
Appendix O

Additional Volume 1 Addenda��tc "<>"�
APPENDIX�tc "<>APPENDIX"�
 �tc "<> "�O�tc "<> o"�

Additional Volume 1 Addenda�tc "<>Additional Volume 1 Addenda"�

EDITOR’S NOTE: Graphics quality will improve when printed.

CONTENTS	 PAGE

CHAPTER 2, DoD Software Acquisition Environment Addendum

	Addendum A, MIL-STD-498: What’s New and Some Real Lessons-Learned
	O-3

	Addendum B, Adopting MIL-STD-498: The Steppingstone to the US Commercial Standard
	O-
9

CHAPTER 4, Engineering Software-Intensive Systems, Addendum

	Addendum B, Software Reliability: A New Software OT&E Methodology
	O-
16

CHAPTER 5, Ada: The Enabling Technology, Addenda

	Addendum C, The Ada 95 Philosophy
.	O-
30

	Addendum D, Ada Implementation Lessons-Learned from SSC and CSC
	O-
33

CHAPTER 7, Software Development Maturity, Addendum

	Addendum B, Lessons-Learned While Achieving A CMMSM Level 3 Rating
	O-
35

CHAPTER 8, Measurement and Metrics, Addenda

	Addendum B, Software
Complexity
	O-
40

	Addendum C, Metrics: The Measure of
Success
	O-46

	Addendum D, Making Metrics Work Miracles

	O-57

	Addendum E, Swords and Plowshares: The Rework Cycles of Defense & Commercial
Software	O-
63

CHAPTER 10, Software Tools, Addendum

	Addendum B, Rate Monotonic Analysis: Did You Fake It
?
	O-69

CHAPTER 11, Software Support, Addendum

	Addendum B, Electronic Combat Model Re-engineering
	O-72

CHAPTER 13, Contracting for Success, Addendum

	Addendum B, Contracting for Success

	O-82

CHAPTER 15, Managing Process Improvement, Addenda

	Addendum B, Training — Your Competitive Edge in the ‘90s
	O-92

	Addendum C, Lessons-Learned from BSY-2’s Trenches
	O-96

��tc "<>"�
CHAPTER 2�tc "<>CHAPTER 2"�
 Addendum A�tc "<> Addendum A"�
 �tc "<> "�
MIL-STD-498:�tc "<>MIL-STD-498\:"� What’s New and Some Real Lessons-Learned�tc "<>What’s New and Some Real Lessons-Learned"�
Reprinted from CrossTalk: The Journal of Defense Software Engineering, March 1996

Paul A Szulewski
David S. Maibor
Abstract�tc "<Head 2 (14)>Abstract"�
	In his June 29, 1994 memo, Secretary of Defense William J. Perry challenged Department of Defense (DoD) agencies (and industry) to move to greater use of performance and commercial specifications and standards, and shelved a host of military standards, including those related to software. After an intense lobbying effort by the DoD and industry, the DoD approved the use of MIL-STD-498 for two years, assuming a nongovernment software standard would replace it in that time frame. The US Navy and the US Air Force have issued waivers permitting MIL-STD-498 to be invoked on contracts. The Institute of Electrical and Electronics Engineers (IEEE) and the Electronic Industries Association (EIA) are working together to create a nongovernment software standard. Because MIL-STD-498 is new and being applied on selected projects, there is no published information on its practical use. This article briefly:

•	Highlights MIL-STD-498 as the new way to develop software.
•	Examines MIL-STD-498’s application on a government-sponsored real-time guidance, navigation, and control project underway at the Draper laboratory.
•	Reviews the effort to create nongovernment software standards.
MIL-STD-498: What’s New – What’s Different�tc "What’s New – What’s Different"�				�tc "<Head 2 (14)>MIL-STD-498\:						"�

Software Development in the 1980s — DoD-STD-2167A�tc "<Head 3 (14)>Software Development in the 1980s —	DoD-STD-2167A"�
	DoD-STD-2167A, Defense System Software Development, was the standard used for most DoD-sponsored software development from 1988 to 1994. DoD-STD-2167A represented the approach to developing software for the 1980s. What were some of the key elements in DoD-STD-2167A?

Customer-Developer Relationship�tc "<Head 4 (12)>Customer-Developer Relationship"�
	DoD-STD2167A attempted to balance the customer’s concerns with the developer’s concerns, i.e., the customer must have sufficient project oversight and control while some flexibility is given to the developer. Often, the result was an “us versus them” mentality or adversarial relationship.

Single Pass Waterfall Model Bias�tc "<Head 4 (12)>Single Pass Waterfall Model Bias"�
	DoD-STD2167A defined an eight-step development process:

1.	System requirements analysis and design.
2.	Software requirements analysis.
3.	Preliminary design.
4.	Detailed design.
5.	Coding and unit test.
6.	Computer software component integration and test.
7.	Computer software configuration item test.
8.	System integration and test.

	Many projects assumed the process:

·	Must begin with requirements analysis, followed by design, then coding.
·	Conclude each step with a formal review.
·	Progress through the activities once as a single pass.
·	Include configuration management, quality assurance, deliverable and nondeliverable documentation in each step.

Baseline Control�tc "<Head 4 (12)>Baseline Control"�
	As discussed above, the focus of a waterfall model is requirements. System and software-level requirements were frequently frozen as customer-controlled baselines.
�tc "<Head 4 (12)>"�
Formal Milestone Reviews�tc "<Head 4 (12)>Formal Milestone Reviews"�
	DoD-STD-2167A required the developer to conduct formal reviews (system design review, preliminary design review, etc.) in accordance with MIL-STD-1521B. Since review requirements were seldom tailored, the developer had to frequently conduct “dog and pony shows,” presenting extensive engineering information on the product.
�tc "<Head 4 (12)>"�
Hard Copy Deliverable Data�tc "<Head 4 (12)>Hard Copy Deliverable Data"�
	DoD-STD-2167A identified 17 separate deliverable data items, with associated Data Item Descriptions (DIDs). Many projects required the developer to prepare and deliver most or all of the documents in hard copy format 30 to 60 days prior to the milestone reviews.

Functional Bias�tc "<Head 4 (12)>Functional Bias"�
	DoD-STD-2167A assumed that system and software products were developed following a functional decomposition approach. “Requirements” were specified as capabilities with associated performance and interface parameters and represented what the item must do. “Design” details were specified as hardware or software configuration items, computer software components (software preliminary design), computer software units (software detailed design), and represented how the item satisfied its requirements.
Software Trends in the 1990s�tc "<Head 4 (12)>Software Trends in the 1990s"�
	Over the past three to four years, new trends have emerged for the 1990s that represent some fundamental shifts in software development. What are these new trends?

The Integrated Product Team Approach�tc "<Head 4 (12)>The Integrated Product Team Approach"�
	There is a strong effort underway to replace the traditional adversarial relationship with the integrated product team (IPT) approach. An IPT approach means all project stakeholders (contracting agency, developer, end user, support activity, test agency, and independent verification and validation agent) meet frequently and play an active role in product development.
The Three Rules of Software Development�tc "<Head 4 (12)>The Three Rules of Software Development"�
	Just as there are three rules to buying real estate (location, location, location), there is growing pressure for software organizations to follow the three rules of software development — process, process, process.

Plan Your Work – Work Your Plan�tc "<Head 4 (12)>Plan Your Work – Work Your Plan"�
	Along with the pressure to focus on process, organizations must document how that process will be applied to the project. Detailed plans must be prepared (or reused if available as a corporate asset). These plans serve two purposes: convince the customer that the developer has a valid software development approach and serve as the “project bible” by which the software team operates. Since plans are useless if they are not followed, planning your work and working your plan are both key elements. (The ISO 9000 community similarly states, “Document what you do. Do what you document.”)
Supportability�tc "<Head 4 (12)>Supportability"�
	For government projects, the support question remains a key concern: “Who will support the delivered software?” There is still strong reluctance to be sole-source dependent on the original developer; the acquirer expects software support to transition to a government organization.
�tc "<Head 4 (12)>"�
Ada and Object-Oriented Methodologies�tc "<Head 4 (12)>Ada and Object-Oriented Methodologies"�
	In 1991, US law required all DoD software be written in Ada where cost effective and in the absence of a waiver. Most Ada projects also follow an object-oriented methodology instead of the traditional functional decomposition approach.

A New World Order For MIL-STDs�tc "<Head 4 (12)>A New World Order For MIL-STDs"�
	On June 29, 1994, Secretary of Defense William J. Perry issued a memorandum that defined “A New Way Of Doing Business.” Up to this point, DoD policy mandated the use of various MIL-STDs on all projects (a project office must obtain a waiver to avoid using MIL-STDs). This new memo “threw out all nonperformance specifications and standards” and required project offices to obtain a waiver to use a MIL-STD. (Note: Performance specifications and standards such as MIL-STD-1553 for bus communication were exempted.)
	The US Air Force and the US Navy issued blanket waivers allowing the use of MIL-STD-498 in 1994. The waivers are in effect until December 1996.
�tc "<Head 4 (12)>"�
MIL-STD-498 Highlights�tc "<Head 4 (12)>MIL-STD-498 Highlights"�
	Four cornerstones support MIL-STD-498, Software Development and Documentation. What are these cornerstones? The cornerstones are the first four trends discussed above for the 1990s: the IPT approach, process, process, process, plan your work and work your plan, and supportability. Some of the specific changes found in MIL-STD-498 are discussed below.

