
CROSSTALK The Journal of Defense Software Engineering 9July 1998

A few years ago marked the
rollout of what could have been
 called a Titanic of military

projects, except the original Titanic was
ahead of schedule when it sank. Hun-
dreds of millions of dollars over budget
and years behind schedule, the first
phase of this huge military system was
finally “tossed over the wall” and over
the top of a network of separate pro-
grams used by thousands of practition-
ers. Although long hampered by quality
problems, big hopes were again riding
on the system once it passed acceptance
testing.

The intended users refused to use
the system. It lacked features they said
were essential to their jobs while requir-
ing steps they considered unnecessary
or burdensome. The project eventually
died a visible, painful death amid litiga-
tion and congressional inquiries.

This failed project was not atypical of
chronic problems in the software indus-
try. According to the Standish Group
[1], in 1995, U.S. government and busi-
nesses spent approximately $81 billion
on canceled software projects, and an-
other $59 billion for budget overruns.
Their survey claimed that in the United
States, only about one-sixth of all
projects were completed on time and
within budget, nearly one third of all
projects were canceled outright, and well
over half were considered “challenged.”
Of the challenged or canceled projects,
the average project was 189 percent over
budget, 222 percent behind schedule,
and contained only 61 percent of the
originally specified features.

Other studies have likewise con-
cluded that failure is rampant, although
not necessarily to the same degree. One

reason for the varied conclusions is that
most failed projects are never studied—
even by the organization that experi-
enced the failure. Having wasted so
much on a fruitless venture, few organi-
zations will invest more time or money
to collect and analyze additional data,
whereas any data that had been collected
may be massaged or hidden to protect
careers or reputations. Thus, informa-
tion about project failures often relies
heavily on subjective assessments. This
article is no exception.

For this article, a failure is defined
as any software project with severe cost
or schedule overruns, quality prob-
lems, or that suffers outright cancella-
tion. It is based on interviews with
practitioners and consultants who were
asked to describe the causes of soft-
ware project failures with which they
have been acquainted. If there is any-
thing notable about the interviewees’
diagnoses, perhaps it is that many of
these problems have been documented
for years, but somehow they keep
cropping up. Also worth noting is that
most of the failure causes mentioned
originate before the first line of code
has been written. The failure causes are
listed in no particular order.

Poor User Input
Although the Titanic project mentioned
earlier was riddled with problems, it
ultimately failed because the system did
not meet user needs. According to Paul
Hewitt, a consultant with the Software
Technology Support Center (STSC), the
acquirers and developers of this system
had received most of their requirements
from higher-level supervisors and so-
called “users” who were not regularly

using the existing system. Although “not
invented here” syndrome contributed to
the system’s eventual lack of acceptance,
the bottom line is that the system was
inadequate for its environment.

By contrast, Hewitt has observed
successful programs in which “end users
and developers [were] working together
in the same cubicle.” Although this is
not always possible, Hewitt said projects
are likely headed for trouble unless in-
formed end users are giving meaningful
input during every phase of require-
ments elicitation, product design, and
building. The input needed by these
users has less to do with issues like screen
layouts than with how the system would
be used in the field, according to
Michael Allen Latta, chief executive
officer of Ohana Technologies Corp. in
Lafayette, Colo. He said the user should
be asking, “How do I use it over time?
Does it provide the right tools? What do
I put into it, and what do I get out?”

However, there can also be problems
if the users are too close to the require-
ments. Shari Lawrence Pfleeger, presi-
dent of Systems/Software in Washing-
ton, D.C., had just started consulting on
a large federal system acquisition when
she started to study its requirements,
which were supposedly “clean” due to
the input of highly knowledgeable users.
Even without any prior understanding of
the system or its field environment,
Pfleeger needed only a few hours to see
that the requirements were full of hidden
assumptions and conflicts.

“[The users] didn’t think of the con-
sequences of what they were requiring,”
she said. “They assumed that how things
were done in the past was how they
would always be done in the future.”

