Version 2.0

Version 2.0

Appendix H

How Should Military Software Be Documented?tc "Preface"

tc "<>"
APPENDIXtc "<>APPENDIX"
 tc "<> "Htc "<> H"
How Should Military Software Be Documented?tc "<>How Should Military Software Be Documented?"
Lewis Gray

Ada PROS, Inc.

EDITOR’S NOTE: Graphics quality will improve when printed.

Abstracttc "<Head 2 (14)>Abstract"

Who is responsible for ensuring that military software is properly documented? This article says, both the acquirer and the developers of the software. The article explains and supports three points that are summarized by Figure H-1.

Competence

•

Normal Software Process

•

Additional Documentation Only If Justified

Figure H-1

First point, before awarding a software development contract, an acquirer should choose a developer that knows how to adequately document their software development effort and their software products. On the other side of the development relationship, before a developer begins to develop military software, they should be sure that they have a mature software process that is capable of properly documenting their software development effort and their work products.

Second, usually, the acquirer should acquire only the developer’s normal work products because usually they will be the most appropriate information, in the most appropriate format and the most appropriate media for explaining the development effort and its results. For their part, developers should find development tools that will work well and learn how to use the tools well so they can document their software development effort and their work products in a way that is appropriate for understanding and overseeing their work.

Finally, as Figure H-2 suggests, the acquirer should order additional documentation, supplementary to the developer’s normal work products, only when the acquirer has strong evidence that the information is needed and that the developer would not provide it otherwise. For their part, developers should accept that there may be occasions when acquirers will need more information than they can obtain from the normal developer work products, and developers should be prepared to accommodate these reasonable, additional information orders from their customers.

[image: image1.wmf]
Figure H-2

In the course of developing these points, the article touches on a wide range of topics including the basic case for software documentation, what documentation acquirers should receive, the situation when code is generated automatically by CASE tools, whether Ada 83 or Ada 95 source code alone is adequate documentation, how Ada software developers want to document their code, the role of software engineering standards in documentation, CASE tools that provide documentation, and benefits and dangers of relying only on normal developer work products.

The article is an extensive update of earlier versions published in Ada in Europe, the Proceedings of the 1994 EUROSPACE/Ada-Europe Conference (Springer-Verlag, 1994) and in the September, 1994 edition of the Department of the Air Force Publication, Guidelines for Successful Acquisition and Management of Software Intensive Systems: Weapons Systems, Command and Control Systems, Management Information Systems (STSC, Hill AFB).

1. Should Military Software Be Documented? tc "<Head 3 (14)>1.
Should Military Software Be Documented? "

In an influential paper in 1970 that provides a rationale or an inspiration for much of the work to date on life cycle models and software documentation, Winston Royce posed the rhetorical question, “how much documentation?” and answered it as follows:

“’quite a lot,’ certainly more than most programmers, analysts, or program designers are willing to do if left to their own devices. The first rule of managing software development is ruthless enforcement of documentation requirements.”1

Royce’s emphasis upon documentation is still appropriate. However, today, we have a much broader notion of what documentation is. In 1970, documentation consisted entirely of paper documents. Today, it also includes electronic images of paper documents, diagrams stored in CASE tool databases, drawings stored in CAD/CAM files, hypertext, computer animations and simulations, video tapes, and more.

Royce argued for six documents: first, a software requirements document; second, a preliminary design document; third, an interface design document; fourth, a final design document developed in stages that, in its final stage, contains a description of the software design as it was built; fifth, a test plan and record of test results; and sixth, a manual of operating instructions. Today, these documents could take many different forms, including, in some cases, the databases of CASE tools. For legacy military Ada software, they are usually paper documents that comply with Data Item Descriptions (DIDs).

According to Royce, documentation serves three purposes. It is a means for a designer to establish an agreement with other designers about interfaces between their designs, and it is needed if designers and their managers are to reach quantitative agreement about the designer’s progress. Second, in the early stages of software design, there is no other design product except the documentation. Finally, it is needed after development for three purposes. It is needed for testing the software before release because without it only the developer who wrote the software would understand the software well enough to test it, and at test time the developer would only repeat the same mistakes again that were committed during design and coding. It is needed during the operational phase to tell users how to use the software. It is needed following initial operations to guide programmers in correcting and enhancing the software. Royce’s arguments are still valid today.