Development Model – What’s a Waterfall?�tc "<Head 4 (12)>Development Model – What’s a Waterfall?"�
	Since many projects applied DoD-STD-2167A as a single-pass waterfall model, MIL-STD-498 “goes out of its way” to dispel any waterfall bias. It clearly states in §5.1, “The order of the requirements [in Section 5] is not intended to specify the order in which they must be carried out.” Essentially, MIL-STD-498 identifies separate activities the developer’s process must address (requirements analysis, design, configuration management, quality assurance, joint reviews, etc.). The developer is free to select the order and timing of the activities — the build approach — essentially all aspects of the process.
�tc "<Head 4 (12)>"�
Product Requirements Under MIL-STD-498�tc "<Head 4 (12)>Product Requirements Under MIL-STD-498"�
	Under DoD-STD-2167A’s baseline control, it was often problematic to determine where requirements ended and design detail began. What’s different under MIL-STD-498?
•	No more baselines or customer control. Under MIL-STD-498, the only data the customer explicitly approves (along with changes) are plans. MIL-STD-498 doesn’t mention baseline control of requirements. Requirements information is treated as all other information generated by the process; the developer must review the information and place it under internal configuration control. If the acquirer wants to exercise baseline control of requirements, that must be added into the Statement of Work. (NOTE: Under an IPT approach, the acquirer could be part of a joint review board, approving all changes to internally controlled data.)
•	Requirement versus design detail. Examination of the DIDs for requirements specifications and design descriptions reveals identical information in many places. How do you decide whether information is a requirement or design detail? According to Section 3 of the requirements specifications DIDs: “The degree of detail shall be guided by the following rule: Include those characteristics that are conditions for acceptance; defer to design descriptions those characteristics that the acquirer is willing to leave up to the developer.” Under MIL-STD-498, a requirement is any characteristic that serves as a precondition for acceptance. If the acquirer does not care about that characteristic, it can be considered a design detail and does not need to be demonstrated as part of qualification testing.
•	Requirements analysis can take place whenever. Under MIL-STD-498, defining and recording requirements may take place prior to design and code, after design and code, after installation, or all of the above. The new standard essentially says, “Here are all the activities your process should cover. One is system requirements analysis, another is software requirements analysis. Describe your process and include where and when requirements analysis occurs.”
�tc "<Head 4 (12)>"�
Joint Technical and Management Reviews�tc "<Head 4 (12)>Joint Technical and Management Reviews"�
	Instead of the formal milestone reviews imposed by DoD-STD-2167A, MIL-STD-498 tasks the developer to propose the schedule and location of all joint reviews. Joint technical reviews are intended to review evolving software products (software and associated information in their natural form), not force the developer to construct elaborate presentations. Joint management reviews are intended to keep management informed on project status, surface problems that cannot be resolved at technical reviews, and receive management commitment.
�tc "<Head 4 (12)>"�
Documentation — The New Approach�tc "<Head 4 (12)>Documentation — The New Approach"�
	Under DoD-STD-2167A, many developers and acquirers complained that projects overemphasized hard copy deliverable documentation, and de-emphasized a well-engineered product. MIL-STD-498 assumes the developer has planned an appropriate process for the software work. That process consists of two elements: the performance of activities and the generation of information. MIL-STD-498 explicitly states, “Defining and recording engineering and planning information is an intrinsic part of the software process.” (§5.1.1) However the information (requirements, design, test, plans, etc.) need not be in hard copy form and need not comply with a DID. Instead, MIL-STD-498 assumes the developer’s process naturally generates planning and engineering information. When no deliverable data is required, the developer uses the corresponding DIDs as a checklist of information the process might generate. MIL-STD-498 goes on to caution the acquirer:

·	Do not think the developer will not develop key planning and engineering information if you do not order its delivery on a contract data requirements list (CDRL).
·	Only order deliverable data when there is a genuine need for it.
·	Recognize that the preparation of deliverable data is an extra task for the developer and diminishes the time and resources available for the end product.
·	Provide as much flexibility as possible regarding the due dates for CDRL items.

Development Methodology — Whatever Works�tc "<Head 4 (12)>Development Methodology — Whatever Works"�
	DoD-STD-2167A assumed system and software development followed a traditional functional decomposition approach. Today, object-oriented and other approaches define different development paradigms. Consequently, MIL-STD-498 attempts to keep requirements and design language as neutral as possible. To describe software architectural design, MIL-STD-498 introduces a single term “software unit,” which is simply defined as “an element in the design of a computer software configuration item.” (§3.45)

Supportability�tc "<Head 4 (12)>Supportability"�
	With supportability as a cornerstone, MIL-STD-498 has added “Preparing for Software Transition” as an activity (§5.13). The standard also requires the developer to demonstrate that the deliverable software can be regenerated and maintained by software and hardware designated in the contract or approved by the acquirer (§5.13.7b).

Management Metrics and Process Improvement�tc "<Head 4 (12)>Management Metrics and Process Improvement"�
	MIL-STD-498 tasks the developer to use management indicators to manage the process and communicate its status to the acquirer. The developer proposes which metrics will be used in the SDP (§5.19.2). With the emphasis on process in MIL-STD-498 and the popularity of process improvement, MIL-STD-498 requires the developer to periodically assess the processes used on a project for suitability and effectiveness and identify any necessary and beneficial improvements (§5.19.7).

Real Experiences Using MIL-STD-498�tc "<Head 3 (14)>Real Experiences Using MIL-STD-498"�
	This section describes a real project’s experience with application of MIL-STD-498 for the first time in an organization. The proposed development was complex and had budget and schedule constraints. Two software configuration items (CIs) were planned. The first CI would be re-engineered from a legacy system, and the architecture and a major portion of the code would be reused. Also, new capabilities would be added to the legacy system. The system is expected to be supported from 10 to 30 years, and the acquirer will be responsible for maintenance and support. The acquirer was also interested in being involved technically. The first CI can be characterized as follows:

·	Size. Estimated total source lines of code (SLOC) — 90K of C code with 80% reuse.
·	Application domain. Tactical system, real-time guidance, navigation, and control with a sophisticated graphical user interface (GUI) for user interaction.
·	Complexity. Realtime, user interactive, time-constrained computing, over 100 interfacing elements.
·	Criticality. Life-critical safety application with built-in hardware fail-safe backups. The second CI would be a user interface and display generation product using some commercial-off-the-shelf (COTS) software and reused components to evolve a user interface that uses rapid prototyping. The second CI can be characterized as follows:
-	Size. Estimated total SLOC—12K of C code with 70 percent COTS and reused code.
-	Application domain. A sophisticated GUI for user interaction, guidance, navigation, and control.
-	Complexity. Realtime, user interactive, and time-constrained computing.
-	Criticality. Primary user interface with built-in hardware fail-safe backups.

	This is a perfect scenario for using MIL-STD-498: an integrated product team atmosphere — reused and COTS software, two non-waterfall life cycle development models for the CIs and, in the interest of reducing development costs and accelerating the schedule, a desire to minimize time wasted in traditional formal reviews and formal documentation, yet assure a maintainable system.

Integrated Product Team�tc "<Head 4 (12)>Integrated Product Team"�
	The acquirer has encouraged a positive IPT atmosphere. An aggressive independent verification and validation (IV&V) agent was assigned to help review the deliverables and periodically visit the developers in “working sessions.” This tactic has generally provided timely and constructive criticism. In addition, the IV&V team has helped refine project plans, especially those related to risk management and safety provisions. The downside of this close cooperation has been an increase in the effort expended in communication, resolving problems, and making the software development visible. Since the acquirer wanted more control and visibility, additional planning and oversight activities have been required.
�
Informal Reviews�tc "<Head 4 (12)>Informal Reviews"�
	The acquirer agreed to periodic joint technical reviews instead of formal milestone reviews. This review concept marries technical aspects with some aspects of management reviews. The parties do not usually bring contracts types that would be required if contract modifications are proposed. These reviews typically happen at six-week intervals and focus on snapshots of works-in-progress. The materials presented require less than traditional formality and preparation, but there is still some issue with expectations on both sides. The acquirer, familiar with traditional reviews, still looks for completed products. It is difficult to plan in advance what is to be presented at each review, yet this level of detail must be in the development plan. Operationally, these reviews still look like formal reviews. Materials must be submitted in advance, minutes are taken, and action items tracked. Schedule, risks, and software metrics are also presented. This adaptation, in practice, has consumed nearly the same preparation and presentation time as did traditional reviews, and there are more of them.

Delivered Documentation�tc "<Head 4 (12)>Delivered Documentation"�
	The developers have planned a comprehensive set of deliverable documents that are based on those prescribed by MIL-STD-498 DIDs. Had the developers chosen to provide documents in “contractor format,” each document would have to be described in the plan. Since plans are the only deliverables “formally approved” by the acquirer, they have been subjected to a large amount of scrutiny. A detailed draft software development plan was prepared and submitted along with the proposal. Several revisions of the plan have, to date, been submitted but not yet approved. This problem should not repeat with documents that are not approved. For supportability reasons, the acquirer is also interested in other development documentation generated as a record of design decision making. Additional configuration management provisions have been taken to assure that all software products, not just source code, are managed and controlled. Even developer’s notes that support design decisions are carefully controlled.

