4 February, 1999

Overview of the DII COE 4.0 Kernel

Sherrie Chubin, DISA

Dr. Thomas I. McVittie, JPL

Robert B. Miller, JPL

On April 2, the Defense Information Systems Agency (DISA) released version 4.0 of the Defense Information Infrastructure Common Operating Environment (DII COE). Since the April ‘99 release is only eight months away from the millenium, fielding systems on this new version of the COE becomes prohibitive because of the amount of time it takes to complete Year 2000 (Y2K) testing. As a result, COE 4.0 was released as a “developer’s release” or “beta release” so that the services and agencies have ample time to become familiar with the new version and to provide DISA with problem reports found. By releasing COE 4.0 as a “beta release,”more developers will be able to provide input to DISA to help to build a stable COE 4.1, scheduled for release in October.
With the 4.0 release, a modified kernel architecture and many functional enhancements to COEprovided software dominate the improvements found in this new version. The 4.0 kernel incorporates a number of new items that improve performance and provide for greater flexibility in configuring and deploying DII COE-compliant systems. These items require changes to how developers construct future segments, and how integrators, site administrators, and security managers interact with the system. 3.x segment formats will continue to be supported in the 4.x series, however, the new 4.0 kernel does provide new capabilities that a developer can opt to take advantage of if he/she so chooses for future segment development.
This paper provides an overview of the 4.0 kernel changes specifically addressing 1) account and profile management, 2) common data store, 3) services, 4) features, and 5) bindings. The amount of detail presented here is intentionally kept to a minimum so that the reader becomes familiar with the changes made and why they were made, not necessarily how to write software that relies on kernel services. Detailed documentation will be available when the COE 4.0 is released.

3.x Kernel Shortcomings

Before addressing specific changes implemented in the 4.0 kernel, it is important to address some of the issues surrounding the 3.x kernel that drove the changes in 4.0. In the 3.x architecture, “account groups” provided the operational framework for segments.

(Profiles were tied to an account group. When a user assumed a profile, the account group determined which processes to launch and the order in which to launch them. During runtime, significant performance problems could occur because processes for all segments in an account group were launched, even though the segments were not being used.

(Account groups established the operational environment. Whenever processes in a segment were launched, the account group structure provided for sourcing the scripts that established the environment.

Since segment developers specified user groups, level of access control, and where a segment is loaded (e.g. what account group it belonged to), integrators and site administrators were severely limited in customizing the COE for a particular mission. It became difficult to add segments to account groups other than that which the developer originally established.

Because it was determined that many of the shortcomings of the 3.x kernel were related to account groups, the DII COE Chief Engineer determined that the role for account groups must be changed or removed. In order to support the deprecation of account groups, the kernel still needed a way to perform the following tasks:

(Determine which processes to launch

(Determine which environment variables to set

In addition to the changes needed in account groups, there were other considerations for the 4.0 kernel architecture. These considerations included:
(NT is becoming a strong player in the Department of Defense (DOD). The goal for 4.0 was to field a kernel and associated tools that work seamlessly across Unix and NT hosts

(The development community was requesting additional user interfaces (e.g. touch screen, URLs, etc.). The goal for 4.0 was to enable additional user interfaces without requiring kernel level changes, as is the case with the 3.x architecture

(The 4.0 kernel must continue to support 3.x segments as built. It is unrealistic to expect that all COE developers could immediately re-engineer their 3.x segments to take advantage of the 4.0 kernel enhancements. Therefore, the goal for 4.0 was to enable existing 3.x segments to load and execute on a 4.0 kernel without having to be reconfigured or redelivered.

(System integrators’ requests for additional flexibility in installing segments (e.g. site configurable). The goal for 4.0 is to allow segment developers the capability to specify default and optional configurations, while enabling integrators and site administrators the capability to select options that meet their needs.

(The 3.x kernel lacked a common data store for organizing, storing, and retrieving COE data. Proprietary data stores abound in the 3.x architecture, resulting in a proliferation of custom APIs that made it difficult to extract useful information. The goal for 4.0 was to implement a common data storage for kernel services as well as for COE segment and mission application use.
COE 4.0 Kernel Changes

In keeping pace with industry trends, the 4.0 kernel migrated to the Java environment to enable cross-platform portability. Additionally, the kernel has evolved to a three-tiered architecture, where the presentation layer is separated from the business rules and the data stores.

