

2004 U. S. Government’s Top 5 Programs
The annual Top 5 contest to award quality software development
has a new name, and its scope has expanded to include total
program performance.

Software Project Management Practices: Failure Versus
Success
This author’s analysis of successful large software projects versus those
that ran late, were over budget, or cancelled reveals six common
problems associated with project management rather than with technical
personnel.
by Capers Jones

Catastrophe Disentanglement: Getting Software
Projects Back on Track
Most software calamities were troubled projects that went on for too
long. This article proposes a 10-step process to effectively deal with an
out-of-control project and get it back on track.
by E.M. Bennatan

Understanding Causal Systems
This article describes a model and a supporting set of terms that facilitate
reasoning about and planning for causal systems and designing process
experiments, all of which is based on practical experience.
by David N. Card

Requirements Engineering So Things Don’t Get Ugly
Even if you know exactly what you want, requirements engineering is a
tough task that requires understanding different points of view. This
author discusses how processes in the Capability Maturity Model
Integration provide a good foundation to accomplish this.
by Deb Jacobs

Independent Estimates at Completion – Another
Method
This article reviews the most frequently used Earned Value Management
formulas for calculating the Independent Estimate at Completion
(IEAC), and proposes an alternative method of calculating IEAC that
shows promise.
by Walt Lipke

2 CROSSTALK The Journal of Defense Software Engineering October 2004

4

5

10

15

19

26

PrProjectoject ManaManaggementement

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

PPolicies,olicies, NeNews,ws, andand UpdatesUpdatesPPolicies,olicies, NeNews,ws, andand UpdatesUpdates

Cover Design by
Kent Bingham.

3
9

18
25
31

DeparDepar tmentstments

ON THE COVER

From the Publisher

Coming Events

Call for Articles

Web Sites

BackTalk
CrossTalk Archives

CrossTalk
OC-ALC/ MAS

CO-SPONSOR

OO-ALC/MAS
CO-SPONSOR

WR-ALC/MAS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (OC-ALC),
Ogden-Air Logistics Center (OO-ALC), and Warner
Robins-Air Logistics Center (WR-ALC) MAS
Software Divisions are the official co-sponsors of
CROSSTALK, The Journal of Defense Software
Engineering. The MAS Software Divisions and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 18.

OO-ALC/MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD . Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

OpenOpen FForumorum

Iam pleased to announce that the three U.S. Air Force Air Logistics Centers’ (ALC)
Software Divisions have joined together to become CrossTalk’s new co-spon-

sors. The three maintenance directorate divisions are commonly referred to by their
office symbol, MAS, and are located at Ogden ALC, Hill Air Force Base, Utah;
Oklahoma City ALC, Tinker Air Force Base, Oklahoma; and Warner Robins ALC,
Robins Air Force Base, Georgia. Well known for high-quality software development
and sustainment capabilities, the divisions are currently under the chief leadership of

Randy Hill, Kevin Stamey, and Tom Christian, respectively. You will see little change to
CrossTalk as the journal’s mission remains the same:

To encourage the engineering development of software in order to improve
the reliability, sustainability, and responsiveness of our war fighting capability
and to inform and educate readers on up-to-date policy decisions and new
software engineering technologies.

Also, the Air Force Software Technology Support Center will continue in its role as the pub-
lisher as it has since CrossTalk’s inception in 1988.

We proudly begin this issue by announcing the fourth annual U.S. Government’s Top 5
Programs contest, formerly called the Top 5 Quality Software Projects. The National Defense
Industrial Association will facilitate the award process this year. You can submit your 2004 nom-
ination at <www.ndia.org>.

This month we highlight project management and begin with an article from a longtime
CrossTalk supporter, Capers Jones. In his special report to CrossTalk, Software Project
Management Practices: Failure Versus Success, Jones looked at 250 large software projects. He found
six common problem areas: project planning, cost estimating, measurements, milestone track-
ing, change control, and quality control. Learn how project managers focusing on these six areas
can increase their project’s chance of success.

Next, Catastrophe Disentanglement: Getting Software Projects Back on Track by E.M. Bennatan is
featured in our theme section. This article describes how a project catastrophe can be deter-
mined through budget, schedule, or quality aspects and presents a 10-step process to aid a pro-
ject manager and his or her team in turning around their project before it’s too late.

As organizations continue to journey to high process maturity levels, teams may find them-
selves faced with applying causal analysis to identify defects or problems and their associated
symptoms, causes, and corrective actions. In our final theme article Understanding Causal Systems
by David N. Card, the basic concepts and terminology of causal systems are defined along with
a model to facilitate reasoning.

In our first supporting article, Requirements Engineering So Things Don’t Get Ugly by Deb Jacobs,
we are reminded of the importance of customers and development teams working together to
communicate, understand, and define effective requirements throughout a project lifecycle. This
author discusses the basics of requirements engineering and defines key steps that a project
manager can take to ensure requirements are defined, analyzed, and managed properly.

Our issue wraps up with Independent Estimates at Completion – Another Method by Oklahoma’s
MAS Deputy Chief Walt Lipke. Used to predict the final cost of a project, an Independent
Estimate at Completion (IEAC) is a method often used by cost analysts and project managers.
In this article, Lipke reviews several common calculations for IEAC and offers insights into why
optimistic and questionable results may occur and thus proposes alternative calculations.

As we begin a new fiscal year at CrossTalk, I welcome our new co-sponsors and look
forward to their insights into the many lessons learned gained by their individual software divi-
sions. Through this new partnership, we strengthen our commitment to disseminate informa-
tion aimed at helping the defense software community acquire, develop, and sustain software
better.

CrossTalkWelcomes New Sponsors

October 2004 www.stsc.hill.af.mil 3

Tracy L. Stauder
Publisher

From the Publisher

4 CROSSTALK The Journal of Defense Software Engineering October 2004

Policies, News, and Updates

MEMORANDUM FOR ALL GOVERNMENT PROGRAM OFFICES

SUBJECT: 2004 U.S. GOVERNMENT’S TOP 5 PROGRAMS AWARDS

As the Department of Defense’s Executive Agent for Systems Engineering and
sponsor for activities aimed at improving acquisition, I am pleased to announce the
search for the 2004 U.S. Government’s Top 5 Programs, formerly the Top 5 Software
Quality Projects.

Many organizations are employing processes and practices that result in the
successful delivery of programs with significant software content to the United States
government. Looking at past winners of this award, it is apparent that successful
programs have used well-defined and proven processes and practices to develop, manage,
and integrate software into deliverable systems. Beginning in 2004, this award intends to
identify successful programs and highlight their efforts.

One significant change to the award structure this year, beyond extending the
criteria from just software quality performance to total program performance, is the
recognition of both the U.S. government project office and the industry prime contractor
that participated in the system development, in recognition that successful programs are
indeed government/industry team efforts. To facilitate the joint award process, we now
have a co-sponsor of this prestigious award, the National Defense Industrial Association
Systems Engineering Division.

CrossTalk will announce the Top 5 government and industry winners in the May
2005 issue, and winners will receive their awards at the 2005 Systems& Software Technology
Conference. The winning projects will then be highlighted in a series of articles in CrossTalk’s
July 2005 issue.

Nomination forms and additional information on the U. S. Government’s Top 5 Programs
awards can be found at:

http://www.ndia.org, click on Divisions, then Systems Engineering.

Access to articles discussing previous winners can be found at:
http://www.stsc.hill.af.mil/top5projects

David R. Castellano
Deputy Director, Systems Engineering
Defense Systems
(Assessments and Support)

ACQUISITION,
TECHNOLOGY

AND LOGISTICS

October 2004 www.stsc.hill.af.mil 5

This article is derived from analysis of
about 250 large software projects at

or above 10,000 function points in size
that were examined by the author’s com-
pany between 1995 and 2004. (Note that
10,000 function points are roughly equiv-
alent to 1,250,000 statements in the C
programming language.)

It is difficult during analysis to pick
out successful or unsuccessful methods
from projects that are more or less aver-
age. However when polar opposites are
examined, some very interesting differ-
ences stand out. The phrase polar opposites
refers to projects at opposite ends of the
spectrum in terms of achieving cost,
schedule, and quality targets. When pro-
jects that were late by more than 35 per-
cent, or overran their budgets by more
than 35 percent, or experienced serious
quality problems after delivery are com-
pared to projects without such issues,
some interesting patterns can be seen.

Of the 250 projects analyzed, about
25 were deemed successful in that they
achieved their schedule, cost, and quality
objectives. About 50 had delays or over-
runs below 35 percent, while about 175
experienced major delays and overruns,
or were terminated without completion.
The projects included systems software,
information systems, outsourced projects,
and defense applications. This distribu-
tion of results shows that large system
development is a very hazardous under-
taking. Indeed, some of the failing pro-
jects were examined by the author while
working as an expert witness in breach-
of-contract litigation involving the failed
projects.

These large applications included both
systems software and information sys-
tems. Both corporations and government

agencies were included. In terms of
development methods, both waterfall
development cycles and spiral develop-
ment were included. The newer agile
methods were not included because such
methods are seldom if ever utilized on
applications larger than about 1,000 func-
tion points.

Table 1 shows six major factors noted
at opposite ends of the spectrum in terms
of failure versus success as they were
revealed in the study analysis.

The author and his colleagues were
commissioned by clients to examine the
software development practices, tools uti-
lized, quality, and productivity results of
various projects. Thus, this article may be
biased toward the topics examined. We
were not commissioned to examine other
kinds of issues such as poor training, staff
inexperience, or poor personnel practices.
There are, of course, many other influen-
tial factors besides these six in this report.
Indeed, several prior books by the author
cited more than 100 factors [1, 2]. But
these six key factors occur so frequently
that they stand out from factors that
occur only now and then. For additional
studies on recent project failures other
than the author’s, see [3, 4, 5, 6].

Before dealing with the patterns
observed on the successful and failing
projects, it is desirable to discuss some of
the differences between project planning

and project estimating since these are the
key factors associated with both success
and failure.

The phrase project management tools has
been applied to a large family of tools
whose primary purpose is sophisticated
scheduling for projects with hundreds or
even thousands of overlapping and par-
tially interdependent tasks. These tools
are able to drop down to very detailed
task levels, and can even handle the
schedules of individual workers. A few
examples of tools within the project man-
agement class include Artemis Views,
Microsoft Project, Primavera, and Project
Manager’s Workbench.

However, the family of project man-
agement tools is general purpose in
nature and does not include specialized
software sizing and estimating capabilities
as do the software cost estimating tools.
Neither do these general project manage-
ment tools deal with quality issues such as
defect removal efficiency. Project man-
agement tools are useful, but software
requires additional capabilities to be
under full management control.

The software cost estimation industry
and the project management tool industry
originated as separate businesses with
project management tools appearing in
the 1960s, around 10 years before soft-
ware cost estimating tools. Although the
two were originally separate businesses,

Software Project Management Practices:
Failure Versus Success©

Capers Jones
Software Productivity Research LLC

An analysis of approximately 250 large software projects between 1995 and 2004 shows an interesting pattern. When com-
paring large projects that successfully achieved their cost and schedule estimates against those that ran late, were over budget,
or were cancelled without completion, six common problems were observed: poor project planning, poor cost estimating, poor
measurements, poor milestone tracking, poor change control, and poor quality control. By contrast, successful software projects
tended to be better than average in all six of these areas. Perhaps the most interesting aspect of these six problem areas is
that all are associated with project management rather than with technical personnel. Two working hypotheses emerged: 1)
poor quality control is the largest contributor to cost and schedule overruns, and 2) poor project management is the most like-
ly cause of inadequate quality control.

© 2001-2004 Capers Jones.

Table 1: Opposing Major Factors in Study Analysis

Project Management

Project Management

6 CROSSTALK The Journal of Defense Software Engineering October 2004

they are now starting to join together
technically.

Examples of specialized software cost
estimating tools include Before You Leap,
CHECKPOINT, Constructive Cost
Model (COCOMO) II, CostXpert,
KnowledgePlan, Parametric Review of
Information for Costing and Evaluation –
Software (PRICE-S), Software Evaluation
and Estimation of Resources – Software
Estimating Model (SEER-SEM), and
Software Life Cycle Management (SLIM).

Project management tools are an auto-
mated form of several techniques devel-
oped by the Navy for controlling large
and complex weapons systems. For exam-
ple, the program evaluation and review tech-
nique (PERT) originated in the 1950s for
handling complex military projects such
as building warships. Other capabilities of
project management tools include critical
path analysis, resource leveling, and pro-
duction of Gantt or timeline charts.
There are many commercial project man-
agement tools available such as Artemis
Views, Microsoft Project, Primavera,
Project Manager’s Workbench, and more.

Project management tools did not
originate for software, but rather for han-
dling very complex scheduling situations
where hundreds or even thousands of
tasks need to be determined and
sequenced, and where dependencies such
as the completion of a task might affect
the start of subsequent tasks.

Project management tools have no
built-in expertise regarding software as do
the commercial software cost estimating
tools. For example, if you wish to explore
the quality and cost impact of an object-
oriented programming language such as
Smalltalk, a standard project management
tool is not the right choice.

By contrast, many software cost esti-
mating tools have built-in tables of pro-
gramming languages and will automatical-
ly adjust the estimate based on which lan-
guage is selected for the application.

Since software cost estimating tools
originated about 10 years after commercial
project management tools, the developers
of software cost estimating tools seldom
tried to replicate project management
functions such as construction of detailed
PERT diagrams or critical path analysis.
Instead, the cost estimation tools would
export data to a project management tool.
Thus, interfaces between software cost
estimating tools and project management
tools are now standard features in the
commercial estimation market.

Let us now turn to applying project
planning and project estimating tools to
large software applications.

Successful and Unsuccessful
Project Planning
The phrase project planning encompasses
creating work breakdown structures, and
then apportioning tasks to staff members
over time. Project planning includes cre-
ation of various timelines and critical paths
including Gantt charts, PERT charts, or
the like.

Effective project planning for large
projects in large corporations involves
both planning specialists and automated
planning tools. Successful planning for
large software projects circa 2004 involves
the following:
• Using automated planning tools such

as Artemis Views or Microsoft Project.
• Developing complete work breakdown

structures.
• Conducting critical path analysis of

project development activities.
• Considering staff hiring and turnover

during the project.
• Considering subcontractors and inter-

national teams.
• Factoring in time for requirements

gathering and analysis.
• Factoring in time for handling chang-

ing requirements.
• Factoring in time for a full suite of

quality control activities.
• Considering multiple releases if

requirements growth is significant.
Successful projects do planning very

well indeed. Delayed or cancelled projects,
however, almost always have planning fail-
ures. The most common planning failures
include (1) not dealing effectively with
changing requirements; (2) not anticipat-
ing staff hiring and turnover during the
project; (3) not allotting time for detailed
requirements analysis; and (4) not allotting
sufficient time for inspections, testing, and
defect repairs.

Successful project planning tends to be
highly automated. There are at least 50
commercial project-planning tools on the
market, and successful projects all use at
least one of these. Not only are the initial
plans automated, but also any changes in
requirements scope or external events will
trigger updated plans to match the new
assumptions. Such updates cannot be eas-
ily accomplished via manual methods;
planning tools are a necessity for large
software projects.

Successful and Unsuccessful
Project Cost Estimating
Software cost estimating for large soft-
ware projects is far too complex to be per-
formed manually. This observation is sup-
ported by the presence of at least 75 com-

mercial software cost estimating tools,
including such well-known tools as
COCOMO II, CostXpert, Knowledge-
Plan, PRICE-S, SEER-SEM, SLIM, and
the like [7]. Successful projects all use at
least one such tool, and usage of two or
more is not uncommon. Estimates pro-
duced by trained estimating specialists are
also noted on many successful large pro-
jects, but not on failing projects.
Successful cost estimating for large sys-
tems involves using the following:
• Software estimating tools (COCOMO

II, CostXpert, KnowledgePLAN,
PRICE-S, SEER-SEM, SLIM, etc.).

• Formal sizing approaches for major
deliverables based on function points.

• Comparison of estimates to historical
data from similar projects.

• Availability of trained estimating spe-
cialists or project managers.

• Inclusion of new and changing
requirements in the estimate.

