there is a requirements-driven demonstration of the software to show that it meets those requirements. The process also may include acquirer tests, field usage or other arrangements that are intended to assure that the software will function correctly in its intended environment.

1) Independent SQA

This phase is very much like the end of the previous phase, with system tests being run, nonconformances noted, and corrections being made to the software, documentation, and databases. The items to be audited are similar, especially the CM and NRCA processes.

1) Embedded SQE

See discussion of acceptance testing under Integration and Test Phase.

H) Sustaining Engineering and Operations Phase

During this phase of the software lifecycle, the software is used to achieve the objectives for which it was acquired. Corrections and modifications are made to the software to sustain its operational capabilities and to upgrade its capacity to support its users. Software changes may range in scope from simple corrective action up to major modifications that require a full lifecycle process.

1) Independent SQA

Internal audits should respond to the extent and type of changes being made to the system. If there is only a low level of corrective action, then audits may be limited to the CM and NRCA procedures and to verifying that quality is being maintained in the products. If substantial modifications are being made, however, then a full or mini-lifecycle should be in place and audits should be performed as described for the appropriate stage.

When long term sustaining engineering is being performed, an external audit should be done periodically to assure the acquirer that product quality is maintained and sustained. A minimum of one external audit per year is recommended; more if the level of change activity is high.

1) Embedded SQE

For any software maintenance activity, error detection techniques should be selected as if the maintenance activity were a new development activity, but considering the impact of new changes to the system. Use of traceability analysis on the software products, including test documentation, is critical to identifying the extent of use of any selected error detection technique on the total software system. Regression testing must be applied in this phase. During operation of an online continuous system, test cases may be constructed that will check periodically if the system is behaving as expected.

D.
How do you use it

1.
Methods

2.
Tools

3.
Reports

III. Case Studies

A.
Independent SQA

1. DLA

The Defense Logistics Agency’s Software Design Center’s (DSDC’s) culture presented situations where solutions needed to come from an outside observer. The STSC was brought in as this outside observer to offer independent SQA solutions.

The STSC was tasked to increase the impact of Software Quality Assurance (SQA) on the day to day compliance to documented project procedures, to increase the value of metrics to SQA and Project Management (PM) while building a metrics program that supports CMM level 3. Also, the STSC would provide training on auditing operations.

A philosophical issue at DSDC was determining the primary role of SQA. Was it to be a CMM auditor or for quality assurance. The metrics gathered showed the CMM as the primary role.

Many findings materialized when studying DSDC’s processes. Quality was not an objective of the business plan. Key organizational objectives from business planning sessions included efficiency, customer satisfaction, people, but not quality.

It was found that quality measurement was still undefined. The SEPG’s defect collection from formal inspections was directed towards ROI. Quality metrics was still in future plans.

More findings included exhibiting low maturity behavior, frustration due to process expectations conflicting with “business as usual” momentum.

From the findings, it was concluded that the immature process required a focus on both the process and the product. There was also reluctance to use the deviation and exception processes.

The recommendations included the following:

· Focus on product assurance and development processes.

· Using every opportunity to improve project compliance to policies and procedures.

· Using formal auditing alternatives.

· Reducing formal audit stress.

· Combining CMM and SQA auditing resources.

· Having metrics focus on the SQA impact on process adherence and on product release inspection deviations.

In conclusion, the SQA will be focused on compliance to the CMM through widely spaced formal audits. SQA added greater value to the organization by focusing on process adherence on an on-going basis. Also, process deviations were directed to the lowest level of management that has the power to correct the problems. The independent changes in SQA brought about overall improvement in the function of SQA.

B.
Embedded SQE

1.
Space Shuttle Onboard Software

To achieve the level of quality control desired, the Space Shuttle Onboard Software (OBS) project has mainly relied on embedded SQE activities. Because of the NASA customer’s focus on the delivery of error-free software, the OBS management team felt that this could only be achieved by making everyone on the project responsible for the quality of the delivered software. This decision led to embedding within the development process activities designed to identify and remove errors from the software product and to also remove the cause of those errors from the process.