Flexible Development Model�tc "<Head 4 (12)>Flexible Development Model"�
	The development model being followed is analogous to the contrast between a five-course meal and a buffet-style presentation. In a five-course meal, a diner is presented with an orderly progression of food beginning with an appetizer and ending with dessert. The diner knows what to expect and when things will happen. With a buffet, the diner may begin with any or all selections and end the same way. The diner may also return to the buffet as many times as desired. With either meal process, the diner is ultimately satisfied. The buffet style is usually the less expensive option.
	The benefits to the developer of a buffet-style development model are obvious. The developer has the flexibility to mix and match activities to get the job done. In this case, nonwaterfall activities like re-engineering and rapid prototyping were planned before or in parallel with requirements engineering. Also, the software quality assurance team works with the development team during the development of software products, rather than acting as a gate at the end. The developer still needs to plan in advance how to get from “A to B,” and it must be documented and conveyed in an intelligent and understandable form to the acquirer. The acquirer must then approve the plan. Once the plan is approved, the acquirer assumes that you are following the plan until formally notified to the contrary. Since there are no assumptions made, the plan provides the acquirer all information about exactly what comes next. When the activities and processes invoked are nonstandard, they must be documented in the plan. It saves significant time if these nonstandard practices can be pulled off the shelf and your organization has used them before.

Summary of Lessons-Learned�tc "<Head 4 (12)>Summary of Lessons-Learned"�
	To successfully execute a development effort using MIL-STD-498, your organization should have standard processes, tools, and methods on the shelf and ready to use in addition to the tailoring experience it takes to apply them to a particular project. Back to the buffet analogy; it’s better if you have done it before and have a plan of attack already worked out. If not, you may spend all of your time strategizing and describing your dining approach and never have time to eat.
Nongovernment Standards in Place�tc "<Head 2 (14)>Nongovernment Standards in Place"�

EIA/IEEE J-STD-016-1995: The Nongovernment Twin to MIL-STD-498�tc "<Head 3 (14)>EIA/IEEE J-STD-016-1995\: 	The Nongovernment Twin to MIL-STD-498"�
	A joint effort was undertaken by two key standards issuing organizations: The Institute of Electrical and Electronics Engineers (IEEE) and the Electronic Industries Association (EIA). In January 1996, the IEEE and EIA issued, for trial use, J-STD-016-1995, Standard for Information Technology, Software Life Cycle Processes, Software Development, Acquirer-Supplier Agreement. This nongovernment standard is technically equivalent to MIL-STD-498. All of the key themes discussed in the section “MIL-STD-498: What’s New — What’s Different” of this article appear in J-STD-016. Now available, this new standard can replace MIL-STD-498 and be invoked by the DoD without waivers.
�
ISO 12207: The New Software Standard for the World�tc "<Head 4 (12)>ISO 12207\: The New Software Standard for the World"�
	Another key phenomenon is the official release on Aug. 1, 1995 of ISO 12207, Information Technology and Software Life Cycle Processes. The International Organization for Standardization (ISO) sponsored this new standard for software development, and it was ratified by 24 out of 25 countries. Since ISO 12207 is released as an international standard, many countries will likely feel obligated to adopt it—similar to the ISO 9000 standards experience. Since some aspects of ISO 12207 are more restrictive than MIL-STD-498, a key issue will be how the United States adopts the international standard, ISO 12207, without overturning the flexible “1990s style” themes of J-STD-016. The same IEEE/EIA working group that converted MIL-STD-498 to J-STD-016 is currently attempting to “Americanize” ISO 12207 and create “US 12207” — the US implementation of ISO 12207 (including the “technical goodness” of J-STD-016).

About the Authors�tc "<Head 3 (14)>About the Authors"�
	Paul A. Szulewski is a principal member of the technical staff at the Draper Laboratory. He has over 20 years experience in managing and developing software and software technology. Szulewski is actively involved in software development and is a key person in Draper’s software process improvement effort. He has recently been involved with both the National Software Council and the National Software Data and Information Repository task forces initiated by the Pentagon.

Paul A. Szulewski
The Charles Stark Draper Laboratory, Inc.
555 Technology Square, MS 15
Cambridge, MA 02139
Voice: 617-258-1832
Fax: 617-258-3939
E-mail: pas@qmlink.draper.com

	David S. Maibor is the principal author of DoD-STD-2167 and a key participant in the development of DoD-STD-2167A, DoD-STD-2168, MIL-STD-498, J-STD-016, and US 12207. As a principal of David Maibor Associates, Inc., he provides professional consulting, public seminars, and on-site training to the government and industry. Maibor also provides software capability evaluations and training and provides related software process improvement consulting services.

David S. Maibor
David Maibor Associates, Inc.
P.O. Box 846
Needham, MA 02194
Voice: 617-449-6554
Fax: 617-455-8928
E-mail: maibor@aol.com

��tc "<>"�
CHAPTER 2�tc "<>CHAPTER 2"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Adopting MIL-STD-498:�tc "<>Adopting MIL-STD-498\:"�
The Steppingstone to the US Commercial Standard�tc "<>The Steppingstone to the US Commercial Standard"�

Reed Sorensen
Software Technology Support Center
Introduction�tc "<Head 2 (14)>Introduction"�
	This article discusses a road map for readers to use in the adoption of MIL-STD-498 and the forthcoming US commercial standard for software development, which will include the technical content of MIL-STD-498.

What is the US Commercial Standard?�tc "<Head 3 (14)>What is the US Commercial Standard?"�
	To compete in the global software market, you need to play by the global rules. These are often established by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). With the August 1995 approval of ISO/IEC 12207, Information Technology — Software Life Cycle Processes, the rules were established. ISO/IEC 12207 provides the core software process architecture. Each country has the option of adapting (not to be confused with adopting) the standard for their unique requirements.

The Joint Industry Working Group (JIWG) has initiated the project for the US adaptation of the ISO/IEC 12207. ... Once implemented, the standard will establish the basis for international trade and a common reference model for software in the US The standard provides the process framework for the acquisition, supply, development, operation, and maintenance of software. [1]

	The JIWG is working toward a December 1996 implementation of the US commercial standard to be designated ANSI (American National Standards Institute) 016.

Why Not Skip MIL-STD-498 and Just Wait for the US Commercial Standard?�tc "<Head 3 (14)>Why Not Skip MIL-STD-498 and Just Wait for the US Commercial Standard?"�
	Waiting may make sense if your software project starts after December 1996, the date when MIL-STD-498 is to be replaced. Otherwise, using MIL-STD-498 gives the organization experience in implementing the intent of the US commercial standard. Using MIL-STD-498 now is an advantage because it addresses the following key issues:

·	The documentation challenge.
·	Cooperative teaming between the acquirer and the developer.
·	Flexibility to allow the use of the developer’s proven process.
·	Supportability of the software.
	
	Guidelines for the Successful Acquisition and Management of Software Intensive Systems states the logic of using MIL-STD-498.

Remember, MIL-STD-498 is the preferred standard for all software-intensive Air Force systems. If your on-going contract still stipulates compliance with -2167A, consider modifying it to require compliance with -498. If your program is too far along to benefit from changing to -498, be sure -2167A has been appropriately tailored! [2]
The Road Map�tc "<Head 2 (14)>The Road Map"�
	The road map is based in part on the steps for applying MIL-STD-498 found in MIL-STD-498 Overview and Tailoring Guidebook, Jan. 31, 1996 [3]. The road map is summarized in Figure O-1.

�
Figure O-1 Road Map Summary

	The road map is used to adopt MIL-STD-498 in a single project referred to as “Project A” in Figure O-1. The project is assumed to be just one of several software development projects in an organization. Using the experience from Project A, other projects in the organization may adopt MIL-STD-498 or the US commercial standard.
	The road map may be used by software developers. It may also be used by acquirers [4] who impose MIL-STD-498 as a contract requirement on the developer. The tasks covered in the road map may be done by the acquirer in one situation, or may be done by a developer in another situation. For example, tailoring may be done initially by the acquirer. A developer may do tailoring as a suggested modification to the acquirer’s tailoring.
Prepare�tc "<Head 2 (14)>Prepare"�
	The first tasks involve knowing where you are, i.e., understanding the standard, the software development process [5], general characteristics of the software being developed, the general approach to be used in developing the software and, of course, the requirements. Identifying and establishing communication with the parties that will constitute the software development or acquisition team is also critical.

Get MIL-STD-498 Training�tc "<Head 3 (14)>Get MIL-STD-498 Training"�
	CrossTalk articles, the standard itself, guidebooks, and workshops are all excellent sources to gain understanding. Tables O-1 and O-2 list pertinent articles and the sources of MIL-STD-498 and the guidebooks. The October 1995 issue of CrossTalk lists workshops available. (Also see the sidebar with this article.)
�
September 1994	DoD Policy on the Future of MILSPEC
February 1995	MIL-STD-498
April 1995	Changes from DoD-STD-2167A to MIL-STD-498
October 1995	How is MIL-STD-498 Being Used?*
November/
December 1995	MIL-STD-498 and the CMM: How Do They Relate?
February 1996	MIL-STD-498 and the CMM: The Mapping
March 1996	MIL-STD-498: What’s New and Some Real Lessons Learned
	*This article listed sources of training.
Table O-1 CrossTalk Articles Related to MIL-STD-498

FTP:	diamond.spawar.navy.mil
	MIL-STD-498
	Overview and Tailoring Guidebook
FTP:	glider.logicon.com/pub/standards/498
	MIL-STD-498
	Overview and Tailoring Guidebook
	Application and Reference Guidebook
Web:	http://www.itsi.disa.mil/cfs/std498.html
	MIL-STD-498
	Overview and Tailoring Guidebook
NOTE:	Each of these sites may be accessed through the STSC home page at http://www.stsc.hill.af.mil.
Table O-2 Sources for Downloading MIL-STD-498 and Related Documents

Consider the Context of the Project�tc "<Head 3 (14)>Consider the Context of the Project"�
	The software being acquired or modified will either be a system in its own right, e.g., spares inventory system, or it will be embedded in a larger system such as an aircraft or submarine. If the software is embedded, consider the acquisition strategy being used for the larger system. The strategy being used is probably grand design (waterfall), incremental or evolutionary. Recognize the strategy for consideration with the software development process.

