Improving Processes for Commercial

Off

S

Tuesday, 29 April 2003
Track 5: 1:50 - 2:30
Room 150D - G

or many programs, commercial off-

the-shelf (COTS) products offer the
promise of rapid delivery to end users,
shared development costs with other cus-
tomers, and an opportunity to expand
business and mission capabilities and per-
formance as improvements are made in
the marketplace. But the promise of
COTS products is often not realized in
practice. Why? An important factor is
that organizations tend either to assume
that COTS products can be simply
thrown together, or they fall back on
familiar, traditional development skills,
which have been shown not to work in
developing and maintaining a COTS-
based system [1].

Practical experience shows that build-
ing systems using COTS products requires
new skills, knowledge, and abilities;
changed roles and responsibilities; and dif-
ferent processes [1]. Many organizations
find that COTS-based systems can be
complex and are often costly to build and
maintain. Moreover, practitioners are find-
ing that management and engineering
processes for a COTS-based system* must
be more (not less) disciplined.

This article characterizes the unique
aspects of defining, building, fielding, and
supporting a COTS-based system; des-
cribes the Evolutionary Process for Inte-
grating COTS based systems™ (EPIC™)
(which was designed to show how COTS
aspects can be addressed [2]), and identifies
high-level guidance to facilitate the defini-
tion of appropriate work processes for
both developers and maintainers of COTS-
based systems using the Capability Maturity
Model® Integration™™ (CMMI®) [3].

M EPIC and Evolutionary Process for Integrating COTS

based systems are service marks of Carnegie Mellon
University.

May 2003

-the-Shelf-Based Systems

Dr. Barbara Tyson, Cecilia Albert, and Lisa Brownsword
Software Engineering Institute

Organizations using commercial off-the-shelf (COTS) products in critical business and mis-
sion systems find that the traditional process of defining requirements, formulating an archi-
tecture, and then trying to find COTS products to meet the specified requirements within the
defined architecture rarely works. Instead, new processes, skills, and roles are required.
Many organizations that have derived substantial bengfits through process improvement
using capability maturity models want to know, “How should the Capability Maturity
Model® Integration®™ (CMMI®) be interpreted for organizations building, fielding, and sup-
porting a COTS-based system?” This article answers that question and describes the
Evolutionary Process for Integrating COTS based systems®™, which was designed to show
how COTS aspects could be addressed; it also identifies high-level guidance to facilitate the
definition of appropriate work processes for developers and maintainers of COTS-based
systems using the CMMI.

Demands of COTS-Based

Systems
In custom development, a system can be
created to meet the demands of a particular
operating environment. A COTS-based
system, for the most part, is composed of
products that exist off-the-shelf. COTS
products introduce unique dynamics and
constraints that must be accommodated
by any set of work processes that build,
field, and support COTS-based systems
such as the following:

e COTS products are developed and
enhanced in response to the vendor’s per-
ception of the needs of a broad set of cus-
tomers — the commercial marketplace
— not a particular customer’s needs.

e COTS products include implicit
assumptions ahout the way the product will be
used, which seldom match the prede-
fined operational processes of the pro-
ject’s end users.

e COTS products include implicit
assumptions about the way the product will
interact with other products and the enter-
prise infrastructure, including depend-
encies on specific versions of other

COTS products.

e The vendor often provides limited visi-
bility into the assumptions, design,
quality, and behavior of the COTS
products.

» COTS products often behave in unpre-
dictable ways when used in combination.

» The vendor controls the frequency and
content of COTS product releases. In a
competitive market segment, COTS
products may add and/or delete func-
tionality frequently.

