

From the Publisher

Top 5 Awards Presentation
Ceremony

Coming Events

SSTC 2004 Conference
Highlights

Web Sites
Call for Articles

BackTalk

Winning Projects Exemplify Success for Developers and Acquirers
CrossTalk is proud to present this series of articles featuring the winners of the 2003
U.S. Government’s Top 5 Quality Software Projects.
by Elizabeth Starrett

6 The Advanced Field Artillery Tactical Data System Proves Successful in Battle
8 The DMLSS Program Brings Electronic Commerce to the Military Medical
Treatment Facilities

10 The H1E System Configuration Set Lays the Foundation for Decades to Come
12 The OneSAF Objective System Fits Individual Simulation Needs
14 Patriot Excalibur Software Enables Full-Scale Deployment of Battle-Ready Units
18 CrossTalk Honors the 2003 Top 5 Quality Software Projects Finalists

Using Software Metrics and Program Slicing for Refactoring
These authors discuss how program slices produced from a single software module are sorted by the
respective values of the metrics to guide refactoring, which improves software system quality.
by Dr. Ricky E. Sward, Dr. A.T. Chamillard, and Dr. David A. Cook

Right Sizing Quality Assurance
This article introduces quality efficiency indicators that facilitate right sizing the quality assurance function
to the customer’s need, or the producer organization’s own quality goals.
by Walt Lipke

3

16

24

28

30

31

DeparDepar tmentstments

TTop op FivFivee QualityQuality SoftwarSoftwaree PrProjectsojects

2 CROSSTALK The Journal of Defense Software Engineering July 2004

4

20

25

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Cover Design by
Kent Bingham.

ON THE COVER

CrossTalk Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: stsc.webmaster@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 30.

Ogden ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

From the Publisher

July 2004 www.stsc.hill.af.mil 3

2003 U.S. Government’s
Top 5 Quality Software Projects

For years, the department’s acquisition community has recognized software as a key
parameter for enabling the performance of our defense systems. That is an under-

statement to say the least because of the significant role that software plays in making
it possible to undertake the acquisition of complex systems to meet our dynamic
defense needs. Software helps us address the complex command, control, and com-
munication issues relating to a network-centric battlespace; increase the effectiveness
of our information and intelligence systems; improve the efficiency of our logistics

systems; and provide the joint, multi-mission capacity required to meet evolving warfighter capa-
bility needs.

The award-winning projects highlighted in this issue of CrossTalk demonstrate the con-
tinued ability of industry to meet the department’s acquisition needs. They are a testimony to
our combined ability to successfully conceive, design, field, and sustain complex defense sys-
tems. I congratulate the program managers and their government, industry, and academia teams
for their achievement of this award.

Our strong reliance on software as a critical performance driver has significant implications
within the acquisition community. More often than not, poor system performance is blamed on
software; but at times, software is called upon to compensate for system performance issues
attributable to non-software components. In either case, it is clear that software bears a signifi-
cant responsibility for a system’s ability to perform its intended mission, which is why the
department is emphasizing the acquisition of software in a systems engineering context.

Within the Department of Defense, a major focus on improving defense systems acquisi-
tion is derived from the Honorable Michael W. Wynne (acting under secretary of defense for
Acquisition, Technology and Logistics) who said that it is imperative to “… help drive good sys-
tems engineering practice back into the way we do business.” In the context of software, this
sends a clear message to the community that we must continue to embrace software engineer-
ing as a critical and integral part of a comprehensive, capabilities-based systems engineering
approach to acquisition.

Again, I congratulate the program managers and their industry partners, and encourage them
to share their lessons learned and best practices to further promulgate the successes of these
five projects across the greater acquisition community.

David R. Castellano
Deputy Director, Systems Engineering

Defense Systems
Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics

4 CROSSTALK The Journal of Defense Software Engineering July 2004

The Office of the Under Secretary of
Defense for Acquisition, Technology,

and Logistics and the CrossTalk staff
announce the 2003 U.S. Government’s Top 5
Quality Software Projects. This year’s win-
ning projects continually impressed reviewers
and judges through four rounds of scoring.

While reflecting on this year’s winners, I
found it interesting that over 40 percent of
the scoring criteria focuses on how happy
the customer is with the end product, and
less than 20 percent focuses on the process-
es used to develop the software. However,
again this year, the winning projects imple-
ment software development processes that
involve peer reviews, configuration manage-
ment, requirements management, and other
practices suggested by ISO 9001 and vari-
ous software maturity models.

Based on this, I decided to look for
additional consistencies among the proj-
ects. Another interesting commonality I
found in reviewing project information is
the requirement for these projects to inter-
face their software with other software.
This was also a common theme in many of
CrossTalk’s January 2004 articles from
senior military leadership: the requirement
for software to be able to network together
for information requirements. Many of this
year’s Top 5 winners do just that.

Customer support always impresses me.
In the Advanced Field Artillery Tactical
Data System (AFATDS), the Raytheon engi-
neers provided support in the conflict zones
in Iraq where the AFATDS was being used.
The Patriot Excalibur developers provide in-
house training at no charge and if the users
want training at their location, they only
need to fund the cost of the temporary duty.

Physically locating the developers with
the customers and users during development
also seemed to be a big help in the success of
some of the winning projects.

Given the rate of software project fail-
ures and the current U.S. government focus
on acquisition process improvement, I asked
customers of these projects to provide

some tips for acquisition success. Some
pointers I received include the following:
• Institute an Alpha Contracting (AC)

process, which places a heavy focus on
requirements definition. All stakeholders
(users representatives included) partici-
pate, ensuring adequate detail to the
requirements to preclude misinterpreta-
tion during software development. This
is done prior to contract award and also
allows a more accurate sizing of the
effort. AC also fosters an open commu-
nication that carries on through the
development. The AC process jump-
starts the team.

• Consider using multiple development
contractors to minimize the risk (impact
of failure) if one of the developers fails.

• If possible, have the contractors physi-
cally collocated with the government
team enabling daily communication.

• Consider facilitating collaboration with a
Web-based collaborative development
environment.

• Consider the spiral development
methodology and an implementation of
eXtreme Programming.

• Consider heavy use and participation in
open source software.

• Utilize advanced software development
processes such as the Capability Maturity
Models®.

• Select a proven government/industry
team with experience with the intended
end-user operating environment.

• Develop detailed plans and agreed upon
methods and metrics to measure
progress, then work the plan. Whenever
progress deviates from the plan, assem-
ble the team to establish corrective
actions, then track those actions to clo-
sure. It can be very rigorous and some-
times tedious but the result is worth it.
I would like to give special thanks to our

final judges whose respect in the software
community adds prestige to this award. I
would also like to thank Mark Schaeffer,
principal deputy, Defense Systems, Office
of the Under Secretary of Defense for
Acquisition, Technology, and Logistics for
continued sponsorship of this award.◆

Winning Projects Exemplify Success
for Developers and Acquirers

Elizabeth Starrett
CrossTalk

The Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics and the CrossTalk
staff announce the 2003 U.S. Government’s Top 5 Quality Software Projects. Again, this year’s winners represent
great success in delivering software to government acquirers.

U.S. Government’s Award-Winning
Quality Software Projects

The results are in, and it is clear that
the government is building many suc-
cessful software packages that are
top-notch examples in project man-
agement and quality control. Listed
below in alphabetical order are the
winners of the third annual U.S.
Government’s Top 5 Quality Software
Projects contest managed by
CrossTalk. We congratulate them
and hope you enjoy reading more
about their winning projects in the fol-
lowing pages.

• Advanced Field Artillery
Tactical Data System
Customer: U.S. Army/USMC/
U.S. Navy
Developer: PM Intelligence and
Effects and Raytheon Team

• Defense Medical Logistics
Standard Support
Customer: Military Health System
Developer: DMLSS Program
Office

• H1E System Configuration Set
Customer: Program Manager Air,
AIR-265
Developer: F/A-18 Advanced
Weapons Laboratory and Boeing IDS

• OneSAF Objective System
Customer: Program Manager
OneSAF Objective System –
U.S. Army’s Program Executive
Office for Simulation, Training,
and Instrumentation
Developer: OneSAF Objective
System Integrated Product Team

• Patriot Excalibur
Customer: AFMC
Developer: 46 TW/XPI (TYBRIN)

Quality Software Projects

® The Capability Maturity Model and CMM are registered in
the U.S. Patent and Trademark office by Carnegie Mellon
University.

David A. Cook, Ph.D., is a senior
research scientist at The AEgis
Technologies Group, Inc., working as a
verification, validation, and accreditation
agent in the modeling and simulations
area. He is currently supporting the
Airborne Laser program and has more
than 30 years experience in software

development and management. He was formerly an asso-
ciate professor of Computer Science at the U.S. Air Force
Academy, a deputy department head of the Software
Professional Development Program at the Air Force
Institute of Technology, and a consultant at the U.S. Air
Force Software Technology Support Center. Cook has pub-
lished numerous articles on software-related topics. He has
a doctorate in computer science from Texas A&M
University. <dcook@aegistg.com>

Carol A. Dekkers is president of Quality
Plus Technologies, Inc., a management
consulting firm specializing in creating
peace of mind for companies who want to
improve their software processes.
Software measurement, software quality,
process improvement, requirements, and
software sizing (using function point

analysis, as an example) are a few of the Quality Plus areas
of specialization. Dekkers is also the chair of the American
Testing Board, the U.S. participant in the International
Software Testing Qualifications Board Certified Software
Tester certification. She is a Certified Management
Consultant, a Certified Function Point Specialist, and a pro-
fessional engineer (Canada). She holds positions with the
Project Management Institute, the American Society for
Quality (ASQ), and the International Organization for
Standardization’s software engineering standards subcom-
mittee. ASQ’s Quality Progress named her one of 21 New
Voices of Quality for the 21st Century. <dekkers@quality
plustech.com>

Jack Ferguson, Ph.D., is manager of the
Appraisal Program at the Software
Engineering Institute where he is respon-
sible for the training, authorization, and
quality of appraisers for the Capability
Maturity Model® for Software (SW-
CMM®) and CMM IntegrationSM (CMMISM)
models who use the Capability Based

Assessment for Process Improvement and the Standard
Capability Appraisal Method for Process Improvement
methods. Previously, Ferguson was director of Software
Intensive Systems in the Office of the Secretary of Defense.
Before that, he led the teams that developed the Software
Acquisition CMM and the CMMI models. Ferguson has a
doctorate in aerospace engineering and is listed in Jane’s

Who’s Who in Aerospace for his work on Global Positioning
System spacecraft control systems. <jrf@sei.cmu.edu>

Lt. Col. Ricky Sward, Ph.D., U.S. Air
Force, is an associate professor of com-
puter science at the U.S. Air Force
Academy. He is currently the deputy
head for the Department of Computer
Science and the course director for the
senior-level two-semester Software
Engineering capstone course. Sward

received his doctorate in computer engineering at the Air
Force Institute of Technology in 1997 where he studied pro-
gram slicing and reengineering of legacy code.
<ricky.sward@usafa.af.mil>

Edward C. Thomas, director, U.S. Army
Communications-Electronics Command
leads efforts to provide state-of-the-art
software engineering products and serv-
ices throughout the U.S. Army and the
Department of Defense. These products
and services include enterprise-level soft-
ware architecting and integration; soft-

ware technology assessment and application; system-level
software engineering for more than 400 individual
Command, Control, Communications, Computers,
Intelligence, Surveillance, and Reconnaissance and busi-
ness systems; and worldwide technical support to war fight-
ing units. He leads a global organization of more than 3,000
military, civilian, and industry employees and manages an
annual budget of approximately $300 million. Thomas has
worked in various capacities for the Army since 1974 and
was appointed to the Senior Executive Service in 2001.
<edward.c.thomas@us.army.mil>

Richard Turner, D. Sc., is a research
professor in engineering management
and systems engineering at The George
Washington University. In support of the
U.S. Department of Defense, he supports
the Systems Engineering Directorate of
the Office of the Under Secretary of
Defense for Acquisition, Technology, and

Logistics, Defense Systems organization in assessing soft-
ware aspects of weapon systems programs, implementing
software acquisition process improvement programs, and
identifying and transitioning new software technology into
defense systems. Turner is a co-author with Barry Boehm of
“Balancing Agility and Discipline: A Guide for the Perplexed,”
and co-author with Dennis Ahern and Aaron Clouse of
“CMMI® Distilled.” He has a Bachelor of Arts in mathematics
from Huntingdon College, a Master of Science in computer
science from the University of Southwestern Louisiana, and
a Doctor of Science in engineering management from The
George Washington University. <rich.turner.ctr@osd.mil>

TOP 5 QUALITY SOFTWARE PROJECTS JUDGES’ BIOGRAPHIES

July 2004 www.stsc.hill.af.mil 5

SM CMM Integration is a service mark of Carnegie Mellon University.
® CMMI is registered in the U.S. Patent and Trademark Office.

6 CROSSTALK The Journal of Defense Software Engineering July 2004

One of the U.S. government’s soft-
ware success stories for 2003 is the

Advanced Field Artillery Tactical Data
System (AFATDS). In Operation Iraqi
Freedom (OIF), the AFATDS prevented
friendly fire accidents, provided addition-
al protection to friendly forces, and creat-
ed significant savings in weapon systems
and ammunition costs. All this was
accomplished through AFATDS’ timely
and effective fires delivered against enemy
targets in accordance with the comman-
der’s guidance.

In addition, as specifically noted by Lt.
Gen. Steven W. Boutelle, the U.S. Army’s
chief information officer, the AFATDS
has been a model procurement program
– on schedule, within budget, and meet-
ing all technical performance standards
and contractual delivery requirements.

The AFATDS’ greatest contribution
in 2003, however, was its outstanding per-
formance by the 600 systems used by the
front-line fire support units of the U.S.
Army and Marine Corps during OIF. Maj.
Gen. Michael Maples, former command-
ing general of the U.S. Army Field
Artillery Training Center, noted in July
2003 that the AFATDS was a significant
combat multiplier that helped military
units win the war, and prevented friendly
fire incidents from occurring during
OIF 1.

Overall, the AFATDS has become an
integral part of the Army and Marine
Corps command and control (C2) net-
work-centric architecture – delivering dev-
astating and accurate fires at the right
place and right time. Additionally the sys-
tem is proving to be a key transformation-
al agent as the Army moves to the future
force designs from its current force. While
OIF remains ongoing, the AFATDS con-
tinues in its role of preventing friendly fire
incidents, shortening times for effective
engagement of targets, and creating sig-
nificant savings in hardware and ammuni-
tion costs.

The Inner Workings
The AFATDS is a multi-service U.S.
Army/Marine Corps automated C2 system
for fire support used throughout the bat-
tlefield at all levels. The AFATDS provides
timely and effective fires delivered against
enemy targets in accordance with the com-
mander’s guidance. Built from the bottom
up, the AFATDS processes, analyzes, and
exchanges combat information within the
fire support architecture and the joint envi-
ronment. “It knows where every fire sup-
port platform is located on the battlefield,
the ammunition status, the range capability,
etc.,” said Lt. Col. James J. Chapman, prod-
uct manger Fire Support Command and
Control, Ft. Monmouth, N.J. “AFATDS
uses a robust communication architecture
that provides the entire theatre with a com-
mon understanding of the fire support
battlefield situation,” he explained.

The AFATDS includes interoperability
with other Army battle command systems,
coalition systems, Marine Corps C2, intelli-
gence and sensor systems, the Air Force’s
Theater Battle Management Core System,
and the Naval Fires Control System. The
AFATDS is capable of managing and task-
ing weapon systems from the joint com-
munity, including field artillery cannons
and rockets/missiles, fixed wing air fire
support, Naval surface fire support, mor-
tars, and Army/Marine aviation (helicop-
ter) attack systems. The AFATDS per-
forms these functions at echelons from
above corps down to platoon level.

