LETTER TO THE EDITOR

Dear CRoOsSSTALK Editor,

In the article “Better Communication Through Better
Requirements,” CROSSTALK April 2004, Michael Hillelsohn
states, “An effective requirement communicates clearly to all
parties ...” Let’s examine the following assumption underly-

ing this article and most current requirements work: One can
communicate clearly with all parties (stakeholders) about sys-
tem needs by relying primarily on natural language (e.g.,
English, French, etc.) expressions.

I believe this assumption is false.

Natural language has value in introductions and

overviews, but is unsuitable for precise or complete specifica-
tion — even if scrubbed. Its words (components) and sen-
tences (structures) are inherently ambiguous, and its expres-
sions are bulky. To deal with this problem, branches of math-
ematics (algebra, statistics, calculus) have been developed to
express precise relationships about vatious facets of our
world. Mathematics, however, has its own problems with
readability.

This suggests that the needs of cost-effective require-
ments specification might be met with a compromise that
blends the familiarity of (well-defined) domain terminology
with the structured expressions of mathematics.

As an example, consider the need for functionality to cre-

ate a valid order. To understand this requirement, you must
understand the terms order, valid order, and create a valid order.
Order is both a domain entity and a system entity. As a sys-
tem entity it has attributes, value ranges, and relationships
with other system entities (e.g., customers). Valid order is a
[hairy] Boolean expression involving attributes and relation-
ships of several entities. Create is an action that should be
specified by defining the conditions that are TRUE after a
successful create (i.e. post-conditions) that are not TRUE
before.

Failure to supply these detailed definitions at requirements
time, means that they will be supplied later and most likely
will not be effectively validated. Therefore, the system must
fail in test or production to reveal misunderstandings or omis-
sions. Precision always happens (e.g., code), if a working sys-
tem is produced. The issue is not if precision, but when it
first appears, who provides it, and when it can be validated.

David Gelperin
LiveSpecs Enterprises
david@livespecs.com

Web Site: <www livespecs.com>