* The vendor maintains the COTS prod-
uct, retains data rights to the source
code, and intends for the products to
be used without product modification?.
Despite these differences, many organ-

izations have tried to use the more tradi-

tional approach as shown on the left in

Figure 1. This approach defines the

requirements, forms an architecture to

meet them, and then searches the com-
mercial marketplace for COTS products
that fit into that architecture. This
approach is rarely successful. COTS prod-
ucts do not fit. Organizations either resort
to custom development or try to make
COTS products fit by modifications. Either

Figure 1: Fundamental Engineering, Management, and Business Change

Traditional
Approach

Requirements

Architecture and
esign

Implementation

‘U

Required Approach

Stakeholder Needs/
Business Processes

Simultaneous
Definition
and Trade-Offs

Programmatics/
Risk
]

Architecture/

Note: Adapted from COTS-Based Systems for Program Managers [4

wwwi.stsc.hill.af.mil 17

Software Engineering Technology

way, they incur significant cost and schedule

impacts that are repeated with each product

upgrade.

In contrast, the Software Engineering
Institute’s experience in examining more
than 50 projects attempting to build
COTS-based systems shows a fundamental
change is required, as shown on the right in
Figure 1. To effectively leverage COTS
products, knowledge of how the products
behave in the operational context and a
projection of how that behavior is likely to
change over time must influence the defi-
nition of the solution’s requirements and
end-user business processes, and will drive
the definition and implementation of the
resulting solution. Successful projects
emphasize a balance among the following
four competing spheres of influence
throughout the project’s life:

» Stakeholder® Needs and Business
Processes. An understanding of the
relationship between project success and
the organization’s business drivers. How
end-users will use the system with
emphasis on the implications for end-
user business processes. What the stake-
holders want with emphasis on the min-
imum number of must have requirements.

e Marketplace. An awareness of market-
place drivers that are likely to affect the
COTS products over the system’s life.
Knowledge of current and emerging
COTS products, technologies, and stan-
dards relevant to the project.

» Architecture and Design. The essen-
tial elements of the system, any other
systems or infrastructure with which it
interacts, and the relationships among
them (including structure, behavior,
usage, etc.) so the components can work
and evolve together.

» Programmatics and Risk. An under-
standing of the management aspects of
the project, including the impact of

implementing any needed changes to

the end users’ operational processes.

What the project and end-user commu-

nity can tolerate in terms of cost,

schedule, and risk.

While three of the spheres from the
required approach in Figure 1 have ana-
logues in traditional development processes,
the marketplace is a potent addition. To
accommodate the marketplace, each sphere
must be defined based on knowledge of the
marketplace.

For example, a stakeholder need may
be stated such that any known COTS
product cannot satisfy it. Similarly, a poten-
tial COTS product may not be compatible
with the organization’s existing infrastruc-
ture or use a licensing strategy that would
be cost prohibitive.

Therefore, as information among
spheres is analyzed, trade-offs among the
spheres are identified that must be resolved
through negotiation among the disparate
stakeholders. In practice, this drives the
practitioner to gather a little, synthesize
and negotiate a little, and then gather a lit-
tle more and synthesize and negotiate fur-
ther. Due to COTS products’ volatility, this
cycle of gather, synthesize, and negotiate
must be repeated until the system is
replaced or retired. Further, the new
release of an already selected COTS prod-
uct may change system behavior.

An Evolutionary Integration
Process

The EPIC evolved from a U.S. Air Force
need to institutionalize a process that
implements the necessary simultaneous
definition and trade-offs of the required
COTS approach. EPIC is documented [2]
to provide an overview and detailed
instruction. An Air Force organization and
a commercial financial institution have
started using EPIC across their programs.

Figure 2: The EPIC Environment

Simultaneous
Definition
and Trade-Offs

Trade Space

Accumulating Knowledge

Iteratively Converging

LI CCE LR] =

Decisions

Increasing Stakeholder Buy-In

Time

18 CrossTaLk The Journal of Defense Software Engineering

v

EPIC does not simply evaluate and select
COTS products. Rather, it leverages many
of the elements of the Rational Unified
Process [5] to integrate COTS lessons
learned and disciplined spiral engineering
practice [6] to define, develop, field, and
support COTS-based solutions®.