On the battlefield, the AFATDS pro-
vides operators with a complete look at all
the engagement target options available to
attack a target. “A sensor, such as a human
or radar, detects an enemy target to engage
as a threat to be eliminated,” said Steve
Bohan, technical lead at Raytheon. “The
sensor submits a digital or voice request to
AFATDS, reporting the type of target,
location, and engagement instructions.
AFATDS compares the target data to com-

mander’s orders and available weapon plat-
forms, and develops options for all these
different platforms to destroy the target.
All options, along with AFATDS’ recom-
mendations are presented to the operator
for review. The operator can configure
AFATDS to make recommendations con-
sidering what is important to him: speed of
engagement, time, munition, preferences,
etc. After the target is engaged, AFATDS
tells the operator when the fire is complet-
ed, whether to fire more, and the effects
reported by the sensor; it then distributes
this information across the battlefield.”

The AFATDS software provides func-
tionality in four major areas: situational
awareness, battle planning, battle manage-
ment (execution), and fires/effects pro-
cessing. It provides target analysis and
weapon selection logic that ensures that the
right munitions are placed on the right tar-
get at the right time.

Several Quality Aspects
Quality is critical to the AFATDS since it
is being used in war as well as in live-fire
exercises where personnel safety is essen-
tial. Key to achieving quality is the use of
the Capability Maturity Model®‚ processes,
Raytheon Six Sigma, and a comprehensive
software cost estimation model. The
AFATDS System was developed at
Raytheon’s facilities in Fort Wayne, Ind. It
uses an incremental build approach with a
series of sequential releases containing
increasing functionality. Each build goes
through a full development life cycle,
including software requirements analysis,
design, code, unit test, and integration.

The AFATDS has been certified to
meet safety, security, and Defense
Information Infrastructure Common
Operating Environment Level 6 require-
ments. It interfaces with more than 50 dif-
ferent digital systems across the joint spec-
trum and is required to run on an ever-
changing series of hardware platforms.
The AFATDS has more than 5,000 system

The Advanced Field Artillery
Tactical Data System

Proves Successful in Battle
Pamela Palmer
CrossTalk

Quality Software Projects

While Operation Iraqi Freedom remains ongoing, one initial military success is the operation of the Advanced Field Artillery
Tactical Data System (AFATDS) in preventing friendly fire accidents in missions covering hundreds of miles of territory
and hundreds of maneuvering combat units. With the AFATDS’, robust communication architecture, the entire theatre was
provided with a common understanding of the battlefield fire support situation.

July 2004 www.stsc.hill.af.mil 7

The Advanced Field Artillery Tactical Data System Proves Successful in Battle

requirements and over 8,500 software
requirements. These requirements are doc-
umented in the System Software Specifica-
tion, Interface Control Document, and 16
Software Requirements Specifications that
total over 9,000 pages.

An extensive configuration control
system using Apex and Encompass tools
for the software environment assisted
software engineers in producing quality
code. The DOORS database is used for
tracking system and software require-
ments, and produces bi-directional trace-
ability between these documents and test
cases. Engineering change requests are
used to control changes to the system
requirements, and change orders provide
the authorization methods for working
controlled software changes.

“Software development tools allow us
to have top-to-bottom traceability all the
way back to system-level requirements,”
said Bohan. “Since DOORS is object ori-
ented, we can run queries and get reports
on changes, including printouts. It’s a
good tool for online requirements docu-
ments and can search through the 9,000
pages of requirements developed.”

Quality measurements are continuous-
ly performed and documented in weekly
and monthly metrics reports. These
reports are generated to track defect den-
sity, number of requirements integrated to
date, fault correction progress, software
changes initiated versus retested success-
fully, and tasks started measured against
tasks completed to date.

“Early versions of AFATDS used tra-
ditional waterfall development,” said
Cynthia Inteso, technical lead at Ft.
Monmouth. “As time progressed, each
AFATDS version became more complex
and since we had an established software
product baseline, we transitioned to an
incremental iterative build approach.”
This meant developing a series of builds,
each with a small set of requirements.
When rolled up at the version level, these
incremental builds allowed a more rapid
approach of providing quality-enhanced
capability to the user in the field.

Another facet of the quality process
uses a series of test procedures termed a
smoke test. A smoke test is run on each
build that exercises the main threads of
the system assuring build integrity and
software quality early in the development
cycle. After code completion, a full inte-
gration test suite is run over a 10-week
period to assure defect-free software at
final delivery. During recent government
testing, there were zero priority one or two
software defects reported in the 1.8 mil-

lion lines of code.
Testing was a big reason that a small

number of problems were reported from
locations in Kuwait and Iraq. “Our
processes enforce traceability of require-
ments through modules and into test
cases,” said Bohan. The government also
runs independent verification and valida-
tion, providing a separate set of eyes to
review software per criteria, he added.
“Testing will often show that a system
meets requirements, but then you see addi-
tional requirements to add. Everything in
this system is configuration managed for
complete control and repeatability.”

Communication was the main contrib-
utor to the AFATDS’ quality ratings,
according to Chapman. “Quality really
links back to open communication
between team members, so we were all
clear with regard to where we were going.”

Combat Success
The AFATDS V6.3.1 software was
materiel released to various Army and
Marine units in January 2003 and was
immediately deployed for use in OIF. This
was the first time the AFATDS was used
in combat. Raytheon engineers provided
support in the conflict zones. Combat-
inspired enhancements and problems
were immediately reported back to
Raytheon through various methods via the
Raytheon Field Integration Team.

The field engineers provided e-mail
problem definitions and information that

enabled the Fort Wayne engineers to re-
create and debug the problem in a lab
environment. Semi-weekly teleconfer-
ences with the engineers also helped
accomplish problem resolution in a timely
manner. The outstanding performance of
this software was demonstrated by the
small number of problems reported from
locations in Kuwait and Iraq.

According to one customer, the return
on investment from the AFATDS in per-
forming its stated mission is best meas-
ured by the results of OIF. While directing
the fires of more than 35,000 rounds of
munitions, 857 rockets, and 453 long-
range missiles, the AFATDS prevented
friendly fire accidents (fratricide) from
occurring among its users. The AFATDS’
coordination of air space alone allowed
friendly fixed- and rotary-wing aircraft to
safely and simultaneously engage enemy
targets along with friendly rockets, mis-
siles, and land and naval gunfire without
the loss of an aircraft due to friendly fire.

The AFATDS has proven itself
against the test of time. In the hands of
warfighting units since 1997, the program
has accommodated its end-users (Army,
Marine Corps, and Navy) by incorporating
the most current operational techniques,
as well as modern technologies.
Additionally, the AFATDS program has
been a role model for achieving the critical
capabilities development, as well as the
contractual necessities of maintaining
cost, schedule, and performance. The
AFATDS’ future appears to be as bright
and opportunistic as its past, since the
AFATDS will clearly be part of the transi-
tion to the future fires C2 systems for joint
and coalition operations.◆

Note
1. AFATDS Media Day, July 2003,

Rosslyn, VA.

Project Points of Contact
Cynthia Inteso
PM Intelligence and Effects
Technical Lead – AFATDS System
Development
Phone: (732) 532-6004
E-mail: cinteso@c3smail.

monmouth.army.mil

Lt. Col. Jim Chapman
PM Intelligence and Effects
Product Manager, Fire Support C2
Phone: (732) 427-3328
E-mail: james.chapman@c3smail.

monmouth.army.mil

“In Operation Iraqi
Freedom, the AFATDS
prevented friendly fire

accidents, provided
additional protection to
friendly forces, created
significant savings in
weapon systems and
ammunition costs ...”

8 CROSSTALK The Journal of Defense Software Engineering July 2004

The Defense Medical Logistics
Standard Support (DMLSS) product

suite has given a whole new meaning to
the term modern medicine, or more specifi-
cally to the delivery of modern medicine.
DMLSS establishes an electronic com-
merce solution that has radically trans-
formed the acquisition and distribution of
medical supplies to both peacetime hospi-
tals and deploying forces. Gone are the
massive amounts of medical inventory in
depots and retail activities. Instead, a mod-
ern just-in-time inventory system provides
medical supply support with response
times measured in hours, not days or
weeks.

“To support the hospitals in the 1990s,
medical logisticians in all three services
used manual processes to take require-
ments, including filling out paper requisi-
tions to give to the depot [warehouse dis-
tribution center],” said Col. Cathy
Erickson, the DMLSS program manager,
Joint Medical Information Systems Office,
TRICARE Management Activity, Falls
Church, Va. “Stored at the depots were six
to 12 months of medical supplies.
Turnaround time was 30 to 45 days. Every
receiving document was done manually,
including processing through the financial
system. Payment to commercial vendors
could take six months. Manual methods
were also used for inventory and equip-
ment records.”

With DMLSS, medical supplies are not
only delivered faster and more reliably,
they are also substantially less expensive.
High-priced local contracts between med-
ical treatment facilities and local pharma-
ceutical companies have been replaced by
high-volume, lower priced regional con-
tracts with dedicated vendors through the
Prime Vendor program, Erickson
explained. These savings will only increase
annually due to automated tools and a
comprehensive database integrated with
commercial purchasing and electronic

commerce practices. “This change in the
acquisition process has been pivotal to
transforming the military medical logistics
supply chain into an industry model.”

Using Department of Defense (DoD)
communications capabilities, forward
medical units are now able to order
materiel directly from commercial distrib-
utors using standard electronic commerce
transactions in a fraction of the time, at a
fraction of the cost. The DMLSS’ Web-
based ordering initiative allows customers
to electronically browse, compare, select,
and order non-prime vendor items via the
Internet, while retaining the ability to elec-
tronically interface with existing medical
and financial systems.

“A drug is ordered electronically. The
order is transmitted electronically to the
Prime Vendor who fills the order the next
day. Payment is done electronically and
received within 30 days,” said Erickson.
“This reduced facility stock has allowed us
to reduce depot supply to military unique
items.”

The full range of the DMLSS product
suite also provides capability for invento-
ry management, facility management,
equipment and technology management,
Web-based customer support, business
intelligence, customer area inventory
management, and assemblage manage-
ment. The Prime Vendor program pro-
vides access to more than 1 million med-
ical materiel items.

“We now have electronic cataloguing,
electronic money management, and quali-
ty assurance checking embedded for
Federal Drug Administration recall infor-
mation on drugs or equipment,” said
Erickson. “We also receive pricing
updates as recent as 30 days from negoti-
ation versus six months, reducing risk of
hospitals’ ordering at a wrong price. In all,
for every $1 spent on the DMLSS, $6.40 is
returned to facilities to deliver healthcare.
And we’re not done yet.”

Years in the Making
The DMLSS automated information sys-
tem was developed in three releases.
Release 1, deployed in the 1996-1997 cal-
endar years, included a facility manage-
ment and product and price comparison
capability. Release 2, deployed in the
2000-2001 calendar years, added customer
area inventory management capability that
included hand-held terminal technology.
Release 2 also included a Web-based cus-
tomer support module and an improved
Prime Vendor interface.

Release 3, currently being deployed
worldwide to 110 medical treatment facil-
ities and to 86 very small sites, adds equip-
ment management and maintenance,
higher level inventory management, and
readiness assembly management capabili-
ties. Release 3 replaces service legacy sys-
tems in DoD medical treatment facilities.
It also provides a comprehensive readi-
ness management program allowing a
seamless, automated, and efficient transi-
tion from peace to contingency/war. It
operates on varied platforms in support
of deployed operations and has the flexi-
bility required to meet military service
requirements.

The DMLSS system is a complex,
client-server system containing approxi-
mately 3.5 million lines of software code.
This code includes customized medical
logistics functionality developed at the
program’s development facility, as well as
five client-side and 17 server-side com-
mercial off-the-shelf products that have
been fully integrated into the system
design, explained Debbie Bonner,
Director of Operations at the DMLSS
Program Office. “All military groups met
in a joint development group to turn in
specific requirements. A configuration
control board put the requirements
together and sent them to the services
medical logistics chiefs for approval.
Those requirements were then put into

The DMLSS Program Brings
Electronic Commerce to the

Military Medical Treatment Facilities
Pamela Palmer
CrossTalk

The Defense Medical Logistics Standard Support product suite establishes an electronic commerce solution that has trans-
formed the acquisition and distribution of medical supplies to both peacetime hospitals and deploying forces. A just-in-time
inventory system provides medical supplies within hours, and lower priced regional contracts with dedicated vendors have
reduced costs.

Quality Software Projects

July 2004 www.stsc.hill.af.mil 9

The DMLSS Program Brings Electronic Commerce to the Military Medical Treatment Facilities

very specific SHALL statements.”
Three types of inputs were used to

develop requirements, said Lt. Col. Ken
Darling, Director of DMLSS Business
Process Reengineering. “The user provid-
ed direct input in changes to the system.
The medical logistics chiefs each provided
direct input needs independent of enter-
prise needs. Third was to consider what is
available in the industry today.” This last
consideration was made to build language
code into the system to support technolo-
gy that is years away in development such
as embedded tags on pallets that can be
machine read.

To make requirements changes
requires a meeting with users from all
three services, explained Bonner.
“Requirements are defined using standard
terminology that is built into our system.
Users meet to hash out new requirements
and develop concurrent terminology that
becomes part of that standard language.
They can use the system differently, but
we maintain standard terminology.” The
DMLSS development team remains very
close to its users. A representative from
each service sits in the program office,
two representatives are in the develop-
ment center, and a third splits his time
between Washington, D.C. and the devel-
opment center. “Lots of communication
is a big part of our process,” said Bonner.

More than 200 development worksta-
tions of up-to-date configurations, with
several operating systems simulate the
various field environments. The database
engine is currently Informix, however, a
new effort is underway to convert to an
Oracle database engine. “The conversion
is necessary because the depots support
the battlefield theatre, and they are ahead
of us using Oracle. This will put us on
one platform in peacetime and wartime.”

“Another advantage is cost savings,”
said Darling. “Our current platform costs
about $25,000 to $30,000. We think the
Oracle platform will cost less than $5,000.
There will also be cost advantages in
maintenance and overhead.”

The DMLSS team uses a Rapid
Application Development approach to
software development and sustainment,
and has refined the configuration manage-
ment and functional testing process to the
extent that it can support rapid evolution
and quality assurance goals, as well as
rapid deployment to the field for all soft-
ware upgrades and corrective actions.
Functional and technical experts test each
release of the system at the development
center. Defects are corrected through
quality assurance steps in the process.
Each development contractor is required

to provide CMM Level 3-like processes.
Peer reviews and code walkthroughs

are used for early problem identification.
Developers conduct unit testing as a part
of each software build. Integration testing
is a regular process in the effort to pro-
duce a DMLSS release. Special testing
plans are put in place for designated sys-
tem-wide business processes. Periodically
data anomalies and user-driven problems
occur in fielded systems. The DMLSS
development center addresses these
anomalies through a modification of the
data conversion process. The configura-
tion management organization is able to

rapidly patch data through a defined and
repeatable process and keep sites running
with uninterrupted operations.

Each development contractor is
required to report financial and schedule
performance according to an earned value
methodology. As such, cost performance
and schedule performance curves are cal-
culated and delivered as a part of a con-
tractually required monthly progress
report. These reports are reviewed with
DMLSS program and development center
leadership on a monthly basis during con-
tractor financial reviews. The latest cumu-
lative indices show a cost performance
index of 1.06 and a schedule performance
index of 0.98.

Lessons Learned
In looking back Bonner said, “Nothing
succeeds like success. Each time we put

out a release, we learned from our mis-
takes.” There was a lot of learning with
software and hardware deployment.
Bonner said she realized how important it
was to have weekly meetings within the
services to determine when they were
coming for installation and the amount of
training room space needed. “The first
release was Russian roulette to deploy, but
much more communication with later
releases made it a smooth delivery. We
learned it was very important that every
entity on the deployment team needed to
be on the same page through weekly con-
ference calls.”

Erickson agreed, adding, “We would
show up and the chief information offi-
cer would say that he didn’t know we
were coming, so we couldn’t tap into
their network.” Erickson said they
learned it was important to know the
hospital needs ahead of time and have
the users develop the deployment sched-
ule. “Then we held them on task to stay
on schedule, replacing deployment facili-
ties if one backed out.”

The DoD medical user community
has embraced DMLSS’ changes in acqui-
sition strategy and its pioneering elec-
tronic commerce efforts. The Prime
Vendor initiative capitalizes on the effi-
ciencies of commercial distribution chan-
nels, reduces procurement times from up
to 45 days to two days or less, reduces
inventory by up to 85 percent, and has a
95 percent fill rate in less than 24 hours.
Web-based ordering provides customers a
wide variety of commercial items at
negotiated and very competitive prices
and expedites payment through the
acceptance of standard military electron-
ic transactions and government-issued
credit cards.