Use a Proven Software Development Process�tc "<Head 3 (14)>Use a Proven Software Development Process"�
	The standard is written for the developer with a proven process. An acquirer needs to consider how the process will fit in the system acquisition strategy. For instance, if the system strategy is incremental, the acquirer considers how a prospective developer’s prototyping-based process might mesh with that strategy. Until a developer is selected, these considerations are done in a “what-if” frame of reference.

Use a Developer with a Track Record�tc "<Head 3 (14)>Use a Developer with a Track Record"�
	With a proven process and a track record of success, an acquirer can be confident that the developer is likely to succeed. This confidence frees the acquirer from formal oversight via costly reviews and deliverable documents.

Have a Defined Set of Requirements�tc "<Head 3 (14)>Have a Defined Set of Requirements"�
	The acquirer must provide the requirements [6] including a description of the environment in which the software will be used. The developer must understand the requirements and demonstrate that understanding.
	MIL-STD-498 provides — and the US commercial standard will provide — a framework on which the acquirer and developer can build an understanding of the acquirer’s requirements and of the developer’s process. Figure O-2 depicts understanding between the developer and acquirer.

�
Figure O-2 Understanding Between Acquirer and Developer

�Consider the Software Support Concept�tc "<Head 3 (14)>Consider the Software Support Concept"�
	The software will be supported by the developer or a separate maintenance organization. If the latter is true, the transition must be scheduled and planned, and support requirements for personnel and the support environment must be defined.

Identify the Types of Software on the Project�tc "<Head 3 (14)>Identify the Types of Software on the Project"�
	The focus of the effort is the software system itself. But other software will be developed or updated to support the effort. Examples are test scripts and simulation software. Some software will be deliverable while some may not. Some software may be of a type that is technically unprecedented for the prospective developer. Identifying these software characteristics is a preparatory step in using MIL-STD-498, a step that will also be needed for using the US commercial standard.

Define the Software Builds�tc "<Head 3 (14)>Define the Software Builds"�
	Break the software development into pieces (builds[7]) based on technical risk, need to show quick success to management, requirements priority, architectural design, resources, or other rationale. Determine an order for the builds and consider how build schedules will overlap and dovetail.
Tailor�tc "<Head 2 (14)>Tailor"�
	Having established a starting point, requirements, and a general approach, detailed decisions can be made. MIL-STD-498 provides for all aspects of software development. Some aspects will be absent from any given project. The MIL-STD-498 provisions for those missing aspects need to be removed from the standard by tailoring. Other aspects of the project will need more specifics than the standard provides and must be “tailored in.”
	Tailoring can be done by the acquirer and developer. In a request for proposal (RFP), the acquirer may suggest tailoring be included. The developer can respond with modifications to that tailoring in a proposal. This exchange of information to arrive at final tailoring helps establish the understanding depicted in Figure O-2. The acquirer’s tailoring is influenced by how well the requirements are understood and to a lesser extent by an understanding of whatever process might be used to implement those requirements. The developer’s tailoring is done based on an understanding of the developer’s process and the extent to which the requirements are understood.
	The maturity of the developer’s process and the acquirer’s requirements definition process is critical. If the developer is still trying to figure out how to develop software or if the acquirer is still trying to figure out how to define requirements, understanding between the acquirer and developer about either is unlikely.

Tailor for Each Build�tc "<Head 3 (14)>Tailor for Each Build"�
	Conceptually, tailoring is straightforward. You consider the objective(s) for the build and delete, modify, or augment each paragraph of the standard appropriately. In practice, tailoring requires a lot of thought. Tailoring is done for each build and for each type of software. A worksheet such as is provided in [3] can be used to capture the thoughts. These thoughts are the basis for the actual tailoring included in the statement of work.
	Consider a trivial example. Suppose the software to be developed will be embedded in the specialized guidance hardware for a submarine. Paragraph 5.12.3.3 of the standard calls for software center operator manuals. Obviously, this paragraph is not applicable to the submarine guidance software, and such is noted on the worksheet. In the statement of work, a tailoring section includes the words “delete paragraph 5.12.3.3.”

Tailor the DIDs as Activity Checklists — A Radically New Concept?�tc "<Head 3 (14)>Tailor the DIDs as Activity Checklists — A Radically New Concept?"�
	The standard calls for the typical software development activities: requirements analysis, design, code, and test are examples. The data item descriptions (DIDs) may be used as a checklist identifying the information or “data”[8] that is expected to naturally result from an activity. Using the DID as a checklist is not the same as “producing a document,” which is often what springs to mind with the mention of DIDs. It is likely that not everything on the DID checklist will apply to the software being developed. Those items that are not applicable are “tailored out.” Note that while you may add, delete, or modify MIL-STD-498, you may only delete information when tailoring the DIDs.

Tailor DIDs as Deliverables, If Necessary�tc "<Head 3 (14)>Tailor DIDs as Deliverables, If Necessary"�
	To minimize the need for deliverables, the standard supports close acquirer and developer teaming and the use of online access by the acquirer into the developer’s data (nondeliverable data). The idea is that the acquirer does not have to possess the information or data as a deliverable to be able to access the data. Such is the case when an acquirer uses online viewing technology to review requirements in the developer’s database.
	But some data will need to be deliverable and will include the costs associated with qualification, packaging, marking, copying, and distribution. If the data that must be a deliverable is a subset of the data identified on the DID checklist, a second tailoring of the DID is needed to specify which data is to be delivered.
	For example, consider a project developing new software that will be supported by the developer for the life of the software. Suppose the Software Product Specification (SPS) DID was tailored as a checklist to require the following data be captured (not delivered):

1.	Executable code.
2.	Source code.
3.	Design description.
4.	Compile/build procedures

	By tailoring the DID a second time to specify that only the executable code needs to be delivered, the costs of delivering the other data is saved while the software maintenance organization (the developer) retains items 2, 3, and 4, which are essential to doing maintenance.

Record Tailoring in the Statement of Work�tc "<Head 3 (14)>Record Tailoring in the Statement of Work"�
	The statement of work is to include two types of tailoring: the tailoring of MIL-STD-498 and the tailoring of the DIDs. Specific examples of each are found in paragraph 5.4.9 of [3].

Clarify “Shell Requirements”�tc "<Head 3 (14)>Clarify “Shell Requirements”"�
	Because MIL-STD-498 assumes that the developer has a proven process, the standard mentions some activities only briefly as a reminder. For example, paragraph 5.19.3 of the standard is a reminder to address security and privacy on the project. Requirements regarding security and privacy need to be provided in the contract. If the developer has a documented process for security and privacy, that documented process can be referenced in the contract.
Select a Developer�tc "<Head 2 (14)>Select a Developer"�
	Tailoring involves give and take between the acquirer and the potential developer. But the decision as to who will actually develop the software is left to the acquirer who is paying the expenses.

Request a Draft Software Development Plan�tc "<Head 3 (14)>Request a Draft Software Development Plan"�
	In the RFP, the acquirer should ask for the inclusion of a draft software development plan (SDP) with the proposal. Under MIL-STD-498, the SDP is the key document. In fact, the SDP’s structure mirrors that of the standard itself (see Table O-3). The draft software development plan is used by the acquirer in selecting a developer.

MIL-STD-498�SDP DID��4.	General Requirements�4.	Plans for performing general software development activities��4.1	Software development process�4.1 Software development process��4.2.1�4.2.1��4.2.2�4.2.2��4.2.3�4.2.3��4.2.4�4.2.4��4.2.5�4.2.5��4.2.6�4.2.6��4.2.7�4.2.7��5.	Detailed Requirements�5.	Plans for performing detailed software development activities��Table O-3 Software Development Plan Mirrors MIL-STD-498

Use Established Criteria for Selection�tc "<Head 3 (14)>Use Established Criteria for Selection"�
	The Guidelines for Successful Acquisition and Management of Software Intensive Systems[9] also provide criteria for identifying developers. The work breakdown structure “must be evaluated for completeness and reasonableness of approach.”[9] Consider whether the proposed development methodology supports proposed audits, reviews, and peer inspections. Are the reviews part of the developer’s normal process, and does the developer’s staff have the experience to make the reviews, audits, and inspections useful? The acquirer must be convinced that the developer has a proven process (see Figure O-2).
Follow the SDP�tc "<Head 2 (14)>Follow the SDP"�
	Once the contract [10] is awarded and the project begins, follow the Software Development Plan.

�
Evaluate Results�tc "<Head 3 (14)>Evaluate Results"�
	MIL-STD-498 requires metrics but does not specify which kind. The developer defines the metrics, the data to be collected, and how the data will be interpreted. Review the metrics periodically.
	MIL-STD-498 supports informal technical reviews attended by the acquirer’s technical people and the developer’s technical people. Management need not be involved in the technical reviews. If issues involving schedule and budget arise, they are taken to a management review for resolution. Collocating an acquirer’s technical representative with the developer can enhance the confidence an acquirer needs to feel comfortable with informal reviews. This representative can also witness demos of prototypes or partial capabilities and can witness testing.