The EPIC Framework

To maintain the required balance between
the four spheres through the life of the
solution, EPIC creates an environment that
supports an evolving definition of the solu-
tion while systematically reducing the trade
space within the spheres. As shown in
Figure 2 and discussed in the following
paragraphs, this environment consists of
iteratively converging decisions and accu-
mulating knowledge while increasing stake-
holder buy-in.

Iteratively Converging Decisions
Reduce the Trade Space
While trade-offs are common in any engi-
neering endeavor, trade-offs in EPIC are
driven by an increasingly detailed knowl-
edge of the COTS products’ marketplace
capabilities. Initially, as shown at the left of
Figure 2, the trade space may be large, with
great flexibility for negotiating trade-offs
among the four spheres. However, a deci-
sion in one sphere influences, and is influ-
enced by, decisions in the other spheres.
Over time, as the stakeholders’ under-
standing of the solution evolves, decisions
cause the spheres to converge. As they
converge, the spheres become more inter-
dependent, and the available trade space
shrinks. Elements of the solution will con-
tinue to evolve until the solution is retired
as business or operational needs change
and new releases of COTS products
become available.

Accumulating Knowledge Through
Disciplined Risk-Based Spiral Practices
As the trade space diminishes, knowledge
about the solution grows more detailed,
which is reflected in the set of artifacts or
work products necessary to build, field, and
support the solution. Most of the artifacts
are started in a rough form very early in the
process and are expanded as more informa-
tion is gathered and refined.

Due to marketplace volatility, keeping
current knowledge about it is particularly
important. In some cases, market events
may invalidate already agreed-upon deci-
sions (e.g., support for a product is dropped,
a new product is introduced, or a product
feature is added). While these disruptions
have no easy resolution, relationships with
vendors can provide warning of impending
changes so appropriate actions can be taken.

May 2003

Increasing Buy-In Through Continuous
Negotiation Among Stakeholders

An environment that includes all affected
stakeholders is essential for timely resolution
of mismatches between the available COTS
products, the desired end-user business
processes, and the stated stakeholder needs.
In EPIC, stakeholders include the broadest set
of individuals and organizations affected by
the solution (or their empowered representa-
tives). End users, one set of stakeholders,
must be involved day-to-day to evaluate each
COTS product’s impact on the end-user
business processes. In addition, the end-user
needs will mature and change as their under-
standing of available COTS products
increases. Concurrently, engineering stake-
holders ensure that the COTS products con-
sidered can be effectively integrated with the
organization’s existing systems to meet
required performance parameters and other
system qualities. Business analysts ensure
that viable vendors support the products.
Vendors, another class of stakeholders, pro-
vide enhanced visibility into the COTS prod-
ucts’ capabilities and gain potential insight
into the organization’s needs.

Using EPIC

To implement this environment, EPIC uses a
risk-based spiral development process that
keeps the requirements and architecture fluid
as they are discovered and adjusts them to
optimize using COTS products. The follow-
ing sections summarize the COTS implica-
tions on the iteration and phase structure in
which project and system activities take
place.

Spheres of Influence Are Balanced in
Every Iteration
Like other spiral development approaches, a
series of iterations is defined across the life
of the solution to mitigate specific project
risks while addressing the most critical func-
tions. In EPIC, each iteration consists of the
fixed set of activities shown in Figure 3.
Each iteration begins with creating a
detailed plan to meet defined iteration objec-
tives. While many view the activities within
an iteration to be a mini-waterfall, with COTS,
information must be simultaneously gathered
from each of the four spheres, as it is refined
through analysis and stakeholder negotiation.
Due to the interaction among spheres, many
cycles of gathering and refining information
may be required to produce a consistent set
of information across all spheres to meet the
iteration objectives. An executable represen-
tation of the solution is assembled to
demonstrate the current understanding
among the stakeholders. The iteration ends
with an assessment of whether the objectives
were met.