The new DMLSS emphasis is on
smarter, more cost-effective acquisition
through electronic commerce, committed
volume purchasing, and long-term part-
nership with suppliers. The DoD medical
user community now has at their finger-
tips a fully automated and integrated
inventory and information management
system coupled with the best acquisition
business practices in place enabling them
to meet the medical logistics needs of the
military services in the 21st century.◆

Project Point of Contact
Col. Cathy Erickson
DMLSS Program Manager
Phone: (703) 575-9771
E-mail: cathy.erickson@

tma.osd.mil

“ ... forward medical
units are now able to
order materiel directly

from commercial
distributors using

standard electronic
commerce transactions

in a fraction of
the time, at a

fraction of the cost.”

10 CROSSTALK The Journal of Defense Software Engineering July 2004

Quality Software Projects

While it took 20 years to create the
functionality in the Navy’s current

fleet of 950 F/A-18 aircraft, the Naval Air
Systems Command (NAVAIR) govern-
ment-industry team recently fielded the
High Order Language Version 1 F/A-18E
and F (HIE) System Configuration Set
(SCS) that recoded 1.3 million lines of
F/A-18 assembly language code to a more
cost-effective High Order Language
(HOL) in just five years. In addition, every
warfighting function was verified in two
years of intensive lab and flight-testing.
Simultaneously, new hardware for the mis-
sion computers and displays was created,
and is considered part of the SCS. The
HOL is supporting aircraft production
schedules of 400 F/A-18 E/F aircraft.

The project’s goals were ambitious.
Make every piece of aviator functionality
fast, modular, and inexpensive enough to
ensure that aircraft capabilities can be
expanded for years to come. The challenge
was to create new hardware and software to
work in a real-time combat environment
while meeting production line schedules.
The risk involved simultaneously changing
hardware and software to the U.S. Navy’s
primary aircraft. Finally, not letting costs
escalate was a key requirement.

A Multitude of Innovations
The idea to convert the F/A-18’s real-time
processing from assembly language to the
more efficient HOL originated with the
manufacturer, Boeing Integrated Defense
Systems. “Boeing recognized the direction
we were heading, so they put their inde-
pendent research and development (IRAD)
dollars into getting it started,” said Harlan
Kooima, H1E project manager. “Then we
took over the idea for completion.”

The project’s requirements were based
on the detailed documents developed over
20 years that describe how the F/A-18
operates. “The basic requirement was to
make the new software package look and
function the same as the previously fielded
system,” said Kooima. “Any deviations
were captured and stated in written docu-

ments. “A solid understanding of require-
ments was key to our success.”

The software was redesigned from a
top-down approach to an object-oriented
design. In the legacy system, written in
CMS2 assembly language, rehosted func-
tions were recoded in C++. A significant
investment was made to ensure the archi-
tecture supported on-demand, all-the-time
requirements of a real-time system, while
being modular and easily maintainable.
“Today we have much better structured
software that has good partitioning,” said
Kooima. “When we make changes in one
area, it does not induce problems in anoth-
er area. For example, if a change is made to
a radar module, we have a high level of
confidence that it won’t affect the radios.”

“There are also benefits transitioning to
a layered software architecture,” said Marty
Montgomery, H1E software manager at
Boeing Integrated Defense Systems. “In
testing, we were able to adapt quickly to
multiple versions of target hardware and
low-level software with only a few prob-
lems.”

This $160-million software and $210-
million hardware project involved more
than 100 major warfighting capabilities
such as Heads-Up Display and Backup
Mode, with more than 1,000 possible oper-
ator selections. According to Kooima,
there were just 166 instances of differences
in operator interfaces between the legacy
system and the HOL conversion. These
were understood and negotiated prior to
implementation.

“Our goal was to be as close to the
fielded legacy system as we could be,”
Kooima said. “Out of the million-plus fea-
tures the operator uses on a mission, we
kept the same basic commands he is used
to. We didn’t change his life.”

Commercial off-the-shelf (COTS)
products were leveraged to automate code
generation. The development environment
consisted of real-time models running on
Silicon Graphics workstations and a debug-
ger tool set running on a Sun server. The
project team created a new capability mak-

ing the entire mission computer
Operational Flight Program (OFP) avail-
able on a user’s desktop computer for user
interface development, training, and
debugging. The desktop environment
(DTE) allowed developer tests to occur on
a workstation versus a separate test facility.
The DTE mitigated risks associated with
parallel hardware/software development
and was acquired for use on AV-8B. Also
the innovation of an automatic display
code generator shows promising use in
flight simulations, test facilities, trainers,
and technical publications.

“The portability of the commercially
based flight software and its layered archi-
tecture makes it usable in simulators and in
trainers,” said Montgomery. “COTS tools
have allowed us to prototype and advance
our final display software, and that has
helped reduce cycle time and errors. The
DTE has the same type of capability in
non-display software and has really impact-
ed the quality of what we take to the tar-
get.”

Kooima added that the COTS-based
system is the enabler for future capability
enhancements. “It allows us to grow and
add more computing horsepower on
demand, for example, to expand the F/A-
18’s use into an electronic attack role. We’ve
made updating the aircraft’s entire function-
ality more modular, economical, and faster.”

The H1E SCS hardware was built from
the ground up. The F/A-18 E/F Advanced
Mission Computer (AMC) is a totally new
development and a move to commercial-
based architecture for the hardware, said
Montgomery. The two AMCs contain six
processor modules each, and are connected
using a high-speed fiber channel. There
were unique challenges for COTS, he said.
From a software standpoint, the biggest
challenge was for these intense, embedded
software applications to have the built-in
software test capability to perform debug-
ging. COTS products have fewer capabili-
ties than our custom hardware develop-
ments. So the DTE was built for this rea-
son. “Due to the layered architecture, we

The H1E System Configuration Set
Lays the Foundation for Decades to Come

Pamela Palmer
CrossTalk

Recoding 1.3 million lines of F/A-18 assembly language code to a more cost effective High Order Language (HOL) has
made every piece of aviator functionality fast, modular, and inexpensive enough to ensure that aircraft capabilities can be
expanded for years to come. The HOL is a significant leap forward in flexibility of computer code and test efficiency.

July 2004 www.stsc.hill.af.mil 11

The H1E System Configuration Set Lays the Foundation for Decades to Come

could run the OFP on our desktops and
use Microsoft Studio to mature the product
before we went to the target hardware. This
minimized the number of undetected
bugs.”

To deal with supplier changes to COTS
products, Kooima said, “We have a set con-
figuration baseline. The hardware supplier
can make changes to the baseline as long as
the functional equivalent is still there. For
example, an integrated circuit can change
as long as the supplier ensures it is the
functional equivalent when it is done.

In another major hardware enhance-
ment, processing for the displays was put
inside the computer versus inside the dis-
play head as it was on the legacy system.
The Engenuity Technologies, Inc. Virtual
Application tool makes cockpit display
generation more like desktop displays and
is based on commercial standard,
OpenGL. As a result, this hardware
allowed the team to use commercial tools
to write more than 40 percent of the soft-
ware at a much-enhanced productivity rate.
It saved a lot of time and money.

Quality and Test Measures
In testament to the quality in the project,
Boeing matured from a Software
Engineering Institute Capability Maturity
Model® (CMM®) Level 2 to a Level 5
using H1E SCS as part of its assessment.
While there were trade offs in reaching
Level 5 while completing the project,
Kooima said he still believes doing it was
a benefit. “Since we were developing
totally new software from scratch along
with new hardware, we didn’t have to
make changes to baseline processes and
tools with the CMM.”

The H1E SCS demanded more coordi-
nation than previous programs, said
Kooima. It involved two program execu-
tive officers, two different N-78 sponsors, a
major aircraft delivery program, and two
fleet squadrons. Each delivery consisted of
up to 1.4 gigabytes of data and executables.
The test effort was huge in scope. “We
weren’t focused on the deltas from a previ-
ous baseline. We had to look at the entire
F/A-18 system with fresh eyes and effi-
ciently test everything from the bottom
up.” The total integration test effort for the
H1E SCS was 3,000 hours and 500 flights.

Testing really was a build up approach,
said Kooima. The lowest testing level was
done on software engineers’ desktops.
From there it migrated to the software test
facility that would run the software on real
mission computer hardware. Then it went
to the F/A-18 Advanced Weapons
Laboratory (AWL) where it underwent full
system integration testing on real, integrat-

ed avionics systems, aircraft ground- and
flight-testing. “The entire focus on finding
and resolving errors early was extremely
successful.”

While it is still controversial,
Montgomery said that a real concerted
effort was made to get into functional
capability testing as quickly as possible; the
DTE made this possible. “We did not do
low level unit tests; instead we went straight
into functional desktop testing. We saw the
benefits.”

Boeing identified three quantitative
goals to ensure software quality: cost of
less than 1.5 labor hours per line of code,
delivery of less than 0.5 defects per thou-
sand lines of code, and maintaining cost
performance indices and schedule per-
formance indices of greater than 0.95.

Montgomery said these goals were
reviewed weekly and were successfully met
throughout development.

The team relied on the AWL’s proven
processes for measuring system maturity
before determining a product is mature and
ready for operational testing. Kooima said
that other valuable F/A-18 processes were
its risk identification and mitigation
processes, as well as a rigorous process for
assessing the risks and costs associated
with changing requirements. The AWL’s
process for managing changing require-
ments calls for agreement by a NAVAIR
Level 1 lead before the change is accepted
into the project.

Kooima said that the H1E SCS’s

comprehensive metrics approach provid-
ed insight into product, project, and
process quality throughout development.
A summary of H1E plans versus actual
metrics follows and has been independ-
ently verified.
• Requirements Control. Full function-

ality to the initial plan was delivered.
Requirements scope was expanded to
provide additional functionality.

• Source Lines of Code. This effort
was primarily a conversion of 1.3 mil-
lion lines of assembly code to HOL;
however, it also included 3.8 percent
growth in new, sponsor-requested
warfighting capabilities and systems.

• Schedule. Product delivery occurred in
the month promised.

• Software Engineering Productivity.
Productivity for software engineering
of legacy F/A-18 systems is 3.5 hours
per line of code. The H1E SCS
achieved a rate of 1.27 hours per line of
hand-generated code.

• Defect Density. The number of
escaped defects is .007 per thousand
lines of source code for the first 90
days of operational use.

• Test Activities. Test activities (hours,
type, anomalies) were tracked to ensure
complete coverage of requirements.

• Staffing. Began the program with a
staff of 40 C++ programmers. At its
peak, which corresponded with the
dot-com demand for experienced pro-
grammers, the H1E SCS utilized 180
software developers.

The Benefits Continue
In an added reuse bonus, the AV-8B pro-
gram is picking up the H1E SCS software
processes for use during the later phases of
its own HOL conversion. Both programs
create similar types of weapons and sub-
systems, said Kooima. They were going
through a similar upgrade program and
Boeing was the prime contractor. Boeing
again recognized the business opportunity
and moved forward with the reuse using
IRAD money.

The H1E SCS lays the foundation for
the E/F aircraft of the future, said
Kooima. Using the HOL language is a sig-
nificant leap forward in flexibility of com-
puter code and test efficiency. It is the
foundation on which new big-ticket, acqui-
sition systems like Active Electronic
Scanned Array can be built and fielded in
less time. It provides growth for expanding
the aircraft’s utilization to support the
Navy’s need for a replacement to the EA-
6B. Indeed, the H1E SCS lays the founda-
tion for the Navy’s aircraft advancements
for decades to come.◆

“This $160-million
software and
$210-million

hardware project
involved more than 100

major warfighting
capabilities ... with more

than 1,000 possible
operator selections.”

12 CROSSTALK The Journal of Defense Software Engineering July 2004

Quality Software Projects

Computer modeling software must meet
many requirements: there must be com-

mon pieces, the components must be flexi-
ble for different requirements and be able to
meet a user’s particular need, and the soft-
ware needs to be everything to everyone.

This challenge was faced by the U.S.
Army’s modeling and simulation division:
how to address a broad range of require-
ments for a flexible simulation battlefield
modeling architecture with a supporting set
of components, tools, and services that
allows individual users to compose a simula-
tion to meet their individual needs.

This is where the One Semi-automated
Forces (OneSAF) Objective System (OOS)
comes in. The OOS is composable, next-
generation Computer Generated Force
(CGF) modeling software that represents a
full range of operations, systems, and control
processes from the individual combatant and
platform level to brigade levels. The OOS
accurately and effectively represents specific
combat, combat support, combat service
support, and command, control, communi-
cations, computers, and intelligence activities.
“OOS provides a complete simulation envi-
ronment that supports the entire simulation
life cycle from simulation and model devel-
opment through scenario generation and
execution to after-action analysis and
review,” said Tom Radgowski, program man-
ager for OOS Architecture and Integration.
“To meet diverse domain requirements,
OOS is developed as a composable line of
individual products. Users can combine dif-
ferent products within the OOS product line
to meet their individual needs.”

As an example of what composability
provides to the user, Surdu asked Team
OneSAF how the peer-to-peer architecture
could be scaled to handle hundreds of thou-
sands of simulated entries. “They told me
that the network services layer was architect-
ed to allow the simulation to operate in its
peer-to-peer mode or it could be run on a
single multiprocessor server with shared
memory,” said OneSAF project manager,
U.S. Army Lt. Col. John Surdu. “Due to their
layered architecture of OneSAF, this differ-

ent mode of operation would be completely
transparent to the rest of the simulation.”

The OOS is designed for use across the
three Army modeling and simulation
domains: Advanced Concepts and Require-
ment; Training, Exercises and Military
Operations; and Research, Development,
and Acquisition. “The requirements for this
simulation were that it meet the needs of
sophisticated analysts who need high fideli-
ty – as well as staff trainers – who need low

fidelity and high entity count,” said Surdu.
“Team OneSAF has done an exceptional
job of creating a scalable, flexible, extensi-
ble, composable architecture that is techni-
cally the best simulation architecture I have
seen in several years of working under the
hood in military simulations.”

Team OneSAF Structure
The Team OneSAF approach incorporates
government managers, contractor develop-
ment teams, and end users into a single

organization. The U.S. Army Program
Executive Office for Simulation Training
and Instrumentation awarded a series of
task orders to hand pick a set of contractors
that could best build the individual pieces of
the OOS. They also enlisted on-site repre-
sentation from the end-user community and
reach-back access to a wider group of users
for the development process.

“The OOS development effort is char-
acterized by an unparalleled level of cooper-
ation between the government team and the
various contractor teams working on the
program,” said Radgowski.

Science Applications International
Corporation (SAIC) served as the OOS
Architecture and Integration Task Order
lead, and established a comprehensive
process set for software and system develop-
ment. “Our processes are tailored from gen-
eral SAIC processes that have been external-
ly certified as Capability Maturity Model®
Level 4,” says Radgowski. “OOS processes
are documented in a Web-based electronic
process guide that is available to all OOS
developers. Compliance to these processes is
monitored by independent quality assurance
audits and tracked by software development
metrics. Peer reviews occurred at all phases
of the development to ensure timely defect
prevention and optimal product quality. Our
metrics indicate that these reviews identify
more than 90 percent of all defects.”

An Integrated Environment
The core development team is collocated in
a single facility and is supported by the OOS
Integrated Development Environment
(IDE). The IDE is a comprehensive Web-
based management and development envi-
ronment that enables an efficient and effec-
tive interchange of ideas and concerns, and
facilitates the swift resolution of issues as
they occur.

The IDE also provides support services
for OOS participants (such as beta site
testers) who participate in the program at
geographically diverse locations. Access to
the IDE is provided throughout the OOS
Web site <www.onesaf.org> providing

The OneSAF Objective System Fits
Individual Simulation Needs

Chelene Fortier-Lozancich
CrossTalk

Can battlefield simulation software be everything to everyone? The challenges faced by the One Semi-automated Forces
(OneSAF) Objective System found out the answer when faced with the Army’s modeling and simulation needs, and in the
process set a new standard for what they did and how they did it.

“Peer reviews occur
at all phases of the
development ... Our
metrics indicate that
these reviews identify
more than 90 percent

of all defects.”

