

Appendix J

Counting Rules for Function Points and Feature Points�tc "Preface"��
�tc "<>"�

APPENDIX�tc "<>APPENDIX"�

 �tc "<> "�J�tc "<> J"�

Counting Rules for Function Points and Feature Points�tc "<>Counting Rules for Function Points and Feature Points"�

Software Productivity Research, Inc.

EDITOR’S NOTE: Graphics quality will improve when printed.

INTERNAL USER DATA GROUP (IU)�tc "<Head 2 (14)>INTERNAL USER DATA GROUP (IU)"�

	Count each major logical group of user data or control information in the application as an internal user data group, include each logical file, or within a database, each logical group of data from the view point of the user that is generated, used, and maintained by the application. Count each logical group of data as viewed by the user and as defined in the external design or data analysis rather than on the physical implementation. IUs maintained by more than one application are counted as IUs by each.

�

�

Counting Recommendations�tc "<Head 3 (14)>Counting Recommendations"�

	Do not include logical internal files that are not accessible to the user through external input, output, or inquiry types.

�

EXTERNAL USER DATA GROUP (EU)�tc "<Head 2 (14)>EXTERNAL USER DATA GROUP (EU)"�

	Count each major logical group of user data or control information used by the application (but maintained by another application) which crosses the application boundary. Include each logical file or logical group of data from the viewpoint of the user that is used by the application.

Counting Recommendations�tc "<Head 3 (14)>Counting Recommendations"�

	Count each major logical group of user data or control information that enters the application from another application as an external user data group.

�

INPUT TYPE (IT)�tc "<Head 2 (14)>INPUT TYPE (IT)"�

	Count each unique user data or user control input type that enters the external boundary of the application being measured, and adds, changes, or deletes data in a logical internal file type. Also count control information which enters the application boundary and assures compliance with business function specified by the user. An external input type should be considered unique if it has a different format, or if the external logical design requires a processing logic different from other external input types of the same format.

�

Counting Recommendations�tc "<Head 3 (14)>Counting Recommendations"�

	The recommendation most closely describing each input type should be used in counting each input type.

�

OUTPUT TYPE (OT)�tc "<Head 2 (14)>OUTPUT TYPE (OT)"�

	Count each unique user data or control output type that leaves the external boundary of the application being measured. An external output type should be considered unique if it has a different format, or it the external design requires a processing logic different from other external output types of the same format. External output types usually consist of reports or messages to the user.

�

Counting Recommendations�tc "<Head 3 (14)>Counting Recommendations"�

	The recommendations most closely describing each output type should be used in counting each output type.

�

EXTERNAL INQUIRIES (OT)�tc "<Head 2 (14)>EXTERNAL INQUIRIES (OT)"�

	Count each unique input/output combination, where an input causes and generates an immediate output, as an external inquiry type. An external inquiry type should be considered unique if it has a format different from other external inquiry types in either its input or output parts, or if the external design requires a processing logic different from other external inquiry types of the same format.

Counting Recommendations�tc "<Head 3 (14)>Counting Recommendations"�

	The recommendation most closely describing each inquiry type should be used in counting each inquiry type.

�

FEATURE POINT METHODOLOGY�tc "<Head 2 (14)>FEATURE POINT METHODOLOGY"�

	The SPR Feature Point metric is a superset of the IFPUG Function Point metric and introduces a new element (algorithms) in addition to the five standard Function Point parameters. The Feature Point method also reduces the Internal User Data Group weight from IFPUG’s average value of 10 to an average value of 7. Since Feature Points include algorithmic complexity, a definition of “algorithm” is appropriate. An algorithm is defined as the set of user required rules which must be completely expressed in order to solve a significant computational problem. For example, a square root extraction routine, a Julian date conversion routine, or an overtime pay calculation routine are all considered algorithms.

�

FUNCTION POINT METHODOLOGY�tc "<Head 2 (14)>FUNCTION POINT METHODOLOGY"�

	The primary difference between the IFPUG and SPR Function Point methodologies is in the way they deal with complexity. The IFPUG techniques for assessing complexity are based on weighing 14 influence factors and evaluating the numbers of field and file references for transactions or the numbers of fields and record element types (user views) for data groups. The SPR technique for dealing with complexity separates the overall topic of “complexity” into two distinct questions that can be dealt with intuitively: (1) How complex are the algorithms or equations or problems in the software? (2) How complex is the data structure of the application? The SPR methodology is usually utilized at or prior to Requirements.

	With the SPR Function Point method, it is not necessary to count the number of data element types, file types referenced, or record types. Neither is it necessary to assign low, average, or high values to each specific input, output, inquiry, data file, or interface. The SPR complexity questions can be answered quickly by anyone familiar with an application, and they deal with the entire application, rather than with its elements.

COMPLEXITY FACTOR�tc "<Head 2 (14)>COMPLEXITY FACTOR"�

	The complexity factor and multiplier is used to compute the Function Point Count measure. SPR uses a “quick-fire” method which can adjust the function point count by ±40%. IFPUG and SPR use the same principles to identify the five elements (six with Feature Points) of counting. IFPUG then applies a weighting factor of high, low, or average, depending on the number of data elements, file types referenced, and record types invoked. SPR’s quick-fire method assumes average weight in its methodology. To adjust the raw FP count, IFPUG looks at 14 variables of complexity that will adjust the count by ±35%. SPR simply requires answers to two questions which summarize the intent of IFPUG’s 14 complexity factors. By answering 1 through 5 on both questions and adding the two values together, a complexity multiplier is then obtained using the simple chart provided.

�

IFPUG METHODOLOGY�tc "<Head 2 (14)>IFPUG METHODOLOGY"�

�

•	FTR = File Types (User Data Groups) Referenced

•	DET = Data Element Type Field

•	RET = Record Element Type (User View)

�
IFPUG METHODOLOGY (Cont.)�tc "<Head 2 (14)>IFPUG METHODOLOGY (Cont.)"�

	Fourteen General System Characteristics are rated from 0�5 based upon their degree of influence on the application. The fourteen characteristics are:

·	Data Communication

·	Distributed Function

·	Performance

·	Heavily Used Configuration

·	Transaction Rates

·	On-Line Data Entry

·	Design for End-User Efficiency

·	On-Line Update

·	Complex Processing

·	Usable in other Applications

·	Installation Ease

·	Operational Ease

·	Multiple Sites

·	Facilitate Change

	The Unadjusted Function Point count of an application is adjusted by the total of the General System Characteristics using the following equation to determine the application Function Point count:

[.65 + (.O1x total of General System Characteristics)] • [Unadjusted Function Point Count]

	Users should refer to the IFPUG Counting Practices Manual for more complete definitions.

“BACKFIRE” METHOD�tc "<Head 2 (14)>“BACKFIRE” METHOD"�

	The “backfire” method for estimating Function Points is based on empirical relationships discovered to exist between source code and Function Points in all known languages. This method is based on tables of average values. It is useful for doing retrospective studies of projects completed long ago, and for easing the transition to Function Point metrics for people who are familiar with lines-of-code metrics.

�

�

Version 2.0

Version 2.0

Version 2.0

APPENDIX J Function/Feature Point Counting Rules

J-� PAGE �3�

Version 2.0

J-� PAGE �2�

