
November 2002 www.stsc.hill.af.mil 17

Do you work for a small systems
development facility? Does manage-

ment profess a desire to implement the
Software Engineering Institute’s (SEI)
Capability Maturity Model®1 (CMM®) by
next fiscal year? Are you the one they
hired to miraculously transform their
hobby shop into the lean mean systems
generating machine they envision? Are
you getting something less than the 100
percent support you were originally prom-
ised?

Three years ago, I joined a small sys-
tems development facility as configura-
tion management (CM) lead, a newly cre-
ated position, and was initially tasked with
getting their software under control. This
is a government facility with engineering
contractors supplying the labor, and gov-
ernment engineers filling management
positions as technical advisors.

Once past the security clearance barri-
er, I determined the facility was consis-
tently in the process of developing some
20 separate projects simultaneously, each
with six or less project members, with
start to finish schedules ranging from
three months to two years. As soon as one
project ships its deliverables, another pro-
posal is turned into real work, and a new
project is kicked off. Post-delivery system
support ranged from no support to the
full operations and maintenance (O&M)
regiment. Project team members are a mix
of seasoned engineers and technicians
that build complex systems entirely
behind closed doors with project-
obtained resources.

Prior to my arrival, senior manage-
ment provided formal CMM training for
every employee. One year later, project
managers and technical advisors were
required to attend repeat CMM training
sessions. The facility chief and deputy
appeared to want repeatable process-ori-
ented systems development for their facil-
ity. They failed, however, to set forth the
policy and direction to accomplish it.
Their desire to step up a level from pro-
ducing ill-managed prototypes to cost-
and schedule-driven first articles with

detailed build-to documentation was not
being realized.

They held an all-hands on-site briefing
to emphasize improvement goals.
Unfortunately, they directed their frustra-
tions down their own organization rather
than coordinate across the customer base
for better quality assurance requirements
and adherence to stricter standards.
Without customer requirements for
repeatable processes with meaningful
milestone reviews, the underlying work
ethic remained “do only what it takes to
get the job done.”

By interacting with project members, I
was able to identify the following reoccur-
ring CM deficiencies:
• Vague, often undocumented require-

ments.
• Rough-order-of-magnitude proposals with

cost and schedule estimates usually
provided before requirements were
firm.

• Follow-up project plans that failed to
provide enough detail for project
members to understand what it was
they were building.

• No commitment to make project
plans living documents.

• Chassis, cable, printed wiring board

(PWB), mechanical, and schematic
drawings too loosely controlled, with
far too many redline variations that
contributed to best guess build-to docu-
ments.

• Lack of rigid inspection checkpoints
on drawings and PWB build-ups.

• Minimal software design documenta-
tion and few written unit test plans.

• No agreed-upon milestone identified
for starting formal change manage-
ment.
After several sessions with the lead

system engineer during several months, I
concluded that our small systems devel-
opment facility, with less than 70 contrac-
tor and 15 government employees, could
not dedicate the resources to establish a
systems engineering workgroup and char-
ter it with developing and implementing
center policies, processes, and procedures.
I witnessed our lead engineer receiving
even less upper management support
than I received. Eventually, he was dis-
missed from the program (and not
replaced). It was apparent that if I wanted
to improve CM practices, it would require
a grassroots approach.

My first three months were spent
developing a makefile 2 build system and
converting a project’s CM system from a
homegrown source code control system
(sccs)-based system3 to one based on a
commercial off-the-shelf (COTS) CM
product. This quickly established me as a
hands-on team player and gained me the
support of key engineers and managers.

With one fire extinguished, I still had
19 other projects in need of CM improve-
ments. With nobody yelling fire, I per-
suaded management to let me design and
establish a local area network (LAN) to
install and maintain a common set of
engineering tools to be used across proj-
ects. Instead of each project purchasing,
installing, and maintaining their own
development environment on stand-alone
workstations or makeshift workgroups,
we pooled selected project products,
switched from node-locked to floating
licenses where possible, and established a

Reality Configuration Management

Donald E. Casavecchia
ACS Defense, Inc.

