
Open Forum 

March 2003 www.stsc.hill.af.mil 25

The Joint Technical Architecture
(JTA) was created to establish a stan-

dard to provide interoperability among
the Department of Defense (DoD) sys-
tems [1]. The JTA is a very ambitious and
important document with great impact
on creating and updating military sys-
tems in the United States. Over the long
term, it also has considerable impact on
civilian and foreign systems since its
objectives and approaches go well
beyond the U.S. defense sector. The
objectives and main content of the JTA
are best explained with a few citations
from the standard itself:
• The JTA provides DoD systems with

the basis for needed seamless inter-
operability.

• The JTA core contains the minimum
set of JTA elements applicable to all
DoD systems to support interoper-
ability.

• The DoD JTA provides the mini-
mum set of standards that, when
implemented, facilitates this flow of
information in support of the
warfighter. The JTA standards pro-
mote the following:
• A distributed information-pro-

cessing environment in which
applications are integrated.

• Applications and data independ-
ent of hardware to achieve true
integration.

• Information-transfer capabilities
to ensure seamless communica-
tions within and across diverse
media.

• Information in a common format
with a common meaning.

• Common human-computer inter-
faces for users, and effective
means to protect the information.

The JTA defines three interrelated
views within the architecture as shown in

Figure 1: operational architecture (OA)
view, technical architecture (TA) view,
and systems architecture (SA) view.

These three views are described in the
following subsections (citation from the
JTA). The article continues with the dif-
ficulties in consolidating these views.

The OA View
The OA view is a description of the tasks
and activities, operational elements, and
information flows required to accom-
plish or support a military operation. The
OA contains descriptions (often graphi-
cal) of the operational elements, assigned
tasks and activities, and information
flows required to support the warfighter.
The OA defines the types of information
exchanged, the frequency of exchange,
which tasks and activities are supported
by the information exchanges, and the
nature of information exchanges in
detail sufficient to ascertain specific
interoperability requirements.

The TA View
The TA view is the minimal set of rules
governing the arrangement, interaction,
and interdependence of system parts or
elements, whose purpose is to ensure
that a conformable system satisfies a
specified set of requirements.

The TA view provides the technical
systems-implementation guidelines upon
which engineering specifications are

Clarify the Mission:
A Necessary Addition to the Joint Technical Architecture

Ingmar Ögren
Tofs Inc.

The Joint Technical Architecture (JTA) was published to provide the Department of Defense with the basis for needed seam-
less interoperability across its systems. The JTA contains three architectural views: operational, technical, and systems. The
operational architecture view shows the tasks and activities for a system, while the other two views show supporting elements.
It is important to understand how the three views relate to each other and how the parts of the technical architecture view sup-
port the overall system’s missions and operators. This article discusses how a simplified and extended version of the Unified
Modeling Language “component diagram” can be used to connect the three JTA views and consequently create a clarified envi-
ronment for a system’s software with a resulting increased probability that the right software will be built.

Operational

Architecture View

Identifies Warfighter

Relationships and Information Needs

Technical

Architecture View

Prescribes Standards and

Conventions
Relates Capabilities and Characteristics

to Operational Requirements

Systems

Architecture View

P
rocessing and Levels of

Inform
ation E

xchange

R
equirem

ents.

B
asic Technology

S
upportability and

N
ew

 C
apabilities.

Pro
cessin

g a
nd In

te
r-N

odal

Levels
 o

f I
nfo

rm
atio

n

Exchange R
equire

m
ents

.

Syste
m

s A
ssocia

tio
ns

to
 N

odes, A
ctiv

iti
es,

Needlin
es, a

nd 

Require
m

ents
.

Specific Capabilities

Identified to Satisfy

Information-Exchange

Levels and Other

Operational Requirements.

Technical Criteria Governing

Interoperable Implementation

Procurement of the Selected

System Capabilities.

Figure 1: Three Interrelated Views of Joint Technical Architecture

“... as a software
developer, it is not

sufficient to understand
the technical system; you

must also understand
the mission(s) and the
expected and possible

behavior of the
operating roles ...”



Open Forum

26 CROSSTALK The Journal of Defense Software Engineering March 2003

based, common building blocks are
established, and product lines are devel-
oped. The TA includes a collection of
the technical standards, conventions,
rules, and criteria organized into pro-
file(s) that govern system services, inter-
faces, and relationships for particular sys-
tems architecture views, and that relate to
particular operational views.