Major Causes of Software Project Failures
Lorin J. May

CROSSTALK Associate Editor

Most software projects can be considered at least partial failures because few projects meet all their
cost, schedule, quality, or requirements objectives. Failures are rarely caused by mysterious causes, but
these causes are usually discovered post-mortem, or only after it is too late to change direction. This
article is based on interviews with software consultants and practitioners who were asked to provide
“autopsies” of failed projects with which they have been acquainted. Although not a comprehensive
compilation of failure causes, this article outlines several areas that should demand your attention.

10 CROSSTALK The Journal of Defense Software Engineering July 1998

Project Management

The users assumed the elicitors under-
stood more than they did about the
users’ jobs, but this was not entirely the
users’ fault. All involved parties, includ-
ing the developers, must understand the
business of the other parties. This need
continues throughout development
process. Without this understanding, the
parties “don’t even know what questions
to ask,” Pfleeger said, and important
issues fall between the cracks.

Stakeholder Conflicts
A few years ago, a major airline, rental
car company, and some hotel chains
created an incentive plan to give custom-
ers frequent flier-type points to “cash in”
for any of the participating companies’
services. They commissioned a complex
software system to track points and
compensation. Sometime later, the soft-
ware developers needed some clarifica-
tions, i.e., with input A, does the system
choose X, Y, or Z? The stakeholders
could not agree on the answers. Forced
to acknowledge deep incompatibilities
among their business interests, the sys-
tem was canceled in an expensive, liti-
gious failure of the entire enterprise.

The stakeholders had worked under
“the illusion that everyone was going to
get everything that they wanted,” ex-
plained Tom DeMarco, principle of the
Atlantic Systems Guild. They “papered
over their differences” rather than going
through conflict resolution in the early
stages. Their differences were exposed
by the developers because “coders cannot
make an ambiguous system.”

Stakeholder conflicts can play many
different roles project failures. For ex-
ample, “some projects are ultimately
canceled because people don’t like each
other,” said Capers Jones, chairman of
Software Productivity Research, Inc.

Other projects fail because the de-
velopers do not know who the “real”
stakeholders are, according to Ed
Yourdon, chairman of the Cutter Con-
sortium. Yourdon worked with a large
mutual fund company that had been
working on a $300 million software
system. The developers had been work-
ing closely with the information tech-
nology vice president, who was per-
ceived to be the primary stakeholder for

the system. When the system ran into
some problems, it drew the attention of
the chief executive officer, who turned
out to be the real stakeholder in the
system even though he had not previ-
ously been involved with it. After seeing
the involved risks, he immediately
withdrew his support for the system.

“No one bothered to ensure that he
was going to support it,” Yourdon
explained. “No one made him aware of
problems while it was being devel-
oped.” Yourdon says many projects fail
because the project leaders do not have
a sense of who will ultimately declare
whether a project is a success or fail-
ure, and then they are “blindsided.”
He said the true stakeholders need to
hear good and bad news in “small
pieces” rather than in “one chunk.”

Other projects, especially smaller
projects within larger projects, never go
anywhere because the internal stake-
holders never agree on priorities. Watts
Humphrey, a fellow at the Software
Engineering Institute, calls these “pre-
tend projects,” meaning a few develop-
ers work on them half time or quarter
time, and nothing is ever delivered.

“They are kidding themselves that
they are working on [these projects],”
Humphrey said. “No one can work
quarter time on a project. ... They
haven’t faced the need as a management
team to decide what they are really going
to do with it. They need to put real
resources on it” rather than merely pre-
tend the project is under way.

Vague Requirements
Mariea Datiz, president of Peripheral
Visions in Houston, Texas, learned a
hard lesson about what happens when a
project is started while the requirements
are nebulous. The U.S. division of an oil
company hired Datiz’s company to cre-
ate the “first draft” of a program so that
they could impress their European coun-
terparts and justify further funding. But
the oil company officials only had a
general idea of what the program was to
do and tried to revise and refine their
ideas while Datiz’s company was work-
ing on the program.