You are not alone if you have found that in your job as configuration management (CM) lead, you are given less than opti-
mal support for your task, or are asked to scale back your CM goals. This author faced these dilemmas in his CM position
at a small systems development facility. Here is how he adjusted his CM practices based on facility resources and manage-
ment’s commitment to CM.

“Instead of several CM
tools from competing

vendors, one was
selected as the center’s
standard, and training

became an across-center
effort instead of each
project sending their

engineers for
vendor-supplied training.”

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering November 2002

development infrastructure.
Previously isolated workspace offices

now received LAN drops, meaning work-
stations could utilize the LAN to allow
project developers to access infrastructure
products. By providing a common infra-
structure product base for Windows and
Unix platforms, management could budg-
et and coordinate training targeting infra-
structure products and set policy and pro-
cedures for project teams to follow.
Instead of several CM tools from com-
peting vendors, one was selected as the
center’s standard, and training became an
across-center effort instead of each proj-
ect sending their engineers for vendor-
supplied training.

After using this evolving, controlled
infrastructure for three years, our center
defined six classes of projects (Table 1).

We found that we often pursue a con-
cept design project that later spawns sep-
arately funded integration design and/or
production projects. Fielded systems
often call for incremental advancement of
a design (Class 2) or major enhancement
(Class 4) projects. Each new request for a
proposal is now categorized as Class 1
through 6, and each class carries prede-
fined level-of-effort disciplines like CM,
quality assurance, and documentation
support.

Most of our Class 1 and 2 projects fall
under the general descriptions of proof of
concept, investigate leading edge technology, rapid
development of a prototype, conduct a trade study
on xyz technology, etc. These projects are
usually short-scheduled with limited fund-
ing. Often, they are meant to only con-
vince the customer that we could exploit
the technology and deliver a system.
Because we often build a working model or
prototype and often write white papers as
part of these project executions, captur-
ing the more important parts of the proj-
ect is all CM is able to achieve; often, we
receive a media with the soft copy deliver-
ables.

Sometime later (weeks, months) we
may get tasked with revisiting the earlier
effort and building a first article to demo.
The follow-up task is a new project, sepa-
rately funded with additional require-
ments. Since we have proved the concept,

it is now less a risk and more an existing
technology Class 3 or 4 project.

The following four sections in this
article depict CM methods available to
our project managers to satisfy CM
requirements for the six classes of poten-
tial projects with which this center is
involved. When asked to quickly (less than
90 days) produce a narrowly defined sys-
tem (Class 2 project), the Archival
Method is appropriate. The Archival
Method is selected for requests of addi-
tional copies of a system we designed and
built 18 months ago as an integration
design project using the Open Repository
CM Method (the additional copies would
be categorized as a Class 6 project).

The Open Repository Method is usu-
ally appropriate for a concept design
(Class 1) or development design (Class 2)
project where schedule is usually longer
than three months, and deliverables are
often prototypes or working models.

The Focused Repository Method is
always appropriate for our bread-and-butter
systems that have proven themselves and
when a hardware and/or software
enhancement (Class 4 project) is request-
ed. The Focused Repository Method is
usually selected when problems are
reported (Class 5) on fielded systems for
which our center is on the hook for life-
cycle support.

With the bulk of our delivered sys-
tems living short life cycles (mostly due to
technology advancements), overCMing
can be a real cost and schedule issue.
If/when a fielded system (Class 3 project)
exceeds expectations and takes on a long
life cycle (greater than four years) with
requests for additional copies with
expanded functionality, we sometimes
have to resurrect an Archival Method
repository and bring it up to Focused
Repository levels of CM resource com-
mitment.

