
20 CROSSTALK The Journal of Defense Software Engineering April 2004

New system development has been dri-
ven toward component reuse by

many factors, including the emergence of
rapidly changing technology, faster devel-
opment timelines and limited budgets, the
inability of stove-piped legacy systems to
deal with information-/network-centric
warfare, and the emergence of new system
acquisition policies. Reusing components
of existing systems is a viable method to
overcome these factors. Effective reuse
allows system development to stay current
with technology, react to tightening sched-
ules and budgets, and manage develop-
ment risks.

Realizing the benefits of component
reuse for the federal government is one of
the U.S. Chief Information Officers (CIO)
Council’s focus areas. The council is cur-
rently developing overarching guidance to
define component-based architecting for
the federal government and the role of
component reuse within it [1]. However,
the CIO council’s objective is not to dic-
tate explicit reuse assessment procedures,
rather, it hopes to provide the high-level
guidance necessary to set out the scope of
such a program.

Similarly, the U.S. Navy is in the midst
of developing a component-based ship-
board computing environment called the
Open Architecture Computing Environ-
ment [2]. The program seeks to specify a
broad range of reusable components and
entire applications upon which to build
new systems. In both cases, and for the
engineering community at large, a stan-
dardized reuse assessment process would
be beneficial.

Upon implementing a component
reuse assessment process, the first ques-
tion that comes to the developer’s mind is
usually: “Which components should I
evaluate for reuse potential?” For almost
any system development effort, there are
an overwhelming number of reusable
components that might be considered, and
attempts to exploit these components
through using traditional engineering
approaches have been disappointing [3]. A

structured and tailorable decision-making
process, incorporating both qualitative and
quantitative analysis, is needed to filter out
components to be evaluated, select the
right reuse candidates, and justify reuse
decisions.

This article advances the current state
of research in the application of decision-
making processes for component reuse by
focusing both on the actual evaluation
processes and the filtering mechanisms

that must be in place to support a success-
ful process application. Most programs
have an extremely large group of poten-
tially reusable hardware and software com-
ponents from which to choose. Being able
to objectively filter this group and develop
a shorter list of the most likely reuse can-
didates for in-depth evaluation is critical to
meeting budget and schedule constraints.

Methodology
The methodology expands upon previous
work sponsored by the Software
Productivity Consortium (SPC) [4], the
Institute of Electrical and Electronic
Engineers (IEEE) [5], and others [3, 6, 7].
The SPC's Comparative Evaluation
Process (CEP) is a method for quantita-
tively evaluating software reuse compo-
nents. IEEE Standard 1517 defines reuse
evaluation considerations as part of a soft-
ware engineering life cycle, and lays out a
method for establishing a software code
reuse library.

The methodology uses aspects of the

CEP and life-cycle implementation guid-
ance from the IEEE. It adds qualitative
assessments as an initial reuse candidate
filter, extends the method to add hardware
component assessment, and defines
assessment criteria categories covering
functional, technical, and programmatic
evaluation issues.

The methodology is comprised of the
following steps: bounding the evaluation
effort, identification of candidate compo-
nents, defining evaluation criteria, evaluat-
ing alternatives, and analyzing assessment
results.

Bounding the Evaluation Effort
The first step is to define the scope of the
reuse effort. This presupposes the creation
of an operational concept, requirements
specification, architecture, or other state-
ment of expected system functionality,
interfaces, and deployment concept. These
specifications form the framework upon
which reuse decisions are built. In the
specification, the developers will have allo-
cated desired system functional require-
ments to objective or conceptual hardware
and software system components. This
allows the assessment team to generate a
list of candidate components during the
next step.

During a typical system life cycle, the
system specification will normally stop shy
of identifying design-level details or man-
dated implementations that overly con-
strain the developers design space, while
including enough detail to ensure compli-
ance with desired technical standards, lega-
cy interfaces, and other constraints.
However, heavy reuse of existing compo-
nents mandates some changes to this
approach. The specification for a system
featuring reuse will have many of its design
elements predetermined from the start.