• Inclusion of quality estimation as well
as schedule and cost estimation.
By contrast, large failing projects may

not utilize any of the commercial software
estimating tools. However, manual esti-
mates are never sufficient for projects in
the 10,000-function point range.

Failing projects tend to understate the
size of the work to be accomplished due
to inadequate sizing approaches. Failing
projects also omit quality estimates, which
are a major omission since excessive
defect levels slow down testing to a stand-
still. Overestimating productivity rates or
assuming that productivity on a large sys-
tem will be equal to productivity on small
projects are other common reasons for
cost and schedule overruns. The main
problem with estimates for projects in the
10,000-function point size range is that
they err on the side of excessive opti-
mism.

Project planning tools and project esti-
mating tools overlap in functionality, and
are usually marketed separately. Normally,
the project planning and cost estimating
tools pass information back and forth.
The software cost estimating tool would
be used for overall project sizing, resource
estimating, and quality estimating. The
project-planning tool would be used for
critical path analysis, detailed scheduling,
and for work breakdown structures.

Successful and Unsuccessful
Project Measurements
Successful large projects are most often
found in companies that have software
measurement programs for capturing
productivity and quality historical data [8,

Software Project Management Practices: Failure Versus Success

October 2004 www.stsc.hill.af.mil 7

9]. Thus any new project can be com-
pared against similar projects to judge the
validity of schedules, costs, quality, and
other important factors. The most useful
measurements for projects in the 10,000-
function point domain include measures
of the following:
• Accumulated effort.
• Accumulated costs.
• Development productivity.
• Volume and rate of requirements

changes.
• Defects by origin.
• Defect removal efficiency.

Measures of effort should be granular
enough to support work breakdown
structures. Cost measures should be com-
plete and include development costs, con-
tract costs, and costs associated with pur-
chasing or leasing packages. There is one
area of ambiguity even for top companies
and successful projects: The overhead or
burden rates established by companies
vary widely. These variances can distort
comparisons between companies, indus-
tries, and countries, and make bench-
marking difficult. Of course, within a sin-
gle company this is not an issue.

Function points are now the most
commonly used metric in both the
United States and Europe for software
projects, and are rapidly growing in usage
throughout the world. Development pro-
ductivity measurements normally use
function points in two fashions: function
points per staff month and/or work
hours per function point [10, 11, 12]. For
additional information on functional
metrics, refer to the Web site of the non-
profit International Function Point Users
Group at <www.ifpug.org>.

The federal government, some mili-
tary projects, and the defense industry
still perform measurements using the
older lines-of-code metric. This metric is
hazardous because it cannot be used for
measuring many important activities such
as requirements, design, documentation,
project management, quality assurance,
and the like. There are also programming
languages such as Visual Basic that have
no effective rules for counting lines of
code. About one third of the large soft-
ware projects examined utilized several
programming languages concurrently,
and one large application included 12 dif-
ferent programming languages.

Measures of quality are powerful indi-
cators of top-ranked software producers
and are almost universal on successful
projects. Projects that are likely to fail, or
have failed, almost never measure quality.
Quality measures include defect volumes
by origin (i.e., requirements, design, code,

bad fixes) and severity level, defect sever-
ity levels, and defect repair rates.

Really sophisticated companies and
projects also measure defect removal effi-
ciency. This requires accumulating all
defects found during development and also
after release to customers for a predeter-
mined time period. For example, if a pro-
ject finds 900 defects during development
and the users find 100 defects in the first
three months of use, then it can be stated
that the project achieved a 90 percent
defect removal efficiency level. Of course,
any defect found after the first three
months lowers the defect removal value.

It is interesting that successful pro-
jects are almost always better than 95 per-
cent in defect removal efficiency, which is
about 10 percent better than the U.S.
average of 85 percent [13].

It is not possible to measure defect
removal efficiency for cancelled projects
since there is no customer usage.
However, for projects that finally get

released to customers – although deliv-
ered late – defect removal efficiency sel-
dom tops 80 percent, or about 5 percent
below U.S. averages and 15 percent below
successful projects. This statement is
based on only about a dozen large sys-
tems because almost universally, projects
that are delayed or over budget do not
have effective quality measurements in
place.

Since the bulk of schedule delays and
cost overruns tends to occur during test-
ing and is caused by excessive defect vol-
umes, it can be hypothesized that lack of
effective quality control on large systems
is a major contributor to both cost and
schedule overruns.

Successful and Unsuccessful
Milestone Tracking
The phrase milestone tracking is ambiguous
in the software world. It sometimes refers
to the start of an activity, sometimes to

the completion of an activity, and some-
times to nothing more than a calendar
date. In this article, the phrase refers to
the point of formal completion of key
deliverables or a key activity. Normally, a
completion milestone is the direct result
of some kind of review or inspection of
the deliverable. A milestone is not an arbi-
trary calendar date.

Project management is responsible for
establishing milestones, monitoring their
completion, and reporting truthfully on
whether the milestones were successfully
completed or encountered problems.
When serious problems are encountered,
it is necessary to correct the problems
before reporting that the milestone has
been completed.

A typical set of project milestones for
successful software applications in the
nominal 10,000-function point size range
would include completion of the follow-
ing:
• Requirements review.
• Project plan review.
• Cost and quality estimate review.
• External design reviews.
• Database design reviews.
• Internal design reviews.
• Quality plan and test plan reviews.
• Documentation plan review.
• Deployment plan review.
• Training plan review.
• Code inspections.
• Each development test stage.
• Customer acceptance test.

Failing or delayed projects usually lack
serious milestone tracking. Activities
might be reported as finished while work
was still ongoing. Milestones might be
simple dates on a calendar rather than
completion and review of actual deliver-
ables. Some kinds of reviews may be so
skimpy as to be ineffective.

Successful projects, on the other hand,
regard milestone tracking as an important
activity and try to do it well. There is no
glossing over of missed milestones, or
pretending that unfinished work is done.
Delivering documents or code segments
that are incomplete, contain errors, and
cannot support downstream development
work is not the way milestones occur on
successful projects.

Another aspect of milestone tracking
on successful projects is what happens
when problems are reported or delays
occur. The reaction is strong and immedi-
ate: corrective actions are planned, task
forces assigned, and corrections occur as
rapidly as possible. Among lagging pro-
jects, on the other hand, problem reports
may be ignored and very seldom do cor-
rective actions occur.

“... it can be
hypothesized that lack

of effective quality
control on large systems
is a major contributor

to both cost and
schedule overruns.”

Project Management

Successful and Unsuccessful
Change Management
Applications in the nominal 10,000-func-
tion point size range run from 1 percent
to 3 percent per month in new or changed
requirements during the analysis and
design phases [8]. This fact was discov-
ered by measuring the initial function
point totals at the requirements stage and
comparing them to the function point
total after design. If the initial function
point total is 10,000 function points and
the post-design total is 12,000 function
points, then the overall growth is 20 per-
cent. If the schedule for analysis and
design took 10 calendar months, then the
monthly growth rate was 2 percent per
month.

The total accumulated volume of
changing requirements can top 50 percent
of the initial requirements when function
point totals at the requirements phase are
compared to those at deployment.
Therefore, successful software projects in
the nominal 10,000-function point size
range must use state-of-the-art methods
and tools to ensure that changes do not
get out of control.

Successful change control for applica-
tions in the 10,000-function point size
range include the following:
• A joint client/development change

control board or designated domain
experts.

• Using joint application design (JAD)
to minimize downstream changes.

• Using formal prototypes to minimize
downstream changes.

• Planned usage of iterative develop-
ment to accommodate changes.

• Formal review of all change requests.
• Revised cost and schedule estimates

for all changes greater than 10 func-
tion points.

• Prioritizing change requests in terms
of business impact.

• Formal assignment of change requests
to specific releases.

• Using automated change control tools
with cross-reference capabilities.
One of the observed byproducts of

using formal JAD sessions is a reduction
in downstream requirements changes.
Rather than having unplanned require-
ments surface at a rate of 1 percent to 3
percent per month, studies of JAD by
IBM and other companies have indicated
that unplanned requirements changes
often drop below 1 percent per month
due to the effectiveness of the JAD tech-
nique.

Prototypes are also helpful in reducing
the rates of downstream requirements

changes. Normally key screens, inputs,
and outputs are prototyped so users have
some hands-on experience with what the
completed application will look like.

However, changes will always occur
for large systems. It is not possible to
freeze the requirements of any real-world
application, and it is naïve to think this
can occur. Therefore, leading companies
are ready and able to deal with changes,
and do not let them become impediments
to progress. Therefore, some form of
iterative development is a logical necessity.

Successful and Unsuccessful
Quality Control
Effective software quality control is the
most important single factor that sepa-
rates successful projects from delays and
disasters. The reason for this is because
finding and fixing bugs is the most expen-
sive cost element for large systems and
takes more time than any other activity.

Successful quality control involves
both defect prevention and defect
removal activities. The phrase defect preven-
tion includes all activities that minimize
the probability of creating an error or
defect in the first place. Examples of
defect prevention activities include JAD
for gathering requirements, using formal
design methods, using structured coding
techniques, and using libraries of proven
reusable material. The phrase defect removal
includes all activities that can find errors
or defects in any kind of deliverable.
Examples of defect removal activities
include requirements inspections, design
inspections, document inspections, code
inspections, and all kinds of testing.

Some activities benefit both defect
prevention and defect removal simultane-
ously. For example, participation in
design and code inspections is very effec-
tive in terms of defect removal, and also
benefits defect prevention. The reason
why defect prevention is aided is because
inspection participants learn to avoid the
kinds of errors that inspections detect.
Successful quality control activities for
10,000-function point projects include
the following:

Defect Prevention
• JAD for gathering requirements.
• Formal design methods.
• Structured coding methods.
• Formal test plans.
• Formal test case construction.

Defect Removal
• Requirements inspections.
• Design inspections.

• Document inspections.
• Code inspections.
• Test-plan and test-case inspections.
• Defect repair inspections.
• Software quality assurance reviews.
• Unit testing.
• Component testing.
• New function testing.
• Regression testing.
• Performance testing.
• System testing.
• Acceptance testing.

The combination of defect prevention
and defect removal activities leads to
some very significant differences in the
overall numbers of software defects com-
pared between successful and unsuccess-
ful projects. For projects in the 10,000-
function point range, the successful ones
accumulate development totals of around
4.0 defects per function point and remove
about 95 percent of them before cus-
tomer delivery. In other words, the num-
ber of delivered defects is about 0.2
defects per function point or 2,000 total
latent defects. Of these, about 10 percent
or 200 would be fairly serious defects. The
rest would be minor or cosmetic defects.

By contrast, the unsuccessful projects
accumulate development totals of around
7.0 defects per function point and remove
only about 80 percent of them before
delivery. The number of delivered defects
is about 1.4 defects per function point or
14,000 total latent defects. Of these about
20 percent or 2,800 would be fairly serious
defects. This large number of latent defects
after delivery is very troubling for users.

One of the reasons why successful
projects have such high defect removal
efficiency compared to unsuccessful pro-
jects is the usage of design and code
inspections [14, 15]. Formal design and
code inspections average about 65 percent
efficiency in finding defects. They also
improve testing efficiency by providing
better source materials for constructing
test cases.

Unsuccessful projects typically omit
design and code inspections and depend
purely on testing. The omission of up-
front inspections causes three serious
problems: (1) the large number of defects
still present when testing slows the pro-
ject to a standstill, (2) the bad fix injection
rate for projects without inspections is
alarmingly high, and (3) the overall defect
removal efficiency associated with only
testing is not sufficient to achieve defect
removal rates higher than about 80 per-
cent.

(Note: The term bad fixes refers to sec-
ondary defects accidentally injected by
means of a patch or defect repair that is

8 CROSSTALK The Journal of Defense Software Engineering October 2004

Software Project Management Practices: Failure Versus Success

October 2004 www.stsc.hill.af.mil 9

itself flawed. The industry average is
about 7 percent, but for unsuccessful pro-
jects the number of bad fixes can
approach 20 percent; i.e., one out of every
five defect repairs introduced fresh
defects [13]. Successful projects, on the
other hand, can have bad-fix injection
rates of only 2 percent or less.)

Conclusions
There are many ways to make large soft-
ware systems fail. There are only a few
ways of making them succeed. It is inter-
esting that project management is the fac-
tor that tends to push projects along either
the path to success or the path to failure.

Large software projects that are inept
in quality control and skimpy in project
management tasks are usually doomed to
either outright failure or massive over-
runs.

Among the most important software
development practices leading to success
are those of planning and estimating
before the project starts, absorbing chang-
ing requirements during the project, and
successfully minimizing bugs or defects.

Successful projects always excel in
these critical activities: planning, estimat-
ing, change control, and quality control.
By contrast, projects that run late or fail
typically had flawed or optimistic plans,
had estimates that did not anticipate
changes or handle change well, and failed
to control quality.◆

References
1. Jones, Capers. Patterns of Software

Systems Failure and Success. Boston,
MA: International Thompson Compu-
ter Press, 1995.

2. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, MA: Addison Wesley
Longman, 2000.

3. Ewusi-Mensah, Kweku. Software
Development Failures. Cambridge,
MA: MIT Press, 2003.

4. Glass, R.L. Software Runaways:
Lessons Learned From Massive
Software Project Failures. Englewood
Cliffs, NJ: Prentice Hall, 1998.

5. The Standish Group. The CHAOS
Chronicles Vers. 3.0. West Yarmouth,
MA: The Standish Group, 2004.

6. Yourdon, Ed. Death March – The
Complete Software Developer’s Guide
to Surviving “Mission Impossible”
Projects. Upper Saddle River, NJ:
Prentice Hall PTR, 1997.

7. Jones, Capers. Estimating Software
Costs. New York: McGraw Hill, 1998.

8. Jones, Capers. Applied Software
Measurement: Assuring Productivity

and Quality. 2nd ed. New York:
McGraw Hill, 1996.

9. Kan, Stephen H. Metrics and Models
in Software Quality Engineering. 2nd
ed. Boston, MA: Addison Wesley
Longman, 2003.

10. Garmus, David, and David Herron.
Function Point Analysis – Measure-
ment Practices for Successful Software
Projects. Boston, MA: Addison Wesley
Longman, 2001.

11. International Function Point Users
Group. IT Measurement – Practical
Advice from the Experts. Boston, MA:
Addison Wesley Longman, 2002.

12. Jones, Capers. “Sizing Up Software.”
Scientific American Magazine 279.6
(Dec. 1998).

13. Jones, Capers. Software Quality –
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

14. Radice, Ronald A. High Quality Low
Cost Software Inspections. Andover,
MA: Paradoxicon Publishing, 2002.

15. Wiegers, Karl E. Peer Reviews in
Software – A Practical Guide. Boston,
MA: Addison Wesley Longman, 2002.

November 3-5
Association for Computing Machinery

SenSys ‘04
Baltimore, MD

www.cse.ohio-state.edu/sensys04

November 7-10
Amplifying Your Effectiveness

AYE 2004
Phoenix, AZ

www.ayeconference.com

November 8-13
13th Conference on Information and
Knowledge Management CIKM 2004

Washington, D.C.
www.ir.iit.edu/cikm2004

November 14-18
SIGAda 2004
Atlanta, GA

www.acm.org/sigada/conf/
sigada2004

November 15-18
4th Annual Capability Maturity Model®

Integration Technology Conference
Denver, CO

www.sei.cmu.edu/cmmi/events/
cmmi-techconf.html

November 15-19
Software Testing Analysis and Review

STARWEST ‘04
Anaheim, CA

www.sqe.com/starwest/

November 17-19
2004 Federal CTO Summit

Washington, DC
www.federalctosummit.com

April 18-21, 2005
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

About the Author

Capers Jones is founder
and chief scientist of
Software Productivity
Research LLC. He is an
international consultant
on software management

topics, a speaker, a seminar leader, and
author. Jones was formerly at the ITT
Programming Technology Center in
Stratford, Conn., where he was assistant
director of Programming Technology.
Prior to joining ITT, he was at IBM for a
12-year period in both research and man-
agerial positions. He received the IBM
General Product Division’s outstanding
contribution award for his work in soft-
ware quality and productivity improve-
ment methods. Jones has published 12
books on software project management
topics and more than 200 journal articles.
He has given seminars on software pro-
ject management in more than 20 coun-
tries to more than 150 major corpora-
tions, government agencies, and military
services.