Make Improvements�tc "<Head 3 (14)>Make Improvements"�
	At major milestones such as at the completion of a build, it is well to revisit the tailoring if permitted by the contract. Considering the case of our earlier example, the developer’s process for project security and privacy may have come up short, or maybe things are going so well that you want to remove some of the formality from the next scheduled review. No project goes exactly as planned, so plan to make adjustments.

Keep a Diary�tc "<Head 3 (14)>Keep a Diary"�
	Identify a mechanism to record lessons learned from using MIL-STD-498 on contract since this will help the next project in adopting MIL-STD-498 or in adopting the US commercial standard. Lessons learned should be recorded by acquirers and developers.
Organization-Wide Adoption�tc "<Head 2 (14)>Organization-Wide Adoption"�

Migrate to Other Projects�tc "<Head 3 (14)>Migrate to Other Projects"�
	Having applied the standard to one project, you are ready to use it on other software development projects.
	Address resistance by having strong sponsorship. People have a reason to make it work if the boss is behind it. Generate enthusiasm with success stories. Determine who is going to have to give up something and identify what it is, then determine what you can do to help fill that void. People resist what they don’t understand; help them understand through training.

Improve the Process�tc "<Head 3 (14)>Improve the Process"�
	Share the lessons learned. Evaluate the project procedures to identify what works. Based on the metrics from the project, identify problem areas and develop solutions. Capture any strategies you used to mitigate risk [11].

Reed Sorensen
Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-774-7802 DSN 775-5555 ext. 3049
Fax: 801-774-7996
E-mail: sorenser@software.hill.af.mil
References and Notes�tc "<Head 2 (14)>References and Notes"�
1.	DeWeese, Perry, cochairman EIA/IEEE Joint Industry Working Group, letter to R. Sorensen, Oct. 4, 1995.
2.	Guidelines for Successful Acquisition and Management of Software Intensive Systems, Version 1.1, February 1995, pp. 7-19.
3.	MIL-STD-498 Overview and Tailoring Guidebook, Jan. 31, 1996.
4.	MIL-STD-498 defines acquirer as “The organization that imposes this standard and the associated contract on a developer in order to procure software products for itself or another organization.” Developer is defined as “The organization required to carry out the requirements of this standard and the associated contract. The developer may be a contractor or a government agency.”
5.	This is the prospective developer’s process if you are an acquirer. It is your process if you are a developer.
6.	Salvucci, Anthony, “Vision for a New Acquisition Process,” speech presented to the Nov. 19, 1993 Armed Forces Communications and Electronics Association Luncheon, Guidelines for Successful Acquisition and Management of Software Intensive Systems, Version 1.1, February 1995, p. J-3.
7.	Build can have either of two meanings: (1) A version of software that meets a specified subset of the requirements that the completed software will meet. (2) The period during which such a version is developed.
8.	Examples of such data are requirements, flowcharts, state models, data flow diagrams, test output, code, and programmer’s notes.
9.	Guidelines for Successful Acquisition and Management of Software Intensive Systems, Version 1.1, Vol. 1, February 1995.
10.	When in-house development takes place, contract may be interpreted as a memorandum of agreement, a list of tasks to be performed, or some other formal or informal understanding of the work to be performed by one group for another. Guidebook for MIL-STD-498: Software Development and Documentation, Application and Reference, draft Oct. 3, 1995, para. 5.26.2.
11.	Dart, Susan A., “Adopting An Automated Configuration Management Solution,” paper presented April 12, 1994 at the Software Technology Conference.
��tc "<>"�
CHAPTER 4�tc "<>CHAPTER 4"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Software Reliability:�tc "<>Software Reliability\:"�
A New Software OT&E Methodology�tc "<>A New Software OT&E Methodology"�

Captain Randy McCanne
Software Test Manager
HQ AFOTEC/SAS
ABSTRACT�tc "<Head 2 (14)>ABSTRACT"�
	Software reliability is a relatively new software quality metric gaining acceptance in industry and government. In evaluating software reliability, we are interested in determining how often software will cause a system to fail during operational use. In this paper we look at the measurement of software reliability from an Operational Test and Evaluation (OT&E) perspective and present an example of how we might evaluate the reliability of software to support acquisition decisions.
INTRODUCTION TO SOFTWARE RELIABILITY�tc "<Head 2 (14)>INTRODUCTION TO SOFTWARE RELIABILITY"�
	Measuring and controlling the reliability of software is important because:

·	DoD systems contain more software than ever before. Our aircraft, space, and C3I systems are becoming more dependent upon software (the C-17 aircraft contains more than 1.3 million lines of computer code), and the Air Force is investing heavily in Automated Information Systems that are nearly all software.
·	Software now controls some of the most critical functions with DoD systems — from flight control to missile defense. A software fault was the most likely cause of a computer failure in the Patriot missile system that allowed an Iraqi Scud missile to hit the American barracks in Dhahran during Desert Storm. 28 US soldiers were killed and 98 injured in the attack.
·	The reliability of many hardware components has improved to the point where software reliability is often the critical factor in overall system reliability.
·	Software reliability is not adequately reflected in system reliability calculations by current Reliability, Maintainability, and Availability (RM&A) measurement practices.

Goal of Measuring Software Reliability
	In OT&E the goal of evaluating software reliability is to support the evaluation of the operational effectiveness and suitability of software intensive systems. Specifically, the goal of the methodology presented in this paper is to measure software’s contribution to system reliability in support of effectiveness and/or reliability objectives in Operational Test and Evaluation (OT&E) efforts. Another possible use of the methodology is for measuring changes in software reliability resulting from major system modifications in support of Qualification and Follow-on OT&E efforts.

Definition of Software Reliability
	Software reliability is one measure of software quality. Software quality refers to the degree to which the attributes of software enable it to perform its specified end-item use [DoD-STD-2168]. The end-item use of software in Strategy-to-Task terms is the relationship of the software to the accomplishment of the system’s mission task or mission task element.

SOFTWARE RELIABILITY is defined as the probability that software will work without failure for a specified period of time in a specified environment.

	In a system context, software reliability is the probability that software will not cause failure of the system for a specified time under specified conditions. The environment of software is characterized by its associated hardware, support software, users, and frequency of use.
THE SOFTWARE FAILURE PROCESS�tc "<Head 2 (14)>THE SOFTWARE FAILURE PROCESS"�
	This section defines the terms used to describe the software failure process, compares the way in which software and hardware fail, and discusses the reason why demonstrated reliability, which is often used as a measure of system reliability, does not adequately account for the contribution of software.

Software Reliability Definitions
	These definitions were developed jointly by HQ AFOTEC/SAS and PRC Inc. under Contract No. F29601-89-C-0071, Software Effectiveness Evaluation Methodology Study subtask (Subtask 028/00). The taxonomy presented here will be incorporated into AFOTEC Pamphlet 99-102, Management of Software Operational Test and Evaluation, to provide a standardization of the terms associated with the evaluation of software effectiveness and suitability.
	A software failure is a software functional imperfection resulting from the occurrence(s) of defects or faults. Failures can occur when execution of a fault results in unacceptable system behavior. A failure can be one of conformance, in which the program does not produce the correct output, or one of performance, in which the program does not perform a required function in a timely or resource-efficient manner.

A SOFTWARE FAILURE is defined as the inability of a system’s software component to perform a required function, as perceived by the user, within specific limits.

	A software failure may also be the result of unimplemented but documented user requirements or undocumented user needs. This class of failure is manifested, not as the result of the operation of the code product, but as non-operation of code since code required to fulfill the task requirement or user need does not (yet) exist. Failures can be measured as the sum of Software Trouble Reports or software-related Product Quality Deficiency Reports and unimplemented Software Change Proposals required to achieve the user’s intended requirements and needs.
	A fault is a manifestation of a code generation error or errors in logic, computer instructions, or data. They are introduced during the coding and maintenance phases of the life cycle. Faults exist in code whether the code is exercised or not; faults exist in the program’s static operating state. A fault is discovered when a specific set of inputs combined with execution of the “path” through the code which contains the fault results in a failure. Software reliability provides a measure of the state of faults in a program.

A SOFTWARE FAULT is an unintentional software condition that causes a functional unit to fail to perform its required function (often referred to as a “bug in the software”).

	Defects represent deficiencies, either intentional or inadvertent (the manifestation of undetected process errors). A defect may be a designed-in deficiency or an omission in the implementation of a user requirement needed to support functionality for successful mission task or mission task element accomplishment. Defects are introduced primarily during the analysis and design phases of the life cycle or during the development of the respective documentation products. They often result from incomplete or incorrect understanding of the user’s requirements or from poor documentation practices —including requirements traceability in the documentation development process. The occurrence of unintentional defects is often seen in software that has a history of volatility in its requirements, design or code.

A SOFTWARE DEFECT is the lack of something necessary or desirable, an imperfection. Defects can occur in any software deliverable: specifications, designs, source code, manuals.

	The potential for defect errors is reflected in the completeness of the functions implemented to completely support mission task or mission task element operations and in the traceability and stability of the requirements and design. The potential for fault errors is reflected in the reliability measurement.
	Software for Air Force systems is normally developed using some variation of the “waterfall” development process outlined in DoD-STD-2167A (
Table
 O-
3
). Errors can occur in any phase of the development life cycle and result in defects and faults in the software. Defects created in the early phases which cascade through later phases of the development process lead to faults that can be very difficult to correct. After system integration, the software contains a fixed number of undiscovered, or inherent, faults. The goal of testing is to discover and correct as many of these inherent faults as practical before releasing the software for operational use.