The SA View
The SA view is a description, including
graphics, of systems and interconnec-
tions providing for, or supporting,
warfighting functions. For a domain, the
SA view shows how multiple systems link
and interoperate, and may describe the
internal construction and operations of
particular systems within the architecture.
For the individual system, the SA view
includes the physical connection, loca-
tion, and identification of key nodes
(including materiel-item nodes), circuits,
networks, warfighting platforms, etc., and
specifies system and component per-
formance parameters (e.g., mean time
between failure, maintainability, and avail-
ability). The SA view associates physical
resources and their performance attrib-
utes to the operational view and its
requirements following standards defined
in the technical architecture.

Inherent Problems with
Interfacing
When you talk to anyone responsible for a
complex system with multiple operators
and a high content of software, you are
likely told: “We concentrate on the mis-
sion, and our qualified people are our
most important resource.”

Modern defense systems include per-
sonnel (warfighters) to complete missions,
with complex interaction between opera-
tor roles and technical system parts. This
means that, as a software developer, it is
not sufficient to understand the technical
system; you must also understand the mis-
sion(s) and the expected and possible
behavior of the operator roles, which are
required to complete the mission(s)
together with the technical system parts.

Furthermore, when you look at Figure
1 and the accompanying text, you see a
multitude of relationships. However, they
are rather informal and do not really tell
you much about the common core behind
the three views. Still further, when you
look at the extensive definitions and stan-
dards for human-computer interfaces,
they are lopsided, meaning that they limit
their descriptions to the computer part of
the interface and leave the human part to
the reader’s imagination.

The conclusion is that we have the fol-

lowing set of problems defined when
working with the JTA in systems design:
• How do you really connect the three

views to each other?
• How do you show how the elements

of a system support the system’s mis-
sion(s)?

• How do you clarify the human part of
the human-computer interface?

Introducing Mission and
Operator Objects
One way to solve these problems is to
start from the Unified Modeling
Language’s1 (UML) component diagram
with its basic relationships: depends on and
included in. Furthermore the diagram
should be extended to include not only
software objects but also mission objects,
operator objects, and hardware objects.
As a result you get a set of object cate-
gories as shown in the entity-relationship
diagram2 in Figure 2.

Figure 2 is a general entity-relation-
ship diagram with objects and attributes
to objects as entities drawn as boxes.
Relationships are drawn as arrows and the
diagram should be read along each arrow:
<entity> <relation> <entity>. The dia-
gram also applies the principle of boxes
within boxes to show how smaller entities
are parts of larger entities (the three JTA
views). Note that the standards included
in the TA view of the JTA concern all
object categories through the general object,
although they are primarily applicable to
hardware objects.

This diagram shows one way to solve
the problems identified above:
• How do you really connect the three

views to each other? As shown in
Figure 2, the elements in the OA view
depend on the SA view, and all ele-
ments are derived from the general
object. Consequently, the standard
requirements of the TA view concern
all objects as applicable.

• How do you show how the elements
of a system support the system’s mis-
sion(s)? Mission objects are introduced
in the OA view to define missions on
the system level and also on lower lev-
els.

• How do you clarify the human part of
the human-computer interface?
Through introduction of operator
objects, it is possible to define not
only the computer side of human-
machine interface, but also the human
side with definition of the human
operator’s behavioral space to match
the software’s behavior.
The main message of Figure 2 is that

Software

Object

Hardware

Object

General

Object

Standards

Requirements

can be

are attributes to

Technical

Architecture

View

Systems

Architecture

View

Operational

Architecture

View

Mission 

Object

Operator 

Object

depends on

Figure 2: Object Categories and JTA Views



Clarify the Mission:A Necessary Addition to the Joint Technical Architecture

March 2003 www.stsc.hill.af.mil 27

you can work with a general object con-
cept that includes objects of categories:
mission, operator, software, and hard-
ware. To understand how a mission
depends on system parts for completion,
you use dependencies to define how each
mission depends on other missions and
on objects of other categories. This dia-
gram also shows how this view of sys-
tems complies with the three views of the
JTA.

Command and Control
Example
Let us look at a hypothetical command
and control (C2) example to illustrate the
principles described above. (It is hypo-
thetical since real systems are most often
classified and too large for a short arti-
cle.) While the JTA talks about com-
mand, control, computing, communica-
tion, intelligence, surveillance, and recon-
naissance, this example will concentrate
on the core mission, C2, without the sup-
port technology, which may or may not
be included in a particular C2 system.

Figure 3 shows the top part (main
missions) for a C2 system as four mission
objects, drawn as a simplified UML com-
ponent diagram. Note that the methods
in the component diagram are represent-
ed by abilities required for the missions.

Figure 3 also shows how the compo-
nent diagram can be compacted as a tree
or as an indented list to show only the
object types involved and their depend-
encies. This compact form, called the
Tree Graph, can be used to show a some-
what more detailed view of the C2 sys-
tem, as shown in Figure 4.