May 2003

Improving Processes for Commercial Off-the-Shelf-Based Systems

Gather Information

Stakeholder Needs/

Business Processes

Simultaneous

Marketplace Definition

and Trade-Offs

Programmatics/

Architecture/
Design

Risk
Refine into
Plan Harmonized Set Assemble
Iteration Executable
Executable

Assess
Iteration
Note: Adapted from A/APCS [5]

Figure 3: An EPIC Iteration

Iterations Are Managed Through Clearly
Defined Anchor Points
While the activities are the same for each
iteration, the focus, depth, and breadth
tend to change in character across the life
of the system. As shown in Figure 4, EPIC
uses the four Rational Unified Process
phases (Inception, Elaboration, Construc-
tion, and Transition) and three correspon-
ding anchor points (Life-Cycle Objectives,
Life-Cycle Architecture, and Initial
Operational Capability) to manage spiral
development activities across the life cycle.
Like other spiral development process-
es, each phase consists of one or more iter-
ations designed to meet explicit phase
objectives and ends with an anchor point
that provides an opportunity to review exit
criteria, ensure continued stakeholder com-
mitment, and decide to proceed, change
project direction, or terminate the project
based on progress to date. The following
paragraphs summarize the goal of each
phase and highlight some of the changes

made in EPIC to accommaodate the unique
character of COTS-based solutions.

Inception Phase: The Inception Phase
establishes a common understanding among
stakeholders of what the solution will do and
why. It ends with the Life-Cycle Objectives
anchor point when it is demonstrated that
one or more, albeit high-level, candidate
solutions can be integrated into the organiza-
tion’s broad architecture, in a reasonable peri-
od of time, at affordable cost, and for
acceptable risk. In EPIC, candidate solutions
may be formed around substantially different
COTS products and, therefore, may address
different user processes and stakeholder
needs, use different architectures, and have
different programmatic implications.

EPIC users have been surprised at the
magnitude of the effort necessary to achieve
the objectives of this phase. This is due in
part to a lack of experience with spiral devel-
opment processes. Just as significant, howev-
er, has been the need to reconcile a variety of

Figure 4: EPIC Phases

Life-Cycle Life-Cycle Initial
Objectives Architecture Operational
Capability
Simultaneous Converging
Definition EEEEEEEEEEE8E M
Decisions
Inception Elaboration Construction Transition
(&5) (BN) (&N A) (&N)
" ¥ ¥ ¥ ¥ *

wwwi.stsc.hill.af.mil 19

Software Engineering Technology

program mandates, which have included pre-
selection of one or more COTS products by
senior leadership, a predefined architectural
framework, predefined target business
processes, and arbitrary schedule and cost
objectives. Identifying and negotiating these
issues while the cost of resolving them was
low has proven beneficial.

Elaboration Phase: The Life-Cycle
Objectives anchor point marks a change in
intensity. During the Elaboration Phase,
stakeholders conduct in-depth experiments
with candidate COTS products in a context
that closely represents the operational envi-
ronment. This phase ends with the Life-
Cycle Architecture anchor point when all
stakeholders agree that the defined solution
provides sufficient operational value; the
requirements, end-user business process, and
architecture are sufficiently stable; and the
solution can be assembled for acceptable
cost, schedule, and risk.

While every effort is made to stabilize the
solution, inevitably some unanticipated
changes will occur in development and main-
tenance. In particular, new versions of the
selected COTS products will require evalua-
tion. Monitoring the marketplace for advance
notice of these changed versions is required
through the life of the solution.

Some EPIC users have applied this phase
differently. One user views elaboration as an
opportunity for rapid prototypes. Another
uses EPIC to validate the utility of imple-
menting a COTS-based versus custom solu-
tion. In both cases, this phase is used to con-
verge on a stable definition of the solution to
be implemented and then fielded.

Construction Phase: The Construction
Phase focuses on preparing a production
quality release of the solution suitable for
fielding, and any necessary preparations in
the target organizations to facilitate the initial
fielding. In addition to developing any cus-
tom components, production rigor is applied
to tailoring® COTS products, developing inte-
grating code (including wrappers, glue, etc.)
and fully testing the system. The
Construction Phase ends with the Initial
Operational Capability anchor point when
the solution is of sufficient quality for initial
fielding to a subset of operational users.

No organization has yet progressed to
this phase using EPIC.

Transition Phase: The Transition Phase
fields and supports the solution across the
user community. This requires proficiency in
using the solution. As required, bugs are
fixed, features are adjusted, new COTS prod-
uct releases and patches are evaluated and
considered for integration, and missing ele-

20 CrossTALk The Journal of Defense Software Engineering

ments are added to the fielded solution in
maintenance releases. The Transition Phase
ends only when the solution is retired and/or
replaced by a new solution.

Implications of COTS-Based
Systems on CMMI Work

Processes

Capability maturity models integrate total
quality management, best practices targeted
to an organization’s domain, and organiza-
tional development practices to guide
improvement to an organization'’s processes
and its ability to manage the development,
acquisition, and maintenance of goods® or
services. Many organizations have derived
substantial benefits [4] from process improve-
ment using capability maturity models.

The CMMI [3] currently contains four
disciplines: Systems Engineering, Software
Engineering, Integrated Product and Process
Development (IPPD), and Supplier
Sourcing. Each is critical to building, fielding,
and supporting a COTS-based system.
Systems Engineering and Software
Engineering disciplines provide a basis for
the necessary development and maintenance
activities. IPPD provides for the timely stake-
holder involvement to support negotiations
among the spheres of influence. Supplier
Sourcing provides practices for selecting and
managing subcontractors that may be
extended to COTS vendors.

Process areas’, the primary building
blocks for the CMMI, are not a process — nor
are they process descriptions. It is intended
that practices in the CMMI process areas be
interpreted using an in-depth knowledge of
the organization, the business environment,
and any other relevant circumstances to
define and implement work processes that
meet the organization’s needs.

As illustrated in EPIC, the required
COTS-based systems approach demands
development and maintenance environments
and work processes that support the follow-
ing behaviors:

» Concurrent definition and evolution of
the four spheres;

» Business process engineering be-

comes integral to system engineering.

* Requirements are formed through
discovery of what is available in the
commercial marketplace and any
other sources.

» A flexible system architecture is
defined early and maintained until the
system is retired.

* Awareness of potential market-
place changes is kept current
throughout system development
and maintenance.

» Cost, schedule, and risk implications

for implementing the system and any
required business process changes are
an integral part of all trades.

» Continuous negotiation among stake-
holders.

» Disciplined spiral or iterative practices
with frequent executable representations
of the evolving system.

In the following sections, selected CMMI
process areas are identified for each of these
behaviors with guidance for interpreting the
process area for COTS-based systems. Not
all affected process areas are discussed nor is
a full treatment of the needed interpretations
provided. Although all process areas are
important in a COTS-based system, this arti-
cle focuses primarily on the project manage-
ment and engineering process areas, with ref-
erences to other process areas of particular
relevance.

Concurrent Definition and Evolution of
the Four Spheres
Development of a COTS-based system is
essentially an act of reconciling the four
diverse spheres of influence. The discovery
of requirements, the solution design, and the
formation of project parameters must be
fully integrated with stakeholders’ discovery
and analysis of capabilities in the market-
place. In addition, periodic disruptions to this
discovery must be accommodated. This
implies the following:

» Decision Analysis and Resolution. Well-
established, robust decision processes are
required to manage continuous negotia-
tion among the solution’s stakeholders.

» Technical Solution. Alternative solutions,
including solutions using mixes of differ-
ent COTS products, must be continuous-
ly developed and analyzed to reflect
changes across all four spheres.

Business Process Engineering Integral to
System Engineering

COTS products implement the vendor’s
assumptions about how end-user business
processes operate. This is very different from
a custom development situation where the
system is created to meet the demands of
predefined operational processes. For
COTS-based systems it means that the end-
users must be willing to modify their business
processes as they learn about candidate
COTS products. And, end-user business
processes may need to be redetermined and
renegotiated with new releases of the COTS
product across the life of the system.