We have yet to achieve a system that
provides enough metrics to seriously
examine and tune our CM processes
(Optimized Repository). I look forward to
that day. The “CM Discipline Progres-
sion” depicts our least restrictive to our
most restrictive CM method. I would love
to report that every time our center has

selected minimal CM (Archival Method)
for a project, we have not regretted it.
Likewise, we have gone all the way with
the Focused Repository Method only to
watch our system sit on the shelf with no
takers.

Archival Method
The Archival Method (characterized as a
capture technique) is selected when mini-
mal CM is appropriate. The program
manager (PM) specifies the schedule mile-
stone(s) at which the baseline will be
archived and identifies the set of system
components for capture. Minimum CM
occurs when the selected milestone is
System Acceptance Test (SAT) and an
O&M phase is not specified. When multi-
ple milestones are designated, or an O&M
phase is required, all soft copy files asso-
ciated with the milestone should be
placed into a project repository and labeled
with the milestone acronym. CM techni-
cians work closely with project members
to catalog system components, down to
lowest replaceable units (LRUs), compris-
ing the project at the specified milestone.

CM Requirements
The PM is responsible for identifying the
set of system components to be archived.
Software system components, comprised
of source files (no intermediate or build
product files), are isolated from project
work areas (preferably placed on a trans-
fer media) after the following is verified:
• Builds cleanly, without errors.
• Successfully executes.

Each software system component’s
build and execution (run-time) environ-
ment must be documented to ensure its
reproducibility. The following are the
minimum details to include:
• Development and target platform

nomenclature (if appropriate), includ-
ing identification of any special
boards, cables, peripherals, and driv-
ers.

• Operating system version and list of
patches.

• COTS and/or government off-the-
shelf (GOTS) version, installation
order, feature selections, configuration
files, patches, and integration code.

• Compilers, linkers, and loaders, includ-
ing their version and switch settings.

• Environment variables and their set-
tings.

• Dependencies on any third party
libraries, identify source and version,
and use restrictions.

• Actual license certificates, keys (don-
gles), and maintenance agreements.

• Test tools, either internally developed

Categorized Project Type Risk
Class 1 Concept Design High
Class 2 Development Design Moderate to High
Class 3 Integration Design Moderate
Class 4 Application Enhancement Low to Moderate
Class 5 Application Maintenance Low
Class 6 Production Low

Table 1: Classes of Projects Defined

Reality Configuration Management

November 2002 www.stsc.hill.af.mil 19

or commercial.
Each soft copy document turned over

to CM should be saved in a format that
turns off any tool propriety revision dis-
play feature4. This is especially important
for drawings from computer-aided design
COTS packages.

Hardware turned over to CM (usually
for transfer to an external O&M facility)
will be appropriately identified and classi-
fied. Bill of materials (BOM) must be
detailed down to line replacement units
(LRU). Any special handling or environ-
mental stowage requirements must be
made known at the time of turnover.

Strengths
• Simplifies project member’s work

environment.
• Allows staffing the project with less

experienced workers.
• Minimizes impact to project members.
• Reduces training needs.
• May result in shorter system develop-

ment timelines.

Weaknesses
• Places most of the responsibility for

executing CM onto CM technicians
who least understand the project’s
organization, goals, and deliverables.

• With respect to version control, this
method merely captures a snapshot set
of system components corresponding
to the designated milestone. Compo-
nent versions created between
archived snapshots are lost.

• With respect to change management,
when issues/problems are not docu-
mented or processed via a
review/approval process, manage-
ment also has no insight as to the
number of problems fixed (product
quality) or the way that problems are
fixed (design quality).

• With respect to configuration control,
this method frequently requires an
inordinate effort from CM to config-
ure the baseline, i.e., understand the
project components hierarchy (soft-
ware file system restructuring is per-
haps the worst case) and identify and
apply a meaningful software labeling
scheme.

• With respect to status accounting, lit-
tle or no metrics are available or col-
lected. It is difficult to associate
between changes to components and
the driving requirement, e.g., no way
to track revision three to system com-
ponent X with the corresponding
issue/problem report.