July 2004 www.stsc.hill.af.mil 13

The OneSAF Objective System Fits Individual Simulation Needs

access to numerous tools that help manage
action items, peer review artifacts, problem
trouble reports, risks, and help desk requests.
The BuildBoy application routinely builds
and automatically regression tests new OOS
software, and publishes build results and sta-
tus on its Web site.

The Web site is configuration managed,
which enables secure, distributed develop-
ment. The IDE capabilities are a combina-
tion of commercial off-the-shelf (COTS)
products, custom-developed products, and
customized configurations of COTS prod-
ucts, and represent an open network archi-
tecture that is capable of scaling large num-
bers of development machines, rapidly
introducing new resources and providing a
stable, secure development environment.

OOS Quality Build Methods
The OOS IDE provides automated tools to
collect and report technical and manage-
ment metrics that are reviewed on a regular
basis using a formally defined Quantitative
Process Management and Software Quality
Management process to support the OOS’
formal metrics plan. Bi-monthly meetings
are held to analyze trends and identify areas
where improvements can be made. This
allows program management personnel to
drill down and examine productivity or qual-
ity issues in detail, according to Radgowski.

The OOS is built using a spiral develop-
ment methodology and extreme program-
ming (XP), and is designed to be hardware-
platform and operating-system independ-
ent. The developers build and integrate their
software on Windows, Linux, and Solaris
systems and formally test the results after
every development spiral.

“The OOS requirement to integrate a
significant portion of directed reuse com-
ponents into the end product is enabled by
the application of XP concepts,” said
Radgowski. For example, the OOS uses a
succession of small, rapid, build cycles to
integrate frequent releases, therefore
avoiding the problems of a single integra-
tion. The process begins with overall four-
block (A, B, C, D) planning: a development
process where user feedback is incorporat-
ed into the final product and tested at sites
across the country. Currently, Blocks A
and B have been distributed to select
organizations within the Army, Navy, and
Marine Corps.

Block A was developed to be an initial
implementation of the OOS architecture
with the corresponding tools, components,
and services to allow it to execute entire sim-
ulation life cycles. Block B contains a com-
prehensive set of current OOS compo-
nents, including the system, unit, entity, and
behavior composers; the command, control,

communications, computers and intelli-
gence adapter; the military scenario develop-
ment environment; the 3D viewer; the after
action control component; the environmen-
tal runtime databases; the data repositories;
and the initial software application composi-
tions for execution.

“Each of these four blocks is deployed
to selected sites for evaluation and com-
ment,” said Radgowski. “We provide a user
feedback tool so that beta site evaluators
can provide comments back to the develop-
ment team. Senior OOS staff individually
evaluate each comment ... If they find a
bug, or give us insight on how to make
OOS better, we can react very quickly to
their comments.”

The process begins with overall block
planning, which determines the goals for the
respective block, and allocates the goals into
eight-week builds for individual software
development teams. Each team performs
detailed planning for a given build four
weeks prior to the beginning of the build.
Each build contains requirements analysis,
design, code and unit test, and software inte-
gration phases. Once a development team
completes these phases, it formally hands its
software to the Integration and Test team,
which conducts an independent test of the
code. If the code passes this test, it is nom-
inated to the Test Working Group for desig-
nation as a user assessment baseline (UAB).
If approved, the UAB is then made available
for user evaluation and demonstration. This
continuous integration process helps ensure
that independently developed OOS compo-
nents remain in sync.

“The use of radical programming has
been of significant benefit. Every eight
weeks, the program executed Integration
and Test and a review of the current state of
the software by engineers and, most impor-
tantly, the users,” said Gregory Miller, senior
engineer, Alion Science and Technology,
support to TRADOC Project Office
OneSAF.

Because of the combined programming
methods, any upgrades or fixes are prompt-
ly made and the engineers get immediate
feedback from users on how to make the

system better. “Team OneSAF is manned by
people recognized as gurus within the mod-
eling and simulation field. The composable
architecture … creates a unique solution and
has made fans of skeptics,” said Surdu.

Cost
The OOS program was delivered extremely
close to cost and time estimates. Since the
software is designed to allow all users to
interact on the same software, the govern-
ment only has to maintain one system
instead of several. Implementing standardi-
zation methods also saves time in training
and sharing of information.

One impressive recommendation for
the software is the expressed desire for
other major programs such as the Marine
Corps Combined Arms Staff Trainer, and
the Army’s Synthetic Theater of War and
Program Executive Office for Simulation
Training and Instrumentation Common
Gunnery Architecture programs to use the
OOS software in their development efforts.
As well, the Army’s Future Combat Systems
program has designated OOS as a training
common component.

The Army’s investment is already paying
off. “On quarterly earned value reports, it is
amazing for programs to be within 1 per-
cent cost and schedule variance,” said Surdu.
“Typically the OOS team is within 0.5 per-
cent — and the program has never been
restructured. I have a strong technical back-
ground, but the engineers working on OOS
amaze me daily with the strong technical
decisions they make. The contractors work-
ing on Team OneSAF take the long-term
view to make sound technical decisions that
are right for the customer.”◆

Project Point of Contact
Tom Radgowski
SAIC
12901 Science DR
Orlando, FL 32826-3014
Phone: (321) 235-7739
E-mail: tradgowski@

ideorlando.org

Team OneSAF is characterized by unparalleled cooperation between government and contractors.

14 CROSSTALK The Journal of Defense Software Engineering July 2004

Preparation for a wartime deployment
often begins during peacetime. It can

mean the difference between an organ-
ized, battle-ready unit and a unit that is
still trying to schedule troops, order sup-
plies, and prepare for battle. During a
major deployment such as Operation
Iraqi Freedom, currently under way, a dis-
ciplined tool set for scheduling aircraft,
people, training, and flying must be in
place. This tool set must also, in addition
to providing all necessary information, be
a one-stop-shopping experience that can han-
dle day-to-day tasks, easily provide access
to data, and combine these and other
combat-capable assets together to pro-
vide the U.S. Air Force the ability to meet
any threat.

All this does not matter if the product
sits on the shelf.

Patriot Excalibur (PEX) is software
that is built from the bottom up with the
warfighter in mind, according to PEX
group lead Linda Crabtree. “The software
is developed for the user – that was a core
requirement. A product that does every-
thing, but not in the way the user wants it
done, sits on the shelf. Our product does
not sit on the shelf.”

The need was simple: Create a
squadron-level automated environment
where data entered in one application is
usable throughout others, during both
peacetime and wartime. The software
must also keep the user in the loop, pro-
vide single- and multi-crew scheduling,
enable single input of data, be interoper-
able with external systems, and be cost
efficient. “We provide a squadron-level,
PC-based tool set that helps aircrews
conduct effective, timely operational
tasks in an integrated, standardized sys-
tem of products that connects the func-
tional areas across the squadron,” says
Crabtree.

PEX’s major design goals were to cre-
ate a product based on commercial
Microsoft standards, be configurable by
individual units, be interoperable with

external systems and databases, and
derive its program requirements by keep-
ing the user in the development loop.
“This is the first software [squadron
automation package] I have seen that was
tailored to meet all facets of a flying
squadron’s operations,” says Master Sgt.
Jeffrey Crawford, operations superin-
tendent.

An Organized Squadron
Squadron-level aircrew and aircraft sched-
uling during wartime deployment is usual-
ly accomplished with a different set of
software tools than those used by the
same unit at home during peacetime,
according to Crabtree. “Learning a differ-
ent set of tools during wartime deploy-
ment compounds the difficulty of an
already stressful situation. It also adds to
the spin up time needed to get ready, as a
lot of raw data such as aircrew names,
qualifications, aircraft data, and scheduling

parameters need to be input into the dif-
ferent scheduling systems.”

Previous squadron automation soft-
ware was adequate for basic aircrew sched-
uling functions, but was limited and did
not offer the broad range of functions that
defines PEX. “Previously, our aircrew
entered all of their meetings or appoint-
ments into a Microsoft Excel spreadsheet
or placed them on a dry-erase board,” says
Crawford. “Flight commanders had to
print out this spreadsheet or consult the
board in order to coordinate the weekly
flying schedule.”

PEX has the ability to interface with
the Aviation Resource Management
System (ARMS), providing several bene-
fits, according to Crawford. PEX provides
squadron decision makers with real-time
aircrew training currency information;
flight managers can pull currency informa-
tion from the ARMS into PEX on a daily
basis; the aircrew can view their training
status from their desktop, and no longer
have to request flight management person-
nel to run an ARMS report that shows
what events are coming due.

PEX can also interface with the Core
Automated Maintenance System, giving a
squadron the ability to have real-time air-
craft status on a desktop, something that
was lacking from previous squadron pack-
ages. “From an aircrew scheduler’s point
of view, “ says Crawford, “PEX makes the
job much easier. It provides one source for
all of the information required to success-
fully run a squadron’s flying operation.”

Agile + CMM
Perhaps one of the most important
aspects of PEX is the way it was devel-
oped – using not one development
approach, but a combination of extreme
programming (XP) or agile methodology,
and the Capability Maturity Model®
(CMM®). When PEX team first started
looking into using XP, they agreed it was a
great concept but given their current
development environment did not think it

Patriot Excalibur Software Enables
Full-Scale Deployment of Battle-Ready Units

Chelene Fortier-Lozancich
CrossTalk

Whether during wartime deployment or peacetime record keeping of troops, being prepared for any eventuality is of utmost
importance. Software that enables this war fighter preparation must be a simple tool set that encompasses all needs, a one-
stop-shopping experience that can handle scheduling troop activity, provide easy access to needed data, and be a usable prod-
uct that does what is needed.

Quality Software Projects

“By using the agile
methodology and

operating in a CMM
Level 3 environment, the
PEX methodology is able

to give the customer
power to prioritize
and reprioritize its
software needs.”

would be possible to incorporate. They
were also concerned about maintaining
their CMM Level 3 status.

A year later, PEX development team
found themselves facing several obstacles:
an inaccuracy in estimating development
time, using antiquated techniques that did
not fit their object-oriented development,
and rapidly changing requirements. The
development team was facing late delivery,
overtime, and team turmoil.

After revisiting their methodology, a
team member suggested looking at agile
development, which is a collection of val-
ues, principles, and practices for software
that can be applied to a development proj-
ect. The team mutually agreed to revisit
this development method, and from the
beginning, agile/XP became the preferred
method. After several meetings, the PEX
development team unanimously agreed to
make a change, but wanted to keep their
CMM Level 3 processes. They decided
that agile development was the method
that would best accommodate the team’s
needs.

“The actual results of the change have
exceeded my expectations,” says Crabtree.
“The stability of the product has
increased dramatically, the amount of
work accomplished has increased, the
team is genuinely enthusiastic about com-
ing to work, our estimation ability has
improved and continues to improve, and
our user numbers are increasing at an
astounding rate.”

By using agile methodology and oper-
ating in a CMM Level 3 environment,
PEX methodology is able to give the cus-
tomer the power to prioritize and reprior-
itize its software needs. “PEX team
receives its requirements directly from its
users,” said Kelly Goshorn, PEX program
manager. “This is a tremendous timesaver
for the development team as far as under-
standing the requirements. PEX (team)
also uses XP with two-week iterations and
a six- to eight-week update, allowing func-
tionality to continually be released to the
field.”

In the three months following the
release of PEX v.3.2 in September 2003,
the PEX office received three problem
reports and 78 enhancement requests.
PEX provides monthly metrics to the cus-
tomer, and the software management tool
VersionOne provides insight into individ-
ual member load, team load, and number
of stories in each iteration and release.

PEX is a three-tier object-based
client/server application that is written
using Microsoft Visual Studio. The inter-
faces to the database use Active Data
Object and Object-Linking and

Embedding Database. User input is
entered via the graphical user interface.
With the release of v.3.2, PEX began pro-
viding Web-enabled modules. Several of
these modules are both desktop and Web-
enabled. PEX can also provide data to
other applications from the database via
Web services using Extensible Markup
Language. PEX runs in a Windows NT
Version 4, Windows 2000/XP environ-
ment. Due to the volatility of the require-
ments and the need for better estimation,
PEX development has benefited tremen-
dously from agile/XP development.

“116ACW was able to reorganize effi-
ciently based on PEX,” said Maj. Thomas
J. McNeill, Wing PEX administrator and
senior director. “It is impossible to deter-
mine the number of saved missions and
hours of coordination and senior-level
questions attributed specifically to the
wing-wide implementation of PEX.”

Cost Effective for the User
PEX is cost-effective for the user. Since the
product is government-owned software
developed by a contractor under a time-
and-materials contract, it means
Department of Defense personnel who
have access to a <.mil> account can use
PEX off the shelf at no cost. “Our cus-
tomers have access to our team around the
clock via our Web site, help-desk hotline,
pexhelp mailbox, and feedback forms,”
said Crabtree. “We provide in-house train-
ing classes at no charge and send our oper-
ation specialists out to their site for the cost
of the temporary duty only. We provide
user support in a timely fashion at no
charge.”

“PEX was a significant increase in
Nellis’s [Air Force Base] scheduling capa-
bility with significant reduction in man-

hours,” says 57WG Chief of Scheduling
Maj. Charles Blank. “The entire team of
PEX has been infinitely helpful. They have
responded to every input Nellis users asked
for and continue to provide outstanding
support through the help desk.”

Since the release of PEX v.3.2, its
growth rate has steadily increased. Its user
base has grown from 12 units two years ago
to more than 100 today. One unit was com-
mended for looking to the future for imple-
menting PEX throughout the squadron,
while another unit using PEX got an out-
standing on their operational readiness
inspection, with major credit going to
PEX’s Web usefulness. The PEX program
is being embraced by squadrons all over the
country, according to Goshorn. “There are
approximately 100 units using PEX cur-
rently. The continuity gained for the units
by using the same software is astronomical.
A user can communicate from one
squadron to another and be familiar with
the product when arriving on station.”

With all this functionality, PEX is a
valuable asset to the Air Force, providing
the warfighter with needed tools to meet
any threat. “The only limiting factor of
PEX,” says McNeill “ is the fact that not
everyone is using it.”◆

July 2004 www.stsc.hill.af.mil 15

Patriot Excalibur Software Enables Full-Scale Deployment of Battle-Ready Units

Project Points of Contact
Kelly Goshorn
46 TW/XPI
Eglin AFB, FL 32542
Phone: (850) 882-2358
kelly.goshorn@eglin.af.mil

Linda Crabtree
Phone: (850) 882-2348
linda.crabtree@eglin.af.mil

The Patriot Excalibur structure interfaces easily with other service systems.

16 CROSSTALK The Journal of Defense Software Engineering July 2004

CrossTalk Presents Top 5 Awards at the
Systems and Software Technology Conference

The winners of CrossTalk’s
2003 U.S. Government’s Top 5

Quality Software Projects were present-
ed with their awards at the 2004 Systems
and Software Technology Conference
(SSTC) held recently in Salt Lake
City. Peter Nolte of the Office of
the Under Secretary of Defense,
Acquisition, Technology, and
Logistics, the department spon-
soring the contest, presented indi-
vidual awards.

Top 5 judge Dr. David A.
Cook, senior research scientist,
Aegis Technologies Group, Inc.,
introduced the representatives
from each winning project to a
plenary session that pulled its

audience from more than 2,200 SSTC
attendees. Following the presentations,
a member of each winning project
briefly presented at the plenary session
and answered attendees’ questions after-

wards.
Throughout the U.S. government,

many organizations are using processes
and practices that result in the success-
ful delivery of projects with significant

software content. This includes
using well-defined and proven
processes and practices to devel-
op, manage, and integrate soft-
ware. The intent of the U.S.
Government’s Top 5 Quality
Software Projects’ search was to
recognize the outstanding per-
formance of these software
teams and to promote their
efforts at best practices.
This was the third year for the

competition.◆

(Photo above) Representatives from the Top 5 projects accepted the awards at the 2004 Systems and Software Technology Conference in Salt Lake City. They were, back r
left: Kelly Goshorn, Lt. Col. James Chapman, Col. Ralph Sees, Thomas Radgowski, Marty Montgomery, Beverly Kitaoka. Front row from left: Stephen Lutz, Harlan Kooima,
Cynthia Inteso, Peter Nolte, Linda Crabtree, Lt. Col. John Surdu. (Photos below) Col. Ralph Sees and Cynthia Inteso speak as part of the Wednesday plenary session.