The CMMI does not address changes to
the processes in the functional units of the
enterprise. However, the concepts in
Organizational Process Focus can be
expanded in application to plan and imple-
ment enterprise business or operational

May 2003

process improvement. In addition, a shared
vision of success among stakeholders, suit-
able incentives, and leadership (as described
in the concepts in Organizational
Environment for Integration) are critical to
aligning business processes with alternative
solutions.

Requirements Formed Through Discovery
of What Is Available
For COTS-based systems, it is unrealistic to
form a detailed set of requirements at the
start of a project and force the system to
meet that set. Three conditions cause this to
be true. First, as previously discussed, to
leverage the marketplace, requirements must
be informed by an understanding of available
COTS products. Second, as end users inter-
act with candidate COTS products and better
understand the capabilities in the marketplace
their expectations for the solution tend to
change. Third, the marketplace changes
product capabilities and introduces new tech-
nologies that provide unforeseen opportuni-
ties and challenges. Thus, requirements need
to be fluid enough to respond appropriately
to changes in the marketplace across the life
of the solution. This implies the following:

* Requirements Development. To aid in
making trades, prioritizing the require-
ments is an essential practice for a
COTS-based system. Stakeholders must
agree on a minimum set of must-have
requirements.

* Requirements Management. It is particu-
larly important to begin disciplined and
controlled requirements management at
project start to track identified and nego-
tiated trades.

Early Definition and Maintenance of a
Flexible System Architecture
Since the COTS products are owned by the
vendors, the framework by which the COTS
products and other components of the sys-
tem are combined to provide desired func-
tionality — the architecture — becomes an
important strategic asset. And, evolvability of
the system becomes a critical quality attribute.
The architecture must be based on cur-
rent and predictive knowledge of both the
enterprise and the underlying technologies of
relevant COTS products, and carefully craft-
ed to insulate parts of the system from
changes in other parts. The structure and
cohesiveness of the architecture must be
maintained while allowing the system to
respond efficiently to continuous COTS
product upgrades, technology advances, and
new operational or business needs until the
system is retired. This implies the following;
o Technical Solution. Alternate solutions
need to describe the project standards or
protocols (often referred to as glue code

May 2003

Improving Processes for Commercial Off-the-Shelf-Based Systems

or wrappers) that will be used to link
COTS products and other system com-
ponents. Previous make-or-buy decisions
may need to be revisited when an existing
product changes or a new product
becomes available.

Continuous Awareness of Changes
in the Marketplace
Relevant market segments and products must
be monitored to anticipate and track any
changes that could potentially affect the solu-
tion. Knowledge of key COTS products
must be sufficiently detailed to understand
their potential impacts and benefits to the
system. Hands-on evaluation of key COTS
products and prototypes of combinations of
products is essential.

The vendor is an important stakeholder
for the project providing unique insights into
ways that products work. Developing and
maintaining relationships with the vendors
who supply key COTS products may help
influence a vendor’s product direction (vendors
do not often respond to direction from a cus-
tomer). The specific nature of the relation-
ship will depend on the importance of the
COTS product to the solution and the ven-
dor involved. Not all vendors will encourage
(or entertain) a close-working relationship.
This implies the following:

» Integrated Supplier Management. Part-
nering with key vendors is critical.
Vendors, however, will seldom allow
process monitoring. Therefore, to deter-
mine product suitability, it is important
to conduct a hands-on evaluation of
each vendor’s product releases (includ-
ing any patches) in the context of their
use in the system. In addition, establish-
ing and maintaining relationships to
influence (not direct) future product
capabilities is critical. Relationships with
key vendors’ other customers, while not
explicitly covered in CMMI, may ampli-
fy this influence.