Phone: (401) 789-7662
Fax: (401) 782-2755
E-mail: cjones@spr.com

In Spencer Johnson’s “Who Moved My
Cheese?” [1], the little people keep com-

ing back to where the cheese used to be
even though it is not there anymore. It is
a natural tendency to continue doing what
we have always done even when, to an
outside observer, it no longer makes
sense. This behavior is quite common
when projects get into trouble. We keep
plodding away at the project hoping that
the problems will go away and the cheese
will miraculously reappear. In all too
many cases, it does not.

Just as the smart thing to do when a
ball of twine seems hopelessly entangled is
to stop whatever we are doing with it (oth-
erwise the tangle gets worse), so it often is
with a disastrous project: The longer we
keep at it, the worse it gets. At some point,
we need to halt all activity and reassess
what we are doing.

Disastrous software projects, or cata-
strophes, are projects that are completely
out of control in one or more of the fol-
lowing aspects: schedule, budget, or quali-
ty. They are by no means rare – 44 percent
of surveyed development organizations
report that they have had software projects
cancelled or abandoned due to significant
overruns, and 15 percent say that it has
happened to more than 10 percent of their
projects (see Figure 1).

But, obviously, not every overrun or
quality problem means a project is out of
control, so at which point should we
define a software project as a catastrophe?
What are the criteria for taking the drastic
step of halting all activities, and how do we
go about reassessing the project? Most
importantly, how do we get the project
moving again? The answers to these ques-
tions are the essence of the concept of cat-
astrophe disentanglement.

When Is a Project a
Catastrophe?
Organizations and projects vary to such an
extent that there can be no universal crite-

ria for branding a software project a cata-
strophe. The expectations from mission-
critical, life support, or banking software
are significantly different than from most
consumer- or Internet-based software
applications. But experience shows that in
virtually all cases, projects are in deep trou-
ble if serious problems have existed for
quite a while and the situation is getting
worse, not better. How is this reflected in
terms of schedule, budget, and quality?

Schedule
Software projects rarely or never strictly
follow their schedule; delays often grow
and shrink like an accordion. It is a sad
reality that software project delays are an
excessively common occurrence (see
Figure 21). But we are not looking at just
any delay; the issue here is to identify those
projects where the delay is growing uncon-
trollably.

To determine if the delay is out of
control, divide the total development
schedule into 12 phases, and look at each
of the last three. Has the delay steadily
grown in each phase? Is the total delay
now greater than three phases (i.e., 25 per-
cent of the total project schedule)?

On a one-year schedule, for example,
look at the last three months and ask the
following questions:
1. Was the delay significant two months

ago?
2. Was the delay even greater one month

ago?
3. This month, has the delay grown

again?
4. Has the delay growth been steady (that

is, not two small delays and one major
delay caused by an identifiable event)?

5. Is the total delay now greater than
three months?

If the answer to these questions is yes, it is
probably a good idea to halt the project
and reassess it.

Budget
A project is a budget catastrophe if its
remaining projected cost far exceeds what

the development organization is willing to
pay for it. In software projects, major bud-
get overruns are often the result of sched-
ule overruns or of attempts to reduce
schedule overruns (e.g., by adding staff).
The following are points to consider:
1. Does the project schedule appear to be

a catastrophe? If so, project cost pro-
jections have little value at this time.

2. If the project schedule appears to be
under control, then extrapolate budget
overruns for the past three phases up
to the end of the most current project
schedule (assume that every future
phase will continue to exceed the bud-
get at a similar rate). Is this a cost your
organization can bear?

3. Do you have current feedback from
the project’s customers and users? Do
you have updated market research
data? Is the original cost/value analysis
for this project still valid?

Quality
A software project is a quality catastrophe
if (a) the list of serious quality problems
has been substantial for three periods and
is not decreasing, or if (b)
customers/users who have evaluated the
software that is being developed are excep-
tionally critical of it.

The project problem list is a good indi-
cator of how serious the problems are.
The list is commonly divided into (a) criti-
cal, (b) serious, and (c) minor problems.
The following are points to consider:
1. Is the critical problem list growing?

Are problems being resolved? How
fast are new problems being added?

2. The second level of serious quality
problems can also indicate the gravity
of the situation if the list is particular-
ly long and not getting any shorter.

3. Another indicator to monitor is how
well the quality problem lists are being
maintained. Are problems being cate-
gorized correctly? Are problems being
removed prematurely from the list?
Are new problems being withheld
from the list?

10 CROSSTALK The Journal of Defense Software Engineering October 2004

Catastrophe Disentanglement:
Getting Software Projects Back on Track©

If you are responsible for a late and over-budget software project, you are not alone – software project overruns are all too common.
But if serious problems have existed for quite a while and the situation is getting worse, not better, you may have a project cata-
strophe on your hands. At this point, there is no established rescue process to follow. Dealing effectively with an out-of-control pro-
ject is as much an emotional challenge as it is a managerial and technical one. This article describes a 10-step process to disentan-
gle a software project catastrophe and get it back on track.

E.M. Bennatan
Advanced Project Solutions, Inc.

© 2004 E.M. Bennatan. Advanced Project Solutions, Inc.

October 2004 www.stsc.hill.af.mil 11

Severe quality problems (those that are
either critical or most serious) are often
difficult, if not impossible, to see in the
early stages of a project. In fact, many
severe quality problems emerge only
toward the end of a project (and some-
times only after its release). Even the last-
three-phases technique can be ineffective
during the first half of a project because
too often problem lists have not yet been
compiled or well maintained.

But project quality issues can be mon-
itored from the outset if there is someone
whose job it is to do so. This means
assigning an independent software quality
assurance (SQA) professional to every
project team as soon as the project is
launched. For small development teams,
one SQA professional can be responsible
for two or three projects, though large
projects should have their own indigenous
SQA team.

Customer and user feedback is the
best source for evaluating project quality.
Unfortunately, it is sometimes difficult to
get feedback until a project is close to
release. For large projects, it is often worth
investing in prototypes and pre-releases,
thus getting preliminary versions of the
software into the users’ hands for early
evaluation and feedback. This investment
is like an insurance policy: It reduces the
risk of major product quality issues – but
at a cost.

The Project Is a Catastrophe –
Now What?
The following 10 steps describe the
process for disentangling a failing software
project and getting it back on track.
Because these steps intrude on the respon-
sibilities of the team members – most
especially the project manager – the
process should be confined to getting the
project back on track and nothing more.
Ultimately, the new project plan must gain
the unreserved support of the develop-
ment team members, and the details
should be left up to them.

1. Stop
Once you have determined that a software
project is unlikely to be completed with
any reasonable degree of success, the next
step is painful but clear: Stop all activities
immediately. This is a difficult decision
because it will always be open to harsh crit-
icism from some circles. It is also a tough
decision because, as we have seen, there is
really no airtight algorithm for determining
that a project is a catastrophe. Ultimately,
the decision is a combination of data
analysis and management experience.

Stopping a project should never leave a
team idle. There is much to do in prepar-
ing the project for assessment, including
the following:
• Collecting and updating project docu-

mentation and data.
• Preparing status reports for each team

member and each team.
• Bringing the project software to the

nearest point (backward, not forward)
for demonstration. This means that
except for minor exceptions, no new
code should be written and no new fea-
tures should be added or integrated
(otherwise there is a risk that the
demonstration will take too long to
prepare).

• Assisting the project evaluator.
In addition, other activities should be

prepared and held in reserve such as train-
ing and assistance to other projects.

2.Assign An Evaluator
Virtually all software projects in trouble
have strong emotional and political hall-
marks that often produce passionate
advocates and opponents. Therefore, the
importance of using an external project
evaluator cannot be overstated. This will
increase the likelihood of getting an unbi-

ased and unemotional evaluation.
Whom should you choose? Ideally, you

should assign a reliable, pragmatic, experi-
enced, and successful project evaluator
who (a) understands the project technolo-
gy, (b) has good social skills, and (c) can
reprioritize other responsibilities to allow
sufficient time for the evaluation.

For very large projects, use an evalua-
tion team of two or more evaluators but

Catastrophe Disentanglement: Getting Software Projects Back on Track

Figure 2: Percentage of Software Projects Completed Within 10 Percent of Original Estimated Time
in the Past Three Years [2]

Figure 1: Percentage of Abandoned or Cancelled Software Projects Due to Significant Cost or Time
Overruns in the Past Three Years [2]

Ten Steps to Disentangle a
Software Project Catastrophe

1. Stop.
2. Assign an external, unbiased

evaluator.
3. Evaluate true project status (what

has been achieved and what has not).
4. Evaluate team capabilities.
5. Define new minimal goals and

requirements with senior (executive)
management and customers.

6. Determine if minimum goals can
be achieved (if not, then abandon,
find alternative to the project).

7. Rebuild the project team.
8. Perform high-level risk analysis.
9. Develop reasonable estimates.
10. Install an early warning system.

12 CROSSTALK The Journal of Defense Software Engineering October 2004

Project Management

with a clearly designated chief evaluator.

3. Evaluate Project Status
The first challenge in evaluating a project
is to determine its true status. Most failed
software projects will have produced many
status reports – some may even be quite
positive – but they will not necessarily be
objective or dispassionate. In establishing
an unbiased view of the project status, do
the following:
• Reduce tension by involving the pro-

ject team in your evaluation and by
being completely open (no secrecy or
mysterious behind-closed-doors dis-
cussions).

• Consider only observable facts (e.g.,
not, “This feature used to work well
but something has gone wrong.”).

• Consider accomplishments, not effort.
• For almost completed tasks, apply the

90-50 rule. (It takes 50 percent of the time
to do 90 percent of the work and another 50
percent to do the remaining 10 percent.)

• Present your evaluation to the team
before finalizing it and consider their
responses (look for details and facts
that you overlooked or misunderstood,
while resisting undue pressure to
amend your findings).

4. Evaluate the Team
Evaluating a team is a sensitive activity that
should be handled both resolutely and
tactfully. This step is purely part of the
evaluation process and does not, at this
point, result in any restructuring of the
team. The following are questions to be
considered:
• Does the project team have the neces-

sary skill set and experience to success-
fully deliver the project?

• Do the team leaders have the leader-
ship, technical skills, and the personali-
ty necessary to lead their team?

• Does the project manager have the
required leadership, technical skills, and
personality necessary to lead the project
team, and does he or she command the
respect of the team members?

• Are there any internal team conflicts or
tensions that could disrupt the project?

• What is the level of team spirit and
morale? If low, then why? (Are there rea-
sons beyond the failing of the project?)

5. Define Minimum Goals
The emphasis here is on the word mini-
mum; the project should be reduced to the
smallest size that achieves only the most
essential goals. This resetting of goals and
objectives can only be performed with the
active involvement of senior (executive)
management and the customer 2. Divide all

project requirements into three sets:
• Set One: Essential requirements with-

out which the project has no value.
• Set Two: Important requirements that

greatly improve the project but are not
essential.

• Set Three: Nice-to-have requirements
that add to the project, but are not
especially important.
Now, start by retaining the require-

ments from set one, and initially eliminat-
ing sets two, and three. This will often cre-
ate tremendous opposition, but remember
– we are dealing with a project that was
totally out of control and may otherwise
be cancelled. Occasionally, some elements
from set two can be added, but this should
be rare. All remaining requirements (from
sets two and three) should be targeted for
subsequent releases of the software.

Here is a word of caution: Be prepared
to forestall the ploy by some stakeholders
to second-guess the whole evaluation
process by their insistence on listing all (or
most) requirements in set one.

6. Can Minimum Goals Be Achieved?
The main challenge here is to determine
whether the requirements in set one can
reasonably be achieved. The questions to
be addressed are the following:
• Is set one a genuine and significant

reduction of the project scope?
• Is there a single requirement in set one

that adds an order of magnitude to the
complexity of the project? If so, are
members of management aware of this
and will they reconsider its inclusion3?

• Are the new project goals now achiev-
able? Is there now a reasonable chance
that the team will be able to deliver the
requirements in an acceptable time-
frame, within a reasonable budget, and
with an acceptable quality level?

• How genuinely confident are the team
members (and especially the project
manager) in their ability to achieve the
new set of goals?
If the minimum goals appear

unachievable (and they are truly minimal),
a recommendation to cancel the project
may be the only remaining realistic course
of action.

7. Rebuild the Team
Based on the evaluation of the team (see
step four) it may be necessary to restruc-
ture and even partly re-staff the team to
handle the new set of goals.

A halted software project can mean a
team that is demotivated and demoralized.
But in all probability, if the project was in
deep trouble before it was halted, then the
low morale did not start with the decision

to halt the project. However, the issue of
team morale should be a major considera-
tion in rebuilding the project team (this
will be further discussed later).

In rebuilding the team, consider the
following points:
• Team Structure. Is the project team

structured optimally for the success of
the project?

• Team Functions. Are the necessary
team functions staffed?

• Team Members. Are there team
members who should be replaced?

• Team Leaders. Are there team leaders
who should be replaced?

• Project Manager. Is the project man-
ager the right person to lead this pro-
ject?

8. Risk Analysis
In all phases of a software development
project, risk analysis is virtually an indis-
pensable tool – this is particularly true of a
failing project trying to get back on track.
The process identifies risk events, mitiga-
tion steps and contingency plans, and
assigns tracking responsibilities4.

High-level risk analysis (i.e., anticipat-
ing the most serious potential problems)
should be performed as part of the project
evaluation process. The analysis will not
only help evaluate the chances of success
in restarting the project, it will also help
restore a level of confidence within the
project team.

9. New Estimates and Schedule
Based on the minimal goals and the rebuilt
team, new reasonable high-level estimates
and a new schedule need to be prepared
and the cost-effectiveness of the renewed
project plan should be established. If the
schedule is firm, ensure that budget,
staffing level, and feature set are not also
all fixed (or another catastrophe will
ensue).

In many cases, it may be prudent to
focus primarily on the schedule and fea-
ture set (the other parameters, such as bud-
get and staffing levels, can initially be side-
lined). This means that if the minimal fea-
ture set is firm, then calculate the project
delivery date and vice versa. Remember
that even a generous budget and an unre-
stricted staffing level may not be enough to
resolve the problem of a fixed feature set
with an uncompromising delivery date.

Here is a note on cost effectiveness: In
analyzing the cost of completing a soft-
ware project, only future costs (not costs
already expended) should be considered.
The cost of project completion should
then be compared to the value of the
completed project.

October 2004 www.stsc.hill.af.mil 13

Catastrophe Disentanglement: Getting Software Projects Back on Track

10. Establish Clear Project Review
Milestones
Put in place an early warning system to
ensure that the project does not slip back
into catastrophe mode. Such a system
should include the following:
• The introduction of an efficient and

reliable project data collection and
analysis system.

• Clear project evaluation criteria for
management.

• A schedule of frequent project reviews
with well-defined measurable mile-
stones.
After successful completion of these

project evaluation steps, and after deter-
mining that the renewed project plan is
achievable and cost effective, the project
can be restarted.

Case Study
A failing project is often like a hand in a
cookie jar: to get some cookies out, you
first have to let some go. Such was the case
at Motorola with the software for a wire-
less telephony5 control and maintenance
center (CMC) that we delivered several
years ago as part of a 200,000-subscriber
project to one of the emerging Eastern
European countries (see [5]). The specially
tailored CMC was a last minute add-on to
the wireless telephony contract and was
consequently not well defined.

The CMC was developed with a sub-
contractor team, based on an existing con-
trol system. The first phase of the project
was devoted to producing a voluminous
set of requirements, none of which could
be omitted (according to the customer).
The schedule was dictated – 16 months,
which was set as close as possible to the
date the subscriber telephony system was
to become operational. Needless to say,
every month was critical.

Five months into the project, key dates
were already being missed. Seven months
into the project, doubts began arising
among senior management about whether
the project would be ready on time. Nine
months into the project, senior manage-
ment was trying to calculate how much the
late delivery penalties would cost, and a
frantic marketing team was looking for
alternatives. At all junctures, the develop-
ment team was adamant that they would
deliver the project on time.