Beginning in the mid 1970s, on a foundation that included competent and controlled software project management techniques and an effective configuration management system for control of the software project, the project started a practice which is still performed today - counting errors found product, analyzing those errors, correcting them and implementing process improvements to prevent the recurrence of those errors. When this process began, errors in the released produce were examined. Focusing on those errors led to the realization of how expensive it was to remove errors found late in the development lifecycle. Formal design and code inspections were introduced in the late 1970s to enhance the possibility for discovery of errors during the period before the software was placed under formal configuration control when it was cheapest to correct those errors.

Continued error analysis identified requirements as a major source of errors so the next major enhancement was a formalization of the requirements analysis process to provide better requirements from which the developers and testers could work. Formalization of the independent verification and validation process through documenting of verification techniques was the next step. As each process change had visible effects in reducing the errors in the delivered product, continued process improvement was seen to be the vehicle through which the goal of error-free software could someday be realized. Even an organizational change driven by the NASA customer’s direction to reduce headcount on the project was done in a way that resulted in further error reduction. The same personnel who performed the requirements analysis at the beginning of the software lifecycle were tasked with the responsibility for performing the system performance verification at the end of the development cycle.

When the number of errors in the released software decreased to such low numbers that error trends were not evident, errors found during inspections were subjected to the same kind of analysis to which released errors had be subjected . This led to improvements in the inspection process and later a change in focus of development unit testing to mirror expected customer usage of the software. Requirements inspections were added and inspections of the verifiers test procedures. Process teams made up of participants in the processes were created to own the processes and proactively look for process improvements. These teams still function and are the major source for process improvement ideas.

In a study performed in 1993 and reported on at the 1994 STSC Sixth Annual Software Technology Conference, the number of errors in released systems had been reduced from a high of 123 in 1984 to nine in 1993. At that time, errors found in released systems developed after the initial release had decreased from sixty-eight to six. The software currently in use to support shuttle missions have no errors attributable to the latest software release. Process improvements continue to be made. Improvement in support tool developments such as tools which aid in analysis of software interfaces, and tools to provide improved testing capabilities also contribute to significant reductions in error rates. Embedding SQE activities in all phases of the development lifecycle enabled the OBS project meet its customer requirements for delivery of error-free software.

IV. Tools for Automation

A.
Tool List

1.
Task and Action Tracking Tools

2.
Task/Workflow Automation Tools

3.
Metrics Tools

4.
Maturity Assessment Tools

5.
Design Complexity Assessment Tools

6.
Reliability Estimation Tools

B.
Tool information sheet

V. Future directions and trends

A. Standards

The following are the most current standards associated with Software Quality Engineering:

ANSI/ISO/ASQC Q9000-1994 Series

ISO 9000-3 Guidelines

#1 042-1987: Guide to Software Configuration Management (IEEE)

#828-1990: Standard for Software Configuration Management Plans (IEEE)

1028-1988: Standard for Software Reviews and Audits (IEEE)

 Guidelines for Auditing Quality Systems (ANSI)

TickIT Guidelines

Guide to Software Quality Management System Construction & Certification (TickIT) ISBN 0-9519309-0-7
B.
Evaluation Methods

C.
Challenges

VI. Appendix

A. Recommended Reading

This listing is not intended to be all-inclusive. These books cover technologies associated with Software Quality Engineering.

The Team Handbook (Peter R. Scholtes; Joiner Assoc.) 2nd ed., P662

Quality Planning & Analysis (Juran & Gryna; McGraw-Hill) P482

Software Quality Engineering (Deutsch & Willis; Prentice-Hall) ISBN 0-13-823204-0

Software Quality Manual (Boyer; Globe Engineering Documents) ISBN 0-91-270286-9

Out of the Crisis (Deming; ASQC Quality Press) P369

Metrics and Models in Software Quality Engineering (Kan; Addison-Wesley) P561

Managerial Breakthrough (Juran; McGraw-Hill) ISBN 0-07-034037-4

Assessment and Control of Software Risks (Jones; Prentice Hall) ISBN 0-13-741406-4