Cost, Schedule, and Risk Implications
Integral to All Trades
Each alternative solution must evaluate team
skills and expertise required to implement,
field, and support it as well as the associated
cost, schedule, and risks. In addition, fielding
of a COTS-based system includes the cost,
schedule, and risks of implementing business
process changes for the functional units that
are affected by the solution as part of the
total cost of ownership. This implies the fol-
lowing:

» Technical Solution. Engineering trades
must include the risk, cost, schedule, and
other programmatic factors that are asso-
ciated with each alternative solution.
Estimates of work product and task

attributes should be generated for each
alternative.

Continuous Negotiation Among
Stakeholders

Communication and effective decision-mak-
ing processes are critical to a COTS-based
system. Stakeholders who reflect the full
diversity of interests must be available to
quickly resolve mismatches among elements
in the four spheres of influence as they are
discovered, and agree that the evolving defi-
nition of the system will meet their needs.
Stakeholders must be actively involved in the
development process, particularly stakehold-
ers who will use the system to meet enter-
prise objectives.

Integrated teaming among disparate
stakeholders (as described in the process
areas within the 1PPD discipline) throughout
development and maintenance is essential.
The end users must be involved to confirm
the results of any and all negotiations.

Disciplined Spiral or Iterative Practices
With Frequent Executables
COTS-based systems are particularly suited
to spiral development work processes. In spi-
ral development, critical attributes of the
solution are concurrently discovered through
an evolutionary and continuous exploration
of the highest risk elements of the system.
Spiral development encourages frequent and
direct feedback from stakeholders while
reducing the risk of misunderstandings by
producing and validating executable repre-
sentations (prototypes or production releas-
es) of the evolving solution. This implies the
following:

* Project Planning. If not already imple-
mented, extensive effort may be needed
to revamp planning and engineering
processes to align with a risk-based spiral
development approach.

» Risk Management. The risk-management
strategy needs to be robust enough to
allow risk to (re)direct and manage the
project. Tracking the effectiveness of risk
mitigation is essential.

» Technical Solution and Product Integra-
tion. Frequent executable representations
of the evolving alternative solutions pro-
vide critical insights into how the solution
will operate and how the COTS products
will be integrated to achieve essential
solution behaviors.

Summary

COTS-based systems introduce unique chal-
lenges that demand fully integrated work
processes to accommodate the volatility of
the marketplace throughout the life of the
system. In particular, COTS products and
end-user operations must be reconciled —and

wwwi.stsc.hill.af.mil 21

Software Engineering Technology

re-reconciled — as new product releases
become available. This forces linkage
between business process, engineering, and
system development activities. Extensive
communication and strong decision-making
processes are necessary to facilitate cooper-
ation, negotiation, and continuous validation
of the evolving definition of the solution
across potentially disparate stakeholders.

EPIC illustrates a way to realize the
promise of COTS using a risk-based spiral
development process to actively manage and
balance knowledge across four spheres of
influence. EPIC is more than a way to select
a specific product. Rather, it shows a way to
define, develop, field, and support a coher-
ent solution composed of one or more
COTS products, any required custom code,
and implementation of any changes
required to end-user processes.

As with any CMMI application, the
unique aspects of COTS-based systems
must drive the development of effective
work processes. Developing and maintain-
ing a COTS-based system is more than
selecting products.

The authors solicit feedback from
organizations implementing EPIC or similar
processes.[]

References

1. United States Air Force Science Adviso-
ry Board. Report on Ensuring
Successful Implementation of

Commercial Items in Air Force Systems.

Barbara Tyson, Ph.D.,
is a senior member of
the technical staff in
the Software Engi-
neering and Process
Management Group at
the Software Engineering Institute. She
develops and promulgates software
engineering processes and organiza-
tional change. Tyson provided software
development and systems engineering
technical and management support in
industry, federal, and academic envi-
ronments. She has taught graduate
courses in marketing, management,
organizational change, and information
systems at Johns Hopkins and
Marymount Universities.