At the end of nine months, amid sig-
nificant resistance from the development
and marketing teams, we brought the
project almost to a complete halt (some
tasks did continue). Two activities were
then launched: (a) a total external review
of the project, and, in parallel, (b) cus-
tomer negotiations were reopened on the

CMC requirements.
• The project status was evaluated and it

was confirmed that the then-current
rate of progress would lead to a major
project overrun. The team was moving
forward at a steady pace but there was
no way that they could meet the deliv-
ery date, or any date close to it.

• Because the CMC was critical for the
operation of the whole system, the
customer was cooperative in reevaluat-
ing the project’s software features.
Thus, a new set of minimal require-
ments was prepared.

• The project was rescheduled with two
release dates: the first with the minimal
feature set and the second with the
remaining features.

• On the development team side, instead
of using a single team for develop-
ment, installation, and support, a coop-
erative effort was launched together
with a local support team.

• Frequent project progress reviews were
initiated by management with key
development team members together
with the customer.
As a result, a working CMC system was

delivered on time and the full telephony
system became operational as planned.
The additional CMC features were provid-
ed as part of a later second release.

The Customer Perspective
Some software organizations’ attitude
toward customers is reminiscent of the
librarian who disliked readers removing
books from the library shelves because
they disrupted the tidy placement of the
books on the shelves. The librarian had
confused means (the library) with goals
(reading books). In software develop-
ment, we also sometimes tend to confuse
means (the project) with goals (customer
satisfaction6).

There is justification for a project only
as long as there are willing customers for
its product. Hence, it is wise for both man-
agement and the project team to keep an
ever-watchful eye on the customers: their
needs, their expectations, and their opinion
of the software being developed. After all,
the continued development of a product
that no longer has a willing customer (or
user) is the ultimate project catastrophe.

Post-Project Reviews
Getting a failed software project back on
track is an admirable accomplishment, but
an even greater one is not having it go off
track in the first place. Therefore, part of
the catastrophe disentanglement proce-
dure is preventing future recurrences of
similar catastrophes. This is achieved

through a special review process held after
the project has ended (successfully or oth-
erwise).

The post-project review is a process
intended to facilitate an understanding of
why a project evolved the way it did. What
was done right? What was done wrong?
What can be done better next time7? The
review is a structured process that is not
intended to find the guilty or to lay any
blame, and is best done with a trained
facilitator.

The output of the review includes a list
of operational, procedural, and organiza-
tional changes and actions to ensure that
mistakes are not repeated and successes
are. In fact, the U.S. Army recommends
that 50 percent of the review be devoted
to discussions on how to do better in the
future; the remaining time is devoted to
what happened (25 percent), and why (25
percent) [7].

The Human Factor
The process of disentangling catastrophes
is traumatic not just for the project team,
but for the organization itself. Clearly, halt-
ing a project does not add to the motiva-
tion of a project team. Similarly, declaring
a project to be a catastrophe does not add
to the prestige of a development organiza-
tion – though the courage to make such a
decision often deserves praise.

While a highly motivated team is cer-
tainly one of the primary factors for pro-
ject success, the fear of demotivating a
team or tarnishing an organization’s image

Warning Signs to Watch for
in a Project:

• It is late and getting later.
• It is over budget and getting more so.
• Performance is poor and getting

poorer.
• Criticism from customers/users is

severe.

Choosing a Project Evaluator
• External (this might be the time to

use a good consultant).
• Reliable, pragmatic, and experienced.
• Understands the project technology.
• Has good social skills.
• Can devote sufficient time.

The Post-Project Review
• What happened? (25%)
• Why did it happen? (25%)
• How to do better in the future?
(50%)

• Who/what is to blame? (0%)

Project Management

14 CROSSTALK The Journal of Defense Software Engineering October 2004

should never be a reason to allow a team to
continue in the wrong direction.
Catastrophe disentanglement should be
viewed like corrective surgery: just as the
body undergoes trauma in order to heal, so
does the development organization.

One of the problems with the rather
drastic measures of catastrophe disentan-
glement is that the knowledge that an orga-
nization will take such measures can inhib-
it the flow of accurate information (partic-
ularly bad news) to senior management.
But successful corrective action, just like
successful surgery, depends on the flow of
truthful and accurate information even, in
fact especially, when the news is bad.

The ability to bring bad tidings and
make unpopular decisions is a desirable, if
not entirely common, part of an organiza-
tion’s culture. Former Intel Chief
Executive Officer Andy Grove said:

… If you are a middle manager you
[may] face … the fear that when
you bring bad tidings you will be
punished, the fear that management
will not want to hear the bad news
from the periphery. Fear that might
keep you from voicing your real
thoughts is poison. Almost nothing
could be more detrimental to the
well-being of the company. [8]

Grove’s point is that effective correc-
tive action requires accurate information –
a reality not unfamiliar to those of us who
drive a car: We cannot effectively steer a
vehicle on the road if we cannot get accu-
rate data. Thus, an organization that wants
to be able to effectively evaluate its activi-
ties with processes such as the one
described here, needs to promote the flow
of accurate information by ensuring the
following:
• The process is open and fair (not secre-

tive).
• The staff is briefed about the process

and the reason it is being adopted.
• The organization promotes a mistake-

tolerant culture8. Blame and punish-
ment need to be eliminated from the
evaluation process (mistakes should be
addressed in normal performance
reviews alongside successes and
achievements).

Conclusion
Most software catastrophes were troubled
projects that went on for too long. Part of
the trauma of dealing with them is the
realization that “this shouldn’t have hap-
pened,” or “we should have seen it com-
ing.” Realizing this, the call to action is:
“Something has to change around here.”

Returning to Johnson’s “Who Moved
My Cheese?” the tale continues:

The littlepeople were outraged,
shocked, scared, and befuddled
when the cheese disappeared. In
their comfort, they didn’t notice the
cheese supply had been dwindling,
nor that it had become old and
smelly. They had become compla-
cent. [1]

How better to describe the failing of a
software project?◆

References
1. Johnson, Spencer, and Kenneth H.

Blanchard. Who Moved My Cheese?
An Amazing Way to Deal With Change
in Your Work and in Your Life.
Putnam Pub Group, 1998.

2. Bennatan, E.M. “The State of
Software Estimation: Has the Dragon
Been Slain?” Part 1. Executive Update
3.10. The Cutter Consortium, July
2002.

3. Brooks, Fredrick P. “The Mythical Man
Month After 20 Years.” The 17th
International Conference on Software
Engineering, Seattle, WA, Apr. 23-30,
1995.

4. Bennatan, E.M. On Time Within Bud-
get: Software Project Management
Practices and Techniques. 3rd ed. John
Wiley & Sons, 2000.

5. Bennatan, E.M. “Wireless Local Loop
in Hungary – A Case Study.” New
Telecom Quarterly 2nd Quarter, 1997
<www. t f i . c om/pubs/n tq/au th
-BennatanElli.html>.

6. Sullivan, Gordon R., and Michael V.
Harper. Hope Is Not a Method. Times
Business, Random House, 1996.

7. Meliza, Larry L. A Guide to Standard-
izing After Action Review (AAR) Aids.
Report No. A348953. Orlando, FL:
U.S. Army Research Institute, Field
Unit, 1998 <www.stormingmedia.us/
34/3489/A348953.html>.

8. Grove, Andrew S. Only the Paranoid
Survive. HarperCollins Business, 1996.

9. Farson, Richard E., and Ralph Keyes.
“The Failure-Tolerant Leader.” The
Harvard Business Review 1 Aug. 2002.

Notes
1. To be statistically accurate, the results

may have included some projects that
were finished early, but we risked the
speculation that such cases (if any)
would only represent a small fraction
of the results.

2. The term customer here refers to the enti-
ty that requested the project or that will

use its product, or more generally, for
whom the project is being developed.

3. Fred Brooks [3] tells the story of a
senior naval officer’s last minute
requirement after many months of
negotiating features, schedule, and cost
for a new navy helicopter. “It must be
able to fly across the Atlantic,” he stat-
ed. Only after laboriously explaining to
him the enormous complexity that it
added to the project was the officer
willing to drop the requirement.

4. For an overview of basic software pro-
ject risk analysis, see [4].

5. Telephony here refers to the provision of
telephone-related services.

6. Yes, profitability is usually a good goal,
too.

7. A useful overview of a generic, after-
action review process, which can be
easily adapted for software projects, is
given in [6].

8. For an interesting discussion of a mis-
take-tolerant business culture, see [9].

About the Author

E.M. Bennatan is presi-
dent of Advanced Proj-
ect Solutions, Inc., where
he assists development
companies in software
project catastrophe disen-

tanglement, introduction of orderly
process into ad-hoc organizations, organi-
zational structure, simplification of exist-
ing processes, and management of multi-
national development. Bennatan spent
many years as senior director at Motorola
leading multinational design centers and
developing wireless access systems. He
was also responsible for program manage-
ment of Motorola’s High Availability
Systems corporate-wide initiative. Before
Motorola, Bennatan spent several years
developing defense and aerospace systems
in the U.S. and overseas. Bennatan has
authored several articles and books,
including “On Time Within Budget:
Software Project Management Practices
and Techniques,” and is a senior member
of the Institute of Electrical and
Electronics Engineers and a member of
the Association for Computing Machinery.

Advanced Project Solutions, Inc.
One Northfield Plaza
Northfield, IL 60093
Phone: (847) 441-3229
E-mail: bennatan@advancedps.com

Acausal system is an interacting set of
events and conditions that produces

recognizable consequences. Causal analy-
sis is the systematic investigation of a
causal system in order to identify actions
that influence a causal system, usually to
minimize undesirable consequences.
Causal analysis may sometimes be referred
to as root cause analysis or defect preven-
tion. Searching for the cause of a problem
(laying the blame) is a common human
behavior that would not seem to require
much formalism. However, causal investi-
gations often go wrong, beginning with
the definition of a cause.

Causal analysis focuses on understand-
ing cause-effect relationships. Three con-
ditions must be established to demon-
strate a causal relationship:
• First, there must be a correlation or

association between the hypothesized
cause and effect.

• Second, the cause must precede the
effect in time.

• Third, the mechanism linking the
cause to the effect must be identified.
The first condition implies that when

the cause occurs, the effect is also likely to
be observed. Often, this is demonstrated
through statistical correlation and regres-
sion. While the second condition seems
obvious, a common mistake in the prac-
tice of causal analysis is to hypothesize
cause-effect relationships between factors
that occur simultaneously. This is an over-
interpretation of the correlational analysis.

Figure 1 shows a scatter diagram of
two variables measuring inspection (or
peer review) performance. These two vari-
ables frequently demonstrate significant
correlations. This diagram and a correla-
tion coefficient computed from the data
often are taken as evidence that prepara-
tion causes detection.

However, most inspection defects are
discovered during preparation. Both meters
are running simultaneously. Thus, prepa-
ration performance cannot substantially
influence detection performance. They are

measures of the same activity. Rather, the
correlation suggests that some other fac-
tor affects both preparation and detection.

Issuing a mandate (as a corrective
action) to spend more time in preparation
may result in more time being charged to
inspections, but it is not likely to increase
the defect detection rate. The underlying
cause of low preparation and detection
rates may be a lack of understanding of
how to prepare, schedule pressure, or
other factors that affect both measures.
That underlying cause must be addressed
to increase both the preparation rate and
detection rate. Recognition of the correla-
tional relationship helps to narrow the set
of potential causes to things that affect
both preparation and detection perfor-
mance.

The relationship between the height
and weight of adult human beings pro-
vides a good analogy to the situation
described in Figure 1. Taller people tend
to weigh more than shorter people.
(Obviously other factors intervene as
well.) While this is a necessary relation-
ship, it is not a causal relationship. It
would be a mistake to assume that increas-
ing someone’s weight would also increase

his/her height. Both variables are deter-
mined by other causes (chiefly genetics
and childhood nutrition). Those underly-
ing causes are the ones that need to be
identified and manipulated in any causal
system.

Some of the responsibility for this
kind of misinterpretation can be attrib-
uted to statisticians. The horizontal and
vertical axes of Figure 1 are typically
referred to as the independent and dependent
variables respectively. While these terms
are simple labels, not intended to imply a
causal relationship, they are often misun-
derstood.

Satisfying the third condition of a
causal relationship requires investigating
the causal system. Many good examples of
causal analysis efforts in software engi-
neering have been published [1, 2, 3, 4].
However, these efforts have adopted dif-
ferent terminology and approaches. In
particular, the elements of a causal system
have not been defined in a consistent way.
The differences between the analysis pro-
cedures obscure the commonality in the
subject matter to which the procedures are
applied. Further complicating the situa-
tion are substantial differences in the

October 2004 www.stsc.hill.af.mil 15

Understanding Causal Systems

This article describes a model and a supporting set of terms that facilitate reasoning about causal systems, planning for
causal analysis, and designing process experiments. This perspective is based on practical experience in implementing causal
analysis in industry. The implementation of effective causal analysis methods has become increasingly important as more
software organizations transition to higher levels of process maturity where causal analysis is a required – as well as an
appropriate – behavior.

David N. Card
Software Productivity Consortium

Figure 1: Example of Correlation Between Variables

16 CROSSTALK The Journal of Defense Software Engineering October 2004

Project Management

notion of causal analysis defined in the
Capability Maturity Model© (CMM©) [5]
and CMM IntegrationSM [6] (described
later).

One of the consequences of a poor
understanding of the nature of causal sys-
tems and causal analysis is that causal
analysis sessions become superficial exer-
cises that do not look deeply enough to
find the important causes and potential
actions that offer real leverage in changing
performance. This reduces the cost bene-
fit of the investment in causal analysis
expected of mature software organiza-
tions. This article describes a model of
causal analysis and a set of supporting
terms that have evolved from extensive
experience with the software industry.
Some of these experiences with causal
analysis were summarized in [7]. This
experience encompasses scientific data-
processing software, configuration man-

agement, and other software-related
processes.

Elements of a Causal System
A cause-effect relationship may be one
link in a potentially infinite network of
causes and effects. A richer vocabulary than
just causes and effects is needed to help
us determine appropriate starting and
stopping points for causal analysis. The
model and terminology described in this
section facilitate reasoning about causal
systems and planning for causal analysis.
Figure 2 describes the key elements of a
causal system. Most of the approaches to
causal analysis previously cited do not
explicitly address all these elements of a
causal system.

As indicated in the figure, causal sys-
tems include three classes of elements:
• Objectives. Our purposes in investi-

gating the causal system.

• Observations. The events and condi-
tions that comprise the causal system.

• Actions. Our efforts to influence the
behavior of the causal system.
Observations are events and condi-

tions that may be detected. Building an
understanding of a causal system requires
identifying these events and conditions, as
well as discovering the relationships
among them. Observations include the
following:
• Symptom. These are undesirable con-

sequences of the problem. Treating
them does not make the problem go
away, but may minimize the damage.

• Problem. This is the specific situation
that, if corrected, results in the disap-
pearance of further symptoms.

• Cause. These are the events and con-
ditions that contribute to the occur-
rence of the problem. Addressing
them helps prevent future similar
problems.
Note that both problems and symp-

toms are effects of one or more underly-
ing causes. Once a causal system is under-
stood, action can be taken to change its
behavior and/or impact on the organiza-
tion. Actions may be of three types:
• Preventive. Reducing the chances that

similar problems will occur again.
• Corrective. Fixing problems directly.
• Mitigating. Countering the adverse

consequences (symptoms) of prob-
lems.
The corrective type usually includes

actions to detect problems earlier so that
they can be corrected before they produce
symptoms. The optimum mix of preven-
tive, corrective, and mitigating actions to
be applied to a causal system depends on
the cost of taking the actions as well as the
magnitude of symptoms produced.
Attacking the cause itself may not be the
course of action that produces the maxi-
mum cost benefit in all situations.
Potential symptoms and mitigations may
be addressed as part of a risk-manage-
ment activity.

Three objectives or motivations for
undertaking causal analysis are common:
• Improvement. Triggered by recogni-

tion of an opportunity.
• Control. Triggered by an outlier or

usual result relative to past perfor-
mance.