Top 5 Quality Software Projects

July 2004 www.stsc.hill.af.mil 17

CrossTalk Presents Top 5 Awards at the Systems and Software Technology Conference

Top 5 Software Projects
Scoring Criteria

Reviewers from the Software Technology Support Center
(STSC), Hill Air Force Base, Utah, used the following criteria
and point system to score all nominations as part of the
process to select the 2003 U.S. Government’s Top 5 Quality
Software Projects finalists. Each nomination was awarded
points (up to a maximum value) based on how well the proj-
ect performed within each category: customer value, perform-
ance, technical value, and reviewer’s discretion. At least three
STSC consultants/engineers scored each nomination with the
top one-third of the nominations closely scrutinized by the
internal board to select the finalists.

Customer Value – Maximum 40 Points
Problem Reports

• Were responses to the problem reports and questions
timely?

Value
• What was the measured value to the customer’s mission
(return on investment)?

Benefits and Satisfaction
• Is the end product useable?
• Is the customer satisfied with the end result?
• What other benefits were provided to the customer?
• Was the developer collaborative?
• Did the developer listen to the customer?
• Was the developer knowledgeable? Informative? Helpful?
• Was the developer professional in letting the customer
know requirements trade-offs?

Performance – Maximum 25 Points
• Did the developer meet the contracted schedule?
• Did the developer meet the contracted budget?
• How many problem reports have been written against the
product since system test?

• Is the customer satisfied with the performance?

Technical Value – Maximum 20 Points
• Was the problem challenging? How hard was this project
to implement?

• Was the solution innovative? What approach was used to
solve the problem? What technical value did they provide
to the world?

• Is the project reusable? Can someone else use the end
product, portions of the end product, code, process, or
the product’s technology to solve a future government
problem?

• Is the project repeatable? Given a similar problem, could
the group repeat this success or were they just lucky this
time? (Did they use defined processes, trained people,
etc.?)

Reviewer’s Discretion – Maximum 15 Points
Use or don’t use these points as discretion dictates. Suggested
considerations include the following:

• Previous awards. (CMM, ISO 9000, Malcolm Baldrige,
etc.)

• Customers. (Will one small organization use this or will it
be dispersed worldwide?)

• Do they have measures that can be used for oversight and
additional improvements?

• What is the atmosphere/morale of the developing organi-
zation?

k row from
lan Kooima,

Receiving the award for One SAF Testbed Baseline (above) were Beverly
Kitaoka (left) and Thomas Radgowski (right), presented by Peter Nolte (center).
(Photo below) Harlan Kooima (left) responded to a question asked by an audi-
ence member during the question and answer portion of the presentation.

18 CROSSTALK The Journal of Defense Software Engineering July 2004

Center Ops OnLine
Customer: Air Force Materiel
Command
The Center Ops OnLine (COOL) v3.0 is
an enterprise ops desk automation appli-
cation <https://cool.edwards.af.mil>
used at seven Air Force bases across the
country. The COOL is Web-based and
allows authorized users access via the
Internet. It allows users to efficiently
manage aircrew testing, flight crew infor-
mation files, aircrew currency, flight
authorization, and aircrew training. The
COOL application makes aircrew readi-
ness information available in one place,
incorporates the Air Force Materiel
Command (AFMC) Operations Group
regulatory requirements, works with sev-
eral other Air Force systems, minimizes
data entry, and maximizes data currency.
The COOL v3.0 supports all AFMC
bases and could expand to cover every
Air Force base in the continental United
States or overseas. Please e-mail questions
to <COOL.info@edwards.af.mil>.

Deliberate and Crisis Action
Planning and Execution

Segments
Customer: United States Air Force
The design, development, fielding, and
operational use of the Deliberate and
Crisis Action Planning and Execution
Segments (DCAPES) to execute
Operation Enduring Freedom and
Operation Iraqi Freedom, culminates the
most sweeping changes for how the Air
Force projects air power in over 20 years.
The DCAPES provides near real-time
integrated command and control, plan-
ning, and execution monitoring informa-
tion to Air Force functional users in
operations, logistics, manpower, and per-
sonnel, providing a single integrated
planning environment. With DCAPES,
Air Force planners can rapidly and accu-
rately identify and source personnel,
equipment, and sustainment capabilities
to meet the combatant commander’s
operations plan requirements. Addition-

ally, the DCAPES enables senior Air
Force decision-makers to rapidly adjust
operations plans to accommodate ever-
changing scenarios. The evolution of
DCAPES is swiftly replacing old stove-
piped, domain-centric systems by pro-
ducing a single, fully integrated, replicat-
ed database. The DCAPES has been
assessed at a Capability Maturity Mode®
(CMM®) for Software Level 2 and the
program is pursuing a CMM IntegrationSM

Level 3 rating.

F-15 Bench Top Reconfigurable
Automatic Tester - Test
Program Sets Rehost

Customer: Ogden ALC Electronics
Division
The test program sets (TPSs) delivered
are used to test and repair the shop
replaceable units (SRUs) in the F-15 gen-
erator control unit on the Benchtop
Reconfigurable Automatic Tester. These
TPSs will functionally test the SRU and
specify the faulty components; the user
then replaces those components and
retests the SRU. After it proves to be a
good SRU, it is returned to supply. The
TPSs consist of test program software;
interface test adapter, including associat-
ed hardware; engineering drawings for
the developed hardware; technical manu-
als, which include test procedures manual
(TPM); operation and maintenance
(O&M) manual; and software design doc-
umentation. The TPM contains instruc-
tions for performing functional and diag-
nostic testing of the SRU. The O&M
manual contains operation and mainte-
nance instructions with an Illustrated
Parts Breakdown for the interface test
adapter and associated hardware.
Software design documents contain addi-
tional detailed engineering test informa-
tion helpful in operating the TPSs. The
success of this development is based
upon technical expertise being systemati-
cally applied to solve technical, logistical,
and managerial problems according to a
well-defined TPS development process.

FireFinder Q37
Customer: U.S. Army, Project Manager
FireFinder
The AN/TPQ-37, or FireFinder Q37 (FF
Q37), is a phased array, pulsed Doppler, S-
Band radar developed for counter-battery
artillery detection and location. The system
identifies the exact location of enemy units
that fire upon friendly forces, before the
bullets or rockets ever land, and provides
for the coordination of returned fire in a
matter of seconds. There are approximate-
ly 200 FF Q37 systems fielded to the U.S.
Army and Marine Corps worldwide. A digi-
tization software upgrade lets a modern
Intel-based workstation be integrated into
the FF Q37. This allows modern digital
communications, standard National
Imagery and Mapping Agency products for
height correction, and the incorporation of
a graphical user interface. The most recent
version of FF Q37 has been deployed dur-
ing 2003 to support Operation Iraqi
Freedom. The FF Q37 was one of four
representative systems appraised that led to
the Communications Electronics
Command, Software Engineering Center,
Fire Support Software Engineering at Ft.
Sill being one of the first Department of
Defense affiliates to achieve Capability
Maturity Model® Integration Level 5.

Forward Observer System
Customer: U.S. Army, Project Manager
Intel Effects
The Forward Observer Systems (FOS) is
fielded to provide field artillery forward
observers with the capability to direct and
coordinate field artillery, mortar, close air
support, and helicopter munitions onto tar-
gets; to provide commanders, fire support
officers, fire support teams, and forward
observer and survey teams with the capa-
bility to plan collective actions through
maneuver and artillery graphic map dis-
plays; to provide for storage of survey cal-
culations and control points by field
artillery commanders; and to provide a
message set for use by survey and fire sup-
port teams. The FOS is a combat-critical

CrossTalk Honors the
2003 Top 5 Quality Software Projects Finalists

Pamela Palmer
CrossTalk

It was difficult to narrow the field from the many successful government projects entered in the third annual U.S. Government’s
Top 5 Quality Software Projects contest. As a result, the following 10 projects are being honored as 2003 Top 5 Finalists.

Quality Software Projects

CrossTalk Honors the 2003 Top 5 Quality Software Projects Finalists

July 2004 www.stsc.hill.af.mil 19

system for the U.S. Army and the
Department of Defense (DoD) that pro-
vides an interface for first contact with the
enemy. Before the enemy knows where U.S.
troops are, the FOS is used to coordinate
enemy location with U.S. firing units. The
FOS has been upgraded and deployed to
support Operation Iraqi Freedom during
2003. The FOS was one of four represen-
tative systems appraised that led to the
Communications Electronics Command,
Software Engineering Center, Fire Support
Software Engineering at Ft. Sill being one
of the first DoD affiliates to achieve
Capability Maturity Model Integration
Level 5.

Global Combat Support System
Customer: Special Program Office
The Global Combat Support System – Air
Force (GCSS-AF) delivers network-centric
enterprise services through a suite of com-
mercial off-the-shelf (COTS) products
integrated under a common COTS security
layer. These core enterprise services pro-
vide a common software and hardware
infrastructure for the Air Force to integrate,
in some cases eliminate, and then operate
its more than 640 combat support systems.
During 2002-2003, there were more than
90,000 system users or 350,000 Web pages
served per day. Availability has been
approximately 99.5 percent, or about an
hour of both scheduled and unscheduled
downtime every 10 days. The GCSS-AF
supports the warfighter at 30 locations in
southwest Asia. On day one of Operation
Iraqi Freedom, 14 key supply chain capabil-
ities were secured and put back into pro-
duction within six hours and made available
to users worldwide. Those capabilities are
now the second most heavily used applica-
tions on the Air Force Portal. Work on the
GCSS-AF was done at Warner Robins Air
Logistics Center’s Software Engineering
Division, Section E, Avionics Test Program
Branch, Maintenance Directorate.

Marine Corps Total Force System
Customer: U.S. Marine Corps and the
Defense Finance and Accounting Service
The Marine Corps Total Force System
(MCTFS) is an integrated pay and person-
nel system for all active, reserve, and retired
Marines. The U.S. Marine Corps and the
Defense Finance and Accounting Service
jointly own the system. The MCTFS is one
of the largest automated information sys-
tems and the only integrated pay and per-
sonnel system that is fully operational capa-
ble within the Department of Defense.
System revisions originate from congres-
sional legislation, new policy, cost savings
initiatives, and modifications to existing

functionality, and are formally prioritized by
a joint Configuration Control Board. These
system changes are then bundled into semi-
annual software releases and scheduled into
overlapping 10-month development cycles.
The system is used to manage more than
498,000 Marine records for active, reserve,
and retired members. The MCTFS process-
es in excess of 17 million transactions year-
ly, and computes an average gross payroll of
$238 million per semimonthly pay period
totaling $5.712 billion in payments annually.
Transactions processed by the MCTFS can
be generated in stand-alone, client/server,
and Web-based environments, including
users not connected to a network in a
remotely deployed location. The MCTFS
was formally assessed at Capability Maturity
Model® for Software Level 3 in 2000, and
currently employs processes consistent
with Level 4.

Navy Standard Integrated
Personnel System

Customer: Program Executive Office
for Information Technology
The Navy Standard Integrated Personnel
System (NSIPS) is an automated informa-
tion system that delivers field-level pay and
personnel data to update corporate data-
bases in peacetime as well as during recalls,
and during both a partial and full mobiliza-
tion. Most importantly, the NSIPS collects,
passes, and reports timely, accurate data on
active and reserve members in the conti-
nental United States, overseas, and aboard
ships. The NSIPS also provides the ability
to send and receive work items, updates,
and records to and from ships that do not
have the ability to maintain direct connec-
tion to the main server via a secure Internet
connection at all times. The Web-enabled
NSIPS is a centrally hosted implementation
with primary access from Web-browser
client terminals. It eliminates four legacy
field input systems. The system supports
approximately 500,000 records serviced by
8,000 Navy personnel and pay specialists at
nearly 572 Personnel Service Activities,
Personnel Service Detachments, and Navy
Reserve Activity sites. The NSIPS is now
deployed to 80,583 reservists and 400,956
active duty personnel.

Tactical Tomahawk Weapons
Control System

Customer: PMA 282 (U.S. Navy)
The Tactical Tomahawk Weapons Control
System (TTWCS) provides surface ship on-
board software and attendant hardware and
submarine on-board software to plan and
control the launch of Tomahawk cruise
missiles. The TTWCS development is part
of the Tactical Tomahawk Weapons System

Upgrade to improve the flexibility and
responsiveness of Tomahawk cruise mis-
siles, to add new capabilities, and to provide
an upgrade for existing fleet systems. The
TTWCS includes the capability to receive
electronic tasking via legacy communica-
tions interfaces, to reduce engagement
planning time due to increased automation,
and to perform launch platform mission
planning, which allows surface ships and
submarines to plan global-positioning-sys-
tem-only missions onboard, thereby
improving tactical responsiveness. The soft-
ware is executed by operators at four tacti-
cal display consoles on surface ships and
from one to four consoles on submarines
remotely. The TTWCS interfaces with sev-
eral shipboard systems, including the ship’s
navigation system, weapon vertical launch
system, Global Command and Control
System–Maritime, and communications
networks. The TTWCS employs processes
for Capability Maturity Model® Integration
Level 5 for Systems Engineering/Software
Engineering.

Wide Area Augmentation
System

Customer: Department of
Transportation – Federal Aviation
Administration
The space-based Wide Area Augmentation
System (WAAS) provides an augmentation
of the global positioning system (GPS) to
supply the accuracy and integrity for the
civil signal required to support safety-of-
flight applications. The WAAS provides
pilots with the data to navigate without
additional navigation aids, for both en-
route and Lateral Precision with Vertical
Guidance. The WAAS is also used by land-
and sea-based enterprises needing accurate
positional information such as surveyors,
farmers, and maritime users. The WAAS
software consists of four computer soft-
ware configuration items (CSCIs). The
Data Collection Processing (DCP) CSCI
operates at 25 U.S. sites. The DCP receives
data from the GPS and geostationary earth-
orbiting satellites, selects data of interest,
and forwards that data to the Correction
and Verification CSCI, which is the algo-
rithmic center of WAAS. It computes cor-
rection and integrity data to be sent to the
GEO Uplink Subsystem Processing CSCI
for forwarding on to the WAAS receivers in
aircraft or on the ground. The WAAS is the
first system of its kind certified for use by
the Federal Aviation Administration. The
WAAS program was a major component in
the Capability Maturity Model® Integration
Level 5 rating received by Raytheon in
Fullerton, Calif.◆

Many systems designed today have
very long life cycles, especially in

the military. Often, a software program
is expected to perform for many years,
and undergo frequent updates and
requirements changes. Large-scale soft-
ware systems are prone to quality prob-
lems [1] during development. Constant
changes to existing systems only lead to
additional quality problems.

One way to help control defects and
reduce high maintenance costs is to use
refactoring. Refactoring is the process of
changing a software system in such a way
that it does not alter the external behav-
ior of the code yet improves its internal
structure [2]. Refactoring is an option
during both the development and main-
tenance phases. Unfortunately, refactor-
ing the design can be very resource
intensive, and automated tool support is
considered crucial [3].

This article presents an approach for
automating a large part of the evaluation
and refactoring process. By combining
the use of software metrics and a tech-
nique called program slicing, the refac-
toring process is guided toward a design
with higher quality and more maintain-
ability. First, we discuss how several dif-
ferent software metrics can be used to
evaluate software quality and the effects
those metrics have on defects, testing
effort, and maintenance cost. We then
discuss how program slicing can use
those metrics to guide design-refactoring
decisions. The final section presents our
conclusions.

Software Metrics
We use software metrics to try to quanti-
fy particular characteristics of software
systems, such as quality, maintainability,
or reliability. In general, however, these
characteristics cannot be measured
directly. Instead, we directly measure
particular attributes of software by using

software metrics and then infer informa-
tion about quality from those direct
measurements [4].

Three commonly used software met-
rics are coupling, cohesion, and
McCabe’s Cyclomatic Complexity [5]; all
three have been extended from their
original definitions for use with object-

oriented systems (OOS). In this article,
we discuss our ideas in the context of a
system that was implemented using
structured design techniques, though the
process could also be extended for use
with OOS.