The Tree Graph is where you can see
how the three aspects of the JTA can be
managed together, clearly connected in
the dependency tree as follows:
• The missions shown (C2 supported

by plan tactical mission, train person-
nel, and develop tactics) together with
the operator roles shown (planning
officer, training officer, and tactics
development officer) belong to the
OA view in the JTA.

• The software system parts shown
(planning support, training support,
and tactics development) belong to
the SA view in the JTA.

• The hardware parts shown (C2 com-
puting system) are governed by the
standards contained in the TA part of
the JTA.
Here, the experienced reader may

have the following objection: “You need
much more to build a C2 system!” That is
correct, and there are two reasons why so

little of the C2 system is included in
Figure 4. One is to limit the information
to a reasonable amount for a journal arti-
cle. The other is that this figure also con-
centrates on demonstrating how the Tree
Graph can be used to show how a system
depends on another system (visualizing
systems of systems).

You can see how the three software
objects shown depend on a communica-
tion network and on some external sys-
tem to provide simulation services. This
makes it possible to keep the C2 system
and the simulation system separate and
still clarify their interdependencies.

Practical Experiences
The principles related here have been
applied in various real systems, primarily
C2, communication, simulation, and
avionics. The experience is that the prin-
ciples work and result in system descrip-
tions that are understandable both to end
users and developers. However, since this
is a new way of viewing a system, the fol-
lowing indications of uneasiness have
been noted:
• Software engineers find it strange to

work with the human part of human-
computer interfaces. However, after
some time they will most often accept
that this is needed to build the neces-
sary understanding to create the right
software.

• Some end users might be afraid that
working with the missions together
with a contractor might result in too
much knowledge of classified principles
on doctrine with strategic and tactical

principles. This may be a very real
problem. Managing it requires an
understanding that it is next to
impossible for a contractor to pro-
duce a useful system without knowl-
edge of why it is built, and how it
should be used.

• Operator end users may be hesitant
when contractors try to describe their
work as system components (opera-
tor role objects). However, as soon as
they really study these descriptions,
they often get fascinated and produce
some extremely valuable comments
and criticism, which will be a real help
to building the right system.

• People will consider it unnecessary to
define the mission since “everyone

Figure 3: Component Diagram and Tree Graph for the Top Missions of a C2 System

Figure 4: Tree Graph for a C2 System



knows what the mission is.” This is
correct, but when you start defining
the mission, it is sometimes surpris-
ing how many different understand-
ings you find within what everyone
knows.
Perhaps the most important result of

introducing mission objects, operator
objects, and dependency trees is that they
provide a common ground for end users
and technical system developers to meet,
which results in an increased probability
of common understanding of the sys-
tem.

Summary
The problems concerning the JTA’s diffi-
culties to consolidate its three views and to
clarify system missions and operator
roles in system architecture have been
discussed. A possible solution based on a
simplified and extended UML compo-
nent diagram has been presented with a
small C2 example. Furthermore, some
experience from practical application of
the principles presented has been
described.

From the software engineer’s point of
view, this means that the software’s envi-
ronment is investigated and clarified
prior to software design and program-

ming. This will increase the software
engineer’s understanding of the software
requirements and consequently also
increase the probability that the right
software is built.◆

Reference
1. JTA Development Group. Joint

Technical Architecture. Ver. 3.1. U.S.
Department of Defense, 31 Mar.
2000 <www-jta.itsi.disa.mil>.

Notes
1. The following Web sites provide infor-

mation on the UML component dia-
gram: <www.sparxsystems.com.au/
EAUserGuide/component_diagram
.htm> and <http://jliusun.bradley.edu
/ ~ j i a n g b o / u m l / B o o c h _ u m l
/sld019.htm>.

2. The Tofs Web site provides information
about the tool used for diagrams in this
article <www.toolforsystems .com>.

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering March 2003

About the Author 
Ingmar Ögren has
worked with the Swedish
Defense Material Ad-
ministration and various
consulting companies in

systems engineering tasks associated
with communications, aircraft, and
command and control. He is currently a
partner and chairman of the board for
Tofs Inc. and Romet, a systems engi-
neering consulting company mainly uti-
lizing the Objects for Systems develop-
ment method. He also teaches systems
and software engineering and has had

several papers accepted at international
conferences. Ögren is a member of
Modeling and Simulation in Sweden
and International Council of Systems
Engineering. He has a master’s of sci-
ence in electronics from the Royal
University of Technology in
Stockholm.

Tofs AB 
Fridhem 2 
S-76040 Veddoe, Sweden 
Phone: (+46) 176-54580 
Fax: (+46) 176-54441 
E-mail: iog@toolforsystems.com