• Management. Triggered by a depar-
ture from plans or targets.
Regardless of the motivation for

causal analysis, all elements of the causal

Figure 2: Elements of a Causal System

Figure 3: Simple Example of a Causal System

® The Capability Maturity Model, CMM, and CMMI are
registered in the U.S. Patent and Trademark Office by
Carbegie Mellon University.

SM CMM Integration os a service mark of Carnegie Mellon
Univeristy.

October 2004 www.stsc.hill.af.mil 17

system (as described earlier) should be
considered.

Most real causal systems are more
complex than Figure 2 suggests. That is, a
specific problem may produce multiple
symptoms. Moreover, many causes may
contribute to the problem. Consequently,
many different actions of all types may be
possible. The Ishikawa diagram [8] is a
popular tool for describing and reasoning
about causal systems.

These general concepts of causal sys-
tems can be applied to the investigation of
any undesirable situation, not just to the
investigation of defects. Figure 3 shows an
example of a causal system explaining a
cost problem.

In the hypothetical example of Figure
3, a project has exceeded its budget for the
work accomplished to date. This is a symp-
tom of an underlying problem. It might be
overcome through management action by
reducing the functionality of the software
to be delivered, thus reducing the remain-
ing work.

A causal analysis of the situation might
reveal that the adoption of a new tool
suite without preparation by the project
had reduced productivity. That is the prob-
lem. Providing training might increase the
efficiency and effectiveness of the team,
returning productivity to its normal state.

Preventing future occurrences of such
problems might be accomplished by
establishing a formal process for deploy-
ing new technology that assures appropri-
ate training is provided. Whether or not
such an action is taken to prevent this
cause, correct the problem, or mitigate the
symptoms depends on their costs and
expected benefits.

For example, if the project has already
passed through the phase where the tool
suite was expected to have the greatest
impact, then providing training to this
project team may not be cost-effective,
although preventing future occurrences
and mitigating the impact of the current
problem may still be helpful.

CMM/CMMI Views of Causal
Analysis
While the software community’s interest
in causal analysis predates the publication
of the CMM [5], the pursuit of process
maturity has become a primary motivation
for the adoption of causal analysis prac-
tices today. Both the CMM and CMMI [6]
contain process areas describing causal
analysis activities. These are Defect
Prevention (DP) and Causal Analysis and
Resolution (CAR), respectively. These two
views of causal analysis differ in three

important respects:
1. Required practices (activities).
2. Focus on prevention of defects.
3. Scope of triggering anomaly.

These differences are summarized
below. The principal activities of the DP
key process area of the CMM [5] are as
follows:
• A DP plan is developed.
• Task kick-off meetings are held.
• Causal analysis meetings are held.
• Teams meet to coordinate actions.
• Defect prevention data is documented.
• Organizational process is revised.
• Project process is revised.
• Feedback is provided to staff.

Using the terminology described earli-
er, DP views defects as problems to be cor-
rected. Failures are the consequences or
symptoms of these problems that may
have to be mitigated with workarounds, etc.

The conditions that lead to the creation of
defects are the causes to be prevented.

The specific practices of the CAR
process area of CMMI [6] are as follows:
• Select defect data for analysis.
• Analyze causes.
• Implement the action proposal.
• Evaluate the effect of changes.
• Record data.

Note that DP requires some addition-
al activities, not obvious in CAR. In par-
ticular, developing a DP plan and con-
ducting task (usually phase) kick-off meet-
ings exceed the explicit requirements of

CAR. DP is triggered by the recognition
of an opportunity for improvement, e.g., a
large number of defects associated with a
particular activity.

DP focuses on developing preventive
actions, rather than corrective or mitigat-
ing actions. Moreover, DP focuses on
defects and their causes, not problems in
general. Actions to detect defects earlier
usually are considered preventive actions,
although the case can be made that they
really are corrective actions.

CAR is more general than DP. CAR
defines a defect to include a broad range of
problems. Any anomaly, outlier, or oppor-
tunity (as described in the preceding sec-
tion) may trigger CAR, and result in any of
the three types of actions identified earli-
er. It does not focus on prevention and
early detection.

The generality of CAR makes it easy
to come up with an example of investigat-
ing something to identify some kind of
action, and thus claim satisfaction of the
CAR requirements. On the other hand,
systematic causal analysis does not need to
be limited to the prevention of defects, as
implied by DP. An understanding of the
nature of causal systems helps to over-
come the generality of CAR and ensure
that each potential trigger for causal analy-
sis is handled appropriately.

Summary
A good understanding of the basic con-
cepts and terminology of causal systems
helps to overcome the difficulties inherent
in implementing a practice that seems obvi-
ous. The differences between the perspec-
tives of CAR and DP has led to some
problems as organizations either 1) try to
facilitate the transition to CMMI by build-
ing a CMM Level 5 process that incorpo-
rates CMMI guidance into its initial
design, or 2) transition an established
CMM Level 5 organization to CMMI.

A causal analysis process based on
CAR usually does not satisfy the CMM
requirements for DP. A causal analysis
process based on DP usually does not sat-
isfy CMMI requirements for CAR.
Understanding and applying the basic
concepts of causal analysis underlying
both process areas makes it possible to
design a process that satisfies both sets of
requirements.

Effective causal analysis is becoming
even more important to the software
industry as process maturity increases and
new forces, such as Six Sigma [9] focus
increasing attention on quality improve-
ment. Academic researchers, especially
those conducting empirical studies, also
may benefit from thinking a little more

Understanding Causal Systems

“One of the
consequences of a poor
understanding of the

nature of causal systems
and causal analysis is that
causal analysis sessions

become superficial
exercises that do not look
deeply enough to find the
important causes and
potential actions that
offer real leverage in

changing performance.”

18 CROSSTALK The Journal of Defense Software Engineering October 2004

systematically about causal systems.
Application of the concepts and terminol-
ogy presented here helps ensure that
causal systems get fully investigated and
effective actions are taken.◆

References
1. Mays, R., et al. “Experiences With De-

fect Prevention.” IBM Systems Journal
Jan. 1990.

2. Dangerfield, O., et al. “Defect Causal
Analysis – A Report From the Field.”
ASQC International Conference on
Software Quality, Oct. 1992.

3. Yu, W. “A Software Fault Prevention
Approach in Coding and Root Cause
Analysis.” Bell Labs Technical Journal
Apr. 1998.

4. Leszak, M., et al. “Classification and
Evaluation of Defects in a Project
Perspective.” Journal of Systems and
Software Apr. 2002.

5. Paulk, Mark, et al. Capability Maturity
Model. Addison-Wesley, 1994.

6. CMMI Development Team. Capability
Maturity Model – Integration, Vers.
1.1. Pittsburgh, PA: Software Engi-
neering Institute, 2001.

7. Card, D. “Learning From Our
Mistakes With Defect Causal
Analysis.” IEEE Software Jan. 1998.

8. Ishikawa, K. Guide to Quality Control.
Asian Productivity Organization Press,
1986.

9. Harry, M., and R. Schroeder. Six
Sigma. Doubleday, 2000.

Project Management

About the Author

David N. Card is a fel-
low of the Software
Productivity Consor-
tium, where he provides
technical leadership in
software measurement

and process improvement. During 15
years at Computer Sciences Corpora-
tion, he spent six years as the director of
Software Process and Measurement,
one year as a resident affiliate at the
Software Engineering Institute, and
seven years as a member or manager of
the research team supporting the NASA
Software Engineering Laboratory. Card
is the editor-in-chief of the Journal of
Systems and Software. He is the author of
“Measuring Software Design Quality,”
co-author of “Practical Software
Measurement,” and co-editor of “ISO/
IEC standard 15939:2002 Software
Measurement Process.” Card is a senior
member of the American Society for
Quality.

Software Productivity Consortium
2214 Rock Hill RD
Herndon,VA 20170
Phone: (703) 742-7199
Fax: (703) 742-7200
E-mail: card@software.org

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JULY2003 c TOP 5 PROJECTS

AUG2003 c NETWORK-CENTRIC ARCHT.

SEPT2003 c DEFECT MANAGEMENT

OCT2003 c INFORMATION SHARING

NOV2003 c DEV. OF REAL-TIME SW

DEC2003 c MANAGEMENTBASICS

MAR2004 c SWPROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.

JUN2004 c ASSESSMENT AND CERT.

JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <stsc.customerservice@
hill.af.mil>.

October 2004 www.stsc.hill.af.mil 19

It was a cold, gloomy night in October.
Outside the fog was so thick you could

not see your hand in front of your face.
Inside was even worse. Joe walked out of
the conference room in a daze. He tried to
remember what had happened but it all
seemed like such a blur. The throbbing in
his head grew even stronger. He hurried
down the hall to the men’s room. His
thoughts were spinning. He asked himself,
“What am I going to do?”

Joe had just learned the project he was
working on would require more overtime.
He kept thinking of how his wife had
threatened to leave him just last week if he
could not spend more time with her and
the kids; in fact, he had not seen his kids
in weeks. By the time he got home, they
were in bed. Even when he did see them,
he was so tired and frustrated he did not
enjoy them. In fact, he had not really
enjoyed life in a long time. It had actually
started about a year ago when he had
begun working on this project.

All of a sudden, the meeting came
back to him. Voices screamed out in his
head: “What do you mean that’s not what
you want? That’s what the requirements
say.”

“That’s not what we meant though.
Don’t you people understand anything?”

“We understand what you wrote down
in the statement of work.”

“But did you even bother to ask what
we meant?”

“Well, we thought it was pretty clear.”
“You missed the basic functionality we

were looking for; in fact, this is so bad
we’re going to have to start completely
over. And, by the way, we can’t give you
any slack on the schedule either.”

For Joe, things were definitely getting
ugly! This scenario may sound familiar to
many of you. It happens time after time
on project after project. So, how does it
get like this?

How Does a Project Get Like
This?
Sadly, for the information technology (IT)
industry as well as their customers, studies
show that the majority of systems are
delivered with only about 42 percent to 67
percent of requirements. The Standish
Group has found that even though pro-
jects are being delivered on time and with-
in budget, the statistics for delivering
requirements and meeting customer
expectations are decreasing significantly
[1].

Figure 1 shows a summary of The
Standish Group’s reports concerning pro-
ject success as well as the top 10 most
important elements for successful pro-
jects. The Standish Group stated,

We find that on average only 54
percent, down from 67 percent in
2001, of the originally defined fea-
tures of a project are delivered.
Even more troubling is the realiza-
tion that of those features that are

delivered – a full 45 percent are
NEVER used. [4]

This article does not contain any new
or eye-opening information; much of the
information discussed is well known to
requirements engineering experts. Best
practices in requirements engineering have
been honed since about 1968, and people
have been writing about and teaching
requirements engineering for several
years; however, statistics continue to show
that many IT practitioners and project
managers still are not listening or have not
been exposed to good requirements engi-
neering.

In my positions over the last 20-plus
years as project manager, software/techni-
cal project manager, software developer,
systems engineer, process improvement
engineer, new business proposal manager,
and IT instructor, I have had the opportu-
nity to be both the requirements giver and
the requirements receiver. I have seen
some very good examples of require-

Requirements Engineering So
Things Don’t Get Ugly

Deb Jacobs
Focal Point Associates

Seasoned IT professionals remember those panicked moments when customers say, “That’s not what we’re looking for;”
customer staff couldn’t agree; requirements constantly changed; embarrassment when you couldn’t develop requirements
as promised; requirements are overlooked; estimates are skewed due to lack of understanding; and all the nice to
have’s drove cost and schedule. Requirements engineering is a tough task for both the requirements receiver and the
requirements giver, even if you know exactly what you want. How you see a requirement depends on what vantage
point you’re coming from. We must understand both points of view – giver and receiver – to truly be able to do effec-
tive requirements engineering.

Figure 1: Standish Group Findings Summary

Software Engineering Technology

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering October 2004

ments engineering, and I have seen very
tragic requirements engineering. I have
become passionate about this topic based
on these good and bad requirements expe-
riences.

While working off and on as a process
improvement engineer and process man-
ager over the last several years with vari-
ous organizations, I have had the distinct
opportunity to learn about and use many
exceptional tools. Some of the best tools I
have found include the ever-popular, very
effective Software Engineering Institute’s
Capability Maturity Model® (CMM®)
Integration (CMMI®) [5] and the ISO
[International Organization for
Standardization] 9001.

I have developed processes for accom-
plishing requirements engineering based
on numerous resources throughout my
career. These processes have been devel-
oped based on the IT industry best prac-
tices documented in the CMM and CMMI
as well as my own personal lessons
learned. The techniques and process dis-
cussed in this article are a culmination of
these process development efforts. Each
organization must tailor a process to fit its
particular needs but this process will pro-
vide an idea of the various aspects of
requirements engineering that should be
addressed in a successful requirements
engineering process.

The one thing I have learned well, and
heard many times from other IT profes-
sionals, is that requirements engineering is
tough work! For the requirements giver, it
is very hard to articulate requirements
either in writing or verbally, even if you
know exactly what you want. It is just as
difficult for the requirements receiver to
understand what others are trying to artic-
ulate. We tend to overlook seeing things
from others’ points of view. When engi-
neers and clients start working together
and understanding each other’s points of
view, we will truly be able to do effective
requirements engineering.

The bottom line is this: Development
teams must understand what they are
building, or they cannot build it. This is
only achievable through teamwork –
developer and client teamwork.

Whose Responsibility Is
Understanding Requirements?
To correct this prevalent problem, the IT
industry as a group has to depart from the
them-and-us attitude that permeates the
industry: it must be just us. The finger
pointing must stop, and we must start
® Capability Maturity Model, CMM, and CMMI are regis-

tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

If Architects Had to Work Like Programmers

Dear Mr. Architect:
Please design and build me a house. I am not quite sure what I need, so you

should use your discretion.
My house should have between two and 45 bedrooms. Just make sure the plans

are such that the bedrooms can be easily added or deleted. When you bring the
blueprints to me, I will make the final decision of what I want. Also, bring me the cost
breakdown for each configuration so that I can arbitrarily pick one.

Keep in mind that the house I ultimately choose must cost less than the one I am
currently living in. Make sure, however, that you correct all the deficiencies that exist
in my current house (the floor of my kitchen vibrates when I walk across it, and the
walls do not have nearly enough insulation in them).

As you design, also keep in mind that I want to keep yearly maintenance costs
as low as possible. This should mean incorporating extra-cost features like alu-
minum, vinyl, or composite siding. (If you choose not to specify aluminum, be pre-
pared to explain your decision in detail.) Please take care that modern design prac-
tices and the latest materials are used in constructing the house, as I want it to be a
showplace for the most up-to-date ideas and methods. Be alerted, however, that the
kitchen should be designed to accommodate, among other things, my 1952 Gibson
refrigerator.

To ensure that you are building the correct house for our entire family, make cer-
tain that you contact each of our children, and also our in-laws. My mother-in-law will
have very strong feelings about how the house should be designed, since she visits
us at least once a year. Make sure that you weigh all of these options carefully and
come to the right decision. I, however, retain the right to overrule any choices that
you make.

Please do not bother me with small details right now. Your job is to develop the
overall plans for the house: Get the big picture. At this time, for example, it is not
appropriate to be choosing the color of the carpet. However, keep in mind that my
wife likes blue.

Also, do not worry at this time about acquiring the resources to build the house
itself. Your first priority is to develop detailed plans and specifications. Once I approve
these plans, however, I would expect the house to be under roof within 48 hours.

While you are designing this house specifically for me, keep in mind that sooner
or later I will have to sell it to someone else. It therefore should have appeal to a
wide variety of potential buyers. Please make sure before you finalize the plans that
there is a consensus of the population in my area that they like the features this
house has.

I advise you to run up and look at my neighbor’s house he constructed last year.
We like it a great deal. It has many features that we would also like in our new home,
particularly the 75-foot swimming pool. With careful engineering, I believe that you
can design this into our new house without impacting the final cost.

Please prepare a complete set of blueprints. It is not necessary at this time to do
the real design since it will be used only for construction bids. Be advised, however,
that you will be held accountable for any increase of construction costs as a result
of later design changes.