More arguments from Parnas and Clements. In a persuasive paper on software design published in 1986,2 David Parnas and Paul Clements presented independent arguments that reinforced the earlier ones by Royce. Parnas and Clements argued for six types of documentation: first, a requirements document, written by end users or their representatives, that captures all software requirements; second, a module guide that states the design decisions that led to each component (module) of the software design; third, a collection of module interface specifications; fourth, a description of which programs in the system depend upon which others; fifth, a module design document that explains the internal structures of a module; and sixth, comments in the source code that supplement (without replicating) the information in the other documents. Their arguments for these documents are still valid. Writing when they did, Parnas and Clements emphasized paper documents. Their arguments apply as well to the broader notion of documentation that is common today.

Software Engineering Institute. The Software Engineering Institute (SEI) greatly extended the argument for documentation when it published its Capability Maturity Model for Software (CMM) in 1991.3 In the CMM, a developer’s software process maturity is inseparably linked to the documents that the developer produces and maintains. At the lowest maturity level, no organizational abilities are assumed. Moving up to the next higher level of maturity depends, among other things, on the organization’s ability to document system requirements, its ability to produce and revise a software development plan in accordance with documented procedures, its ability to define and prepare a subcontract statement of work according to a documented procedure, its ability to prepare an software quality plan according to a documented procedure, and its ability to prepare an software configuration management plan according to a documented procedure. At each higher level, an increase in process maturity depends in part on the development of one or more kinds of additional software-related documentation.

Conclusion. Many streams of thought over the past twenty five years have converged on the conclusion in Figure H-3 which makes practical sense today. All software should be documented. Royce argued that documentation describes software requirements, software design, testing, operations, and helps with software maintenance. Parnas and Clements elaborated on its use for requirements capture and design. The SEI adds that it is necessary to describe how software will be developed. “Documentation” used to mean paper documents, but now there are many additional forms from databases to movies.

Document All Software

Figure H-3

2.
Documentation for Acquirers.tc "<Head 3 (14)>2.
Documentation for Acquirers."

What software documentation should be provided to the acquirer? A simple example shows the answer. Compare the acquisition of commercial, retail software like an e-mail system for a LAN to the contractual development of custom software, for example gateway software to link different e-mail systems on different LANs. The acquirer will receive users manuals with the retail software. What should the acquirer receive for the software under contractual development? In the contractual situation, at least the acquirer should see and consent to the developer’s software development plan for the gateway software. If the acquirer intends to maintain the software, they should receive the source code also and an explanation of how the software was constructed, for example a description of the software design and engineering notes on its implementation and test.

Generalizing from examples like this one, I take the position that the acquirer should be provided with the documentation that is appropriate to the acquisition situation. Different situations, different documentation.

Conclusion. No constant, fixed list of documents is appropriate for every acquisition situation.

3.
What About Software That is Generated Automatically by CASE Tools?tc "<Head 3 (14)>3.
What About Software That is Generated Automatically by CASE Tools?"

A few years ago, a prospective client called me for guidance on how to document Ada 83 source code that had been generated by a software design CASE tool. The same type of decision arises on many military projects today. As Figure H-4 from Martin shows, it is inherent in the software process called Rapid Application Development (RAD) since RAD depends upon automatic code generation to achieve high development speed with low rates of defects.

[image: image2.png]
Figure H-4

The CASE tool that my caller used had a visual approach to program design through graphical notation supported by a windowing operating system on a personal computer. I advised the caller to use the design graphics rather than the Ada source code as the software documentation since the graphical notation was the most accurate representations of the technical design decisions, and since the caller intended to change the code by regenerating it from new design diagrams.

A similar argument could be made for using pictures generated by a requirements analysis CASE tool to document requirements. There are popular software engineering practices, for example Joint Application Development (JAD), that produce such outputs which are, in some cases, the most accurate representations of the requirements for the software.

In some software life cycles, requirements are transformed directly into source code, skipping the design step entirely. What should be documented then? Certainly the requirements should be documented, and they are documented by the transformation tool that generates code. If the mechanism for transforming requirements into code is not fully trusted, then it should be documented also. However, if the transformational tool is correct, eventually only the tool’s developer will bother to look at its documentation.

Conclusion. New development methods may make some types of documentation inappropriate in certain cases.