• With respect to auditing, no formal
baseline exists until a capture milestone

is executed. Customer insight to com-
pleted work is not verifiable. Change
implementation is invisible.

Open Repository Method
The Open Repository Method (character-
ized as a contribution technique) is selected
when management desires closer control
and progress review capabilities. Project
members are tasked with routinely sub-
mitting soft copy versions of their work
into a project repository. More dynamic
and comprehensive than the Archival
Method, the Open Repository Method
ensures that aggregate changes to a com-
ponent are contributed to the repository
as an identifiable version. Typically, an add
to or check-in/check-out interactive exchange
is employed to mature the repository
from project start-up through all phases
of the project’s life cycle. Management
review of a project is greatly simplified
when every project member is conscien-
tiously contributing to and/or entering
changes into the repository at predefined
milestones.

CM Requirements
It is necessary to comply with each
Archival Method requirement in addition
to the following:
• Pre-coordination and agreement

between CM and the project of a file
system structure to accommodate all
known system components and their
interfaces.

• As much advanced notice as possible
on project selected development tools
to allow for interoperability evaluation
to determine the best way to save and
stow soft copy files from these tools
into the repository.

• A mandatory repository check-in
comment that appropriately describes
the aggregate of changes to a compo-
nent since last check-in.

Strengths
• Anyone with permission to access the

repository can monitor when project
components enter the repository as
change sets at designated milestones.

• Work is centralized to a single file sys-
tem simplifying backup procedures.

• Facilitates project member communi-
cations because everyone knows
where to look for project items.

• Provides integration between develop-
ment tools (like Microsoft’s Word and
Visual C++) and the repository for
direct check-in/check-out processing
right from the tool they are using; with
some tools, compare and merge capa-
bilities can exist.

• Increases the opportunity for common
software and software reuse.

• Provides management with meaning-
ful metrics on project and component
size and complexity. The number of
versions for an item may convey the
level of development difficulty or
number of problems overcome.

• Reduces the data entry workload on
CM by distributing the repository
entry responsibility to each project
member.

Weaknesses
• With respect to version control,

although the open repository method
may produce file versioning, without
an organizational policy that mandates
following a change-management pro-
cedure for each file update, discrete
version control is not being exercised.

• With respect to change management,
although the open repository method
allows a comment to be entered when
a repository file is added, modified, or
replaced, without a formal issue man-
agement process with board adjudica-
tion, change management is not being
exercised. Repository changes are not
subject to formal review.

• With respect to configuration control,
without formal change management,
controlling a project’s configuration by
defining labels that correspond to
schedule milestones and manually
apply them is about the best you can
achieve. The open repository method
does not achieve verifiable baseline
advancement. An opportunity exists
for unsolicited enhancements.

• With respect to status accounting, ver-
sion metrics and associated comments
are available and can be reported, but
correlation of problems fixed to spe-
cific files changed is still missing.

• With respect to auditing, it provides
both management and customer the
opportunity to review soft copy files
(including schedule updates) in the
repository, but fails to provide issue-
management metrics (action item,
issue, problem report, engineering
change proposal, engineering change
notice, revision-level change, etc.).

Focused Repository Method
The Focused Repository Method (charac-
terized as a directed technique) is selected
when management has CM policies/pro-
cedures institutionalized within their
organization and the intent is for full con-
trol of workflow processes for the proj-
ect5. Project members are indoctrinated
on CM policies, issue documenting, and

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering November 2002

change management procedures. The PM
is indoctrinated on management review
policies and the various metric reports
available from status accounting.

The Focused Repository Method is a
disciplined process-oriented approach to
achieving CM during project execution.
All project members have access to the
issue-tracking tool and all issues are docu-
mented when they become known. The
timely review and disposition of every
issue conforms to the organization’s
change management process. For our
organization, two Configuration Control
Boards (CCBs) handle the disposition of
issues. A project-level CCB handles all
issues that do not affect schedule, cost, or
design. A program-level CCB dispositions
all schedule-, cost-, and design-related
issues. Management overview of project
execution is near real-time because issues
are immediately surfaced and dealt with.