To be able to use the latest techniques and materials and to be given such free-
dom in your designs is something that cannot happen too often. Contact me as soon
as possible with your complete ideas and plans.

Respectfully,

J.P. Anonymous

P.S.
My wife has just told me that she disagrees with many of the instructions I have given
you in this letter. It is your responsibility as the architect to resolve these differences. I
have tried in the past and have been unable to accomplish this. If you cannot handle
this responsibility, I will have to find another architect.

P.P.S.
Perhaps what I need is not a house at all, but a travel trailer. Please advise me as soon
as possible if this is the case.

Requirements Engineering So Things Don’t Get Ugly

October 2004 ww.stsc.hill.af.mil 21

working as a team, both the requirements
receivers and requirements givers. The
current trend toward agile/eXtreme pro-
gramming (XP) [6] consists of several
practices that lend themselves to accom-
plishing better requirements engineering.
One significant aspect of agile/XP is
working closely with the client throughout
the development process, which is called
Active Stakeholder Participation.

The following are some ideas that have
worked well for others:
• Bill of rights or stakeholder contract.
• Approval process for all requirements.
• Win-win negotiations meetings that

negotiate requirements based on tech-
nology, environment, time, effort, and
budget constraints.

• Requirements team training; i.e., same
training for all team members.
It is the development team’s responsibil-

ity to learn to balance the stakeholder needs
and expectations. The needs are the identi-
fied requirements and the expectations are
the unidentified requirements. Sometimes
the expectations drive the full understand-
ing of the identified requirements. If you
understand what the customer is looking
for in terms of their expectations, you gain
insight into what they have identified as the
real requirements. It is the customer’s
responsibility to articulate their expectations
so that the development team fully under-
stands what they are looking for in the
resulting product.

For both the development team and the
customer, there must be a clear understand-
ing of who are the decision makers or final
authorities for requirements. This includes
someone who can do the following:
• Add or approve a new requirement.
• Change an existing requirement.
• Accept changes to requirements.
• Direct the developer or their manager.
• Determine if a requirement has or has

not been met.
• Accept requirements as met or not met.

A graphical depiction can help
immensely in defining and keeping track
of who’s who. These should be approved
by the appropriate managers and distrib-
uted to the entire team. If a project has a
communications plan, this is a good place
to include these diagrams.

Why Is Requirements
Engineering So Important?
We, as an industry, cannot afford the con-
sequences of not doing requirements
engineering effectively. The cost of incor-
rect, misunderstood, and not agreed upon
requirements affects all of us in terms of
time, money, and lost opportunities. The

results can be confusion, distrust, misdi-
rection, frustration, lack of quality, higher
cost, overtime, a general lack of under-
standing, and incapability due to being ill-
equipped to handle issues.

Requirements engineering is a means
of providing the functions and related
characteristics of systems by providing the
tools, concepts, and methods that mediate
between the providers of information
technology services and products, and the
users or markets for the services and
products. It is a means of providing the
necessary communications to define need-
ed products. Misunderstood, wrong, or
even slightly skewed requirements propa-
gate as the project moves forward until
you get to the testing phase and scenarios
like those discussed earlier occur.

Like dominoes, once problems start,
they proliferate throughout the project –
requirements problems at the beginning
proliferate through design, development,
and, finally, into test. Many times it gets to
the point where starting over takes less
time than trying to fix what you have
already done. The sidebar “If Architects
Had to Work Like Programmers” illus-
trates this point very well.

What Are Requirements?
Requirements tell the development team
what the customer is contracting the team
to build. As a whole, they provide a means
of determining the functionality and
attributes of the resulting product. The
Institute of Electrical and Electronics

Engineers [7] defines a requirement as the
following: (1) a condition or capability
needed by a user to solve a problem or
achieve an objective; (2) a condition or
capability that must be met or possessed
by a system or system component to satis-
fy a contract, standard, specification, or
other formally imposed documents; and
(3) a documented representation of a con-
dition or capability as in (1) or (2).

Proven Requirements
Engineering Process
CMMI provides a good foundation for
requirements engineering. It describes
what should be included in an effective
requirements engineering process. CMMI
is based on best practices and lessons
learned from the IT community, including
both government-related and private
industry. There are, in fact, several good
taxonomies and methodologies that have
been defined for requirements engineer-
ing. The requirements engineering process
illustrated in Figure 2 and described in this
article has proven effective on numerous
successful projects and includes these
basic best practices.

There are two major phases that are
essential in defining and controlling require-
ments: Requirements Definition and
Analysis, and Requirements Management.

Requirements Definition and
Analysis
Requirements Definition and Analysis sets
the stage for all subsequent tasks in devel-

Figure 2: Requirements Engineering Process

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering October 2004

oping the resulting product. Getting this
right is key to the success of the overall
project. A domino effect will begin here
due to wrong, misunderstood, or slightly
skewed requirements. The rule of thumb I
have learned during my career is approxi-
mately 15 percent of project time should
be spent on identifying, defining, and clar-
ifying the requirements. This will vary
depending upon the life-cycle methodolo-
gy selected but it works well for most pro-
jects.

The following list includes some
examples of typical inputs to the
Requirements Definition and Analysis
task. The inputs will depend upon an
organization’s processes, customer’s
processes, and whether the system being
developed is an upgrade, major refurbish-
ing of an existing system, or a new system.
• Functional and performance

requirements. This information can
be obtained using many methods but
could simply be a list or a verbal
exchange.

• Statement of work. Typically pro-
vided by the customer to the develop-
ment team. Can be a key document
for the customer and development
team.

• Plans. Projects produce numerous
plans that may drive some require-
ments such as the project plan, con-
figuration management plan, logistics
plan, communications plan, develop-
ment plan, or engineering plans.

• Customer information. Various
customer information can be derived
that drives requirements such as cus-
tomer standards, including user inter-
face standards and security standards.

• Problem reports. Many times prob-
lem reports drive major system
upgrades or refurbishment. The orig-
inal problem report contains a good
deal of information pertinent to
understanding requirements.

• Schedule. The schedule may contain
some information needed to under-
stand what the customer is looking

for and the complexity expected,
especially if the customer provides
the overall schedule.

• Work Breakdown Structure
(WBS). This provides information
concerning the breakdown of
requirements if it is developed using a
WBS method that breaks the project
down by product functionality.

• Architecture (physical and func-
tional). For existing systems, this can
be key to understanding requirements
such as communications protocols,
existing functionality, interfaces, etc.
For new systems, the customer may
provide this information in a state-
ment of work and existing system
documentation may help understand
interfacing systems and data.

• Engineering analysis. Many times
one or more trade studies or proto-
types are developed that will help in
understanding requirements.

• Constraints. There are many forms
that constraints can take, including
time, cost, and technical.

• Assumptions. Development team
assumptions will drive the require-
ments and understanding of require-
ments. These should always be docu-
mented and discussed with the cus-
tomer. Conversely, customers have
assumptions that also must be com-
municated.

• Existing system documentation.
Existing system documentation even
when not up to date can provide
invaluable information for under-
standing requirements.

Requirements Identification/
Elicitation
The Requirements Identification/Elici-
tation step provides an in-depth descrip-
tion of the desired resulting product.
Some of the techniques used to identify
and analyze requirements include those
shown in Table 1.

I always recommend that one or more
of these techniques be used to fully
understand and communicate require-
ments throughout the project. The better
the requirements are understood, the
more likely the resulting system will be
effective for the customer. During
Requirements Identification/Elicitation,
several questions need to be addressed
that are shown in Table 2.

There is no simple formula for writ-
ing good, useable requirements; however,
sources for writing good, useable
requirements can be found on the
Internet.

Table 1: Requirements Identification Techniques

Requirements Engineering So Things Don’t Get Ugly

October 2004 www.stsc.hill.af.mil 23

Requirements Translation/
Decomposition
Once requirements have been identified,
each requirement must be examined for a
full understanding. Just as important is
getting agreement between all project
stakeholders, especially the identified deci-
sion makers. This step will be where
implied or derived features/issues are
uncovered. This is an iterative process
where the interviewing and brainstorming
sessions discussed in Table 1 are critical
tools. These tools should continue to be
used until all requirements are fully
flushed out and beyond.

Drill down should be used to decom-
pose requirements by starting at the basic
high-level requirement and drilling down
to the details of each requirement only
after each level of detail is fully under-
stood. Hence, only after the high-level
requirements are fully understood and
agreed upon should a development team
move to finer details. Drill down should
be iterative; as more details of higher-level
requirements are understood, they are
drilled down to lower levels for a complete
understanding of what the customer is
looking for. Drill down ensures that time
and money are not wasted on detailing
requirements that are misunderstood from
the beginning.

During this step, requirements should
be associated with a particular subsystem.

Requirements Collation
Grouping and prioritizing requirements
are key to managing them. Requirements
should be grouped for easier understand-
ing, assignment, allocation, and tracking.
The categories should be based upon the
project needs; some suggestions include
the following: function, effect of result,
cause, impact and priority, timing, excep-
tion handling, and performance criteria.
Function is the most prevalent and under-
standable categorization method.

Prioritization should be given to each
requirement to understand its importance.
Prioritization will help determine the
sequence of tasking as well as weed out
the essential versus the desirable versus
the optional requirements.

Each requirement should be examined
to determine any technical, cost, or sched-
ule implications or risks. Any risks associ-
ated with each requirement should be
recorded and tracked using the project’s
risk management process. The impact and
the potential for occurrence will be key
factors in managing risk.

Any impractical and excessive require-
ments should be weeded out since they

drive cost and schedule. Multiple require-
ments pertaining to the same function-
al/performance feature should be exam-
ined to ensure they are coherent and con-
sistent. Finally, requirements should be
allocated to system components for
assignment. This can be done using a
WBS if it has been designed using that
method.

Requirements Traceability
Matrix Generation
A very useful tool in managing require-
ments is a Requirements Traceability
Matrix that is generated with the com-
plete set of requirements. The matrix
provides an authorized record of the
requirements. The tool selected for the
matrix will depend upon the size and
scope of the project. A database is the
optimal method for managing require-
ments but a simple spreadsheet can also
be very effective. Several very good com-
mercial tools are available; see <www.
incose.org/tools/tooltax/reqtrace_
tools.html> [8].

Creation of a homegrown require-
ments database will give users exactly
what they are looking for if the expertise
and time are available. Requirements
tools have many advantages over a simple
listing, including easy search, smooth
requirements management, requirements
change control, requirements metrics col-
lection with minimal effort, and any
needed documentation. The key to
selecting the right tool is to ensure that
you are getting the bang for the buck.

In [4], The Standish Group states,
“Only 5 percent of new and changing
applications will use a requirements man-
agement tool.” That could be why we
have many of our requirements prob-
lems.

Requirements Management
The requirements management phase
consists of monitoring and controlling
the requirements throughout the remain-
ing development life cycle. Monitoring
and controlling requirements ensures that
the resulting system has all of the agreed
upon or authorized requirements. It helps
to avoid the widespread requirements
epidemic known as requirements creep.

Requirements creep can drive both
cost and schedule significantly. When a
new or upgraded requirement is identi-
fied, the development team must go
through the same process as defined for
the Requirements Definition and
Analysis phase with the appropriate deci-
sion makers.

New Requirement Identification/
Update Requirements
As new requirements are identified or
existing requirements change, they must
be updated in the requirements baseline.
Requirements should be maintained and
baselined using the same type of configu-
ration management controls as software
such as the four elements of configuration
management: identification, change man-
agement (the key), status accounting, and
verification and audit.

Some configuration management tools
have built-in requirements management
features. This ensures the integrity of the

Table 2: Requirements Engineering Process

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering October 2004

requirements. As requirements change –
and they will – the changes must be con-
trolled.

Requirements Change Control
Either formal or informal change control
methods can be used. Formal change
mechanisms include using a Configuration
Change Board and appropriate formal
authorizations. Less formal methods can
also be effective, especially for smaller
projects.

Whether a formal or informal change
control method is selected, it is important
that the identified decision makers finalize
and authorize all requirements changes.
This includes management of even the
smallest detail since even a slight change
can alter elements of the product. The
changes must be coordinated with all
stakeholders since they may have an
impact on the tasks they are assigned
either directly or indirectly.

Recycle Definition and Analysis
Once the new or upgraded requirements
are approved, they must undergo the same
process as the initial requirements.
• Requirements Translation/Decompo-

sition.
• Requirements Collation.
• Requirements Traceability Matrix

Generation/Update.
It is important to ensure that changes

to requirements do not impact other
requirements. Many times even simple
changes will have a ripple effect on other
requirements. The development team
must be prepared to handle these changes.
The Requirements Traceability Matrix
should always reflect the current require-
ments as they are at any point in the pro-
ject. They will be the authorized record
for the resulting product.

Requirements Volatility Metric
Several metrics will help determine the
status of a project but a key metric is
requirements volatility, which is consid-
ered a key project success indicator. It
indicates the stability of the baselined
requirements.

How much change is too much and at
what stage of the development cycle will it
have a significant impact? There are some
rules of thumb for how much require-
ments change is too much. “A Gentle
Introduction to Software Engineering”
indicates,

The accepted requirements volatility
metric is 1 percent of requirements
per month. If it is much less, one
should ask oneself if the system

would be desirable to its intended
audience. If it is much more than 2
percent a month, development
chaos is all but assured. [9]

Other sources also use that rule of
thumb; however, a study accomplished at
the Colorado State University,
Department of Computer Science con-
cluded the following:

All the results show that changes
have more influence on defect den-
sity when they occur closer to the
end of the testing effort. This tem-
poral dependence is generally
exponential. Changes made very
early can be relatively inconsequen-
tial, but those occurring later can
raise defect density quite signifi-
cantly. [10]

I have found in my experience that fre-
quent changes to requirements are expect-
ed during the early stages of the project;
however, a high volume of changes late in
the development life cycle can have a sig-
nificant impact to functionality, interfaces,
cost, and schedule. The amount of accept-
able requirements change can depend
upon many factors, including the project
phase, development team, requirements
complexity, system complexity, system
size, customer expectations, schedule,
technology, methodologies, tools, etc.

If frequent changes are expected, it
may be beneficial to use either an iterative
build life cycle such as the spiral or incre-
mental build or an agile/XP approach.
There is an upside and a downside to all
methods; the key is to select the method
that is right for that development team, the
customer, the system being developed, and
the environment.

The Bottom Line
Time after time, projects experience night-
mare scenarios similar to the one described
at the beginning of this article. It is key to
a project’s success in delivering the cus-
tomer’s needed functionality that develop-
ment teams and customers work as a team
to develop effective requirements in order
to develop effective products. If we look at
things from each other’s vantage point, the
chance of success grows by leaps and
bounds. We all look at things differently
based on our background, education,
experience, and simply from where we are
standing at the moment. Open communi-
cations and respect for each other’s posi-
tion is crucial.

There is enough to panic about when
developing a system without the added

stress of misunderstandings. Products
must be delivered with better numbers than
42 percent to 67 percent of the required
functionality. Nobody can afford the con-
sequences of wrong, misunderstood, or
even slightly skewed requirements.

The bottom line is this: Always
remember that what you see is relative to
where you are standing. We must all work
as a team and select the best methodolo-
gies, techniques, and tools that keep things
simple so things do not get ugly.◆

References
1. The Standish Group. CHAOS: A

Recipe for Success. West Yarmouth,
MA: The Standish Group Inter-
national, Inc., 1999 <www.standish
group.com/sample_research/PDF
pages/chaos1999.pdf>.

2. CHAOS Reports <www.standish
group.com>.

3. The Standish Group. The CHAOS
Report (1994). West Yarmouth, MA:
The Standish Group International,
Inc., 1995.

4. The Standish Group. What Are Your
Requirements? West Yarmouth, MA:
The Standish Group International,
Inc., 2003, Standish Group (based on
2002 CHAOS Report).

5. CMMI Product Team. CMMISM for
Systems Engineering/Software Engi-
neering, Vers. 1.1, Staged Represen-
tation. Pittsburgh, PA: Software
Engineering Institute, Dec. 2001.

6. The Official Agile Modeling (AM) Site
<www.agilemodeling.com>.

7. Institute of Electrical and Electronic
Engineers. IEEE Software Engineer-
ing Standards Collection: 1994
Edition. Washington, DC: IEEE 1994.