Handbook of Software Quality Assurance (Schulmeyer & McManus; Van Nostrand Reinhold) ISBN 0-442-00796-5

Software Quality Concepts & Plans (Dunn; Prentice Hall) ISBN 0-13-820283-4

Managing the Software Process (Humphrey; Addison-Wesley) ISBN 0-201-18095-2

A Manager's Guide to Software Engineering (Pressman; McGraw-Hill) ISBN 0-07-050820-8

Software Engineering, A Practitioner's Approach (Pressman; McGraw-Hill) ISBN 0-07-050783-X

ACM Communications (May 1995, vol. 38 #5)

Software Engineering Productivity Handbook (Keyes; Windcrest/McGraw-Hill) ISBN 0-07-911366-4

Software Engineering Concepts (Fairley; McGraw-Hill) ISBN 0-07-019902-7

IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software (IEEE)

Testing Computer Software (Kaner, Falk, Nguyen; Van Nostrand Reinhold) ISBN 0-442-01361-2

The Art of Software Testing (Myers; John Wiley & Sons) ISBN 0-471-04328-1

Software System Testing and Quality Assurance (Beizer; Van Nostrand Reinhold) ISBN 0-442-21306-9

Quality Audits for Improved Performance (Arter; ASQC Quality Press) 2nd ed., H0844

Software Quality Assurance and Evaluation (Dobbins; ASQC Quality Press) ISBN 0-87389-059-0

Software Configuration Management (Ayer and Patrinostro; McGraw-Hill) ISBN 0-07-002603-3

Software Configuration Management: An Overview (Osborne; National Computer Systems Lab) NIST Special Publication 500-161

Configuration Management Plans (IEEE)

B.
Services

1.
Conferences/Seminars/Symposiums

Software Technology Conference – The premier software technology conference in the Department of Defense. The conference provides an excellent forum for software professionals to increase their awareness and understanding of effective software technologies, exchange lessons learned, and receive the latest software strategies from leaders in the field. The program will include tutorials, presentations, vendor exhibits, “birds-of-a-feather,” and plenary sessions.

http://www.stsc.af.mil/stc
International Software Quality Week Conference – The Quality Week Conferences are high-end, carefully selected/refereed technical conferences that focus on broad Software Quality issues – from process improvement to testing to applying modern technology. Positioned midway between Academic and Industrial events, Quality Week Conferences blend hi-tech topics, common-sense guidelines, real-world experience, and informal information exchange with acknowledged software quality experts, and access to industrial technical and support resources.

http://www.testworks.com/Qualweek
Pacific Northwest Software Quality Conference (PNSQC) – Helps increase the awareness of the importance of software quality. As a non-profit corporation, PNSQC seeks to promote software quality by providing education and opportunities for information exchange within the software community.

http://www.pnsqc.org
International Conference on Software Quality – Provides an opportunity for software professionals to share state-of-the-art research and practice with other members of the profession.

Http://www-biz.aum.edu/~tgriffin/9ICSQ
International Conference on Practical Software Quality Techniques (PSQT) – The conference focuses on software quality from a real-world perspective, providing innovating yet practical solutions to software quality challenges.

http://www.softdim.com/psqt
International Conference on Software Quality Management (SQM) – Aims to promote co-operation and greater understanding among both academics and practitioners by providing an opportunity to share research and practical experience.

http://www.sc.ehu.es/jiwdocoj/sqm98.txt
Quality Audit Conference – This conference focuses on all issues which concern software auditors.

http://www.asqc.org/membinfo/divisions/qad/con1998/ASQC.HOME
International Symposium on Software Reliability Engineering (ISSRE) – Offers information on all aspects of software reliability engineering.

