@ BACKTALK

uestion: What do you call a formal
afternoon reception or social gather-

ing of furry, bear-like arboreal Australian
marsupials, where they drink the boiled
glossy leaves of an Asian evergreen shrub?
Answer: A “koala tea.” Oh, wait — the
issue this month was about quality, not

koala tea. That’s my mistake. | guess I real-
ly didn't know the correct definition of
quality, which is “trait, characteristic or
property, degree or grade of excellence.”
But then, perhaps my first def-
inition is just about as good as

the second. It depends on the

user’s needs.

As usual with my
columns, let me start with a ¢ e,
story. Back in 1974, I was a ,‘_
young airman stationed at \
wonderful, beautiful Offutt !

Air Force Base. (Once you get

on it, you can't get Offutt — the
Air Force base with its own ceme-
tery!) As an applications program-
mer at SAC (remember the
Strategic Air Command?), a user
asked me to sort a file of

data for him. Being young

and eager, | immediately set

forth to write the ultimate sort
routine to end all sort routines.

I had recently completed
an undergraduate course in
sorting and searching tech-
niques, and I recalled a par-
ticularly cool sort from
class (something like a
combination polyphase-cas-
cade-merge sort). It required sev-
eral temporary files, but the machine we
were using at the time was pretty limited.
Does anyone remember the World Wide
Military Command and Control System?
(WWMCCS) Honeywell H6000? It had
96K of RAM. Not much memory space at
all. However, it did have multiple tape
drives, so | wrote a program that sorted
using four tapes.

Of course with only five tape drives
for the entire system, running my job took
a bit of scheduling. In fact, it usually took
a full day to actually run the job once I had
submitted it. After a few weeks of devel-
opment and testing, | was ready to unveil

1 All definitions are from Microsoft Encarta Encyclopedia,
1999 edition.

2. If you remember WWMCCS, then check out “Defense
Department Classic Becomes Object of History” at
<www.af.mil/news/Jul1997/n19970717_970866.htmI>.

March 2003

Did | Say “Koala Tea?”

the program to my long-suffering user.
After explaining that there was a one-
day delay between program submission
and the results, 1 saw the look of dismay
on his face. Come to find out, the data he
wanted sorted consisted of exactly eight
10-character strings. A six-line bubble sort
routine would (and eventually
did) sort the data online
in less than a sec-

/ond. The lesson |

learned: Find out exactly
what the user needs before writing the
program. | had fallen into the trap of let-
ting my biases and experience influence
me into giving the user what I thought he
needed, rather that giving him what he
really wanted.

Well, I'm a bit older and wiser now (as
my friends would point out, a lot older,
maybe a little wiser) and frequently find
myself teaching this lesson to others. It
shouldn’t be a secret; lots of people know
about it. In fact, Simon and Garfunkel
must have been software engineers. Back
in the '70s, they produced their “Bridge
Over Troubled Waters” album. If my
memory serves me, on side two song No.
11 was titled “Keep the Customer

Vo

Satisfied”(words and music by Paul
Simon, 1970). Great song. Great message.
“Just trying to keep my customers satis-
fied, satisfied.”

You want a definition of quality? OK:
Keep the customer satisfied. Do you
know what customers want? Do you know
what they really need? Are they part of the
decision-making process when it comes to

making trade-off decisions in the
architecture and design? Are they
part of the decision process when
deciding what is part of a release,
and what gets put off until the
next release?

You see, you are not really ready
to discuss quality until you know
the users’ needs. If their overwhelm-
ing requirement is accuracy, then
speed might not impress them.
If their overwhelming require-
ment is consistent uptime,
then no matter how accurate
and fast the system is, if it
crashes frequently, they are
not impressed. If their
need is for a reliable sys-
tem, and you forget to

implement a quick-and-
easy-to-use backup and
recovery system, then they
won't be impressed.
Remember — the latest and
greatest languages don't
impress them if the resulting
system is slow, unreliable, and
buggy. A reliable Fortran pro-
gram might just impress them more
than a spiffy (but buggy) program
written in Java Plus Plus Sharp
(or whatever the language of
the month is).

You want quality? Talk to your users.
Find out what they need (and what they
want). Involve them in trade-off deci-
sions. Write the programs that will make
them satisfied. Save the polyphase-cas-
cade-merge sort for another time.

Oh —and yes — | do know that getting
the real requirements out of some users is
only slightly harder than communicating
with the dead. I'll save that discussion for
another column!

— David A. Cook
Software Technology Support Center/
Shim Enterprise, Inc.

wwwi.stsc.hill.af.mil 31