CM Requirements
It is necessary to comply with each
Archival and Open Repository Method
requirement in addition to the following:
• Project plans must identify major sys-

tem components and supply support
documents that fully describe:
• Hardware components detailed to

subassemblies, LRUs, with draw-
ings, board layouts, and accurate
BOM and formal build-to docu-
mentation.

• Drawings and layouts comply with
IPC-A6 revision standards.

• Firmware, vendor supplied or cus-
tom developed, maintenance plan.

• Bundled COTS, GOTS, version,
license and distribution agree-
ments.

• Software components, build order,
build mechanism, build environ-
ment, run-time environment,
release strategy, version descrip-
tion, and maintenance plan.

• Project members must attend CM
training sessions covering tools,
processes, and procedures.

• Project engineers responsible for tool
selection must coordinate with CM on
tool integration and upgrade tasks.

Strengths
These include all the strengths listed
under the Open Repository method plus
the following:

• Verifiable change management.
• All repository changes are subject

to formal review.
• All changes are captured.
• Project issues are documented,

adjudicated, and dispositioned

resulting in traceable system com-
ponent changes within the matur-
ing baseline.

• Provides for accurate file compare
capability, a single change set that
directly correlates with a single
issue.

• Management has full insight into
the number of problems fixed
(product quality).

• Management can review exactly
how an issue was fixed.

• Reduces CM technician’s involve-
ment with repository input.

Weaknesses
• Requires organizational policy, proce-

dure, and training programs, each sub-
ject to a continuous improvement
effort.

• Customer buy-in, including compiling
adequate cost and schedule metric
briefings to convince customers that
implementing effective CM gets them
better products at cheaper prices with-
in shorter development cycles.

Optimized Repository
Method
The Optimized Repository Method (char-
acterized as a tuning technique) is selected
for a project by management only after an
acceptable number of projects using the
Focused Repository Method have been
completed and thoroughly evaluated.
Isolated areas with weak processes and
procedures, insufficient metric collectors,
inadequate change-tracking information,
forms and route slip inadequacies, high
quality control failure areas, and high per-
centage test failure components are tar-
geted for having their workflow processes
fortified. Fortifications include the fol-
lowing: more stringent reviews, tighter
version management, better testing (addi-
tional regression tests), additional
required fields for capturing metric data,
and a higher degree of system decompo-
sition. Management targets a specific

project for observation and evaluation
using the improved CM practices.

CM Requirements
It is necessary to comply with each
Archival, Open Repository, and Focused
Repository Method requirement in addi-
tion to the following:
• Project members must attend CM

training sessions covering tool,
process, and procedure enhancements
or replacements.

• Project members must comply with
entering additional form and route slip
inputs.

• Project members must supply greater
detail to required comment fields
when assigned issue and change reso-
lution tasks.

Strengths
These include all strengths listed under
the Open and Focused Repository
Methods plus the following:
• The project is first to try out new

tools, processes, and procedures.
• Increased metric data usually results in

more accurate cost and schedule
reporting.

• Companies executing disciplined sys-
tems development have an advantage
when it comes to attracting good engi-
neers.

• Companies executing disciplined sys-
tems development have the advantage
over undisciplined companies that
cannot bid (SEI/CMM competition).

Weaknesses
• The project is first to try out new

tools, processes, and procedures.
• May result in a longer system develop-

ment timeline.
• Tendency for higher project cost asso-

ciated with implementing process
changes.

Conclusion
A small systems development facility can
achieve limited CM proficiency by selec-
tively implementing CM disciplines across
their business lines. As management real-
izes benefits from the relatively small
resource investments associated with the
Archival Method, a natural progression to
Open and Focused Repository Methods
becomes almost automatic as customers
communicate their desire or need for sys-
tem advancements.