http://sigma.uni-paderborn.de/issre98

2.
Professional Associations and Societies

Association for Computing Machinery (ACM)

http://www.acm.org
Association for Computing Machinery Special Interest Group on Software Engineering (ACM SIGSOFT)

http://www.acm.org/sigsoft
American Society for Quality (ASQ)

http://asqc.org/index.html
Institute for Electrical and Electronics Engineers (IEEE)

http://www.ieee.org
Institute for Electrical and Electronics Engineers Computer Society (IEEE Computer Society)

http://www.computer.org
The Society for Software Quality

http://www.ssq.org
The Society of Concurrent Engineering

http://www.soce.org
The UK Quality Network

http://www.quality.co.uk/quality/index.htm
C.
Information

1. Professional Publications/Journals

IEEE Publications

http://computer.org
Quality On-Line: Quality Magazine

http://qualitymag.com
Automated Software Engineering, An International Journal

http://www.wkap.nl/journalhome.htm/0928-8910
IBM Systems Journal; Vol.33, No. 1, 1994 – Software Quality

http://www.almaden.ibm.com/journal/sj33-1.html
Journal of Software Testing, Verification and Reliability

http://www.csc.liv.ac.uk/~mrw/stvr.main.html
Reliability Magazine

http://www.reliability-magazine.com/index.phtml
Association for Computing Machinery (ACM), Transactions on Software Engineering and Methodology (TOSEM)

http://www.acm.org/catalog/journals/115.html
2.
Web sites

You can find excellent information about SQE at the following websites:

The Software Technology Support Center’s SQE Site – provides technical information, along with information on consulting services.

http://www.stsc.hill.af.mil/SQE
The American Society for Quality – provides information in quality topics like process improvement, teamwork, and certification.

http://www.asqc.org
The SR/Institute’s Software Quality Hotlist – provides access to worldwide software quality technology sources.

http://www.testworks.com/Institute/HotList/#GOVT
The Software Quality Assurance Site – is a gathering place for references related to the theory and practice of software quality assurance.

http://www.well.com/user/vision/sqa.html
D. STSC Consulting and Training

There are certain SQE activities that need to be accomplished during each level of the Software Engineering Institute’s Capability Maturity Model (CMM). The CMM has 5 levels of Software Process Maturity:

1) INITIAL - The software process is characterized as ad hoc, and occasionally even chaotic. Few processes are defined, and success depends on individual effort.

2) REPEATABLE - Basic project management processes are established to track cost, schedule, and functionality. The necessary process discipline is in place to repeat earlier successes on projects with similar applications.

3) DEFINED - The software process for both management and engineering activities is documented, standardized, and integrated into a standard software process for the organization. All projects used an approved, tailored version of the organization’s standard software process for developing and maintaining software.

4) MANAGED - Detailed measures of the software process and product quality are collected. Both the software process and products are quantitatively understood and controlled.

5) OPTIMIZING - Continuous process improvement is enabled by quantitative feedback from the process and from piloting innovative ideas and technologies.

Maturity Levels 2 through 5 can be characterized through the activities performed by the organization to establish or improve the software process, by activities performed on each project, and by resulting process capability across projects. A behavioral characterization of Level 1 is included to establish a base of comparison for process improvements at higher maturity levels.

The SQE activities include the following:

Quality Policy - This is the most basic, but the most important! Management needs to implement a quality policy and employees need to be committed to this policy.

Quality Requirements and Strategy - After the organization has committed to having a quality policy in place, the organization needs to sit down and develop their quality requirements and strategy.

Roles and Responsibilities for Quality - Next, assign roles and responsibilities for the implementation of this policy.

SQA Group and SQA Plan - Form an SQA Group and develop the SQA Plan. There is no set way to develop an SQA Plan, do what is best for you!

Software Development and Test Processes - Come to understand what your organizations processes are for developing software and for the testing of the software.

SQA Processes - Integrate the SQA process with the project’s management and technical processes.

Process Assessment Methods - Develop self-assessment methods which work best for you!

Process Change Control - Establish control over process changes.

Quality Control Mechanism - Define quality control mechanisms to force process conformance.

Reviews and Audits - Define how you will handle management and technical reviews.

Inspection Process - Implement formal inspection processes.

Cleanroom Processes - Prepare for the introduction of Cleanroom processes.

Failure Mode Effects Analysis - Define Failure Mode Effects Analysis (FMEA) methods.

Quality Metrics - Decide which quality metrics would be best for you, and analyze and use these metrics.

Quality Data Repository - Establish a quality data repository to store the metrics and any other pertinent information.