8. International Council on Systems
Engineering <www.incose.org>.

9. Cook, David A., Leslie Dupaix, and
Larry Smith. “A Gentle Introduction
to Software Engineering.” Rev. 3.0.
Hill Air Force Base, UT: Software
Technology Support Center, 31 Mar.
1999.

10. Gotel, Orlena C.Z., and Anthony C.W.
Finkelstein. “An Analysis of the
Requirements Traceability Problem.”
London, England: Imperial College of
Science, Technology, and Medicine
<http://csis.pace.edu/~ogotel/
papers/RT_PAP.pdf>.

Additional Reading
1. Nuseibeh, Bashar, and Steve

Easterbrook. “Requirements Engi-
neering: A Road Map.” 3rd Inter-
national Symposium on Requirements
Engineering, Toronto, Canada, 2000

Requirements Engineering So Things Don’t Get Ugly

<www.cs.toronto.edu/~sme/papers/
2000/ICSE2000.pdf>.

2. Requirements Working Group of the
International Council on Systems
Engineering. “Characteristics of
Good Requirements.” INCOSE
Symposium.

3. Bernard, Frederick R. Printers’ Ink.
Mar. 1927.

4. Malaiya, Yashwant K., and Jason
Denton. “Requirements Volatility and
Defect Density.” Ft. Collins, CO:
Colorado State University.

5. Bamford, Robert, and Bill Deibler.
SSQC. Requirements Engineering
Workshop <www.ssqc.com>.

6. Ambler, Scott. The Elements of UML
Style. Cambridge University Press, 18
Nov. 2002.

7. Christel, M., and K. Kang. Issues in Re-
quirements Elicitation. Pittsburgh, PA:
Software Engineering Institute, 1992.

8. McConnell, Steve. Construx Software.
<www.stevemcconnell.com> or
<www.construx.com>.

9. Robertson, Suzanne, and James
Robertson. Mastering the Require-
ments Process. Addison-Wesley, 1999.

10. Hooks, Ivy. Writing Good Require-
ments. Proc. of the Third Inter-
national Symposium of the NCOSE.

October 2004 www.stsc.hill.af.mil 25

About the Author

Deb Jacobs is a profes-
sional consultant for
Focal Point Associates
specializing in process
improvement and project
management. She pro-

vides support to organizations in train-
ing, process improvement consulting,
project management consulting, software
engineering consulting, and proposal
development. Jacobs has more than 25
years experience in system/software
engineering, project management,
process improvement, and proposal
development. Her notable successes
include leading a successful Capability
Maturity Model® (CMM®) Level 3 effort
in one year, successfully reorganizing
struggling projects, mentoring new man-
agers, and gaining new business for com-
panies through proposal development.

She is former SPINOUT editor/origina-
tor; former Computer Emergency
Response Team conference chairperson,
infotec deputy Software Tracks chair, and
a Software Engineering Institute CMM
IntegrationSM contributor. She is current-
ly working on a book to help organiza-
tions successfully achieve process maturi-
ty at minimal costs. Jacobs has a Bachelor
of Science in computer science.

Focal Point Associates

c/o Priority Solutions

1508 JF Kennedy DR STE 100

Bellevue, NE 68005

Phone: (402) 932-5349

(402) 292-8660

E-mail: djacobsfpa@aol.com

djacobs@prioritytech.com

djacobs@sessolutions.com

Project Management Institute
www.pmi.org
The Project Management Institute (PMI) is a not-for-profit,
project-management professional association with more than
100,000 members in 125 countries. PMI publishes “A Guide to
the Project Management Body of Knowledge,” offers Project
Management Professional certification, and maintains ISO
9001 certification in Quality Management Systems.

Software Program Managers Network
www.spmn.com
The Software Program Managers Network (SPMN) is spon-
sored by the deputy under secretary of defense for Science and
Technology, Software Intensive Systems Directorate. It seeks out
proven industry and government software best practices and
conveys them to managers of large-scale Department of Defense
software-intensive acquisition programs. The SPMN provides
consulting, on-site program assessments, project risk assess-
ments, software tools, guidebooks, and hands-on training.

NASA Independent Verification and
Validation Facility
www.ivv.nasa.gov
The NASA Independent Verification and Validation (IV&V)
Facility was established in 1993 to provide the highest achievable
levels of safety and cost-effectiveness for mission critical soft-
ware. The IV&V Facility’s efforts have contributed to the

improved safety record of NASA since its inception. The IV&V
Facility houses more than 150 full-time employees and more
than 20 in-house partners and contractors.

Practical Software and Systems
Measurement
www.psmsc.com
Practical Software and Systems Measurement (PSM) is spon-
sored by the Department of Defense and the U.S. Army. PSM is
an information-driven measurement process that addresses the
unique technical and business goals of an organization by pro-
viding objective information needed to successfully meet cost,
schedule, and technical objectives.

International Society of Parametric
Analysts
www.ispa-cost.org
The International Society of Parametric Analysts (ISPA) is a pro-
fessional society dedicated to the improvement and promotion
of parametric cost modeling techniques and methodologies and
the related fields of risk analysis, econometrics, design-to-cost,
technology forecasting, and management. ISPA provides a
forum that encourages the professional development of its mem-
bers through the interchange of ideas and perspectives. ISPA
members represent government agencies, universities, and near-
ly 200 organizations in 12 countries.

Vol. 2, 1993. Updated Sept 2003.
11. Wiegers, Karl. Writing Good Require-

ments. 2nd ed. Microsoft Press, 26
Feb. 2003.

12. KPMG. “What Went Wrong? Unsuc-
cessful Information Technology
Projects.” KPMG Study <www.
kpmg.ca>.

WEB SITES

26 CROSSTALK The Journal of Defense Software Engineering October 2004

The calculation of the Independent
Estimate at Completion (IEAC) is sig-

nificant to project management. It is a
quick method facilitated by using Earned
Value Management to predict the final
project cost. Project managers (PM) and
cost analysts often use IEAC to validate
the bottoms-up forecast made by contract
sources. When the IEAC result is substan-
tially different from the contractor’s esti-
mate, more than likely the PM will ques-
tion the discrepancy. The PMs also use the
IEAC to justify continuation of the pro-
ject to upper management. Thus, you can
see IEAC has far reaching implications.

During the last 10 years, primarily due
to the interest generated from the cancel-
lation of the Navy’s A-12 Avenger acqui-
sition program, studies of the predictive
accuracy of the various methods for cal-
culating IEAC have been made. These
studies considered and included several
IEAC formulas and regression calculation
methods. In general, no single specific
method has been shown to be superior.

Although no particular method pro-
vided accurate results for all periods or
phases of a project, some fundamental
characteristics were observed. With the
establishment of these characteristics, the
application of some of the IEAC formu-
las and calculation methods appears to be
questionable. However, these fundamen-
tals have provided inspiration for propos-
ing new IEAC methods in this article.

Studies of IEAC and Cost
Performance Index
There are several popular formulas for
calculating IEAC. In general, the equa-
tions use the cost to date added to the
forecast cost for the work remaining. For
the formulas identified here, the Cost
Performance Index (CPI) and Schedule
Performance Index (SPI) are the cumula-
tive values unless otherwise noted1. The
following are the IEAC formulas most
often seen and used:

• IEAC1 = ACWP + (BAC – BCWP)/
CPI

• IEAC2 = ACWP + (BAC – BCWP)/
SPI

• IEAC3 = ACWP + (BAC – BCWP)/
(SPI * CPI)

• IEAC4 = ACWP + (BAC – BCWP)/
(wt1 * SPI + wt2 * CPI)

• IEAC5 = ACWP + (BAC – BCWP)/
CPIx

For IEAC3 the product, SPI * CPI, is
sometimes identified in literature as SCI.
The abbreviations wt1 and wt2 of IEAC4

are numbers between 0.0 and 1.0 used to
weight the influence of the two indexes;
the sum of wt1 and wt2 is equal to 1.0. The
CPIx in IEAC5 is the cumulative value of
the last x performance periods.

Two studies were performed in the
1990s that examined the prediction capa-
bility of the various formulas and regres-
sion methods [1, 2]. The generalizations
and conclusions reached by these studies
of IEAC are as follows:
1. The accuracy of regression-based

forecasting has not been established. A

recommendation was made to further
study the method.

2. The accuracy of index-based formu-
las depends upon the system in devel-
opment, and the stage and phase of
the project. The formula most fre-
quently appearing in the tabulated
results, regardless of type and stage, is
IEAC3.

3. The index-based formulas, including
SPI are better applied early in the pro-
ject. For projects behind schedule, SPI
falsely improves as percent complete
increases. Thus, the influence of SPI
on the computation is not in agree-
ment with actual schedule perfor-
mance.

4. The accuracy of IEAC4 with wt1 = 0.2
and wt2 = 0.8 is not supported.

5. The accuracy of IEAC5 is better for
middle and late stages of the project.
A second set of studies was per-

formed that examined the behavior of
the CPI throughout the life of a contract
[3, 4, 5]. Two of the studies are very
recent – spring and winter 2002 – and
performed the analysis using statistical
hypothesis testing. The three studies pro-
vided the following to PMs for assessing
the validity of estimates at completion:
1. The result from IEAC1 is a reasonable

estimate of the lower bound of the
final cost.

2. The cumulative value of the CPI sta-
bilizes by the time the project is 20
percent complete. Stability is defined
to mean that the final CPI does not
vary by more than 0.10 from the value
at 20 percent complete.

3. The value of the CPI tends only to
worsen from the point of stability
until project completion.

Commentary
The understanding of the behavior of
the CPI, over the life of the project, pro-
vides insight regarding the study results
for the IEAC equations. For IEAC2,

Independent Estimates at
Completion – Another Method

This article reviews the most frequently used Earned Value Management formulas for calculating the Independent Estimate
at Completion (IEAC). The formulas are examined and discussed with reference to the findings from several studies. Some
formulas appear to be inconsistent with the determinations from the studies of the Cost Performance Index (CPI). An alter-
native method of calculating IEAC is proposed, which is in agreement with the generalizations and conclusions from the
IEAC and the CPI studies. This method shows promise.

Walt Lipke
Tinker Air Force Base

Open Forum

“Using the range of
outcomes for the CPI
from the statistical

method and IEAC1, a
range for the estimates

at completion can
be calculated.The range
may be computed for

any statistical confidence
level desired ...”

October 2004 www.stsc.hill.af.mil 27

Independent Estimates at Completion – Another Method

IEAC3 and IEAC4, the divisor containing
expressions of the present cumulative
values of the SPI and CPI correlate to the
final CPI, when the project is not per-
forming as planned. We know from the
study of CPI behavior that the final CPI
is likely to be less than the present value;
thus, having a SPI less than 1.0, or less
than the CPI, will cause the estimate at
completion to be larger than the result
from using IEAC1, as we know it must be.
Regarding IEAC5, it makes sense that this
equation is a reasonably good predictor
because the CPIx is constructed from
recent data. However, the limited amount
of data used for creating the CPIx causes
IEAC5 to oftentimes exhibit erratic
behavior.

From these correlations, there appears
to be insufficient reason to continue to
use IEAC equations two through five. We
know from the winter 2002 study [5] that
the calculated result from IEAC1 is a
good estimate of the lower bound for the
final cost. Also, it is known with 95 per-
cent confidence that the absolute value of
the difference between the CPI at 20 per-
cent complete (CPI20) and the CPI at pro-
ject completion (CPI100) will not be
greater than 0.10 [4]. Thus the result from
IEAC1, when using the projected extreme
values for the CPI100, is expected to yield
the upper and lower bounds for the final
cost. Only the IEAC1 equation is needed
to predict the range of project cost out-
comes with 90 percent confidence2. (A 90
percent confidence for the estimate at completion
(EAC) range is equivalent to 95 percent confi-
dence that | CPI20 - CPI100| ≤ 0.1.)

Alternative Calculation
Methods
An alternative to the presently employed
IEAC calculation methods (the five for-
mulas cited previously) is to compute the
statistical range of outcomes for the CPI.
I have described and illustrated this
method in a prior publication [6]. Using
the range of outcomes for the CPI from
the statistical method and IEAC1, a range
for the estimates at completion can be cal-
culated. The range may be computed for
any statistical confidence level desired; in
my article referenced above, the range is ±
three standard deviations, but it just as
well could be 90 percent.

If the CPI for each performance peri-
od of the project behaves independently
from when it occurs, then this method
should yield very good results. Without
proof, I believe that the method will still
provide reasonable results, even when
there is an underlying relationship

between the cumulative value of the CPI
and the period of performance in which it
occurs. The reason for my assertion is the
value of the CPI is updated each period;
therefore, it is moving toward its final
value. And, the standard deviation of the
periodic values is likely large enough to
encompass the value for the CPI at project
completion. Therefore, it is very likely the
actual final cost will be within the 90 per-
cent confidence range calculated using
IEAC1. For this method, the predicted
estimate at completion will always be opti-
mistically biased; i.e., it is likely the com-
puted nominal value will be less than the
final actual cost.

A second IEAC alternative calculation
method is similar to the first, but it should
reduce the optimistic bias. The character-
istic of the CPI worsens from the point of
stability until completion, reported in the
1993 study [3], indicates there may be a
mathematical relationship between cumu-
lative CPI and the percentage of project
completion: Beginning at 20 percent complete,
the CPI is regarded as stable and proceeds to

decrease as percent complete increases, but does not
fall more than 0.10 from its stable value.

Having the periodic cumulative values
of the CPI indicate increasingly inefficient
cost performance as the project nears
completion makes intuitive sense. During
the early and middle stages of a project
there are many tasks for which effort
expended will gain earned value. In these
stages, if an impediment for a task stands
in the way of its accomplishment, there is
generally opportunity to do another task.
However, if an impediment occurs as the
project nears completion, it is highly likely
the worker will waste effort until the task
can be completed because other tasks are
not available. In actuality, what I have

described occurs.
Understanding the stability and ineffi-

ciency characteristics, a mathematical
model of the CPI decreasing as the pro-
ject moves toward completion can be cre-
ated. With the proposed equation, it
should be understood that the model only
deals with the two characteristics and thus
has little theoretical substantiation. The
mathematical form chosen, after some
experimentation, is the following:

ln CPI = A + B * (X ^3)

where,

A and B are unknown parameters, X is the
percentage completion of the project, and
ln is the natural logarithm.

The calculated result from the equa-
tion is considered to be valid when the
project is within the range of 20 percent
to 100 percent complete. An advantage of
the model’s mathematical form is that it
has only two unknown parameters: A and
B. Parameter A can be either positive or
negative; however, B can only be negative.
By constraining B to be negative, the ten-
dency of the CPI to worsen from the
point of stability to project completion is
imposed in the model [4]. The rate of
decrease of the CPI is dependent upon B
and the power to which X (percent com-
plete) is raised. After some trials, I chose
the power 3. It seems reasonable that
noticeable efficiency roll-off should begin
to occur when X equals 0.5; the power
equal to 3 provides this behavior.

Using this model with curve-fitting
software, statistical prediction is easily
accomplished. The software produces the
nominal values for A and B along with
their corresponding 90 percent confi-
dence limits.2 When applying the curve fit-
ting software, the variables A and B are
constrained such that the CPI100 is within
0.1 of the CPI20. As mentioned previously,
the variable B is further restricted to have
only negative values. The constrained val-
ues for A and B are computed for each
paired data values of the CPI and percent
complete using the following equations:

Acon=ln(CPI2n + 0.1) - Bmax
Bcon=ln(CPI2n - 0.1) - Amin

where,

Acon and Bcon are the constraint values for
the variables A and B; Amin and Bmax (= 0)
are the minimum and maximum values of
A and B, respectively; and the CPI2n is the
value occurring at the first percent com-

“ ... I believe that the
method will still provide
reasonable results, even

when there is an
underlying relationship
between the cumulative
value of the CPI and the
period of performance in

which it occurs.”

28 CROSSTALK The Journal of Defense Software Engineering October 2004

Open Forum

plete greater than 0.2. The value of the
CPI2n is assumed to approximate the CPI20.