“For every step we would take, we’d
go three backward,” Datiz said. “We

would start down one path and then
have to stop and go down another.”
Project cost and quality quickly went out
of control, her company was blamed,
and she lost the contract to finish the
job. Like many failed projects, the scope
had not been narrowed enough at the
outset to have led to any reasonable
chance for success.

One obvious solution is to establish a
reasonably stable requirements baseline
before any other work goes forward. But
even when this is done, requirements
will still continue to creep. “You can’t
design a process that assumes [require-
ments] are stable,” advises Humphrey. In
virtually all projects, there will be some
degree of “learning what the require-
ments really are while building the prod-
uct,” he said. Projects could be headed
for trouble if architectures and processes
are not change-friendly, or if there are
poorly established guidelines that deter-
mine how and when requirements can
be added, removed, and implemented—
and who will shoulder the cost of the
changes.

Poor Cost and Schedule
Estimation
It is unfair to call a project a failure if it
fails to meet budget and schedule goals
that were inherently unattainable. Like
all engineering endeavors, every software
project has a minimum achievable
schedule and cost. Fredrick Brooks sum-
marized this law in The Mythical Man
Month [2] when he stated, “The bearing
of a child takes nine months, no matter
how many women are assigned.” At-
tempts to circumvent a project’s natural
minimum limits will backfire.

This problem occurs any time some-
one “makes up a number and won’t
listen to anyone about how long other
projects took,” said Jones. According to
DeMarco, projects are often intention-
ally underbid because of the “attitude
that putting a development team under
sufficient pressure can get them to de-
liver almost anything.”

The opposite is what usually hap-
pens. For example, if a program should
realistically take five programmers one
year to complete, but instead you are
given four programmers and eight

CROSSTALK The Journal of Defense Software Engineering 11July 1998

Major Causes of Software Project Failures

months, you will have to skimp on de-
sign time and on quality checks to reach
project milestones.

“Cutting a corner that undermines
the entire foundation of the project is
not cutting the corner,” states Robert
Gezelter, a software consultant in
Flushing, New York. “There will be
heavily disproportionate costs down-
stream.” Skimping leads to weak de-
signs, dramatically higher defect densi-
ties, much more rework, and virtually
endless testing. In the end, the project
will cost more, take longer, and have
worse quality than would have been
possible if a realistic schedule and bud-
get had been followed.

According to Jones, this problem can
be easily remedied. Several estimation
tools on the market can combine numer-
ous variables to provide realistic esti-
mates within a few hours [3], even at the
early critical decision-making junc-
tures—before requirements are firm.

Skills that Do Not Match the Job
Decades ago, Morris Dovey, informa-
tion director for Check Control, Inc. in
West Des Moines, Iowa, worked on
major government software contracts
before becoming so frustrated he de-
cided to never work with government
contracting again.

“It was being made artificially diffi-
cult,” Dovey said. The technologists had
to endure what he considered avoidable
delays and mistakes because “decisions
were being made by people with no
technical expertise in the area” but had
all the authority.

Latta warns that managers can per-
form poorly if they lead projects that do
not match their strengths. “Projects
dealing with high technology need man-
agers with solid technical skills,” Latta
advises. In such projects, authority must
reside with people who understand the
implications of specific technical risks.

However, the best technologists are
not necessarily always poised to be the
best managers. “The skill set for man-
agement and programming are disjoint,”
Jones observed. The larger the project,
the more need there is for people with
excellent planning, oversight, organiza-
tion, and communications skills; excel-

lent technologists do not necessarily have
these abilities.

Skill-driven challenges are not lim-
ited to management. Poor developers
can sap productivity and make critical,
expensive errors. Generalists can also
poorly perform duties better left to spe-
cialists, such as metrics experts or testers.