Account and Profile Manager (APM)
The account and profile manager (APM) replaces functions previously performed by SECMAN in the 3.x architecture.

There are really two main capabilities performed by APM – one of account management and the other of profile management.

Account management provides the capability to manage user accounts, manage groups, and manage any COE machine from any other COE machine. While it is true that each operating system provides an account management capability, each operating system is vendor specific. APM provides the “Volkswagen approach” to account management by providing a common look and feel GUI across all COE supported hardware. Underneath the Java code, the native operating system calls are used.

Profile management provides a mechanism by which a security administrator can group sets of users, often by their job responsibilities. Rather than assigning each user a list of applications they are allowed to access, the security administrator can define a profile that provides convenient access to a series of applications, and then assign users to one or more profiles. For example, the security administrator may create a profile called GCCS User, which would contain all of the applications that a typical global command and control system (GCCS) user would need to access. The administrator could then assign this profile to one or more user accounts.

Profile management also provides the capability to dynamically reconfigure the user interface based on the user’s active profile. The ability to change profiles dynamically is strictly a DOD requirement. The DOD has the concept of a shared workstation, whereas industry has the concept that a user owns that workstation and anything on the workstation is specifically set up for that user. In industry, profiles are static and bound either to individual users or all users. There is no concept of a group of users who share a common user interface or who only want to see a subset of icons/menus. In industry, the interface may change only when new software is installed or upgraded.

To summarize, APM provides the following capabilities:

(Support for Unix and NT hosts

(Ability to add, delete, modify a user, group, or profile across an arbitrary set of machines. For example, you can add a user to a Sun, HP, and NT simultaneously

(Native system calls to maintain users, groups, home directories, etc.

(Data entry and retrieval via graphical user interface.

Transitioning to APM

Users of Security Manager Versions 3.1 to 3.4 need to be aware of the following points when using APM:

(Generic Security Services (GSS)is not implemented in the 4.0 kernel release.

(The 4.0 kernel does not include the DIS segments. The functionality of the DISCON, DISLCK, DISPAS, and DISXDM segments is implemented by the operating system's native administrative features.

(The default profile function is no longer available.

(Account groups are deprecated. Most of the functionality is replaced by segment information. For example, in Security Manager 3.x, the security administrator could only assign applications to the current profile from the account group that the profile was created in. With 4.x APM, the security administrator can assign features to a profile from any available segment that has delivered features.

(With APM, there is no differentiation between local and global profiles. All profiles are defined globally and implemented locally. The security administrator can create a profile and assign it to any machine within the administrative domain.

(With APM, there is no differentiation between local and global accounts. The security administrator can add a user account to any machine within the administrative domain.

(APM does not support the use of NIS for distribution of user accounts. NIS+ is still supported when available.

(The security administrator may add users to NIS+ domains and Windows NT domains. If the home server EACH HOST is assigned to a user account, then the user's home directory is created on each appropriate host and located in the host's /h/USERS/local path. If the home server assigned to the user is a hostname, then the home directory is created only on the specified host in the /h/USERS/global path. The system assumes that the global directory will be exported to other hosts via NFS.

(APM has the ability to support multiple NFS devices (e.g. you don't have to have all of your user home directories served from one big file server.

In the Common Data Store section below, we describe a scenario for creating user accounts via APM and how the common data store is utilized.

Common Data Store

The common data store (CDS) is a cross-platform data store used by the kernel to store and retrieve data. The CDS can also be used by COE and mission applications if they so desire. It is a new capability provided in the 4.0 kernel. The CDS replaces the proprietary flat data files and their related APIs used by most 3.x kernel components. Examples of data objects and associated attributes stored in the CDS are:
(Segment – version, prefix, offered services, …

(User – default group, profiles, home directory, …

(Host – name, IP address, domain
A local instance of the CDS resides on each host and maintains the information pertinent to the host. There is also a master CDS, one in each administrative domain. The master CDS contains a compendium of some of the data stored in the local instances of the CDS for a given domain. In the event the master CDS is destroyed, it can be re-created via the local CDS.

The GNU database is used to implement the CDS on Unix hosts while structured files are used on NTs. However, the graphical user interface to the CDS is independent of the implementation method. A set of generic APIs allow for fundamental operations (put and get).