The first metric to consider is cou-
pling, which measures the strength of
the connections between the software
modules that comprise a particular sys-
tem to quantify the dependencies
between the modules. The key idea is
that the more interdependent the mod-
ules in the system are, the more difficult
the system is to understand and the more
likely it is that changes to one module
will affect other modules in the system.

Yourdon [6] originally described sev-
eral different kinds of coupling, includ-
ing data coupling, control coupling,
hybrid coupling, and so on. McConnell
[7] has updated coupling to include class-
es of coupling. In the technique
described in the following section, we
only consider data – or normal – cou-
pling. In other words, the main focus in
terms of coupling is on the information

that flows between the modules in the
system. We measure this coupling by
counting the number of parameters (i.e.,
pieces of information) passed into and
out of each module.

As Yourdon points out, “The cou-
pling between modules in tentative
structural designs can be evaluated to
guide the designer toward less expensive
structures.” Our idea is to provide pre-
cisely this kind of guidance, but to do so
with extensive automated tool support.
This guidance would be useful in both
the design and the maintenance phases,
though we believe most refactoring
occurs in the maintenance phase.

The second metric to consider is
cohesion, which measures how strongly
the elements of each module are related
to each other. Cohesion was originally
defined in an article by Stevens [8], and
the concept has been updated as pro-
gramming languages and their capabili-
ties have evolved. McConnell [7] con-
tains a working definition of the current
classes of cohesion. At a high level, a
module with high cohesion accomplish-
es a single function using only the data
required to accomplish that function. As
with coupling, Yourdon defined multiple
levels of cohesion, though we limit our
interest to functional cohesion in this
article.

Coupling and cohesion are related,
though not perfectly correlated. As we
increase the cohesion of the modules in
the system, we tend to reduce the cou-
pling between those modules. This is an
important consideration, because al-
though researchers have proposed vari-
ous ways to measure cohesion [9], it is
much more difficult to measure than
coupling. In this approach we do not
measure cohesion directly, but instead
rely on the relationship between cou-
pling and cohesion to infer information
about the quality of a module. If we find

Using Software Metrics and
Program Slicing for Refactoring

Dr. A.T. Chamillard
University of Colorado at Colorado Springs

Refactoring can improve the quality of a software system as measured by coupling, cohesion, and cyclomatic complexity, but
knowing which refactoring choices should be implemented is key. This article presents an approach that guides the refactoring
of software systems by combining the use of software metrics and a technique called program slicing. Program slices produced
from a single software module are sorted by the respective values of the metrics; a design that provides the most beneficial met-
ric values can be selected from these. This approach can produce a software system with higher quality and maintainability as
measured by the metrics.

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering July 2004

Dr. David A. Cook
AEgis Technologies Group, Inc.

Dr. Ricky E. Sward
U.S. Air Force Academy

“One way to help
control defects and

reduce high
maintenance costs is
to use refactoring.”

Using Software Metrics and Program Slicing for Refactoring

that we also need to directly measure
cohesion to make our approach more
effective in practice, we can extend the
metrics calculated by the tool to include
cohesion as well.

The final metric, which is probably
the most commonly used metric of
those discussed here, is McCabe’s
Cyclomatic Complexity. At the module
level, this metric is the number of linear-
ly independent paths through the mod-
ule. Modules that contain many possible
paths are more complex than those with
fewer paths, so as the cyclomatic com-
plexity of a module increases, so does its
complexity. We note that this metric is
equal to one more than the number of
decisions contained in the module.

Based on the discussion above, our
approach uses coupling and cyclomatic
complexity metrics as described in the
following section. The coupling metric
provides insight into the interaction
between the modules in the system,
while the cyclomatic complexity metric
gives insight into the complexity of each
individual module. Remember that we do
not directly include cohesion, though we
could extend our approach to do so if it
proves to be helpful in practice.

As stated in the introduction, our
goal is to use software metrics to provide
guidance to those undertaking refactor-
ing efforts. It is important to note, of
course, that we do not refactor code sim-
ply for the sake of better code; rather, we
expect some return on the investment
expended on any refactoring efforts. We
must therefore consider some of the
important relationships between our
software metrics and software quality,
testing costs, and maintenance costs.

Intuitively, we expect software with
high coupling and low cohesion to be of
lower quality than software with low
coupling and high cohesion. The addi-
tional programmer effort required for
understanding highly interrelated mod-
ules and their effects on each other leads
to a higher potential for mistakes.
Similarly, a programmer working on a
module with low cohesion needs to keep
track of multiple functions being per-
formed by the module rather than on a
single function, which also increases the
potential for programmer error. Our
intuition turns out to be true in practice.
Research on operational systems has
shown that modules with high cou-
pling/low cohesion contained seven
times as many errors as modules with
low coupling/high cohesion [10]. In
addition, programmers spent almost 22
times as many hours correcting the

errors in those modules with high cou-
pling/low cohesion. Clearly, coupling
and cohesion have a significant impact
on both the quality of the software and
the effort required to fix errors in the
software.

We also expect all three metrics to
have an impact on the amount of effort
associated with software testing. Because
coupling measures the dependencies
between modules, higher coupling
implies the need to expend more effort
accomplishing integration testing of the
modules. Modules with low cohesion
implement more than one function; test-
ing the functionality of that module (typ-
ically during unit testing) requires more
test cases to cover all of that module’s
functionality. Cyclomatic complexity
essentially measures the number of
paths through a module, so modules
with higher cyclomatic complexity will
require more test cases to cover all the
paths.

Discussions of software quality and
testing effort apply both to the original
development of a system and mainte-
nance of that system. We are also con-
cerned, of course, with the cost of main-
taining systems. Research shows that we
can account for more than half of the
variability of maintenance productivity
by taking cyclomatic complexity into
account [11]; in other words, we can sig-
nificantly improve our estimates of
maintenance costs through considera-
tion of the cyclomatic complexity (and
lines of code) for the system to be main-
tained. Perhaps even more importantly,
we know that modules with higher cyclo-
matic complexity are more difficult to
maintain, so if we can reduce the com-
plexity of the modules we can reason-
ably expect a corresponding reduction in

maintenance costs.
It is clear that refactoring software to

improve coupling, cohesion, and cyclo-
matic complexity of the software yields
improvements in overall software quality
and reductions in testing and mainte-
nance costs. Despite the clear benefits
associated with refactoring, the amount
of effort required to refactor large sys-
tems without tool support is generally
prohibitive [3]. Metrics and other meth-
ods have been proposed to help guide
program refactoring [12, 13, 14, 15]. One
problem with traditional metrics is that
they are often not useful for making fine
distinctions between routines and mod-
ules [7, 16]. Refactoring does not have
this limitation. The following section
describes our approach for guiding the
refactoring process through the use of
program slicing and software metrics.

Program Slicing, Metrics, and
Refactoring
When considering options for refactor-
ing, a technique known as program slic-
ing can be used to isolate portions of a
software system. A program slice is a
projection of the behavior from a soft-
ware module that is needed to produce a
particular value in the module [17]. By
slicing a particular variable or parameter
in a software module, only the lines of
code required to produce that variable or
parameter are extracted from the mod-
ule. The resulting lines of code can be
built into a separate module with vari-
ables and parameters of their own.

For example, consider the Ada proce-
dure shown on the left side in Figure 1
(see page 22). This procedure produces
both the Highest_Max parameter and
the Lowest_Min parameter. The Ada
procedure shown in the upper right side
of Figure 1 shows the program slice
built by slicing on the Highest_Max
parameter. The Ada procedure shown in
the lower right side of Figure 1 shows
the program slice built by slicing on the
Lowest_Min parameter. Note that only
those parameters needed to produce
either Highest_Max or Lowest_Min are
included in their respective program
slices.

Program slicing is useful for refactor-
ing software systems [18] because it iso-
lates portions of the software. For exam-
ple as shown in Figure 1, instead of a
single procedure that produces both the
Highest_Max value and the Lowest_Min
value, we now have two procedures that
each produce a single value. The chal-
lenge with using program slicing for

July 2004 www.stsc.hill.af.mil 21

“The coupling metric
provides insight into the
interaction between the
modules in the system,
while the cyclomatic

complexity metric gives
insight into the

complexity of each
individual module.”

Software Engineering Technology

refactoring is determining how to slice
the software system properly in order to
maximize maintainability and quality.

Since we want to refactor our soft-
ware to improve coupling, cohesion,
and cyclomatic complexity, software
metrics can guide our choices when we
use program slicing for refactoring.
Each time we produce program slices,
we can compare the values of the met-
rics from the original procedure to the
resulting program slices. Clearly, pro-
gram slices that produce better cou-
pling, cohesion, and cyclomatic com-
plexity are better than the original pro-
cedure and should be included in the
refactored software system.

During refactoring, program slicing

may reduce the coupling between mod-
ules in the software system. For example,
in Figure 1 the original procedure
includes five parameters, but each pro-
gram slice includes only three parame-
ters. As we discussed previously, the
number of parameters in a software
module can measure coupling, so in this
case, program slicing has reduced the
coupling between modules.

Program slicing may also improve the
cyclomatic complexity of a software
module during refactoring. For the pro-
cedure shown on the left side of Figure
1, the value of the cyclomatic complexi-
ty metric is three. For each of the pro-
gram slices, the value of that metric is
two. In this case, refactoring using pro-

gram slices has resulted in software mod-
ules that have a lower value for the cyclo-
matic complexity metric.

Using program slicing for refactoring
can therefore improve the quality and
maintainability of software modules as
measured by coupling, cohesion, and
cyclomatic complexity. Admittedly, the
example shown in Figure 1 is simplistic,
but it demonstrates how using program
slicing and metrics can guide the refac-
toring process.

Slicing on Combinations of
Variables
As is often the case, software systems
contain modules that are much more
complicated than the one shown in
Figure 1. Software modules often have
many different parameters (high cou-
pling) and contain high levels of cyclo-
matic complexity. These modules pres-
ent an opportunity to improve overall
system quality by refactoring using the
program slicing technique on different
combinations of the parameters.

For example, consider a module that
produces four values. For illustration, we
will call the module Produces_Four and
call the four parameters A, B, C, and D.
By using program slicing, we can build
15 different software modules, including
the original module, from the possible
combinations of these parameters. We
can then calculate the coupling and
cyclomatic complexity metric for each of
the 15 modules individually.

Figure 2 shows the values of the cou-
pling and cyclomatic complexity metrics
for the 15 modules. The reader should
realize that these are the values for pro-
gram slices that were built from the
Produces_Four module that we used in
our example. These values would differ
for other program slices built from other
modules depending on the code con-
tained in those modules. Note that in
Figure 2, the ABCD column represents
the Produces_Four module.

The following discussion shows how
the information in Figure 2 helps to
guide refactoring decisions. As we can
see from the figure, slicing the original
module into four separate modules for
A, B, C, and D results in the lowest aver-
age coupling and cyclomatic complexity
for the overall system. The average cou-
pling and complexity of these four sepa-
rate modules is lower than that of the
original module, so breaking this module
into four separate modules would be the
best refactoring choice. The point is to
lower the overall complexity of the sys-

22 CROSSTALK The Journal of Defense Software Engineering July 2004

Figure 2: Metrics for Program Slices

Figure 1: A Predictable Substation Assembly

Using Software Metrics and Program Slicing for Refactoring

July 2004 www.stsc.hill.af.mil 23

tem. By replacing the Produces_Four
module, which has high complexity and
high coupling, with four new modules
that have lower complexity and lower
coupling, we can lower the average com-
plexity and coupling for the system. We
focus on the average of the metrics
because we want to show that it will be
easier to maintain the four new modules
instead of one legacy module.

It could be the case, however, that
organizational or management policies
prevent you from selecting this option.
For example, limits on the total number
of modules in the system – or lower lim-
its on the size of those modules – could
preclude breaking the original module
into four separate modules in our exam-
ple. Effort should be expended to
change such policies, especially when
compliance will result in systems that are
less maintainable than they could be. We
also recognize, however, that some
organizations will impose those policies
regardless of the resulting impacts.

In this scenario, which refactoring
option should you choose? In the fol-
lowing discussion, we assume that our
policies constrain us to select exactly two
modules in refactoring the original mod-
ule.

As shown in Figure 2, the module for
values CD has the same coupling and
complexity as the modules for values
AB, AC, and AD. All of these modules
have lower coupling and complexity than
the modules for BC and for BD.
Selecting the module for AB along with
the module for CD is a reasonable
choice to replace the original module.
The average coupling for this choice is 4
and the average complexity for this
choice is 3. This option results in a lower
average coupling and complexity for the
overall system. It is also a better choice
than selecting the module for AD along
with the module for BC because the
module for BC drives up the average
coupling to 4.5. The values of the met-
rics for these program slices can help the
software engineer select the best possible
refactoring option that fits within the
constraints placed on a software system.

Further analysis shows that the opti-
mal choice in this situation is to choose
the module for B along with the module
for ACD. The average complexity for
this choice remains at 3, but the average
coupling is reduced to 3.5. This is a bet-
ter choice than selecting the modules for
AB and CD, since the average coupling
and cohesion are less. Clearly, this is the
best choice if the developer is con-
strained to selecting exactly two modules

in the refactoring process.
This illustrates how refactoring deci-

sions can be guided by using program
slicing and the values of metrics of the
resulting program slices.

Conclusion
Coupling, cohesion, and cyclomatic
complexity have become accepted met-
rics for measuring the maintainability
and quality of software systems.
Refactoring can improve the quality of a
system as measured by these metrics, but
which refactoring choices should be
implemented? We suggest using pro-
gram slicing in conjunction with soft-
ware metrics to guide the refactoring
process. By slicing the software system

on one or more variables, different refac-
toring options can be examined and eval-
uated using these metrics. The choices
that program slicing provides can be
sorted by the respective values of the
metrics, and a design that provides the
most beneficial metric values can be
selected. It is the combination of pro-
gram slicing and software metrics that
guides the refactoring process.

A software system that has gone
through this refactoring process has high-
er quality and is more maintainable. The
return on investment in this refactoring
process can be measured in lower error
rates, fewer test cases per module, and
increased overall understandability and
maintainability. In both the design and
maintenance phase, these advantages can
be realized almost immediately.◆

References
1. Jones, Capers. Assessment and

Control of Software Risks. Prentice
Hall, 1994.

2. Fowler, Martin. Refactoring:
Improving the Design of Existing
Code. Addison-Wesley, 1999.

3. Tahvildari, L., and K. Kontogiannis.
“First International Workshop on
Refactoring: Achievements, Challen-
ges, and Effects.” REFACE ’03,
Victoria, British Columbia, 13 Nov.
2003 <http://swen.uwaterloo.ca/~
ltahvild/Publications/REFACE03.
pdf>.

4. Fenton, Norman E., and Shari L
Pfleeger. Software Metrics: A
Rigorous and Practical Approach.
2nd ed. Boston: PWS Publishing Co.,
1997.

5. McCabe, Thomas J. “A Complexity
Measure.” IEEE Transactions on
Software Engineering 2 (1978): 308-
20.

6. Yourdon, Edward, and Larry L.
Constantine. Structured Design. 2nd
ed. New York: Yourdon Press, 1978.

7. McConnell, Steve. Code Complete.
Microsoft Press, 1993.

8. Stevens, Wayne, G. Meyers, and L.
Constantine. “Structured Design.”
IBM Systems Journal 13.2 (May
1974): 115-39.

9. Bieman, James M., and Linda M. Ott.
“Measuring Functional Cohesion.”
IEEE Transactions on Software
Engineering 20 (1994): 644-57.

10. Selby, Richard W., and Victor R.
Basili. “Analyzing Error-Prone
System Structure.” IEEE Trans-
actions on Software Engineering 17
(1991): 141-52.

11. Gill, Geoffrey K., and Chris F.
Kemerer. “Cyclomatic Complexity
Density and Maintenance Produc-
tivity.” IEEE Transactions on
Software Engineering 17 (1991):
1284-88.

12. Simon, F., F. Steinbruckner, and C.
Lewerentz. Metrics-Based Refactor-
ing. Proc. of the European Confer-
ence on Software Maintenance and
Reengineering, Mar. 2001.

13. Tahvildari, L., K. Kontogiannis, and
J. Mylopoulos. “Quality-Driven
Software Reengineering.” Journal of
Systems and Software 66.3 (June
2003): 225-239.

14. Tourwe, T., and T. Mens. Identifying
Refactoring Opportunities Using
Logic Meta Programming. Proc. of
the European Conference on
Software Maintenance and Reengi-
neering Mar. 2003.

15. Kataoka, Y., T. Imai, H. Andou, and
T. Fukaya. A Quantitative Evaluation
of Maintainability Enhancement By
Refactoring. Proc. of the IEEE

“The return on
investment in this

refactoring process can
be measured in lower
error rates, fewer test
cases per module, and

increased overall
understandability and

maintainability.”

24 CROSSTALK The Journal of Defense Software Engineering July 2004

About the Authors

David A. Cook,
Ph.D., is a senior
research scientist at The
AEgis Technologies
Group, Inc., working as
a verification, valida-

tion, and accreditation agent in the
modeling and simulations area. He is
currently supporting the Airborne
Laser program and has more than 30
years experience in software develop-
ment and management. He was for-
merly an associate professor of com-
puter science at the U.S. Air Force
Academy, a deputy department head of
the Software Professional Develop-
ment Program at the Air Force
Institute of Technology, and a consult-
ant at the U.S. Air Force Software
Technology Support Center. Cook has
published numerous articles on soft-
ware-related topics. He has a doctorate
in computer science from Texas A&M
University.

AEgis Technologies Group, Inc.
6565 Americas PKWY NE
STE 975
Albuquerque, NM 87110
Phone: (505) 881-1003
Fax: (505) 881-5003
E-mail: dcook@aegistg.com

A.T. Chamillard, Ph.D.,
is an assistant professor
of Computer Science at
the University of
Colorado at Colorado
Springs where he teaches

the core Master of Engineering in soft-
ware engineering courses. He also cur-
rently provides software engineering
consulting services to a Department of
Defense agency. Chamillard spent over
six years as a project manager in the U.S.
Air Force, and was also an associate pro-
fessor of computer science at the U.S.
Air Force Academy where he taught for
six years. He has a doctorate in comput-
er science from the University of
Massachusetts, Amherst.

Computer Science Department
University of Colorado at
Colorado Springs
1420 Austin Bluffs PKWY
Colorado Springs, CO 80933-7150
E-mail: chamillard@cs.uccs.edu

Lt. Col Ricky Sward,
Ph.D., U.S. Air Force, is
an associate professor
of Computer Science at
the U.S. Air Force
Academy. He is current-

ly the deputy head for the Department
of computer science and the course
director for the senior-level two-semes-
ter Software Engineering capstone
course. Sward has a doctorate in com-
puter engineering from the Air Force
Institute of Technology where he stud-
ied program slicing and reengineering
of legacy code.

Department of Computer Science
2354 Fairchild DR
STE 6G101
USAF Academy, CO 80840
E-mail: ricky.sward@usafa.af.mil

International Conference of
Software Maintenance, Oct. 2002.

16. Shepperd, M., and D. Ince. “Metrics,
Outlier Analysis, and the Software De-
sign Process.” Information and Soft-
ware Technology. Mar. 1989: 91-98.

17.Weiser, M. “Program Slicing” IEEE
Transactions on Software Engineer-

ing SE-10 (4) (July 1984): 352-357.
18. Verbaere, Mathieu. “Program Slicing

for Refactoring.” Masters Thesis.
University of Oxford, Sept. 2003
<http://web.comlab.ox.ac.uk/oucl/
research/areas/progtools/projects/
nate/doc/MScThesis.pdf>.

Software Engineering Technology

August 14-17
CCCT Conference: Computing,

Communications, and Control Technologies
Austin, TX

www.iiisci.org/ccct2004

August 19-20
2004 ACM-IEEE International

Symposium on Empirical Software
Engineering

Redondo Beach, CA
www.isese.org

August 23-27
International Conference on Practical

Software Quality Techniques
PSQT 2004 North
Minneapolis, MN

www.qualityconferences.com

September 11-17
20th IEEE International Conference on

Software Maintenance
Chicago, IL

www.cs.iit.edu/~icsm2004

September 13-16
Embedded Systems Conference

Boston, MA
www.esconline.com/boston

September 20-23
Software Development Best Practices

Boston, MA
www.sdexpo.com

September 24-26
IPSI 2004 Stockholm
Stockholm, Sweden

www.internetconferences.net

April 18-21, 2005
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

After a decade of performing process
improvement, rework for our organiza-

tion’s software development projects was
dramatically reduced from approximately 75
percent of the total effort to a very low value
of 3 percent. When the percentage was high,
rework was easily identified; for a small
amount of quality assurance (QA) effort, a
large quantity of rework was generated. As
our production process improved, it became
increasingly more difficult to identify defects.
With rework now at 3 percent, we began to
examine the economics of further improve-
ment and the possibility of reducing the QA
effort. Economically, the concept arises of
right sizing the QA function with respect to
the needs of the customer(s) or the quality
goals of the producer organization.

Background
Generally speaking, companies are con-
cerned with the quality of their products.
Consequently, an organizational entity exists
that is devoted to performing reviews,
inspections, and testing for conformity to the
product requirements, i.e., the QA function.
However, the QA function is a cost affecting
the price of a company’s products. There is a
cost for quality; it is not free. Thus, the QA
function is connected to economic benefit.

At a minimum, QA functions should be
sized sufficiently to satisfy the customer’s
requirement for product quality. In conflict,
several pressures influence the size of the
QA function. The customer wants the prod-
uct at a low price with no flaws. The produc-
er wants to make money, be competitive, and
increase business – QA is a cost to be
trimmed. Clearly, it is impossible to simulta-
neously satisfy these parties.

There are conflicting dynamics within
the producer’s organization, too. In compet-
itive areas (multiple producers of the same
product), the marketplace decides the prod-
uct price. In turn, this places a constraint on
the amount of rework and quality assurance
the product can have and still be competi-
tively priced. Regardless, the QA function

has the desire to achieve zero defects for the
entire production process and believes it is in
the best interest of the company to support
this goal. However, a defect-free product
most likely will not be affordable. Without
some balance to the interests of the QA
function, it can become too large. These are
the influences of the classic market-share
dilemma.

From the producer’s perspective, QA
needs to be efficient and rework minimized.
Minimizing the cost of QA and rework
makes the product more competitively priced
and maximizes profit. A good production
process will satisfy nearly all of the cus-
tomer’s requirements without QA, i.e., quali-
ty is built in, not inspected in. Likewise, a
good QA process will identify most, if not
all, of the nonconformance.

The customer, reasonably, cannot expect
a perfect product. However, customers can
mitigate their risk of purchasing poor prod-
ucts by testing performance and inspecting
physical details during the production
process and prior to accepting delivery. By
performing product acceptance, the cus-
tomer increases his cost of acquiring the
product. His investment in product testing
and inspection is an expense, and a portion
of the product price is attributable to the cus-
tomer-generated rework.

Defects not identified by the producer
are subject to detection by the customer dur-
ing his product testing and inspection. The
customer’s perception of product quality is
created largely from the defects he identifies.
To gain repeat business or good references
for new business, the producer strives to
minimize the defects that propagate, or leak,
through his production and QA processes.

Quality Process Indicators
Minimizing the expenditure for QA yet meet-
ing the customer’s quality requirement is not
a simple matter. To accomplish the task,
management must have indicators for
improving the processes and achieving the
needed level of quality. In the following,

three measures of quality efficiency are pro-
posed for determining the effectiveness and
stability of the production and quality
processes.

To better understand the subsequent dis-
cussion, the intended meaning of defects and
rework is provided. The product require-
ments are the potential defects. A defect is
nonconformance to a requirement, created
as a function of the production process and
its employees. Defects may be identified at
any time during the production process up to
customer acceptance. Rework results from
the defects identified. Therefore, rework is a
function of the QA process, QA employees,
and customer testing and inspections. In
mathematical form, defects and rework are
expressed as follows:

Defects = f(production process,
production employees)

Rework = f(QA process, QA
employees, customer verification)

For an adequate understanding, a pro-
ducer must have knowledge of the effective-
ness of production and QA processes. Also,
the producer needs to have information con-
cerning the quality efficiency (QE) of the QA
process itself. By having this information, the
processes can be improved and the amount
of improvement can be quantified.

Three measures are proposed to satisfy
the information needed by the producer.
These measures provide the capability for
determining the goodness of the production
and QA processes. The definitions of the
measures are described below:

QE 1 = R(process) / R 1)

where,

R = total rework costs
R = R(process) + R(customer)
R(process) = rework from the

production process

Right Sizing Quality Assurance
Walt Lipke

Oklahoma City Air Logistics Center

Generally, quality assurance (QA) functions are sized at the direction of management and are rarely sized commensurately
with their need. Over the years, influenced strongly by in-vogue attitudes and real-world circumstances, the size of the QA
function has exhibited extremes: (1) inordinately large after an embarrassing product failure, or an executive’s overreaction
from attending a W.E. Deming seminar, or (2) completely eradicated when perceived to be unneeded or too expensive. This
article introduces quality efficiency indicators that facilitate right sizing the quality assurance function, i.e., sizing QA to the
customer’s need, or the producer organization’s own quality goals. The interpretation and application of the indicators is
explained, and a simple example is provided demonstrating the calculation for sizing the QA function.

July 2004 www.stsc.hill.af.mil 25

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering July 2004

R(customer) = rework from the
product inspections and testing

conducted by the customer

The indicator is a measure of the QE of
the quality process. When QE1 indicates the
customer identifies an excessive number of
defects, improvement is needed from the QA
process and its employees. Rework can come
from non-requirements when good require-
ments management is not practiced.
However, only rework from nonconfor-
mances to requirements is used in the calcu-
lation of the indicator.

QE2 = P / T 2)
where,

P = production costs
T = P + R + Q = total effort

Q = quality assurance costs

The indicator is a measure of efficiency
of the production process. When QE2 indi-
cates excessive defects, the performance of
the production process and its employees
requires improvement.

QE3 = R(process) / Q 3)

The indicator is a measure of efficiency
of the production and QA processes. When
QE3 is much greater than 1.0, the produc-
tion process is examined for improvement.
Conversely, when QE3 is much less than 1.0,
the QA process requires review and
improvement.

Analysis
Satisfactory QA is indicated when all three
indicators approach the value 1.0. As seen
from examining the equations, it is possible
for QE1 and QE3 to be equal to 1.0.
However, it is not possible for QE2 to have a

value of 1.0 when R and Q are not zero. The
only condition for which QE2 can equal 1.0
is when R=0.0 and Q=0.0, i.e., perfect
process quality. It has been written that the
minimum value of QA needed to maintain a
high achieving quality process is 2.5 percent
of the total effort [1]1. Thus, the maximum
value expected for QE2 is 0.975.

The indicator QE1 has the most influ-
ence on the customer’s perception of prod-
uct quality. Of the three indicators, it is the
only one for which perfection (QE1=1.0) can
be consistently achieved. Thus, R(customer)
= 0.0 (i.e., zero defects are identified by the
customer) can (and should) be an expected
outcome of the production and QA process-
es2.

Under normal conditions, the value of
QE3 will approach 1.0, when the QA process
is effective. However, as QE1 and QE2
approach the value of 1.0, QE3 will approach
zero. Using the equation for QE3, this cir-
cumstance is more clearly understood. As the
production process improves and approach-
es zero defects, the numerator, R(process),
approaches 0.0. Concurrently, the denomina-
tor, Q, approaches its minimum value (2.5
percent of total effort), and thus, QE3
approaches 0.0.

Indicators QE1 and QE2 may be used as
evidence of defect prevention. The concept
of defect prevention is that the QA process
minimizes or eliminates the propagation of
defects to the customer, and the production
process has been optimized such that rework
and QA are minimized [2]. QE1 provides
information concerning the amount of
defect leakage from the QA process to the
customer. Simultaneously, QE2 provides
information concerning the optimization of
the production process. Taken together,
these indicators show how well defect pre-
vention is being achieved. When QE1

approaches 1.0 and QE2, simultaneously,
nears 0.975, the production and QA process-
es are performing defect prevention at a level
nearing perfection.

The indicators, QE1, QE2, and QE3, are
to be observed as both cumulative3 and peri-
odic values. The cumulative number provides
information as to the status of the process
over a span of time. The periodic values yield
trend information and help to answer the
question, “Is the process improving, or is it
getting worse?”

Quality Function Sizing
When the indicators QE1, QE2, and QE3 are
satisfactory with respect to the customer’s
needs or the organization’s quality goals, and
QE3 is in statistical control, the QA function
can be reliably sized. Likewise, the QA func-
tion can be sized for a new project using the
data from a historical project, as long as the
production and quality processes are
unchanged. A statistical process control
(SPC) control chart of the periodic observa-
tions of QE3 is used to determine if the
quality and rework processes are in control
[3]4. The control charts may also be used as a
Run chart [3] for detecting the process reac-
tion to improvements implemented.

As an example, Figure 1 is a SPC control
chart created from real project data, shown in
Table 1. As clearly seen in Figure 1, all
observed values are within the upper and
lower control limits shown as upper confi-
dence limit (UCL) and lower confidence limit
(LCL), respectively. Thus, the processes gov-
erning QE3 are statistically stable.

Upon achieving statistical control, the
QA function is sized from the periodic
observations of Q/T, i.e., the quality invest-
ment as a fraction of total effort. From the
average of these observations and their sta-
tistical variation, a 95 percent confidence
value can be calculated for Q/T. At 95 percent
confidence, we are 95 percent certain the actual
QA requirement will be less than the size of
the function created. Sizing QA at 95 percent
confidence mitigates the risk of not sizing
the QA function adequately.

The 95 percent confidence we are seek-
ing is the UCL of the 90 percent confidence
interval; 10 percent of the normal distribu-
tion is outside of the confidence interval, 5
percent below the LCL, and 5 percent above
the upper limit.5 Having a QA requirement
less than the lower confidence limit is not a
concern; therefore, only the upper limit is
used.

The 95 percent confidence limit, (Q/T)u,
is used in a linear relationship between the
total effort cost (T) and the size of the QA
function, i.e.,

Q = (Q/T)u x T

Figure 1: Statistical Process Control Chart

Right Sizing Quality Assurance

where,

Q is the expected cost for QA

This relationship is to be used with the
project plan, specifically the monthly expen-
ditures for total effort, to right size the appli-
cation of QA resources. Performing the
computations for the monthly values of Q
will yield a funding profile for the QA func-
tion. In turn, this profile may be converted
and used as the staffing profile.

To compute the 95 percent confidence
limit, the periodic observations of Q/T are
used as logarithms to make the statistical cal-
culations4. The standard deviation σ is esti-
mated for ln (Q/T), while the logarithm of
the cumulative value, (Q/T)c, is the estimate
for the average value. Therefore, the confi-
dence limit is first computed as a logarithm.
Thus, the equation for the calculation of the
95 percent confidence limit follows:

(Q/T)u = antilog [ln (Q/T)c + 90%
confidence interval] (see Note 6)

The antilog value, (Q/T)u, is the appro-
priate number for the sizing computation.

Using the project data from Table 1, the
value of ln (Q/T)c is computed to equal -
2.7662, with a standard deviation, σ=0.5048.
From the values for z (=1.645), σ, and n
(=18), the 90 percent confidence interval is
calculated to be 0.1957. Adding ln (Q/T)c
and the 90 percent confidence interval yields
the value -2.5705. The value of (Q/T)u is
then computed from the antilog of the sum,
and is determined to be 0.0765. For this proj-
ect, the right size for the QA function is com-
puted to be 7.65 percent of the total effort.

Summary
To economically apply QA requires three
indicators of quality efficiency converge and
approach 1.0. Two indicators are measures of
defect leakage to the customer and from the
production process, and the third measures
the efficiency of identifying defects. The
indicators are useful for improving the pro-
duction and QA processes. Ultimately, upon
achieving in control processes, the quality
assurance function can be sized commensu-
rately with the customer need, or the produc-
er’s quality goals7.◆

References
1. Crosby, Philip B. Quality Is Free. New

York: McGraw-Hill, 1979.
2. Paulk, M., et al. Capability Maturity

Model for Software, Version 1.1.
Software Engineering Institute,
CMU/SEI-93-TR-24. Feb. 1993.