Defect Analysis and Prevention - Develop a defect analysis and prevention (reactive) program.

Continuous Process Improvement - Develop a continuous process improvement (proactive) program.

Statistical Process Management - Define statistical process management processes.

Reliability Engineering - Establish product reliability engineering methods.

The following SQE Capabilities Roadmap addresses where these activities are with relation to the CMM:

Software Quality Engineering

Consulting Support

Start Up
Provide support to low maturity organizations that wish to:

1. Establish a Software Quality Assurance function

2. Choose Software Quality Engineering methods to meet product reliability requirements

Specific focus is on supporting customers with the following activities:

· Establishing Quality Policy
Support the creation of organizational quality policies which establish the SQA ground rules for all of an organization’s projects.

· Developing a Software Quality Assurance Plan
Support the development of project SQA plans that provide a complete and efficient foundation for SQA start up and operation.

· Establishing a Software Quality Assurance Group

Support in determining SQA independence, staffing criteria, training, identifying roles and responsibilities, and setting objectives.

· Planning Product Quality Goals

Support creation of a project strategy to attain required product quality levels and determination of attainable targets for subprocess performance.

· Selecting Software Quality Engineering Methods

Support selection of appropriate SQA methods to attain product quality requirements.

Depending on customer need, services can include review of the current organizational SQA and SQE activities, recommending a plan of action, recommendations on technologies and methodologies, facilitation of SQE and SQA start up activities, training, consultation, and progress reviews.

Software Quality Engineering

Consulting Support

Infrastructure Development
Provide support to low maturity organizations that wish to:

1. Develop complementary SQA and software development processes

2. Integrate SQA controls into current development processes

Specific focus is on supporting customers with the following activities:

· Establishing Software Quality Assurance Processes
Support the development of detailed SQA group processes which satisfy the who, what, where, when, how, and how much of SQA operations.

· Identifying Review and Audit Opportunities
Support the identification and selection of SQA product and process review opportunities.

· Establishing Mechanisms to Assure Process Compliance

Support the identification and establishment of development process mechanisms which assure operational compliance with the documented process.

· Maintaining Process Change Control
Support the establishment of configuration control methods to assure the consistent application of the best current processes.

Depending on customer need, services can include review of the current SQA and development processes, recommending a plan of action, recommendations on technologies and methodologies, facilitation of SQE and SQA process start up activities, training, consultation, and progress reviews.

Software Quality Engineering

Consulting Support
SQE Methods Adoption
Provide support to organizations that wish to:

1. Adopt a Software Quality Engineering Technology or Method

2. Improve the performance of an SQE Technology or Method

Specific focus is on supporting customers with the following activities:

· Inspections
Support the establishment of formal inspection processes for requirements, design, code, test, and documentation.

· Failure Mode Effects Analysis
Support the identification of unique software failure modes and the development of defenses to prevent their occurrence.

· Cleanroom

Provide training in cleanroom methodology.

· Reliability Engineering
Support the identification and establishment of “trusted” methods, processes, and support structure to achieve required product operational reliability.

· Continuous Process Improvement
Support the establishment and integration of continuous process improvement practices into normal project operation.

Depending on customer need, services can include assessment the current SQE methods, recommending a plan of action, recommendations on technologies and methodologies, selection of a candidate for pilot adoption, facilitation of start up activities, training, consultation, and progress reviews.

Software Quality Engineering

Consulting Support

Statistical Management of Product Quality
Provide support to mature organizations that wish to:

1. Manage Software Quality through statistical methods

2. Improve the performance of current measurement or metrics methods

Specific focus is on supporting customers with the following activities:

· Establishing a Quality Data Repository
Support the creation of a quality data repository, including the identification of candidate data needed for statistical process management, error cause analysis, and reliability measurement.

· Selecting Quality Measurements

Support the identification of measurements for SQA.

· Defect Analysis and Prevention
Support the establishment of defect analysis and defect prevention processes.

· Statistical Process Management
Support the use of statistical process management, including identifying processes in and out of control, developing control charts, correcting out of control processes, and reducing variation.