4.
Is Ada Source Code Alone Adequate Documentation?tc "<Head 3 (14)>4.
Is Ada Source Code Alone Adequate Documentation?"

Ada source code can be easy to read and easy to understand, both Ada 83 and Ada 95. Ada source code, with the proper annotations, could document both the software itself and its design under certain conditions.

Readability and understandability. Ada code that complies with good guidelines for style1 is readable and understandable. Well-styled Ada could be called self-documenting with respect to what it reveals to an experienced reader about the construction of its program units.

Annotating Ada source code to describe software design. Ada-based program design languages (ADLs) in use today consist of legal Ada source code with special legal Ada comments, like those sketched in Figure H-5, that can be parsed by an ADL parser to extract information about aspects of the software’s design.

[image: image3.wmf]with Count_Manager;

with Geolocation_Manager;

with Notional_Date_Manager;

with Security_Label_Manager;

package Evacuation_Plan is

´

 Source

´

 Origin: Internal Development

…

´

 Description:

´

 The Evacuation Plan handles all processing described in the following events:

´

 101.1.1.4.19 Update_EPW_Evacuation

´

 101.1.1.4.20 Update_Noncombatant_Evauation

…

 procedure Update_EPW_Evacuation

 (From_JDC_JDA : in Prisoner_Evacuation_Orders);

´

 Requirements Satisfied

…

´

 Description

…

 procedure Update_Noncombatant_Evacuation

 (From_JDC_JDA : in Noncombatant_Evacuation_Orders);

´

 Requirements Statisfied

…

´

 Description

…

end Evacuation_Plan;

Figure H-5

ADLs are source code. ADLs offer the benefit of allowing developers to use Ada compilers to check their designs for common errors like parameter and type mismatches and compilation dependency mistakes before coders implement the designs. The design annotations contained in ADLs are usually delivered to an acquirer as part of the source code. When there is formal configuration management, the delivery usually takes place in a software product specification that documents the as-built baseline for the software.

ADLs can be altered to suit the circumstances of individual projects. The final ADL specifications are usually documented in a project’s collection of design and coding standards and procedures. ADL specifications must match software design methods if the ADL is to successfully present a detailed informative description of software design. This cannot be taken for granted.

A potential problem with ADL is that it can decrease source code reusability. When an ADL that contains certain embedded information about a project like the numbers of paragraphs in textual requirements descriptions is delivered to a software repository, some subsequent users will have no use for that information. If the behavior of the software is separately documented elsewhere than in the requirements comments, the comments will not be needed by those who check the software out of a repository who will have to strip them out which will add to the cost of reusing the software. If the behavior of the software is documented only in the comments, in the form of references to paragraphs in a system-level or software-level requirements description, potential users of the software can be expected to avoid it rather than paying the high price to obtain and read the descriptions to understand what the software does before they check it out of the repository.

Conclusion. Well-styled Ada 83 or Ada 95 could be used to document both the design and the implementation of the Ada software products for the project. However, there is no natural reason for software designers and coders to include the information in their source code that is usually found in project management documents such as plans. Well-styled ADL can be an excellent replacement for many technical documents, but even in that case it cannot replace all of the documentation that may be needed by acquirers.

5.
How Do Ada Software Developers Want to Document Their Software?tc "<Head 3 (14)>5.
How Do Ada Software Developers Want to Document Their Software?"

In the Summer and Fall of 1993, approximately one thousand Ada-community members attended over thirty sixty to ninety-minute briefings on MIL‑STD‑498 presented by the Association for Computing Machinery (ACM) Special Interest Group on Ada (SIGAda) Software Development Standards and Ada Working Group (SDSAWG) at sites in the United States, Canada, and Sweden. The purpose of the briefings was to spread information within the Ada community about the new standard in time to obtain and incorporate developer comments about it not already captured by earlier reviews conducted by the Council of Defense and Space Industry Associations (CODSIA) and Department of Defense (DoD) organizations.

In the course of discussions between the speaker and the audiences at the presentations, Ada software developers (engineers and their technical managers) showed that they were primarily concerned with five categories of documentation, almost to the point of ignoring other categories; first, requirements specifications both at the system level and at the software level; second, design documents at both the system and the software levels; third, collections of technical data called Software Development Files (SDFs) by DoD-STD-2167A and MIL-STD-498, also called Unit Development Folders (UDFs) in other contexts; fourth, data in CASE tool files that represent what their software must do (i.e., the requirements that it must satisfy), represent how it is designed to do it (i.e., its main design elements, calling structure, compilation dependencies, error handling, and so forth), and capture the source code; and finally, software development plans.