3. Pitt, H. SPC for the Rest of Us. Reading,
MA: Addison-Wesley, 1995.

4. Crow, E. L., et.al. Statistics Manual. New
York: Dover, 1960.

Notes
1. High achievingmeans nearly all of the pro-

ducer’s effort is in production. Extremely
small efforts are performed for QA and
rework to achieve the product require-
ments. In the author’s opinion, very good
quality for software producers would be
QE1 ≥ 0.98, QE2 > 0.8, and QE3
between 0.6 and 1.2. World-class quality
would be characterized by QE1 = 1.0,
QE2 > 0.9, and QE3 between 0.8 and 1.1.

2. The customer is still at risk of product
defects, even when R(customer) = 0.0.
Defects may be missed by the customer’s
inspection and testing.

3. Cumulative values for the three quality
efficiency indicators are computed using
the total values of the two parameters
involved. For example, the cumulative for
QE2 would use total values for P and T.

4. When applying statistics, it is recom-
mended to use the logarithm values of
the periodic observations of QE3 and
Q/T. These parameters have been statis-
tically tested as logarithms, and appear to
be normally distributed. The results of
statistics applications such as SPC and
Confidence Interval are improved when
the representation of the observations
approximates a normal distribution.

5. The Confidence Interval is the region
surrounding the computed average value
within which the true value lies with a
specified level of confidence. The end
points of the interval are the Confidence
Limits. The equation for the Confidence
Limits is :

<x> _+ z (σ/√n)
where,

<x> is the average value of x, while z is
from the standard unit normal distribu-
tion and corresponds to the area selected
(for this application, z = 1.645 at 95 per-
cent of the distribution area), σ is the
standard deviation of the observations
of x, and n is the number of observa-
tions [4].

6. The calculation is easily performed using
the capability within personal computer
spreadsheet applications, such as
Microsoft’s Excel.

7. Sizing the QA function using the method
presented in this article assumes there is a
semi-smooth flow of effort, and the
requirement for QA is not sporadic.

July 2004 www.stsc.hill.af.mil 27

Table 1: Real Project Data

About the Author
Walt Lipke is the deputy
chief of the Software
Division at the Okla-
homa City Air Logistics
Center. The division
employs approximately

600 people, primarily, electronics engi-
neers. He has 30 years of experience in
the development, maintenance, and man-
agement of software for automated test-
ing of avionics. In 1993 with his guidance,
the Test Program Set and Industrial
Automation (TPS and IA) functions of
the division became the first Air Force
activity to achieve Level 2 of the Software
Engineering Institute Capability Maturity
Model® for Software (SW-CMM®). In
1996, these functions became the first
software activity in federal service to
achieve SW-CMM Level 4 distinction. The
TPS and IA functions, under his direction,
became ISO 9001/TickIT registered in
1998. These same functions were honored
in 1999 with the Institute of Electrical and
Electronics Engineers Computer Society
Award for Software Process
Achievement. Lipke is a professional engi-
neer with a master’s degree in physics.

OC-ALC/MAS
Software Division
Tinker AFB, OK 73145-9144
Phone: (405) 736-3341
Fax: (405) 736-3345
E-mail: walter.lipke@tinker.af.mil

28 CROSSTALK The Journal of Defense Software Engineering July 2004

Today’s requirements to pro-
tect America have created

new challenges at home and
abroad. Our warfighters want
rapid delivery of new capabilities,
successful interoperability of
complex systems, and high quality
decision-support information.
And they want it all now – in a
timeframe that
reduces days to
hours, hours to
minutes, and
minutes to sec-
onds. The chal-
lenge is to inte-
grate old and
new architectures, reestablish
credibility of the acquisition com-
munity, renew the work force, and
tackle the diverging trends in soft-
ware dependency/growth and
productivity.

These are the challenges that
were addressed at the 2004
Systems and Software Technology
Conference (SSTC) held recently
at the Salt Palace Convention
Center in Salt Lake City. Many of

the latest technologies and human
ingenuities that make these chal-
lenges an opportunity were pre-
sented at SSTC from April 19-22
as presenters and speakers
brought their expertise and expe-
rience on the conference’s theme,
“Technology: Protecting Amer-
ica,” to more than 2,200 attendees

from around the world.
The SSTC is one of

the largest co-
s p o n s o r e d
events for U.S.
defense-related
software tech-
nologies, poli-

cies, and practices.
Also this year, the conference

expanded its scope and focus to
include not only the software side
of defense technology but also
the systems engineering side as
well. That is why its name has
changed from the Software
Technology Conference to the
Systems and Software Technolo-
gy Conference. However, the
content of the event has not

(Top photo) Participants at the 16th annual Systems and Software
Technology Conference talked with exhibitors about new technologies
and, in some cases, even took them for test-drives. (Photo above) retired
Lt. Gen. Keith Kellogg Jr., U.S. Army, spoke at the Wednesday
lunch session about current activities in homeland security.

16th Annual Systems and Software
Technology Conference Focused on

Technology to Protect America

Departments

July 2004 www.stsc.hill.af.mil 29

16th Annual Systems and Software Technology Conference Focused on Technology to Protect America

changed and has in fact
expanded. The SSTC goal
remains to provide a forum
for systems and software pro-
fessionals in the Department
of Defense (DoD), related
industries, and academia to
accomplish the following:
• Learn by increasing the
understanding of scientific
and technical issues relevant
to the mission of the DoD.
• Discover effective system
and software technologies.
• Connect with attendees to
exchange lessons learned in
the acquisition, development,
support, and management of
software intensive systems.

The 16th annual SSTC fea-
tured 148 different exhibitors

and 214 speaker presentations,
including the addition of two
new speaker tracks. In addi-
tion to the educational and
training opportunities at the
SSTC 2004, the conference
gave attendees a chance to
network at all levels at a vari-
ety of planned events
throughout the week.

The SSTC is co-sponsored
by the U.S. Army, Marine
Corps, Navy, Air Force,
Defense Information Systems
Agency, the Department of
the Navy, and Utah State
University Extension. The co-
sponsors have already started
planning SSTC 2005 sched-
uled for April 18-21 in Salt
Lake City.◆

Participants were given the opportunity to use various software applications in
the computer lab during sessions throughout the week.

Maj. Gen. Kevin J. Sullivan, Commander, Ogden Air Logistic Center,
(right) welcomed Maj. Gen. Conrad Ponder, U.S. Army, to the SSTC.

The midweek entertainment break,“Swinging Through World War II,”
added a little festivity to the conference with dinner and a show.

Members of the Tuesday co-sponsors panel (from left) Dawn C. Meyerriecks, Defense Information Systems Agency; Diann L. McCoy, Defense Information
Systems Agency; John M. Gilligan, U.S. Air Force; Maj. Gen. Conrad W. Ponder, U.S. Army; David M. Wennergren, Department of the Navy; Rear
Adm. Michael A. Sharp., U.S. Navy; Brig. Gen. John R. Thomas, U.S. Marine Corps.

WEB SITES

AT&L Knowledge Sharing
System
http://akss.dau.mil/jsp/default.jsp
The Acquisition, Technology, and Logistics
(AT&L) Knowledge Sharing System
(AKSS) was launched in October 2002 to
replace the Defense Acquisition Deskbook.
Like its predecessor, AKSS continues to
provide acquisition information for all
Department of Defense service compo-
nents and across all functional disciplines.
AKSS serves as the central point of access
for all AT&L resources and information,
and to communicate acquisition reform.
As the primary reference tool for the
defense AT&L work force, it provides a
means to link together information and
reference assets from various disciplines
into an integrated, but decentralized, infor-
mation source.

Army Software Metrics
Office
www.armysoftwaremetrics.org/index.asp
The Army Software Metrics Office
(ASMO) provides support to U.S. Army
and Department of Defense managers to
develop effective software measurement
programs. The ASMO supports the Army
Software Test and Evaluation Panel initia-
tive, which defines specific procedures for
test and evaluation of software-intensive
systems, establishes an issue-driven soft-
ware metrics process to support manage-
ment of Army software projects, and pro-
vides resources to better define the user and
technical requirements of software-inten-
sive systems. The ASMO provides a help
desk, maintains a Web site, and develops

and disseminates computer-based training
programs. The help desk provides real-time
support for any inquiry during normal
working hours. E-mails are welcomed also.

Refactoring Home Page
www.refactoring.com
This site is a simple portal for information
about refactoring. There is a list of sources
of information about refactoring, includ-
ing various book listings, and a catalog of
common refactorings, mostly taken from
“Refactoring: Improving the Design of
Existing Code.” Many refactorings can be
automated, and various tools exist to help
the refactoring process. These are addressed
and a mailing list is available for additional
questions.

The Quality Assurance
Institute
www.qaiusa.com
The Quality Assurance Institute (QAI) is
exclusively dedicated to partnering with
the enterprise-wide information quality
profession. QAI is an international organi-
zation consisting of member companies in
search of effective methods for detection-
software quality control and prevention-
software quality assurance. QAI provides
consulting, education services, and assess-
ments. The QAI has recently announced
the formation of a new certification pro-
gram for the software project manager. The
QAI Web site also features upcoming sem-
inars and conferences, software certifica-
tion, listing of local and federation chap-
ters, on-line courses, in-house training, and
news items.

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

APR2003 c THE PEOPLE VARIABLE

MAY2003 c STRATEGIES AND TECH.

JUNE2003 c COMM. & MIL. APPS. MEET

JULY2003 c TOP 5 PROJECTS

AUG2003 c NETWORK-CENTRIC ARCHT.

SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW

DEC2003 c MANAGEMENTBASICS

MAR2004 c SWPROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.

JUN2004 c ASSESSMENT AND CERT.

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

30 CROSSTALK The Journal of Defense Software Engineering July 2004

Departments

BACKTALK

We go to movies for entertainment,
and of course, most films are fiction,

not real; they are make-believe. However,
when a scene blatantly disregards the laws
of physics it is enough to make an engineer
retch. Yet Hollywood’s bad physics can
provide insight into our own industry’s
faux pas. For example, consider the fol-
lowing:

Flashing Bullets
An action movie’s climax is the gunfight
complete with ricocheting bullets that emit
bright flashes of light upon impact with
anything on the set. While the flashing bul-
lets are exciting, they are highly unlikely.
The majority of bullets are made of cop-
per-clad lead that does not spark when
struck, even by steel objects. Professionals
employ the same copper-led-alloy in flam-
mable work areas to prevent sparks.

In software engineering, flashy product
features with marginal value are the flash-
ing bullets of the industry. We get so excit-
ed about new ostentatious features that we
lose sight of our original product intent.
Focus on the target, not flamboyant red
herrings.

Endless Ammunition
Where do all those bullets come from? A
Mac 10 expends a thirty-round magazine
in a mere 1.8 seconds of sustained fire, an
Uzi in 3.0 seconds. Nevertheless, a movie
star can sustain fire during a five-minute
scene without a single reload. If you are
thinking bigger magazines, think again. To
sustain a three-minute burst of fire, a Mac
10 gunman would have to carry 100
pounds of lead and 3,000 cartridges cases
– not very agile or likely.

In software engineering, requirements
are endless. Baselines are hollow, freezes
futile. Customer needs pile up and weigh a
project down like 100 pounds of lead. Hit
your target before you aim at the next.

Visible Laser Beams
From security systems to light-sabers, film-
makers treat us to conveniently visible laser
beams. One problem, we can only see laser
light when it hits a repercussive object,
revealing a dot, not a beam. Any laser
pointer user can confirm this fact. True,
smoke, dust, or mist can reflect the laser
light and create an apparent beam, but that
is short lived unless you are a heavy smok-
er in which case you are short lived.

Software requirements, like laser
beams, are only visible when they hit home
with the developer. They are not guiding
beams but elusive rays of light that require
reverberation and discernment. In this
case, it is okay to blow smoke or sprinkle
dust to better perceive and focus in on cus-
tomer requirements.

Pushy Buckshot
Now move from bullets to the famous
sawed-off shotgun, blasting thugs violent-
ly backwards into the nearest plate-glass
window (see cut-free glass). That seems
real, right? No, using conservation of
momentum, you find the velocity of the
thug is proportional to the ratio of the
buckshot’s mass to the thug’s mass, which
is tiny. The net effect for an average person
and standard buckshot would be 0.4 miles
per hour. The average human walks at 4
miles per hour so the only direction the
thug is going is down, due to another force
called gravity.

Software managers are looking for sil-
ver buckshot that will change the momen-
tum of a project. Why do we continually
believe that the tiny thrust of a new tech-
nology, process, or consultant will over-
come the impetus of the project? Avoid
sawed-off initiatives.

Flaming Cars
Why are movie cars always bursting into
flames the instant they collide with any-
thing? If you watch closely, some explode
before they hit anything as if the gas tank
gets panicky and detonates at the mere
thought of collision. A car explosion
requires a tank rupture that spews a fine
mist of gasoline vapor-air mixture of 0.8
percent to 6 percent and a source of igni-
tion, typically found at the other end of
the car – possible but improbable.

Software project leads deal with flam-
ing gurus whom they feel they cannot
afford to lose. They tiptoe around in fear
that their fumes will ignite and explode the
project. Coddling prima donnas is more
harmful than helpful to a project. Their
ignition probability is lower than per-
ceived. They may burn but it is improbable
that your project will detonate. They are
replaceable. Stick with stable, reliable, and
efficient project fuel.

Cut-free Glass
A shattered window contains thousands of

incredibly sharp dagger-like edges. Little
force is required for one of these daggers
to lacerate flesh. However, thespians fre-
quently crash through plate glass without a
scratch. There are individuals who have
accidentally fallen through windows with-
out sustaining serious injuries. There are
people who have survived shark attacks.
However, in both cases the odds are mea-
ger.

The software industry has program-
mers that believe they can code their way
through a project a week before delivery.
Even if you make the deadline without a
scratch, you leave a product full of lethal
shards for your customers to navigate.
Fortunately, most customers have devel-
oped thick calluses from other software
products. Do not procrastinate – respect
your client.

Space Explosions
I am sorry Trekkies and Jedi, but there are
two problems with explosions in outer
space: With no air to transmit sound, out-
erspace explosions are virtually silent, save
the wisp of expanding gas that passes by
your X-Wing. In addition, with no gravity
or air to slow them down, fragments from
the explosion would travel outward until
they hit something with the same kinetic
energy they had during the initial blast.
The first exploding Tie-Fighter would
indiscriminately wipe out most of the
fighters from both sides of the battle. The
lucky few left would have second thoughts
about setting off another shrapnel shower.

Software design errors are like space
explosions. They are seldom heard and
hard to spot. You do not see them coming
but when they hit, they hit with more ener-
gy than they did when initiated. Once
found, you spend the rest of the project
dodging their debris. Spend your time and
attention in the design phase. Knock out
design flaws while they are small; do not
wait until they are death stars.

Luckily, when we leave the theater, we
realize what we saw was just a movie, fan-
tasy, or make-believe. Unfortunately, that is
not the case with software projects. These
are real problems with real consequences.
So sit down; grab a soda, some popcorn,
and Red vines; and chew on that for a
while. Enjoy your project.

— Gary Petersen
Shim Enterprise, Inc.

Movie Physics and the Software Industry

July 2004 www.stsc.hill.af.mil 31

CrossTalk / MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Published by the
Software Technology

Support Center (STSC)

	Front Cover
	Table of Contents
	Top 5 Quality Software Projects
	Winning Projects Exemplify Success for Developers and Acquirers
	The Advanced Field Artillery Tactical Data System Proves
Successful in Battle
	The DMLSS Program Brings
Electronic Commerce to the
Military Medical Treatment Facilities
	The H1E System Configuration Set
Lays the Foundation for Decades to Come
	The OneSAF Objective System Fits
Individual Simulation Needs
	Patriot Excalibur Software Enables
Full-Scale Deployment of Battle-Ready Units
	CrossTalk Honors the
2003 Top 5 Quality Software Projects Finalists

	Software Engineering Technology

	Using Software Metrics and
Program Slicing for Refactoring
	Right Sizing Quality Assurance

	From the Publisher

	CrossTalk Presents Top 5 Awards at the Systems and Software Technology Conference

	Coming Events

	SSTC 2004 Conference Highlights

	Web Sites

	Call for Articles

	BackTalk

	Back Cover