Depending on customer need, services can include review of the current quality, statistical collection and analysis methods, recommending a plan of action, recommendations on technologies and methodologies, selection of a candidate for pilot adoption, training, consultation, and progress reviews.

Software Quality Engineering

Consulting Support

Process Definition

Software Quality Engineering

Consulting Support

Quick Start Process Definition Workshops
Provide a fast and low cost method of process definition for organizations able to finish the process definition task once the workshop is complete.

Process Definition Workshops offered are:

· Inspections

· Software Quality Assurance

· Defect Prevention Process (Continuous Process Improvement)

Workshops are sessions focused on identifying the key roles, responsibilities, actions, and processes for the specific activity. The sessions require the attendance of the key management and process leaders so that decisions on how the process will operate can be made during the workshop. The product of the workshop is an outline of the subject process with most of the key decisions completed. The customer is responsible for completing the details of the process. Training in the subject process is a prerequisite to the workshop.

Workshops include follow on consulting and review of the final process.

Software Quality Engineering

Consulting Support
SQE Methods
Training

Software Quality Engineering

Consulting Support

Training
One day seminars are offered on the following subjects:

· Inspections

· Inspection Moderator Training

· Defect Prevention Process

· Software Reliability

· Software Quality Assurance

SQE Start Up

IV, V

III

 II

Reliability

Engineering

Statistical Process

Management

Continuous Process

Improvement

Defect Analysis and

Prevention

Quality Data Repository

Quality Metrics

Failure Modes Effects

Analysis

Cleanroom Process

Inspection Process

Reviews and Audits

Quality Control Mechanisms

Process Change Control

Process Assessment Methods

SQA Processes

Software Dev/Test Processes

SQA Group and SQA Plan

Roles and Responsibilities

 for Quality

Quality Requirements

 and Strategy

Quality Policy

SQE Capabilities Roadmap

IV, V

III

 II

Reliability

Engineering

Statistical Process

Management

Continuous Process

Improvement

Defect Analysis and

Prevention

Quality Data Repository

Quality Metrics

Failure Modes Effects

Analysis

Cleanroom Process

Inspection Process

Reviews and Audits

Quality Control Mechanisms

Process Change Control

Process Assessment Methods

SQA Processes

Software Dev/Test Processes

SQA Group and SQA Plan

Roles and Responsibilities

 for Quality

Quality Requirements

 and Strategy

Quality Policy

SQE Infrastructure Development

IV, V

III

II

Reliability

Engineering

Statistical Process

Management

Continuous Process

Improvement

Defect Analysis and

Prevention

Quality Data Repository

Quality Metrics

Failure Modes Effects

Analysis

Cleanroom Process

Inspection Process

Reviews and Audits

Quality Control Mechanisms

Process Change Control

Process Assessment Methods

SQA Processes

Software Dev/Test Processes

SQA Group and SQA Plan

Roles and Responsibilities

 for Quality

Quality Requirements

 and Strategy

Quality Policy

SQE Methods Adoption

IV, V

III

II

Reliability

Engineering

Statistical Process

Management

Continuous Process

Improvement

Defect Analysis and

Prevention

Quality Data Repository

Quality Metrics

Failure Modes Effects

Analysis

Cleanroom Process

Inspection Process

Reviews and Audits

Quality Control Mechanisms

Process Change Control

Process Assessment Methods

SQA Processes

Software Dev/Test Processes

SQA Group and SQA Plan

Roles and Responsibilities

 for Quality

Quality Requirements

 and Strategy

Quality Policy

Statistical Management of Product Quality

IV, V

III

II

Reliability

Engineering

Statistical Process

Management

Continuous Process

Improvement

Defect Analysis and

Prevention

Quality Data Repository

Quality Metrics

Failure Modes Effects

Analysis

Cleanroom Process

Inspection Process

Reviews and Audits

Quality Control Mechanisms

Process Change Control

Process Assessment Methods

SQA Processes

Software Dev/Test Processes

SQA Group and SQA Plan

Roles and Responsibilities

 for Quality

Quality Requirements

 and Strategy

Quality Policy