Applying the constraints in the curve-
fitting software for each new data point
maintains proper behavior of the CPI
model. The Acon constraint is the maxi-
mum nominal value of the A variable
from the curve fit. Similarly, the variable B
is constrained between zero and Bcon.
Because the constraints may affect the
curve fit, the nominal value of A should
be reviewed for change. If it has changed,
use the new value as Amin in the Bcon equa-
tion to recalculate the constraint value of
B. Enter the computed value for Bcon and
re-perform the curve fit.

The confidence limits produced from
the software assume that the data popula-
tion is infinite. However for our applica-
tion, project data is finite. For example,
the project may execute for two years; if
earned value status is taken monthly, the
project has 24 data points. Because pro-
jects are finite, the confidence limits for ln
CPI from the curve fit require adjustment.
Multiplying the confidence interval by the
following factor will perform the adjust-
ment:

√√((BAC – BCWP) / (BAC – BCWPavg))

where,

BCWPavg is equal to BCWP divided by the
number of periodic observations.

The effect of the adjustment factor is
to decrease the range for the possible
outcomes of the estimates, as the project
moves toward completion. For example,
at project completion having a range of
possible outcomes has no meaning. The
adjustment factor reduces the range to
zero when the project is finished.

Using the adjusted confidence inter-
val, the 90 percent confidence limits for
ln CPI can be computed. Of course, by
applying the antilog the upper and lower
CPI values are determined. These quanti-
ties are then used in IEAC1 to calculate
the 90 percent confidence limits of the
EAC. The calculation may yield a confi-
dence limit outside of the upper and
lower bounds for EAC, especially when
percent complete is less than 0.5. In
agreement with the studies cited earlier,
the lower bound is estimated by dividing
the CPI2n plus 0.1 into BAC, while the
upper bound is BAC divided by CPI2n
minus 0.10.

Example Application
To provide an example of the proposed
IEAC calculation method, notional data

has been created for percent complete
and the cumulative CPI. The data is
shown in Table 1.

Beginning with X ≥ 0.2, the nominal
values of A and B, and their 90 percent
confidence limits, are repeatedly obtained
from the curve-fit as each new data point
is included in the data set. A minimum of
three data points is required to determine
A and B and their limits. The high and
the low values for ln CPI, calculated from
the model’s formula, are determined by
pairing the high values of A and B, and
the low values, respectively. The high and
low ln CPI limits are then modified by
the finite project adjustment factor, as
described in the previous section. These
adjusted limits are the 90 percent confi-
dence limits for ln CPI.

The antilogarithms of the nominal,
and the adjusted high and low values, of
ln CPI are used in the IEAC1 equation to
calculate estimate at completion. The cal-
culation produces the most likely value
for EAC along with its 90 percent confi-
dence limits. For the Budget at
Completion (BAC) equal to $100,000, the
result of the curve fit for our IEAC
model (IEAC1(m)) is shown in Figure 1.

As can be observed, the model rapidly
converges and accurately predicts
($102,817) the final cost ($102,788), after
only a few data points are included in the
curve fit. Likewise, it is seen that the 90
percent confidence limits, IEAC1(m) Hi
and IEAC1(m) Lo, converge and eventual-
ly fall within the high and low boundaries
for EAC. For reference, the high and low
bounds for EAC are shown in the figure
as Hi Bound and Lo Bound. The value for
the high bound is $104,209, while the low
bound is $86,236. Thus, it can be said that
the results from the IEAC model are well
behaved with respect to the predicted
extremes of the estimate at completion.

To further illustrate the model’s per-
formance, the results from computing
IEAC1 and IEAC5 are compared to our
model. Recall that IEAC5 uses CPI3, which
is the cumulative value of the CPI from
the last three periodic observations.
Figure 2 graphically depicts the percent
difference from the final cost for each of
the calculation methods. IEAC1 and
IEAC5 are calculated using the equations
cited earlier, while IEAC1(m) and
IEAC1(m) Lo are the nominal and low
confidence limit values from Figure 1.

As seen from Figure 2, the three meth-
ods produce comparably poor results for
percent complete equal to 20 percent
through 30 percent. Beginning at 40 per-
cent there is a marked departure; the
model’s prediction of final cost becomes

Table 1: Percent Complete and the CPI Data (notional)

Figure 1: IEAC1 Model

October 2004 www.stsc.hill.af.mil 29

Independent Estimates at Completion – Another Method

significantly improved and is better than
the other estimates. Beginning at 50 per-
cent and continuing through project com-
pletion, the method used to calculate
IEAC1(m) produces cost estimates that
have very small differences with the actu-
al final cost. It is also noticeable that
IEAC1 provides optimistic results as it
should if, indeed, the CPI tends to worsen
as percent complete increases [3, 4].
Likewise, IEAC5 produces optimistic
results as percent complete increases,
again, due to the tendency of the CPI to
worsen. While not observed in the exam-
ple, the CPI model can produce either
optimistic or pessimistic results for
IEAC1(m).

The final observation for Figure 2 is
the comparison of IEAC1 to IEAC1(m)
Lo. Recall from the earlier discussion in
the studies section of this article that
IEAC1 was postulated to provide a good
running estimate for the lowest value for
final cost. The figure shows the two lines
closely tracking beginning at percent com-
plete equal to 0.40. Thus if the hypothesis
concerning IEAC1 is valid, there is added
credence to the nominal and high confi-
dence limit values produced by the
IEAC1(m) calculation method.

Although the graphical result appears
wonderful, the method is unproven. The
data created conforms to the model itself;
thus, the result should be good. Even so,
what has been shown is significant. The
model presented for the CPI behaves in
accordance with the behavior characteris-
tics determined by previous studies [3, 4, 5]:
1. The CPI stabilizes when project reach-

es 20 percent complete, CPI20.
2. The CPI tends only to worsen from

the point of stability until project
completion.

3. With 95 percent confidence, the CPI
at project completion will not be more
than 0.10 from CPI20.

If these characteristics are indeed true,
then our example indicates the proposed
model may provide good prediction capa-
bility for estimate at completion.

Prototype Application
To further illustrate the curve fit model
approach to calculating IEAC, results
from prototyping actual project data are
shown. The application is in progress. As
can be seen, the results from the real data
correlate well with the notional data pre-
sented earlier. Figure 3 is an output from
the curve fit software. In agreement with
the studies of the CPI, the ln CPI is seen
worsening as percent complete increases.
As discussed earlier, the model accounts
for degradation of cost performance as

the project nears completion. Figure 4
illustrates the model’s rapid convergence
to the predicted final cost. Observed in
Figure 5 (see page 30), both IEAC1 and
IEAC5 are predicting a more optimistic
final cost than is the model. Lastly, the
close tracking of IEAC1(m) Lo IEAC1 is

strikingly similar to the observation made
for the notional data.

Summary
From several previous studies, it can be
inferred that the behavior of the CPI,
from its point of stability to project com-

Figure 2: IEAC Comparison

Figure 3: ln CPI Versus Percent Complete (Prototype)

Figure 4: IEAC1 Analysis (Prototype)

30 CROSSTALK The Journal of Defense Software Engineering October 2004

pletion, explains why the various formula-
tions of IEAC yield reasonable results for
specific conditions. By incorporating this
behavior into a mathematical model for
the CPI, it is proposed the only formula
needed for estimating the cost at comple-
tion is IEAC1; the cumulative value of the
CPI is replaced in the formula by the value
from the model.

The model for the CPI is constructed to
behave in accordance with characteristics
determined by past studies. The values of
the CPI will tend to decrease as the com-
pletion percentage of the project increases.
The amount of decrease is constrained to
agree with the statistical testing studies.

Using the mathematical model for the
CPI with curve-fitting software and asso-
ciated statistical methods, the independent
estimate at completion with its 90 percent
confidence limits can be computed. As
indicated from the application to both
notional and real data, the proposed
method yields excellent results. The
method may be an improvement to the
IEAC equations presently applied.◆

Recommendation
To validate for general application, the
CPI behavior model and IEAC calculation
method discussed in this article should
have an independent study performed
using data from the Department of
Defense earned value database.

References
1. Fleming, Q. Cost/Schedule Control

Systems Criteria, The Management
Guide to C/SCSC. Probus, 1988.

2. Christensen, D.S. “The Estimate at
Completion Problem: A Review of
Three Studies.” Project Management
Journal Vol. 24 (Mar. 1993): 37-42.

3. Christensen, D.S., R.C. Antolini, and

J.W. McKinney. “A Review of Estimate
at Completion Research.” Journal of
Cost Analysis and Management Spring
1995: 41-62.

4. Christensen, D.S., S.R. Heise. “Cost
Performance Index Stability.” National
Contract Management Journal Vol. 25
(1993): 7-15.

5. Christensen, D.S., and C. Templin.
“EAC Evaluation Methods: Do They
Still Work?” Acquisition Review
Quarterly Spring 2002: 105-116.

6. Christensen, D.S., and D.A. Rees. “Is
the CPI-Based EAC a Lower Bound to
the Final Cost of Post A-12
Contracts?” Journal of Cost Analysis
and Management Winter 2002: 55-65.

7. Lipke, W. “The Probability of
Success.” CrossTalk, Nov. 2003
<www.stsc.hi l l .af.mil/crosstalk/
2003/11/0311Lipke.html>.

8. Crow, E.L., F.A. Davis, and M.W.
Maxfield. Statistics Manual. New York:
Dover Publications, 1960.

Notes
1. The definitions of the cost and sched-

ule performance indexes (the CPI and
SPI, respectively), and cost variance
(CV) are as follows:

The CPI = BCWP / ACWP
SPI = BCWP / BCWS
CV = BCWP - ACWP

where,

ACWP = Actual Cost for
Work Performed

BCWP = Budgeted Cost for
Work Performed (earned value)
BCWS = Budgeted Cost for Work

Scheduled (project performance
baseline)

For a more in-depth explanation of
earned value and its indicators, refer-
ence Quentin Fleming’s book [7].

2. The Confidence Interval is the region
surrounding the computed nominal
value within which the true value lies
with a specified level of confidence.
The end points of the interval are the
Confidence Limits. The equation for
the Confidence Limits is:

<x> ± z (σσ/√n)

where,

<x> is the nominal value of x, while z
is from the standard unit normal dis-
tribution and corresponds to the area
selected (for this application, z =
1.6449 at 90 percent of the distribu-
tion area), σ is the standard deviation
of the observations of x, and n is the
number of observations [8].

Figure 5: IEAC Comparison (Prototype)

About the Author

Walt Lipke is the deputy
chief of the Software
Division at the Okla-
homa City Air Logistics
Center. He has 30 years
of experience in the

development, maintenance, and manage-
ment of software for automated testing
of avionics. In 1993 with his guidance,
the Test Program Set and Industrial
Automation (TPS and IA) functions of
the division became the first Air Force
activity to achieve Level 2 of the
Software Engineering Institute’s
Capability Maturity Model® (CMM®). In
1996, these functions became the first
software activity in federal service to
achieve CMM Level 4 distinction. Under
Lipke’s direction, the TPS and IA func-
tions became ISO 9001/TickIT regis-
tered in 1998. These same functions
were honored in 1999 with the Institute
of Electrical and Electronics Engineers’
Computer Society Award for Software
Process Achievement. Lipke is a profes-
sional engineer with a master’s degree in
physics.

OC-ALC/MAS
Tinker AFB, OK 73145-9144
Phone: (405) 736-3341
Fax: (405) 736-3345
E-mail: walter.lipke@tinker.af.mil

Open Forum

October 2004 www.stsc.hill.af.mil 31

BackTalk

While many people are familiar with metadata, which is infor-
mation about information, and widely used to manage con-

tent in cyberspace, few understand the realm of pseudo-knowledge,
where a little learning is not only not a dangerous thing, but in
fact constitutes the most effective form of just-in-time transfer
of intellectual property ever devised. Consider the pseudo-
knowledge for the Capability Maturity Model® (CMM®)3 that was
carefully crafted by its authors nearly two decades ago (whether
they knew it or not), supporting countless presentations to senior
managers in which software engineering process group chairs
want to familiarize them with the CMM, but don’t want them to
know enough to be dangerous:
1. The CMM has five maturity levels (so you can count them on

one hand, boss).
2. Those five maturity levels have 18 key process areas (just like

the 18 holes on the golf course you’re going to play this after-
noon with that potential client).

3. Those 18 key process areas have 52 goals to achieve (just as
there are 52 cards in the deck you’ll use to play poker at the
19th hole, after your 18-hole round of golf).

4. Those 52 goals are satisfied through the implementation of
316 key practices (which is almost 317, or if presented as 3/17
would be recognized as March 17th, which as we all know is St.
Patrick’s Day, and a fine representative for the beer to be con-
sumed at the 19th hole while you play poker with a deck of 52
cards after finishing the 18 holes of golf and shaking hands
with your now new client with that firm senior manager hand-
shake using all five fingers! However, since we only have 316
key practices, we’ll just have to remember St. Patrick’s Day eve,
which would then of course be March 16th, or 3/16).
Thus, through effective presentation of pseudo-knowledge,

your senior manager has information relevant to the CMM with
which he or she can amuse his or her peers, family, and friends at
cocktail parties without being dangerous to you, the process
improvement lead!

Now, however, with the transition to the CMM IntegrationSM

(CMMI®), this treasure trove of pseudo-knowledge is soon to be
rendered obsolete! Useless! Pointless! The question of the hour
is this: What shall be the pseudo-knowledge associated with the

CMMI? How is a poor process lead to portray relevant but use-
less information about the CMMI to management, friends, fam-
ily, and neighbors? Where do you start? Staged, continuous, or
constageduous? Software only? Software and systems engineer-
ing? How about Integrated Product and Process Development
(IPPD) and supplier sourcing? Six capability levels or five matu-
rity levels? Where to begin? While it is true that each representa-
tion has 25 process areas and 55 specific goals, just what do you
do with all those generic goals and practices? And how do you
account for the difference in specific practices (189 vs. 185)? Do
you even attempt to address the bodies of knowledge incorpo-
rated, the different dimensions, or the categories of process
areas? Inquiring minds want to know!

Earlier this year, Pat O’Toole calculated that there are 4.7 x
1018 possible capability level profiles across all 24 process areas in
the CMMI for Systems Engineering, Software Engineering and
IPPD Vers. 1.1 since each may be performed at any one of the
six possible capability levels4. How exactly do you think we’ll cap-
ture that little tidbit in pseudo-knowledge?

To this end, I hope the process improvement community will
accept the challenge to identify the new pseudo-knowledge for
the CMMI. How should we represent this fascinating tool in all
its glory and splendor without sharing anything of real meaning
or value? How shall we endeavor to entertain and amuse without
compromising our positions as organizational leaders of process
improvement? Put on your pseudo-thinking caps and send me
your best! We’ll select the finalists from all entries submitted to
me by Oct. 29, and let the community pick the winners at the
CMMI conference in Denver, Colo., Nov. 15-18.

— Barry Schrimsher
barry@glentalon.com

A little Learning is a dang'rous Thing;
Drink deep, or taste not the Pierian Spring1.

– Alexander Pope2

1. The American Heritage® Dictionary of the English Language: Fourth Edition. 2000. Pierian
Spring NOUN: 1. Greek Mythology A spring in Macedonia, sacred to the Muses. 2. A source
of inspiration.

2. Pope, Alexander. Poetry and Prose of Alexander Pope. Houghton Mifflin Co., 1 June 1969.
3. Adapted with permission from a tale shared by Pat O’Toole of Process Assessment,

Consulting, & Training, LLC.
4. O’Toole, Pat. “Do’s and Don’ts of Process Improvement, #18: Don’t Maintain a Low

Profile.” 3 Apr. 2004.

CrossTalk / MASE
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Policies, News, and Updates
	2004 U. S. Government’s Top 5 Programs

	Project Management
	Software Project Management Practices: Failure Versus Success©
	Catastrophe Disentanglement:

 Getting Software Projects Back on Track©
	Understanding Causal Systems

	Software Engineering Technology
	Requirements Engineering So
 Things Don’t Get Ugly

	Open Forum
	Independent Estimates atCompletion - Another Method

	From the Publisher
	Coming Events
	Call for Articles

	Web Sites

	BackTalk

	CrossTalk Archives

	Back Cover