Preferred categories of documentation. Developers who attended the SDSAWG presentations on MIL-STD-498 also indicated a strong preference for reducing the categories of documentation to just three; first, the data in their CASE tool files; second, their personal engineering notes not entered into a CASE tool which is the kind of information that has been sought in SDFs; and third, their project’s software development plans. While the developers preferred to limit the categories of documentation, they often acknowledged that immature software processes are not likely to adequately document software even with help from CASE tools and technical notes. They accepted that acquirers may only be able to obtain the information that they need about such development efforts by imposing supplementary documentation requirements on the developers.

Conclusion. Developers prefer to limit documentation to three types which are, engineering data in CASE tools, engineering data in development notes not entered into CASE tools, and software development plans. Of the three kinds of documentation that developers prefer, ADL provides only part of the first. Also, developers following immature software processes are not likely to record adequate data for managing the software project or for understanding the software product.

6.
What Role Do Software Engineering Standards Play in Adequate Documentation?tc "<Head 3 (14)>6.
What Role Do Software Engineering Standards Play in Adequate Documentation?"

Since Secretary of Defense Perry’s June 29, 1994 memorandum on, “Specifications and Standards—A New Way of Doing Business,” the DoD has moved away from the use of military specifications and standards on military contracts. However, at the same time, it has moved to replace some of its software engineering standards with commercial equivalents like the ISO 9000 series of quality standards. Figure H-6 shows some of the organizations whose standards are relevant, the International Organization for Standardization (ISO), the Electronic Industries Association (EIA), and Institute of Electrical and Electronics Engineers (IEEE).

[image: image4.wmf]
Figure H-6

MIL-STD-498. At the time of Secretary Perry’s memorandum, there was no commercial equivalent of DoD-STD-2167A. Also, 2167A was known to have some troublesome defects. A replacement standard, MIL-STD-498, was nearly ready to publish, so it was approved for two years, to December, 1996. MIL-STD-498 superseded DoD-STD-2167A, DoD-STD-7935A, and the NSA standard DoD-STD-1703. MIL-STD-498 requires developers to develop and record certain information. It permits whatever means is appropriate for recording the information in a particular development situation. It could be that paper documents are appropriate, but the standard suggests that many other media and formats for the information might be better, for example data files for a CASE tool.

Through the requirements in the standard itself, and additional language in its DIDs, 498 is a lengthy “checklist” of potentially relevant information that a developer should consider when planning a software project. This is its value during documentation. The developer and the acquirer are responsible for tailoring the “checklist” to an actual list of the information that the project will provide. The developer and the acquirer must both be competent at software development to do this. The standard was never intended to be a substitute for technical skill and training. The standard has roughly the same value during software development that a generic preflight checklist for all aircraft would have for a pilot.

Although the earlier DoD-STD-2167A had required developers to document a software design as though it were an hierarchical collection of elements, 498 does not. 498 requires developers to record the actual design which might be a network of components, a repository, a pipeline, or any other reasonable approach to decomposing and satisfying the software requirements. Many different approaches are known, and several are described in the literature.2

ISO/IEC 12207. By comparison with MIL-STD-498, this ISO standard approved in 1995 says very little about documentation. 12207 is much broader in scope, and at a higher level of abstraction. Although there are technical differences between the two standards, where the 12207 requirements overlap those of 498 in areas of software documentation, the requirements in 12207 are similar to and can be said to be contained in the requirements in MIL-STD‑498.

Replacement for MIL-STD-498 in 1996. A Joint Industry Standard working group led by the IEEE and the EIA is developing a new commercial standard to replace MIL-STD-498 in December, 1996. The new standard, tentatively called J-STD-016, is planned to include ISO/IEC-12207 together with supplementary enhancements derived from MIL-STD-498 and from additional work by industry representatives in collaboration with key DoD personnel. Like MIL-STD-498, J-STD-016 is planned to play the documentation role of a lengthy “checklist” of potentially relevant information that a developer should consider when planning a software project. Once again, the standard is not intended to be a substitute for technical skill and training.

Conclusion. From the point of view of choosing documentation, it is reasonable and useful to think of modern software engineering standards as reminders to developers of what they might need to record when they develop software. Standards can be very valuable when they are used in this way, and most of the familiar problems associated with the abuse of military software development standards will never occur.