�
Figure O-
3
 Overview of Software Errors, Defects, Faults, and Failures

AN ERROR is defined as an act (mistake) that unintentionally deviates from what is correct, right, or true; human action that results in the creation of a defect or fault.

Comparison with Hardware Failures
	The hardware failure process has been studied extensively through the years and differs in many aspects from software. Hardware usually has many “burn-in” failures early in its life, then exhibits random failures at a fairly constant rate during a time period referred to as the “useful life.” During the useful life of a hardware component, the design does not change and the same types of failures are likely to occur over and over. Failures are corrected by either repairing in place (RIP), or by removing and replacing (R&R) the hardware component. Toward the end of useful life, the error rate increases due to “wear-out” failures. When failures are plotted over the life of a hardware component, the plot normally follows the “bathtub” curve of Figure O-
4
.
�
Figure O-
4
 Characteristic Hardware Failure Plot

	Software does not exhibit this phenomenon. The design of the software may be modified many times during the life of the software to correct failure-causing faults. “Repairing” software can be difficult, expensive and new versions can take months to prepare and implement. Once a fault is removed from the software it is gone forever, although new faults may be introduced whenever the code is modified. When plotted against system age, software failures tend to follow the Rayleigh curve of Figure O-
5
. [KEENE91] A large or poorly tested modification may result in a net increase in the number of inherent faults, but in general the number of faults remaining in software tends to decrease with time.

�
Figure O-
5
 Characteristic Software Failure Plot

The Problem with Demonstrated Reliability
	The reliability of Air Force systems is often measured by counting the number of critical failures observed during a period of operational use (called demonstrated reliability). Critical failures are included in demonstrated reliability calculations only until the system developer can demonstrate the fault which caused the failures has been corrected. Once a fault has been resolved, then all recorded failures associated with that fault are removed from the data used to compute demonstrated reliability. For computing demonstrated reliability, only those failures associated with known, uncorrected faults are included.
	For hardware components that have passed the “burn-in” stage, this method of measuring reliability may be valid. Hardware faults which cause failures are often difficult or impossible to correct, and continue to cause failures during the useful life of the component. On the other hand, software faults can almost always be resolved (eventually) and will usually cause only a single recorded failure. Once the input conditions that cause the failure are known, a work-around is usually developed to prevent further failures. Thus from a reliability point of view, the only interesting software failure is the next one encountered due to an as-yet-unknown fault. The effect of undiscovered software faults is not considered in the computation of demonstrated reliability. Consequently, the system reliability estimates are overly optimistic.
	It is worth noting the impact of undiscovered faults in the hardware is also ignored in computing demonstrated reliability; but the effects of these faults are usually insignificant during the “useful life” of the hardware component. This is not the case with software.
	Another way of presenting the problem with demonstrated reliability is shown in Figure 0-
6
. The effect of computing demonstrated reliability is to fit a straight line on the failures-versus-time graphs. In the case of hardware, this procedure may be valid during the useful life of the hardware since the failure rate remains approximately constant during this period. However, the typical Rayleigh curve associated with software failures can not be accurately estimated with a straight line until late in the life cycle if at all.

�
Figure O-
6
 Software versus Hardware Demonstrated Reliability

	The effect of the pool of inherent faults that remain in the software at any point in time is measured by using a software reliability model. Thus both demonstrated (hardware) and inherent (software) reliability must be considered to obtain an accurate estimate of the system’s true reliability. The collection of data to support the measurement of both demonstrated and inherent reliability could be accomplished through a slight modification of the current Joint Reliability and Maintainability Evaluation Team (JRMET) process as illustrated in Figure O-
7
.

�
Figure O-
7
 Joint Reliability and Maintainability Evaluation Team Data Collection Process
EARLY EVALUATION OF SOFTWARE RELIABILITY�tc "<Head 2 (14)>EARLY EVALUATION OF SOFTWARE RELIABILITY"�
	The reliability of software can be improved by either reducing the initial number of inherent faults, increasing the rate of discovery of faults, or both. This can be accomplished through four activities linked with the software life cycle: fault avoidance, fault elimination, fault tolerance, and structured maintenance. Software developers can be evaluated during program reviews and audits to ensure these four reliability improvement techniques are used to the extent appropriate for the system under development. Safety-critical systems, such as aircraft, may require more attention to reliability than other systems.

Fault Avoidance
	Fault avoidance consists of applying sound software engineering practices, including comprehensive standards (for documentation, design and programming), rigorous quality assurance (formal reviews and audits), and independent verification and validation (IV&V). One way to measure a software development organization’s ability to reduce the number of inherent faults through fault avoidance is through the Software Engineering Institute’s (SEI) Capability Maturity Model. An organization which scores high (3 or greater) using this model is considered to have a well-defined development process and should consistently produce highly reliable software.

Fault Elimination
	Fault elimination is accomplished through design and code inspections and effective testing. While it is possible through exhaustive testing or mathematical proof of correctness to develop fault-free code, it is usually impractical to do so in systems of significance size and complexity. Test coverage models are available to assess the effectiveness of the test strategies employed by software developers. Common testing methods will identify many, but certainly not all, faults.

Fault Tolerance
	Fault tolerance is achieved through special programming techniques that enable the software to detect and gracefully recover from error conditions. One method of programming fault tolerant software is the development of redundant software elements that provide alternative means of fulfilling the same function. The different versions must be programmed such that they will not all fail in response to the same input state (called a “common failure mode”). A more common but less effective example of fault tolerance is the use of good exception handling in Ada.

Structured Maintenance
	Each software maintenance action should be performed as a microcosm of the full development life cycle. As such, the techniques of fault avoidance, elimination, and tolerance can be applied to modifications made during the maintenance of software as well. This is necessary to avoid introducing new faults as a result of code modifications made to correct known faults, add enhancements, or adapt the software to changes in the computing environment. Unfortunately, software will continue to contain faults and will occasionally fail even where sound fault avoidance, fault elimination, fault tolerance, and structured maintenance techniques are applied. For this reason, it is necessary to measure the reliability of software systems before releasing the system for operational use. A number of ways have been proposed to measure the inherent reliability of software.
SOFTWARE RELIABILITY MODELING�tc "<Head 2 (14)>SOFTWARE RELIABILITY MODELING"�
	Software reliability models are abstract representations of the process of discovering faults through the observation of software failures. This process begins after the software, with all its inherent faults, has been integrated into a coherent system. In general, there are three main factors which determine the reliability of a software product:

1.	The fault characteristics of the software product under study, such as the initial fault density (faults per lines of code), the interdependence between faults, and the fault tolerance of the software design. These fault characteristics often change with each new implementation of the software.
2.	The effectiveness of the fault discovery process (the testing and operational use of the software). The discovery of hidden faults is highly dependent upon the testing strategies employed and, later, how the software is used in operation.
3.	The age of the software. Any software product will eventually meet a given reliability goal if enough time and effort is expended.

	To simplify the modeling process, assumptions must be made about these factors. The analyst must be familiar with the software development process and the software product to make valid modeling assumptions.

Types of Reliability Models
	Three general approaches to measuring software reliability are available. These approaches are based mainly on the failure history of the software under study and can be classified as follows.

1.	Failure count models. The process under study in this type of model is the number of failures encountered in specified time intervals or the successive time between failures during testing and operational use.
·	Tagging models. This group of models includes both fault seeding and dual test group models.
·	Fault seeding models. The approach in this model is to intentionally “seed” a number of faults into the software and characterize the inherent fault content as a function of the number of these “seeded” faults that are found during testing.
2.	Dual test group. To use this model, testing must be performed simultaneously by two or more independent test groups. The inherent fault content of the software is computed as a function of the number of common faults found by the independent groups.
3.	Test coverage models. This group of models is based on the assumption the reliability of software is directly related to the effectiveness of the testing performed. Several test coverage models are available including the IEEE Test Coverage Model [IEEE Standards 981 and 982].

	Because of the difficulty and high-cost associated with collecting the data to use the tagging and test coverage models, the methodology presented here for use in OT&E is based upon the failure count models.
�PROPOSED OT&E SOFTWARE RELIABILITY METHODOLOGY�tc "<Head 2 (14)>PROPOSED OT&E SOFTWARE RELIABILITY METHODOLOGY"�
	The methodology developed by HQ AFOTEC/SAS to measure software reliability is quantitative in nature and based upon mathematical models used throughout industry and government. The methodology can be used to measure the current state of reliability of a software product against documented operational requirements. The following paragraphs provide a brief overview of the software reliability measurement methodology proposed for use during OT&E. The basic steps involved in building a software reliability measurement model are:

Step 1.	Study Software Failure Data
Step 2.	Choose a Reliability Model
Step 3.	Obtain Estimates of Model Parameters
Step 4. 	Obtain the Fined Model
Step 5.	Perform Goodness-of-Fit Test
Step 6.	Obtain Estimates of Performance Measures
Step 7.	Make Decisions [GOEL85]

Step 1: Software Failure Data
	As a minimum, the following data must be collected during the OT&E for the purpose of building a software reliability model:

·	Software problem number: a unique identifier used to distinguish one software failure from another.
·	CSCI: the particular CSCI where the fault was discovered.
·	Severity level: a numeric value (1 to 5) which describes the impact the software failure has on the system performance [Ref: TO 00-35D-54]
·	Date discovered: the calendar date when the failure was recorded.
·	Operating time: the total operating (or execution) time on the CSCI up to the point when the failure was recorded.