These constraints should be identified
early in specification development if
known. Most likely, some reusable compo-
nents will be known at this time and will
influence specification development.
However, it is just as likely the developers

Applying Decision Analysis to
Component Reuse Assessment

Reusing and combining components of existing systems to create new ones provides a cost effective and flexible method for
developing new systems, and is one of the keys behind component-based architecting. However, achieving these benefits in the
real world is never easy. The challenge to system developers is not only determining which reusable components to evaluate for
possible incorporation into the new system, but also defining what constitutes a reusable component for that system. This arti-
cle proposes a methodology for applying decision analysis to support component reuse assessment.

Michael S. Russell
The Anteon Corporation

“... the assessment
process is designed

to be used as a
decisional aid to the

development team, not
to dictate the decision.”

Applying Decision Analysis to Component Reuse Assessment

April 2004 www.stsc.hill.af.mil 21

will not know or only have a general idea
about what types of reusable components
they want to incorporate into the system.
This mandates a system life-cycle model
that allows the specification to be modi-
fied after the best reuse component candi-
dates have been identified, assessed, and
selected for incorporation into the system.
Additionally, the integration of many
reusable components may bring up com-
patibility and interface problems that were
not readily apparent even after several sys-
tem design iterations. So a program man-
ager desiring to use any level of reuse must
be willing to revisit the original specifica-
tions as needed to ensure the resulting sys-
tem meets the customer’s requirements.

Identification of Candidate
Components
Individual system requirements, allocated
through the systems architecture, could
potentially be met with different combina-
tions of hardware, software, and business
processes. Programmatic requirements to
maximize using reusable components
complicates system design by adding addi-
tional variables such as proprietary proto-
cols, hidden or inaccessible algorithms,
and emergent functionality that appears
after the system is wired together.

Additionally, developers have to deter-
mine which portions of the system are
best built using reusable components,
which should be based on custom devel-
opment and how business processes are
supported by each. Together, potential
combinations of process and technology
form a multi-variable quandary for system
developers.

Identification of candidate-reusable
components should start by deciding what
required functionality should be instantiat-
ed by reusable components. The function-
ality to be replicated forms the basis for
the initial selection of candidate reuse
components. Second, programmatic or
legal requirements such as a mandate to
use component X for all new systems devel-
opment, will flesh out the initial list.

The initial list of candidates will take
some research and may result in an
extremely large set of components. In
some cases the desired functionality may
be replicated using reusable hardware
only, reusable software only, or some com-
bination of both. At this point in the
process, the developers should not filter
out potential reusable components on an
ad-hoc basis; rather, developers should
seek to identify as many potential compo-
nent options as possible to support a vari-
ety of systems design options and objec-
tive decision-making.

Defining Evaluation Criteria
There are four categories of criteria that
will be used to assess each reuse candidate.
Due to the variety of reuse candidates
being assessed, some candidates may not
receive an evaluation in each category;
however, this will be the exception.
Furthermore, these categories serve as the
starting point. Since each project is differ-
ent, additional categories may need to be
defined to evaluate required component
functionality – or functionality that the
component should not exhibit. Table 1
defines these categories.

Functional and non-functional
requirement criteria are derived from the
system’s specification document or other
document that outlines the system’s
requirements. If the criteria were derived
from a functional decomposition, assess-
ments will be generated for the lowest
level of decomposition (the leaf node
level). Ensure the matrix contains the
entire functional decomposition; other-
wise, dependencies relationships between
functions will be missing, and the assess-
ment results may become skewed.

Technical and programmatic category
criteria are derived from industry stan-
dards, government policies, best practices,
and other documents. This set of criteria
tends to focus more on the hardware and
physical interoperability of the reuse can-

didates. For reuse candidates that can be
separated into hardware and software
components, separate assessments will be
conducted. Conversely, reuse candidates
that cannot be separated into hardware
and software components will be assessed
as one system. The reusability criteria in
these sections generally try to answer the
following types of questions:
• Are the reuse candidates compatible

with existing government and industry
technology standards and mandates?