Conversely, when the deliverable is a
working model that proves a concept, or a
design, cost, and schedule are the para-
mount requirements, Archival Method
processes may be just the right amount of

“A small systems
development facility can

achieve limited CM
proficiency by selectively

implementing CM
disciplines across their

business lines.”

November 2002 www.stsc.hill.af.mil 21

Reality Configuration Management

CM. Government contracts awarded to
the low bidder demand cost effective pro-
posals with the basis of estimates receiv-
ing careful scrutiny. Minimizing CM often
becomes a target for cost savings for small
developing facilities facing the reality of
having to present a winning proposal.◆

Notes
1. Substitute ISO9001, Capability

Maturity Model® IntegrationSM, or
Malcolm Baldrige Award, as applica-
ble.

2. Makefile: A manually generated, spe-
cially formatted input file to the make
utility, which contains information
about what files to build and how to
build them. The make utility stream-
lines the process of generating and
maintaining object files and executable
programs. It helps to compile pro-
grams consistently, and eliminates
unnecessary recompilation of mod-
ules that are unaffected by source
code changes.

3. A source code control system (SCCS)
allows you to control write access to
source files and to monitor changes
made to those files. Allows only one
user at a time to update a file, and
records all changes in a history file.
SCCS is a bundled Unix utility.

4. Our center’s CM tool is integrated
with our desktop office package to
automatically display two versions of

a non-binary file in revision mode.
5. Our center selected Rational’s

ClearCase product as its standard for
creating and maintaining individual
project repositories because ClearCase
allows engineers, technicians, and
managers to work directly in the proj-
ect repository.

6. IPC: From 1957-1999, IPC stood first
for Institute for Printed Circuits; later it
became Institute of Interconnecting and
Packaging Electronic Circuits. In 1999,
IPC changed its name to just plain
IPC, which has its offices at 2215
Sanders Road, Northbrook, IL 60062-
6135. The IPC provides the following
information:
• Standards to facilitate communica-

tions between suppliers and cus-
tomers.

• Guidelines with current industry
positions on a wide range of sub-
jects.

• Research to solve industry prob-
lems.

• Correlation of industry test meth-
ods.

• New developments in intercon-
nection technology.

• A monthly publication called
Relay.

• Provides training (and certifica-
tion) at U.S. and overseas sites.

• Maintains a web site at
<www.ipc.org>.

For example: IPC-A-610C –
Acceptability of Electronic Assem-
blies: This standard is a collection of
visual quality acceptability require-
ments for electronic assemblies.

About the Author
Donald E. Casavecchia
is director, configura-
tion management/quali-
ty assurance (CM/QA)
with the Warrenton
Operations Strategic

Planning Group of ACS Defense, Inc.
He is a hands-on CM manager with
more than 20 years experience with the
Department of Defense and govern-
ment projects, including assembly,
BASIC, FORTRAN, C, and script pro-
gramming, setting up and maintaining
software development environments,
and supporting embedded systems
development. Casavecchia believes in
implementing practical CM/QA solu-
tions.

ACS Defense, Inc.
P.O. Box 700
Warrenton,VA 20188
Phone: (540) 349-3762
Fax: (540) 349-3517
E-mail: donc@wtc.gov

If your experience or research has produced information that could
useful to others, CrossTalk can get the word out. We are
ecially looking for articles in several specific, high-interest areas.
oming issues of CrossTalk will have special, yet non-
usive, focuses on the following tentative themes:

Call for ArticlesC

Commercial and Military Applications Meet
June 2003

Submission Deadline: January 20, 2003

Defect Management
August 2003

Submission Deadline: March 17, 2003

Information Sharing/Data Management
September 2003

Submission Deadline: April 17, 2003

Please follow the Author Guidelines for CrossTalk, available on the Internet at:
www.stsc.hill.af.mil/crosstalk

We accept article submissions on all software-related topics at any time,
along with Open Forum articles, Letters to the Editor, and BackTalk submissions.