7.
Given that Military Software Should be Documented, Are There Good Ways to Do It?tc "<Head 3 (14)>7.
Given that Military Software Should be Documented, Are There Good Ways to Do It?"

The short answer to this question is, “Sure!” There should not be doubt about this any longer. Developers often document their software in ways that some may not call documentation but that are excellent representations of the developer’s work. For example, a class diagram like Figure H-7 from Grady Booch’s book on object-oriented design3 is an excellent representation of design decisions even though it may exist only within a CASE tool.

[image: image5.png]
Figure H-7

If a developer followed Booch’s object-oriented design method in full, the resulting work products would include not only class diagrams, but also state transition diagrams, object diagrams, timing diagrams, module diagrams, process diagrams, and elaborate textual descriptions of each of them called “templates.” Taken all together, they would provide a thorough presentation of the developer’s design. Rational sells a CASE tool, Rational Rose, that runs on several different operating systems including Unix and Microsoft Windows and supports the development of Booch’s work products. A trained user of the tool can easily produce good documentation for recording and evaluating an object-oriented design. There are other useful combinations of methods and tools in addition to Rational’s which shows how many different opportunities there are to document software designs well with CASE tools.

There are CASE tools for identifying and documenting system and software requirements, and for tracing requirements to code. There are CASE tools for software testing and for software configuration management, and other tools for source code analysis and evaluation. There are numerous tools for project planning and tracking, including tools that automatically calculate and display such data as cost and schedule variances. And, don’t forget all the tools for software process definition and re-engineering.

Conclusion. Given the huge range of CASE tools in the market today, it is probable that for each aspect of software development there is a tool that can document it well. This is not to argue that it would be easy for any project to acquire or learn to use them. Given the excellent tools that are available today, however, it would be easy for many developers to use some of the tools to produce good documentation that was appropriate for their project.

8.
Benefits and Dangers of Relying Only on a Developer’s Normal Work Products?tc "<Head 3 (14)>8.
Benefits and Dangers of Relying Only on a Developer’s Normal Work Products?"

Successful, high-quality software development as usual. The big benefit of relying on the developer’s normal, mature software process to produce proper software documentation is that it avoids special cases and crises. The software process that has worked well in the past to produce high-quality software can be expected to work well again. The types of documentation and their detail will be predictable because the documentation will resemble documentation produced by previous projects. The effort to produce the documentation will be known. No special training or tools will be necessary. There is no risk of disturbing the developer’s mature software process in unforeseen ways as there always is when an acquirer orders information that the developer has never recorded before. On the other hand, there are dangers in depending solely on developer-defined, developer-developed work products. Three of them are described below. Probably there are others.

A poor software process, or poor execution of a good process. When a developer’s software process is poor, that is at Level 1 on the SEI’s five-level scale of process maturity, the work products that result from the process are likely to be poor as well. For example, a developer with an immature software process will inadequately plan their software development projects. By the definition of an immature process, they cannot be expected to develop adequate planning documentation.

A developer with a process at Level 2 on the SEI scale can be expected to have adequate plans for projects that are similar to projects they have managed successfully in the past. However, planning for projects in new functional domains or for projects that are much larger in scale than anything the developer has managed before, for example, can be expected to be inadequate because capabilities that are key to successful performance in the new areas may not be developed yet, skills such as training, intergroup coordination, and peer reviews, that are needed but not likely to be reflected in the project planning. In the case of software design, a Level 2 developer may have a poorly defined approach. In such a case, software design work products may be haphazard and incomplete because there may be no practices that lead to adequate work products, so chance would dictate their content and organization. If a developer had a software process at SEI Level 3 or higher, most needed documentation could be expected. Even so, latitude in their process definitions, or poor developer personnel, could lead to poor work products that were of limited use to the acquirer for monitoring the contract.

Unskilled or unprepared acquirer personnel. It could happen that the acquirer and the maintenance organization may not be trained or experienced enough to understand the developer’s work products. Many of the participants at the SDSAWG presentations on MIL-STD-498 in 1993 were acquirer personnel who were concerned about this. In other cases, even when acquirer personnel and their organizations are trained and experienced in software development, understanding the developer’s work products could depend upon knowledge of a proprietary development method that was not fully shared with the acquirer. Many situations could give rise to such a problem.