• Are the reuse candidates compatible
with existing organizational standards,
processes, and other organizational-
specific mandates?

• Are the reuse candidates mature and
stable enough to ensure their long-
term viability as a part of the system’s
design?

• Are the reuse candidates sufficiently
documented to allow rigorous analysis
of their functionality, interfaces, and
potential for integration with other
components?

• Have all schedule and budget issues
associated with the reuse candidates
been considered and documented?
Next, each evaluation criteria is

assigned a weight. This weight is used to
judge the relative importance of a specific
criterion to other criteria regardless of cat-
egory. For example, if the system has five
functional requirements, only four may be
deemed critical giving them a weight of
0.9. Table 2 contains the criteria weights
and definitions.

A system specification typically
addresses many requirements that are nice
to have versus essential for system success.
For instance, the ability of a word proces-
sor program to check the spelling of a
document may be critical (a score of 0.9),
while the ability to check document
spelling in real time while the user types

Category Definition
Functional
Requirements

Those requirements that outline the expected behavior of the system.
This behavior is required for the system to perform its intended purpose.

Non-Functional
Requirements

Those requirements that address expected behavior or other aspects of
the system that are not required for the system to perform its intended
purpose but serve as an enabler.

Technical
Requirements

Requirements that specifically define technical constraints and interfaces
that the components must adhere to.

Programmatic
Requirements

Requirements arising from budgetary, schedule, or resource constraints.
For instance, a component that will not be available until after the system
is delivered would not meet a schedule requirement.

Table 1: Evaluation Criteria Categories

Weight Definition
0.1 Failure to meet this criterion is minimal, or its impact on the system can be mitigated.

0.5 This criterion is an important contributor to system capability, but not essential.

0.9 This criterion is critical to system success

Table 2: Criteria Weight Definition

“The determination
of which evaluation

category takes precedence
will be different for
each system ...”

22 CROSSTALK The Journal of Defense Software Engineering April 2004

Software Engineering Technology

the document may not be critical (a core of
0.5). The correct weighting for each criteri-
on may be derived from many sources,
including:
• Customer requirements and expecta-

tions.
• System requirements volatility.
• Technical maturity of the system

domain.
• Statements of must have features versus

nice-to-have features.
Once the criteria have been defined

and weighted, evaluation matrixes listing
each criterion will be generated. The pur-
pose of the matrix is to standardize the
evaluation process, thus providing a clearer
and more defendable reuse evaluation
result and component recommendation.
Example matrixes are discussed in the next
section.

Evaluating Alternatives
Initial Assessment: Qualitative
The initial assessment is qualitative and
used as a mechanism to filter the set of
reuse candidates to select the two or three
candidates that offer the best match to the
system’s requirements. The actual number
selected will depend on the amount of
resources the program can expend to sup-

port more detailed assessments. To con-
duct the initial assessment, the evaluator
must first identify the modules (subcom-
ponents, software segments) of the reuse
candidate. The individual modules, rather
than the component as a whole, should be
assessed against the criteria. The objective
is to understand which portion of the
reuse candidate fulfills the criteria.

The evaluator will fill out a separate cri-
teria assessment matrix for each reuse can-
didate. For instance if there are four candi-
dates, the evaluator should have four com-
pleted matrixes at the end of the assess-
ment. The assessment matrixes will be
used to help the system developers filter
though the complete set of reuse candi-
dates, thus providing them with a rationale
for choosing the most likely reuse candi-
dates for further analysis. Figure 1 contains
an example initial assessment matrix.

To record the assessment, a 1 is put
into the Assessment Result column if the
reuse candidate fulfills the criteria; a 0 is
inserted if not. In general, the criteria
should be rather loosely interpreted, as this
qualitative assessment is designed to deter-
mine only if the reuse candidate should be
assessed in more detail later on.

After the evaluation team has finished

the initial assessments on each candidate
component, the system’s stakeholders will
use this evaluation as a decisional aid to
select the most likely reuse candidates. The
selected reuse candidates will undergo a
more thorough evaluation during the
detailed, quantitative assessment.