Software Engineering Institute
4301 Wilson Blvd. Suite 902
Arlington, VA 22203

E-mail: btyson@sei.cmmu.edu

22 CrossTALK The Journal of Defense Software Engineering

Process: An

SAB-TR-99-03. Washington, D.C.: SAB,

2000.

. Albert, C., and L. Brownsword. Evo-

lutionary Process for Integrating COTS-

Based Systems (EPIC). An Overview.
CMU/SEI-20030TR-009. Pittsburgh,

PA: Software Engineering Institute,
2002 <wwwi.sei.cmu.edu/publications/

documents/02.reports/02tr009.html>.

. Software Engineering Institute. CMMI

Product Team: Capability Maturity
Version 1.1.

Model® Integration,

CMU/SEI-2002-TR-11. Pittshburgh, PA:

Software Engineering Institute, 2002.

. Goldenson, D, and J Herbsleb. After

the Appraisal: A Systematic Survey of

Process Improvement, Its Benefits, and
Success.

CMU/SEI-95-TR-009. Pittsburgh, PA:

Factors That Influence

Software Engineering Institute, 1995.

Kruchten, P. The Rational Unified
Introduction. 2nd ed.

Addison Wesley Longman, Inc., 2000.

. Boehm, B. “A Spiral Model of Software
and Enhancement.”

Development
IEEE Computer May 1998: 61-72.

changes to the internals of a hardware
device or the software code. This does
not include vendor-provided mecha-
nisms for tailoring the product to specif-
ic operational environments.

. A stakeholder is any person or organiza-

tion with a vested interest in the out-
come of a project, including customers,
developers, engineers, managers, manu-
facturers, end-users, etc.

In EPIC, a solution is the integrated

' assembly of one or more COTS prod-

ucts or other reuse components, any
required custom code (including wrap-
pers and glug), appropriate linkage to the
organization’s broad architecture, and
any necessary end-user business process
changes.

. Tailored means non-source code adjust-

ment necessary to integrate the COTS
products into an operational system, e.g.,
scripts.

. Goods are any tangible output intended

for delivery to a customer or end user
(CMMI uses product).

. To distinguish them from generic

process names, CMMI process area

Notes

1. A COTS-based system can be one sub-
stantial COTS product tailored to pro-
vide needed functionality or multiple
components from a variety of sources,
including custom development, integrat-
ed to collectively provide functionality.

2. We use the term modification to mean

About the Authors

Cecilia Albert is a sen-
ior member of the
technical staff in the
Commercial Off-the-
Shelf-based systems
¥ & Initiative at the Soft-
ware Engineering Institute. Albert
served in the U.S. Air Force where she
developed major software programs
for simulation, command and control,
and mission processing of national
satellite systems. She taught at the
Industrial College of the Armed
Forces, and managed the archive and
dissemination programs at the
National Imagery and Mapping
Agency.

Software Engineering Institute
4301 Wilson Blvd. Suite 902
Arlington, VA 22203

E-mail: cca@sei.cmu.edu

names are underlined.

Cecilia Albert and Lisa Brownsword
will also be speaking at STC 2003 on
“Evolutionary Process for Integrating
COTS-based systems (EPIC)” on
Tuesday, 29 April, Track 8, Room 251
D-F, from 3:00-3:40 p.m.

Lisa Brownsword is a
senior member of the
technical staff in the
Commercial Off-the-
Shelf-based systems
Initiative at the Soft-
ware Engineering Institute. Browns-
word was on staff at the Computer
Sciences Corporation in support of
NASA/Goddard’s Software Engineer-
ing Lab and has worked for Rational
Software Corporation where she pro-
vided consulting to managers and tech-
nical practitioners in the use of transi-
tioning to software engineering prac-
tices, including architecture-centered
development, product lines, object
technology, and Ada.

Software Engineering Institute
4301 Wilson Blvd. Suite 902
Arlington, VA 22203

E-mail: lIb@sei.cmu.edu

May 2003