Skilled acquirer personnel who improperly use developer data. When acquirer personnel are skillful with the developer’s CASE tools, checks would have to be placed on them to prevent them from improperly using the developer’s work products. The problem is both an ethical one, for example a leak of proprietary data, and a technical one. The ethical problem is obvious. An example of the technical problem is a premature evaluation of certain aspects of a design that have not been developed because they are scheduled for later development.

The technical problem may impede development in surprising ways. For example, if an acquirer insisted on premature completion of areas of software design and source code that developer data showed to be incomplete or defective, it could cause schedule and cost overruns. Since software evolves through many stages of completion, at any time prior to final testing of the software, some aspects of the software or its design can be expected to be wrong or incomplete. Acquirers should expect developers to have a reasonable schedule for correcting unresolved problems and completing incomplete designs and source code. This is just another way of saying that developers should have a reasonable software development schedule. To pressure developers to complete all defects and open areas of designs and source code at each point in development could be very expensive since it could conflict with the developer’s development schedule and could risk forcing premature, poor decisions that would cause major engineering problems and schedule slips when the software was tested or released.

Conclusion. There are risks to relying only on the documentation from a developer’s normal software process. In many cases the benefit of doing business well as usual will outweigh the risks. Also, the risk to a project from not having a normal software process, in other words from treating the software development business as a series of exceptional situations, should be avoided whenever possible.

9.Recommendationstc "<Head 3 (14)>9.
Recommendations"

My recommendations are summarized in Figure H-8.

Competence

•

Normal Software Process

•

Additional Documentation Only If Justified

Figure H-8

First, consistent success with documentation depends on competence. Before awarding a software development contract, an acquirer should be competent to choose a developer that knows how to adequately document their software development effort and their software products. On the other side of the development relationship, before a developer begins to develop military software, they should be competent to properly document their software development effort and their work products.

Second, stick with the developer’s normal software process. Usually, the acquirer should acquire only the developer’s normal work products because usually they will be the most appropriate information, in the most appropriate format and the most appropriate media for documenting the development effort and its results. For their part, developers should have a normal software process with tools that will work well for the development effort, and know how to use the tools well, so they can document their software development effort and their work products in a way that is appropriate for understanding and overseeing their work.

Finally, avoid changing the normal software process by orders for additional documentation unless the additional documentation is justified. The acquirer should order additional documentation, supplementary to the developer’s normal work products, only when the acquirer has strong evidence that the information is needed for the project and that the developer would not provide it otherwise. For their part, developers should accept that there may be occasions when acquirers will need more information than they can obtain from the normal developer work products, and developers should be prepared to accommodate these reasonable, additional information orders from their customers.

Acronyms and Abbreviationstc "<Head 2 (14)>Acronyms and Abbreviations"
ACM
Association for Computing Machinery

ADL
Ada Design Language

CAD/CAM
Computer-Aided Design/Computer-Aided Manufacturing

CASE
Computer-Aided Software Engineering

CMM
Capability Maturity Model for Software

CODSIA
Council of Defense and Space Industry Associations

DID
Data Item Description

DoD
Department of Defense

EIA
Electronic Industries Association

IEEE
Institute of Electrical and Electronic Engineers

ISO
International Organization for Standardization

JAD
Joint Application Development

LAN
Local Area Network

RAD
Rapid Application Development

SDF
Software Development File

SDSAWG
Software Development Standards and Ada Working Group

SEI
Software Engineering Institute

SIGAda
Special Interest Group on Ada

SIGSOFT
Special Interest Group on Software Engineering

STSC
Software Technology Support Center

UDF
Unit Development Folder

WESCON
Western Electronic Show and Convention

1Good guidelines for Ada style have been available for many years. Some of the earliest ones were developed by INTELLIMAC, Inc. and the Goddard Space Flight Center. A popular set today was developed by the Software Productivity Consortium, and published by Van Nostrand Reinhold in 1989 with the title Ada: Quality and Style.

2For example, see Mary Shaws’s short article, “Architectural Issues in Software Reuse: It’s Not Just the Functionality, It’s the Packaging,” in Software Engineering Notes, Special Issue, August 1995 (ACM SIGSOFT, New York).

3Booch, Grady, Object Oriented Design: With Applications, (Benjamin/Cummings: Redwood City, CA), page 461.