Detailed Assessment: Quantitative
The detailed assessment is quantitative in
nature and is used to select the optimal
reuse candidate to fulfill each system
requirement. Each reuse candidate selected
for further assessment during the initial
analysis will be evaluated again using one
of the methods in Table 3. The selected
assessment method will have a significant
bearing on the overall evaluation of that
reuse candidate, and becomes one of the
variables that figures into the component’s
overall evaluation. For instance, a hands-on
evaluation of a candidate component will
render better information than simply
reviewing marketing literature on the same
component.

For large reuse candidates, candidates
with many subsystems, or candidates that
encompass a mixture of hardware and
software, it is conceivable that multiple
assessment methods may be justified.
Another situation in which multiple assess-
ment methods might be used is when the
reuse assessment must be conducted under
a compressed timeline. In this case, the
evaluators may decide to conduct hands-
on testing on the most critical functionali-
ty that the reuse candidate must exhibit.

To perform the detailed assessment,
the evaluator will determine a score based
on the assessment results that indicate the
extent to which the reuse candidate fulfills
the requirements and metrics of each sys-
tem criterion. The scores and their defini-
tions are included in Table 4.

This assessment will result in two
scores: a criteria score and a composite
score. The criteria score is a weighted
assessment of the reuse candidate’s ability
to meet the requirements of each individ-
ual criterion. The composite score is the
overall score for each category. The
process for deriving the criteria score is as
follows:

criteria score =
(criteria score) x (criteria weight) x

(assessment method)

The composite score is derived in this
way:

composite score ΣΣ
i

= (criteria score i)

where:

 Component Name: (My Component) Reviewer: (Name)

Criteria

Number

Functional Requirements

Category

Assessment

Result
Reviewer Notes

1 Component Cost

2 Size of User Community

3 Maturity

4 Integration Cost

5
Schedule Delay Imposed by
Using That Component

Figure 1: Initial Assessment Matrix Example

Assessment
Method Weight Definition

Verified 1.0 Verified by the evaluator using hands-on examination in a lab
environment.

Demonstrated 0.7 Witnessed by the evaluator in a focused demonstration by an
experienced user.

Observed 0.5 Seen by the evaluator but not studied in any depth.

Reported 0.3 Described by a user, associate, or vendor, or seen in vendor or
third-party literature.

Table 3: Assessment Methods

Score Definition
0.1 No capability to meet the criteria demonstrated.

0.3 Meets <50% of requirements and/or customization not possible.

0.5 Meets 50% of requirements and customization is possible.

0.8 Meets 90% of requirements and customization is possible.

0.9 Meets all system requirements.

1.0 Exceeds system requirements and allows further growth opportunities.

Table 4: Reuse Candidate Scoring

April 2004 www.stsc.hill.af.mil 23

Applying Decision Analysis to Component Reuse Assessment

criteria score i =
(criteria score1 � criteria score n)

The component’s detailed assessment can
be captured in a matrix similar to Figure 2.

Analyzing Assessment Results
The final step in the process is to analyze
the assessment results and select the
reusable components that become part of
the new system. At this point, the system
developers will have to make a critical
determination. What is more important:
integration flexibility, functionality, pro-
grammatic mandate adherence, or some
other concern?

For instance, a candidate that imple-
ments a required function, but faces inte-
gration challenges, may be chosen over a
competing candidate that does not imple-
ment the function as well but is easier to
integrate into the overall system. The
determination of which evaluation cate-
gory takes precedence will be different for
each system, and will result in category-
specific weights – i.e., functionality is
twice as important as programmatic man-
date adherence.