The major benefit that CDS provides to the 4.0 kernel is a central place that tells you what is installed where. It can be used as a source for a lot of administrative tasks, e.g. give me a list of all the machines where segment X is installed.
To get a better understanding of how APM interacts with the CDS, we will provide a high level overview of the steps needed to add a user account to the machines Sun-1 and
NT-2. We will begin by assuming that all of the hosts,including the master, are up and running correctly.

1. Administrator launches the client APM application.

2. The client APM establishes a socket connection to the master APM and retrieves relevant data from CDS.

3. Administrator chooses to create a user account on machine Sun-1 and NT-2 and supplies appropriate information.

4. Client APM passes request to master APM.

5. Master APM validates request and reserves unique identifiers (login name, uid, etc.)

6. Master APM establishes socket connections to hosts Sun-1 and NT-2, and sends request to add user to the local APM on these hosts in parallel.

7. Sun-1 and NT-2 calls CDS APIs to add the user to the local CDS, and calls native system APIs to add the user to the platform. The status of the request is returned to the master APM (success, or fail and why), and the socket connection to the master APM is closed.

8. Master APM passes results back to the client APM.

9. Administrator terminates the client APM application.

10. The socket connection between the client APM and master APM is closed.

Transitioning to CDS

A conversion tool will be provided with COE 4.0. The conversion tool reads and extracts information from various configuration files on a COE 3.x host and 3.x segment and puts that information into records in the COE 4.0 CDS. The conversion tool can be run on an existing 3.x platform after the 4.0 kernel has been installed or, if using a brand new machine with a freshly loaded 4.0 kernel, the tool can be run after a bunch of 3.x segments have been installed.

Existing published APIs have been rewritten to use CDS. We are providing the same published APIs in the 4.x series as we did in the 3.x series. The APIs are still written in perl script as before.

Services

The primary reasons for establishing “services” in the context of the COE are:

(to enable migration of the DII/COE to an object-oriented distributed network-based architecture

(to minimize the number of session processes launched when a user assumes a profile. (Remember in our discussion of 3.x problems, when a user assumed a profile, all processes were launched for a given account group regardless of whether or not the segment was used. This created unnecessary overhead).

A service is some discrete functionality that is provided by one segment and used by services provided by other segments. If COE segments were true objects in the object-oriented paradigm, services can be thought of as similar to an object’s methods where objects interact through publicly available methods. For example, a segment advertises that it offers Service X (e.g. the ability to plot tracks). A service in another,or the same, segment advertises that it needs Service X. Service X is launched only when a segment stating a service dependency on Service X is scheduled for execution. If Service X is not needed, it is not loaded into memory and, therefore, does not waste valuable system resources.

How will a segment developer enable the service paradigm? Quite simply by:

(segregating a segment into those services that the segment provides (Services Offered). Each service can have one or more associated processes (or functions).

(the developer identifying attributes for each service (e.g. the processes associated with the service, other services on which this service depends(Services Required). A service in one segment may be dependent on a service in another segment.

When the COEInstaller processes the segment, the appropriate services offered, along with the processes associated with these services, and the required services are stored in the common data store. When a user assumes a given profile, the session handler,which is a COE segment not discussed in this paper, examines the service dependencies and determines the complete set of session processes to launch.

Transitioning to Services

No developer action is required in order to run 3.x segments using the service paradigm in the 4.0 kernel. The aforementioned conversion tool will be provided that processes a segment’s data in order to construct a set of services – with one service being established for each segment’s process. The data associated with each service is then stored in the CDS in the same manner as if a developer had specified individual services as explained above.

Features

In the 3.x architecture, users are able to launch processes via two interface metaphors – a menu or icon palette. Community interest in providing other interface metaphors (e.g. touch screen, URLs, voice recognition, etc.) has led to the creation of features for 4.0.

In the 3.x series, an administrator has to assign individual interface elements (e.g. a menu item or an icon) to a profile. For example, given a segment that provides a menu with 30 different menu items, when an administrator assigns that segment to a profile, they need to laboriously select or deselect each menu item. If they assign the segment to another profile, they need to repeat the entire process. Integrators and site administrators asked for a method which would allow them to group these interface items into common blocks, e.g. these are the items that a normal user has, these are the ones that are needed by track managers, etc.