	Other data items which can be collected to help in the analysis are:

·	Problem description: a short narrative of the failure or fault.
·	CSC/CSU: the computer software component (CSC) and unit (CSU) where the fault was discovered.
·	Phase: the phase of the development life cycle where the fault was introduced (e.g. requirements analysis, design, coding, or testing).
·	Changes in testing: any changes to the test strategies employed must be tracked since the models depend upon the satisfaction of assumptions regarding the type of testing performed.
·	Implementations: the total operating time on the CSCI at each new implementation. This can be plotted on reliability graphs to show the net effect of each new implementation on the software’s reliability.

Step 2: Choosing a Reliability Model
	HQ AFOTEC/SAS has acquired an automated-tool for conducting software reliability modeling and analysis called the Computer-Aided Software Reliability Estimation (CASRE) tool. [LYU92] This package contains a number of failure count models and an integrated environment for preparing data, building models, choosing the best model for the data, and for graphing the results.
	The type of failure history data available (time between failures or failure counts) will narrow the field of available models. From the remaining list of models the CASRE program will choose the model(s) that best fits the failure data provided. Often two or more models will be identified by CASRE as providing a “good” fit. The “best” model is chosen from this list based upon an understanding of the testing process and of the underlying model assumptions. In some cases a linear combination of models may be appropriate.

Step 3: Estimating the Model Parameters
	Once a particular model or combination of models has been chosen, the model parameters are estimated. For most of the reliability models in CASRE three characteristics of the failure process are estimated in order to build the model:

1.	The initial fault content or fault density of the software;
2.	The initial failure rate; and
3.	How the failure rate will change over time.

	The CASRE package will estimate these parameters from the failure data by using either the maximum likelihood or least squares methods. Future research is directed at estimating these parameters based on expert opinion and historical trends using Bayesian statistical techniques.

Step 4: Obtaining the Fitted Model
	At this point we have a fitted model with parameters estimated from the available failure data. The model form was chosen through a process of eliminating the inappropriate models, but it is necessary to ensure the chosen model provides an adequate fit of the data.

Step 5: Performing Goodness-of-Fit Tests
	CASRE includes the following statistical functions to help analysts determine the applicability of a particular model to a specific set of failure data:

·	Computation of the prequential likelihood function (the “accuracy” criterion).
·	Determination of the probability integral transform U1 (the “bias” criterion).
·	Computation of Y1 to produce a y-plot (the “trend” criterion).
·	Noisiness of model predictions (the “noise” criterion).
	A weighted combination of the accuracy, bias, trend, and noise criterion are used to rank the models for goodness-of-fit in Step 2.

Step 6: Estimates of Performance Measures
	From CASRE we can obtain a plot or table of the following reliability measures for the model developed:

1.	ROCOF: the estimated rate of occurrence of critical software failures;
2.	MTTF: the estimated mean (or median) time to the next new (unique) software failure;
3.	P{T1<t}: the estimated probability the system will operate without a critical software failure for t time units.
4.	The estimated number of remaining software faults; and
5.	The estimated fault density (number of remaining faults per thousand lines-of-code) of the software;
	
	In addition, it may be possible to compute the following measures for some models:
	
6.	Tm: The projected time when a target software reliability requirement will be achieved (assuming the assumptions of the reliability model remain valid); and
7.	 To: The optimal release time for the software based upon the costs of testing, debugging, and encountering critical failures during operational use.

Step 7: Making Decisions
	The results of a software reliability analysis must help the decision maker decide whether or not the system has met the user’s requirements. In large and complex systems, reporting the results in a concise yet unambiguous way may be the most difficult task in the evaluation process.
REPORTING SOFTWARE RELIABILITY RESULTS�tc "<Head 2 (14)>REPORTING SOFTWARE RELIABILITY RESULTS"�
	The primary reporting level is Computer Software Configuration Item (CSCI). In multi-CSCI systems, the CSCI reliability measures must be aggregated into a system level measure and combined with the demonstrated reliability results.

Aggregation of CSCI-Level Results
	The aggregation of CSCI-level reliability measures into a system-level measure is necessary when the operational requirement is stated in terms of mission or system reliability. The size and complexity of the system will determine how this aggregation is performed.
	When the system contains only a small software component, the overall system mean-time-between-critical-failure (MTBCFsys) can be computed by considering the hardware and software factors as independent components using the following equation:
�
where:
·	MTBCFHW = the demonstrated mean-time-between-critical-failure for the system which primarily measures the effects, of known, unresolved hardware faults.
·	MTTFsw = the mean-time-to-failure for software which measures the effects of inherent software faults. MTBCF is not used for software because this term implies a relatively constant rate of failure whereas the failure rate of software is assumed to steadily decrease.

	Note the system MTBCF estimate is always lower than either the hardware or software estimates. The hardware and software components are assumed to effect system reliability independently, and the effect of each component is always to decrease overall system reliability. Consequently, if hardware (measured through demonstrated reliability) exactly meets the system reliability requirement, then we can be certain the system will not meet the requirement if a software reliability model indicates any software faults remain. When the system contains more than one CSCI, a reliability model must be developed for each CSCI independently. The reliability performance measures of each CSCI model must be combined with demonstrated reliability information into a system reliability model. This model, normally developed by the logistic analyst in HQ AFOTEC/SAL, is used to compute overall mission or system reliability.
SOFTWARE RELIABILITY EXAMPLE�tc "<Head 2 (14)>SOFTWARE RELIABILITY EXAMPLE"�
	The following example is contrived but shows how software reliability can be used to support system reliability measurement objectives and the determination of OT&E test effort.
	USSTRATCOM has specified a system reliability requirement for the new B-3A Bogus bomber Mission Computer (MC) of 400 hours MTBCF at the end of Initial Operational Test and Evaluation (IOT&E). The IOT&E is conducted in two phases, a combined DT&E/OT&E phase, and a dedicated OT&E phase. A System Maturity Matrix (SMM) was specified to measure the progress of the developer in maturing the system as illustrated on Table O-
4
.

FLIGHT TEST HOURS SCHEDULED�DATA COLLECTION PERIOD�SYSTEM RELIABILITY REQUIREMENT (MTBCF)��1,000�Combined DT&E/OT&E�50 hours��500�Dedicated IOT&E�400 hours��Table O-
4
 Bogus B-3A Bomber System Maturity Matrix

	Software failure data was collected during the combined DT&E/OT&E over a period of 12 months and 1,000 fleet flying hours (FFH). The cumulative number of flight hours on the fleet of aircraft was recorded for each failure encountered. The flight time was divided into 20 time periods of 50 FFH each and the number of software critical failures in each period was determined from data collected by the JRMET (Table O-
5
). Although all types of failures were recorded only critical failures are used in the reliability analysis, and only the first occurrence of each unique failure is counted.

�
Table O-
5
 B-3A MC Failure Data

�Choosing the Model
	For the failure count history of Table O-4, the CASRE package identified the Non-Homogeneous Poisson Process (NHPP) model for interval data as the “best” fit. This model has the following mathematical form:

�

a = the number of inherent faults in the software at the start of testing; and
b = the fault detection rate per remaining fault.

	Examination of the assumptions of this model did not reveal any inconsistencies with the way the software was tested or the way failure data was collected.

Building the Model�tc "<Head 3 (14)>Building the Model"�
	The maximum likelihood estimators of the model parameters were computed using CASRE. The curve fit produces the following form of the NHPP model.

�

	Thus, we estimate that approximately 216 faults were inherent in the software at the start of testing. Since we have found 200, we also estimate that approximately 16 remain to be found. Figure O-
8
 shows a plot of the failure data versus the model. The model appears to provide a good fit to the observed failure history.

�
Figure O-
8
 B-3A Bogus Mission Computer Failure Data versus NHPP Model

Test Readiness Analysis
	We wish to know if the B-3A Bogus Mission Computer meets the test readiness criteria specified by the system maturity matrix to begin dedicated IOT&E (50 hours MTBCF). While no specific software reliability requirements are given, we know that the reliability of the software must be at least as good, probably much better than, the system reliability requirement.

Software Mean-Time-To-Failure (MTTF)
	The current MTTF for software is computed using the following equation for the NHPP model:
�
or, for t = 20:
�
= 0.48033
Thus, the next software failure is expected to occur after approximately 0.48 time periods or:

�
since each time period represents 50 FFH. The software achieved the system goal of 50 hours MTTF in only one time interval, and is generally well below the requirement.

System Mean-Time-Between-Critical-Failure (MTBCF)
	The overall system MTBCF is computed by considering the demonstrated reliability of the mission computer hardware and the inherent reliability of the software as components in series. Given the mission computer has demonstrated a reliability (MTBCFHW) at the end of combined DT&E/OT&E of 3,000 hours, then the overall system MTBCF is:
�
= 23.8 hours
	Figure O-
8
 shows the results of combining the software and hardware reliability (system reliability) assuming the demonstrated reliability stays constant at 3,000 hours. This graph represents compelling evidence that the system can not consistently achieve the stated reliability requirement. In fact, the system will not achieve the requirement no matter how high the demonstrated reliability estimate is computed to be. To a decision maker this means the system does not meet the requirements to start dedicated IOT&E.

Calculating the Expected OT&E Test Effort
	Suppose we choose to enter the dedicated IOT&E test phase anyway and want to know how much test effort (flight test hours) will be required for the system to reach the operational requirement of 400 hours MTBCF at the end of OT&E. Assuming the demonstrated reliability of the hardware remains at 3000, then the software requirement can be found by solving the following equation for MTTFsw:
�
Thus the MTTFsw required to achieve a system reliability of 400 hours MTBCF is 461.5.
	Assuming that the current software test, analyze and fix process continues through the rest of the testing, the expected test effort can be found by solving the following equation for t:
�
where:
x = the desired MTTF expressed in terms of 50 hour time intervals;
t = the number of time intervals into the test; and
R(x,t) = the desired probability that the software will operate for x time intervals.