The candidate score represents the
summation of the functional, non-func-
tional, technical, and programmatic cate-
gories with program-specific category
weighting. It is used along with the other
component scores as an aid to the system
developers so they can decide which reuse
candidates to incorporate into the system.
The procedure used to calculate the scores
is the following:

candidate score = ΣΣ
i

(composite
score i) x (category weight)

where:

composite score i = (functional
composite score, non-functional

composite score, technical
composite score, programmatic

composite score)

At this point, determining the best
reuse candidate seems as simple as select-
ing the reuse candidate with the highest
candidate score; however, this can be mis-
leading. The process is only designed to
guide the selection of components by
mathematically assessing those compo-
nents and providing a means by which a
reasonable comparison between compo-
nents can be made. As such, the assess-
ment process is designed to be used as a
decisional aid to the development team,
not to dictate the decision. The benefit of
the process to the decision maker is a
structured, repeatable, and defendable

process on which to base system design
decisions.

Conclusion
The Missile Defense Agency’s National
Team for Command, Control, and Battle
Management successfully implemented
this approach as part of their block 2004
systems development [8]. This project
demonstrated that the ability to objectively
judge the suitability of individual compo-
nents is a critical part of the design
process. Achieving the full benefits of
component-based architecting depends
upon making objective and optimal reuse
decisions. System developers must imple-
ment decision analysis into their compo-
nent reuse assessment process, and use this
assessment to guide their component reuse
decision-making process.◆

References
1. Chief Information Officers Council.

Component-Based Architectures and
the Federal Enterprise Architecture;
draft v1.6. Washington, D.C.: Federal
Enterprise Architecture Components
Subcommittee, 2003.

2. Program Executive Office, Integrated
Warfare Systems. Open Architecture
Computing Environment Design
Guidance, v1 (Interim). Washington,
D.C.: U.S. Navy, 2003.

3. Albert, C., and L. Brownsword.
“Evolutionary Process for Integrating
COTS-Based Systems: An Overview.”
Technical Report CMU/SEI-2002-TR-
009. Pittsburgh, PA: Software
Engineering Institute, July 2002.

4. Phillips, B., and S. Polen. “Add
Decision Analysis to Your COTS
Selection Process.” CrossTalk Apr.
2002 <www.stsc.hill.af.mil/crosstalk/
2002/04/phillips.html>.

5. Institute of Electrical and Electronics
Engineers. IEEE 1517-1999: IEEE
Standard for Information Technology
– Software Life Cycle Processes-Reuse
Processes. New York: IEEE Standards
Board, Jun. 1999.

6. Kang, K., et al. “A Reuse-Based
Software Development Methodology.”
Special Report CMU/SEI-92-SR-4.
Pittsburgh, PA: Software Engineering
Institute, Jan. 1992.

7. Griss, M. Architecting for Large-Scale
Systematic Component Reuse. Palo
Alto, CA: Hewlett-Packard Company
Laboratories, 2000.

8. National Team for Command and
Control, Battle Management, and
Communications. NTB Program Di-
rective: Component Reuse Assessment
Process. Washington, D.C.: Missile
Defense Agency, Nov. 2002.

 Component Name: (My Component) Reviewer: (Name) Component Source:

Criteria
Number

Functional Requirements
Category

Quantitative
Assessment

Criteria
Weight

Weighted
Assessment

Assessment
Method

Criteria
Score

1 Component Cost

2 Size of User Community

3 Maturity

4 Integration Cost

5
Schedule Delay Imposed
by Using That Component

Composite Score

Figure 2: Evaluation Matrix Example

About the Author

Michael S. Russell is
chief architect and tech-
nical director for the
Anteon Corporation’s
Center for Missile
Defense. He currently

supports the U.S. Navy’s Open
Architecture Program, and has served
as lead architect on numerous federal,
Department of Defense, and industry
enterprise architecture efforts. He is a
visiting lecturer with the Federal
Enterprise Architecture Certification
Institute, and is a member of the
International Council on Systems
Engineering’s central Virginia chapter.
Russell has taught courses in Systems
Engineering and Architecture Devel-
opment for the past seven years. He has
a master’s degree in system engineering
from George Mason University.

The Anteon Corporation
2231 Crystal DR
STE 600
Arlington,VA 22202
Phone: (703) 864-1258
Fax: (703) 521-1027
E-mail: mrussell@anteon.com