The solution to skill-driven chal-
lenges is easy to define but difficult and
expensive to accomplish: Attract and
retain the most highly skilled and pro-
ductive people. “Knowledge is money,”
noted Tom Pennington, senior network
manager for The MIL Corporation in
Arlington, Va. However, there is an
eventual payback. Pennington believes a
team made up of higher-paid people
with the right specialized skills is worth
far more per dollar to an organization
than a group of lower-cost people who
need weeks or months of fumbling
through a new process or technology
before they can start being productive.

“You get what you pay for,” Datiz
echos. “You’ll also pay for what you get.”

Jones advises that “if you can’t get the
best ‘techies,’ get the best managers.” He
said good managers can often get above-
average results from average employees,
whereas great employees can have much
of their potential squandered by medio-
cre management.

Hidden Costs of Going “Lean
and Mean”
DeMarco believes project managers and
technologists are often unfairly blamed
for problems caused by people “two
levels higher.” He believes managers
and technologists are generally compe-
tent and getting better every year, but
they are “goaded” into overtime work
because of “the 1990s stupid flirtation
with lean and mean”—cutting jobs and
expecting the same work with fewer
people and less money, whether such a
feat is possible or not. DeMarco says the
the often-intentional “dishonest pric-
ing” of projects is often off by a factor
of two or four or more, requiring never-
before-seen levels of performance.

“Any failure will be viewed as a direct
result of underperformance,” he charges,
even though underperformance is “not
even a significant factor” in the failure of

most projects. Instead, he says, the failed
projects simply had goals that were
inherently unattainable.

Humphrey has observed a different
“lean and mean” problem. In many
“downsized” organizations, he says,
developers are doing their own expense
accounts, clerical work, software up-
dates, and other duties—and at a higher
labor rate and with less skill than could
be performed by support specialists.

He estimates that many software
developers are spending half their work
hours slowly plodding through tasks that
have nothing to do with developing
software. “Software people are very un-
skilled clerks,” he said. “It’s an enormous
productivity issue.”

Failure to Plan
Humphrey took charge of commercial
software development for IBM at a point
when the company was taking too long
to finish projects and was missing all its
announced deadlines. “People were
working hard, but no one had plans ...
because no one required them to make
plans,” Humphrey recalls. In response,
he required that a detailed plan be devel-
oped before any release date was an-
nounced. For the next two and one half
years, the division never missed an an-
nounced date.

“If software developers built bridges,
we’d show up at the site with some
scrap iron and say, ‘let’s start building!’”
quipped Reuel Alder, a manager at the
STSC. Alder agrees that inadequate
planning is a major reason software
projects spin out of control.

Humphrey said project managers
often do not plan because “any plan they
put together won’t meet the [desired
release] date, so they can’t plan.” Even
though detailed planning saves an enor-
mous amount of time in the long run,
Humphrey says many other managers
and developers believe it to be unneces-
sary. “They think time spent on things
like planning, design, requirements, and
inspection gets in the way of real work,
which is coding and testing,” he said.
“This comes from the view of program-
ming that the issue is to get the software
out the door. But there’s a difference
between speed and progress.”

12 CROSSTALK The Journal of Defense Software Engineering July 1998

Project Management

“We need a lot fewer heroes,” adds
Gezelter. He believes organization “hero-
ics” would frequently be unnecessary if
projects had been properly planned. “We
keep rewarding people for charging off
on suicide missions,” he said.

Communication Breakdowns
When Pfleeger was asked to consult on a
large project that was in trouble, she
asked the managers to develop a process
model for the project. She did not neces-
sarily want the model for her own use,
but wanted the managers to talk to the
developers. Once they did, they realized
the project had gotten so large that the
same code was being tested by two teams
that did not know the other existed.

Such problems are common on
large projects, especially if people are
working at different sites. In many
troubled projects, “there isn’t one per-
son who has an overview of the whole
project,” she said. Especially on large
projects, Pfleeger advises that additional
time be taken periodically to have
everyone in every position learn the big
picture. “The people working on the
pieces need to know how their one
piece fits into the entire architecture.”