In 4.x, the integrator can now aggregate features, which are tied to various interface elements. The interface elements are then assigned to a profile. The goal of features is to simplify the integrator’s life. Features are specified by a segment developer during the construction of the interface portion of the segment. However, after segment installation, the integrator decides what features will be assigned to a profile using the APM. In addition to providing more interface metaphors, the interface metaphor becomes decoupled from the kernel so that additional interface metaphors can be added as needed without requiring a kernel change ,as in the 3.x architecture. APM also provides the ability for an integrator to preview the new or modified profile before committing it to operation.

Transitioning to Features

No developer action is required in order to run 3.x segments using the features paradigm in the 4.0 kernel. A conversion tool (perl script) that reads the segment description files (SegInfo) writes the appropriate entries into CDS.

Binding

Binding provides site integrators or system administrators the ability to tailor COE systems to meet mission specific needs. As stated above, site integrators requested more flexibility in installing segments (e.g. site configurable) than what is permitted within the 3.x architecture. For example, a GCCS installation with hundreds of machines obviously has different mission and size characteristics than a Marine strike force operating in the field with only eight to 10 hosts.

Binding is a tool that provides integrators or system administrators some leverage in tailoring the COE. The tool allows an integrator or system administrator to more finely tune access control. The binding tool provides the ability to map symbolic groups (the segment developer provides these) to real groups. For example, in a typical segment’s FileAttribs descriptor file, the segment developer identifies attributes for file name, permissions, and group. Suppose file X had read, write, execute privileges, and was assigned to a group called “GCCS developer.” Suppose also, that this same segment had two other files -- files Y and Z-- with read and execute privileges and was assigned to two different groups, one called “GCCS operator” and the other called “GCCS maintenance,” respectively. By using the binding tool, the site integrator can create a “real” group called GCCS team, which was made up of the symbolic groups GCCS developer and GCCS maintenance. The site integrator could also create another real group called GCCS user, which was made up of the GCCS operator. The segment that originally came with three symbolic groups, now only has two real groups.

Taking this same concept further to a site where the integrator is integrating multiple segments, he/she now has the capability to minimize or expand upon the number of real groups needed to support the mission. A well-known Unix limitation is that only a finite number (16 or 20, depending on the OS) of groups can be assigned to a particular user. If users need to be associated with more than the maximum groups because of mission needs, the binding tool allows the integrator to be innovative and to figure out a group structure that would circumvent this OS limitation.

Another driver behind binding was to allow sites to create a group to control access to a particularly sensitive piece of code. For example, the Intel community requires the ability to lock down xterms. In this case, if every segment delivered their xterm as an independent user, then binding could be used to combine the various groups into a single actual group. Users who need access to xterms would then be bound to this group. Alternatively, if a site could not care less about restricting access, then it would decide to merge those groups with another group already in use.

Transitioning to Binding

Binding is an option. No action is required of either segment developers or integrators in order to make 3.x segments run in a 4.0 environment. For future segment development, developers and integrators need to think ahead to use better granularity in assigning user and group ids to data files and programs. They also need to be aware that they should use fileattrib to its full capability.

Conclusion

There are many changes made to the 4.0 kernel to build on the success of the 3.x kernel while addressing its shortcomings, and to provide enhancements based on community feedback. Deprecating account groups was the thrust of the 4.0 kernel. Creating, updating and deleting user accounts is accomplished via APM, which executes across heterogeneous platforms. Determining which processes to launch and establishing the environment is accomplished via the new Session Handler,which was not discussed in this paper, that traces the service dependencies contained in the CDS. The ability to combine groups and users is provided by the binding capability. Providing additional interface metaphors and providing flexibility to integrators to tailor different profiles is accomplished via APM’s profile management as well as the features capability.

About the Authors

Dr. Thomas I. McVittie is a principle software engineer with NASA's Jet Propulsion Laboratory. He holds a doctorate degree in electrical and computer engineering from the University of California at Santa Barbara. His research interests are in Highly Reliable Distributed Systems. Dr. McVittie leads the DII/COE design and implementation team.

Robert B. Miller is a senior engineer with the Jet Propulsion Laboratory. He holds a bachelor of science degree from the Department of Physics and Astronomy from the University of Maryland.

Sherrie Chubin is a computer scientist at the Defense Information Systems Agency. Ms. Chubin holds a bachelor of science degree in computer science from Beaver College, and a master of science degree in management information systems from George Washington University. She is responsible for engineering management of the design and development of major COE architectural releases. Questions regarding this article can be sent to: chubins@ncr.disa.mil.

Editor's note: This article did not appear in the hard copy issue; thus it did not go through the CrossTalk editing process.