Poor Architecture
Pfleeger says an example of flexible
architecture is the Patriot missile used
during the Gulf War. It was not de-
signed to intercept scud missiles, but
the software was able to be reconfigured
to support the new function. On the
other end of the flexibility spectrum
was a security program created to pro-
tect sensitive word-processing docu-
ments. Everything worked well for a
few months until the operating system
was updated. The word-processing
programs still worked, but the security
program became useless and unfixable
because much of its code was tied to
operating system features that were
dropped in the new system.

“People didn’t think ahead about
what was likely to change,” Pfleeger said.
Architecture must allow for organiza-
tion and mission changes.

Gezelter said software developers
often build with no more forethought
than the man who built a beautiful boat

in his workshop and then could not get
it out the door. “If you do [architecture]
right, no one will ever realize it,” he said.
“But if you do it wrong, you will suffer
death by a thousand cuts. Bad choices
show up as long-term limitations, aggra-
vation, and costs.”

Gezelter suggests viewing software
architecture like house-building:
“Plumb” and “wire” for features and
additions you have not thought of yet.
Then, when unanticipated needs or
business changes arise, you can add or
modify without performing the software
equivalent of “ripping apart the walls
and rebuilding them again.”

Late Failure Warning Signals
Does the following scenario by Yourdon
seem familiar? A schedule and budget
are determined “by edict by people you
were afraid to say no to,” and it is po-
litically unwise either to say or show the
estimate is far from achieveable. All
your early milestones involve diagrams,
designs, and other documents that do
not involve working code. These and
other project milestones then go by
more or less on schedule—at least as far
as upper management can tell—and
testing starts more or less on time. Not
until the project is a few weeks from
deadline does anyone dare inform the
“edict makers” that at the current defect
detection rate, the project will not be
completed even close to its deadline.

“Nobody seems to acknowledge that
disaster is approaching,” Yourdon said,
even among people who sense there is a
problem. “There is no early warning
signal.” Until more organizations aban-
don waterfall-style development in
favor of processes that demand early
working code or prototypes, he says this
scenario will continue to be familiar.

Yourdon says the above problem is
also extremely common with year 2000
work. He believes many year 2000
conversion teams, if they were allowed,
would say of their current situation:
“Within this limited time and pitiful
budget and understaffed team, sure, we
can deliver it on time—with a million
bugs in it.”

In a perfect world, lower-level people
could convince upper-level managers

that their edicts are unworkable before
the project got under way. But until this
happens, Yourdon says development
cycles need to be adopted that allow you,
at the earliest possible moment, to “pro-
vide evidence that [the project] is or is
not working.”

Conclusion
Other causes of failure could be added
ad nauseam, but the existence of addi-
tional factors is not the point. As Jones
noted, “There are myriad ways to fail.
… There are only a very few ways to
succeed.” [3] The factors of successful
project management have been docu-
mented for years—they merely need
greater attention. But if this article has
helped serve as a reality check for your
project, it will have served its purpose.
If you violate any of the principles noted
by the consultants and practitioners in
this article, you should not expect to
succeed in spite of yourself. ◆

About the Author
Lorin J. May is an
editor and columnist
for CROSSTALK: The
Journal of Defense Soft-
ware Engineering. He is
employed by NCI
Information Systems,

Inc., under contract to CROSSTALK at the
Software Technology Support Center. He
was previously an editor for two book
publishers and was a part-time freelance
writer. He has a bachelor’s degree in jour-
nalism from Weber State University in
Ogden, Utah.

OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-9239 DSN 777-9239
Fax: 801-777-8069 DSN 777-8069
E-mail: MayL@software.hill.af.mil

References
1. The Standish Group, “Chaos,” 1995,

http://www.standishgroup.com/
chaos.html.

2. Brooks Jr., Frederick P., The Mythical
Man-Month (20th Anniversary Edition),
Addison-Wesley, Reading, Mass., 1995.

3. Jones, Capers, Patterns of Software Systems
Failure and Success, International Thomp-
son Computer Press, Boston, Mass.,
1996.