	For R(x,t) = 0.90 (90% probability), the flight test hours (t) required to reach a software MTTF rate of 461.5 hours (x = 9.23) is approximately 56 time periods or 56•50 = 2,800 fleet flying hours. We estimate that an additional 1,300 FFH will be required during dedicated OT&E to meet the operational requirement (beyond the 500 already scheduled). Figure O-
9
 shows a graph of the probability of meeting each SSM requirement based on the failure data available at the end of the combined test period.

�
Figure O-
9
 B-3A Bogus Mission Computer NHPP Model Reliability Functions
CONCLUSION�tc "<Head 2 (14)>CONCLUSION"�
	Software has become an integral part of virtually every DoD system and controls evermore critical functions within those systems. Yet through our practice of using demonstrated reliability as system reliability we are largely ignoring the contribution of software to the reliability of our systems. The reliability of software can be controlled during the development life cycle through the application of reliability improvement techniques, such as fault avoidance, fault elimination, fault tolerance, and structured maintenance. We can and should assess the developer’s use of these techniques during Operational Assessments.
	Software reliability should also be measured during the OT&E of software intensive systems. Ideally, this measurement should be compared against software reliability requirements developed from an allocation of system reliability to software and hardware by the user. When specific reliability requirements for software are not provided, then software reliability measures should be combined with demonstrated reliability to more appropriately account for the impact of software on system reliability. Finally, the measurement of software reliability may become a significant factor in the determination of OT&E effort (test length) in the future.
ACKNOWLEDGMENTS�tc "<Head 2 (14)>ACKNOWLEDGMENTS"�
	The author is grateful for the support and constructive criticism provided by Maj. John Keck on the Software Analysis Team (SAS) in developing this paper. Special thanks goes also to Capt. Paul “Dag” D’Agostino of SAL for his helpful “hardware perspective” review of the paper.

About the Author
	Captain Randy McCanne is an aircraft software test manager in HQ AFOTEC/SAS. He graduated in 1983 from the Air Force Academy with a bachelor degree in computer science and earned a master of science degree in operations research from the Air Force Institute of Technology in 1993. Capt. McCanne has more than 900 flight hours as a search and rescue pilot in H-3 helicopters.
REFERENCES�tc "<Head 2 (14)>REFERENCES"�
[GOEL85] Goel, Amrit L., “Software Reliability Models: Assumptions, Limitations, and Applicability,” IEEE Transactions on Software Engineering, Volume SE-11, Number 12, December 1985
[LITTLEWOOD92] Littlewood, Bev and Lorenzo Strigini, “The Risks of Software,” Scientific American, November 1992
[LYU92] Lyu, Michael R. and Allen P. Nikora, “CASRE -�A Computer-Aided Software Reliability Estirnation Tool,” Proceedings of The Fifth International Workshop on Case (CASE ‘92), Montreal, Canada, July 1992
[MUSA87] Musa, John D., Anthony Iannino, and Kazuhira Okumoto, Software Reliability: Measurement, Prediction, Application, McGraw-Hill, New York, 1987
[PFLEEGER92] Pfleeger, Shari L. “Measuring Software Reliability,” IEEE Spectrum, August 1992
[SINGPURWALLA93] Singpurwalla, Nozer D. and Simon P Wilson, “Software Reliability Modeling,” GWU/IRRA/Serial TR-93/3, Department of Operations Research, The George Washington University, January 1993
[STANKO91] Stanko, Capt Joseph J., “A Standardized Software Reliability Measurement Methodology,” Master of Science Thesis AFIT/GCE/ENG/91D-09, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base Ohio, December 1991
AFOTEC Pamphlet 800-2, Volume 1, Management of Software Operational Test and Evaluation, May 1, 1990
AFOTEC Pamphlet 800-2, Volume 6, Software Maturity Evaluation Guide, October 1, 1990
AFOTEC Pamphlet 99-102, Volume 7 (Draft), Software Reliability Evaluation Guide, December 15, 1993
IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE Standard 982, New York: IEEE Publications, 1988.
IEEE Standard Dictionary of Measures to Produce Reliable Software, IEEE Standard 981, IEEE Publications, New York, 1988
[KEENE91] Keene, Samuel, and Chris Lane. “Combined Hardware and Software Aspects of Reliability,” Quality and Reliability Engineering International, Vol 8., December 1991
��tc "<>"�
CHAPTER 5�tc "<>CHAPTER 5"�
 Addendum C�tc "<> Addendum C"�

The Ada 95 Philosophy �tc "<>The Ada 95 Philosophy "�
S. Tucker Taft
This article was first published in the Journal of Object-Oriented Programming, June 1995. Copyright © 1995 by SIGS Publications, Inc.

	On February 15, 1995, Ada 55 became the first internationally standardized object-oriented programming language (OOPL) [ISO/IEC 8652:1995(E)]. Ada 95 is an upward compatible revision of the Ada 83 language, which was designed in the late ’70s as part of a US DoD sponsored competition; Ada 83 became an ANSI standard in 1983. Ada 83 was designed by a French team located at Honeywell-Bull, led by Jean Achbiah. The syntax of Ada is Pascal-like, with a strong orientation toward readability. Here is a simple example Ada program:

with Ada.Text_IO; use Ada.Text_IO;
procedure Hello is
	Birthday : constant String : =
		“February 15, 1995”;
begin
	Put_Line(“Happy Birthday, Ada 95, on “ &
		Birthday & ‘!’);
	-- “&” is the concatenation operator
end Hello;

	Ada 95 is the culmination of a revision process initiated in 1988 as part of the normal ANSI and ISO process of updating standards at regular intervals (typically every .5 to 10 years). The language revisions incorporated into Ada 95 were designed by a team located at Intermetrics, Inc. in Cambridge, Massachusetts under contract to the Ada 9X Project Office, headed by Ms Christine Anderson of the US Air Force. As technical head of this design team, I found myself in a unique position leading a revision of a language that was quite successful in certain applications areas, such as air traffic control, commercial avionics, satellite systems, medical systems, and so on, but that had never achieved the broad commercial use hoped for when it was initially designed. Although the existing users tended to be very loyal and somewhat reluctant to see major changes, it was clear that to broaden the applicability of the language some number of significant changes would be necessary.
	In many ways, Ada 83 anticipated the object-oriented programming “revolution.” Ada 83 provided the many of the features now associated with the most advanced of OOPLs, including encapsulation in modules; information hiding between modules; data abstraction via user-defined data types; strong type checking across separate compilation, with minimal implicit conversions between types; generic program units (also known as “templates”); exception handling with automatic runtime consistency checks; concurrency support in language; and so on. As it turned out, in the early ‘80s many system programmers were just beginning to be weaned off of assembly language, and the programming language C emerged as the popular “portable” assembly language for systems implementation. The “heaviness” of Ada’s strong typing and consistency checks, generics, concurrency in the language, and so on, were seen as overkill, when the primary goal was to escape from the target dependency of assembly language into a more portable, “lightweight” language like C. Nevertheless, in industries like commercial aviation, where one bug is too many, the additional safety and reliability inherent in Ada 83 more than justified any perceived heaviness of the language.
	In the late ‘80s, many software development organizations began to hit a wall of complexity. Software promised for Q1 came out in Q4 of the following year. Revisions of a product were often buggier than the version they replaced. Software organizations, both large and small, began searching for methodologies, tools, languages, magical incantations to help manage the exploding complexity. It was in this context that the revision of Ada was initiated.

Without a coherent and well-defined philosophy, there is a real danger in language design that one will attempt to be all things to all programmers...

	Our design team began serious work on “Ada 9X” in March 1990 (X was still an unknown at that point). As our design work proceeded, we began to evolve a clear design philosophy to help rationalize and guide the innumerable decisions we were making between the many possible alternative approaches to enhancing the language. Without a coherent and well-defined philosophy, there is a real danger that the language design will attempt to be all things to all programmers, and the language will become a complete mishmash of features with no underlying themes or principles to hold it together. By defining and sticking to a clear design philosophy, the language has a better chance of making intuitive sense to programmers as they learn more about it, so that ultimately, it becomes second nature. The reference manual, with all its picky rules, can become “shelfware,” since the programmer knows intuitively what does and does not represent a meaningful program. Without such a clear underlying philosophy the language rules never become intuitive, and the programmer spends half the day trying to remember the proper syntax or semantics for the various language features.
	The first important philosophical principle that emerged from our design. efforts was to focus on providing “building blocks” for programmers, rather than ready-made solutions. During 1989, a large number of “revision requests” had been gathered from the Ada user community, and a synthesis of these requests in the form of “revision requirements” had been performed by the Ada 9X “requirements team.” We recognized that if we were to add a new language feature to address each of these identified requirements we would end up creating a Chinese menu of features, ungainly and inflexible. Instead, we chose to focus on a small number of high-leverage enhancements to the language, which would enable programmers to solve problems more effectively, and efficiently, including those identified in the revision requirements, as well as those associated with projects yet to come.

The overall mission of the Ada 9X project was to build upon the strong foundation established by Ada 83 and produce a .systems implementation language that would be even more productive and would further reduce the expense of producing high-quality, highly reliable, highly adaptable software systems.

	An equally important design philosophy was to agree that Ada was first and foremost a systems implementation language. It is not a “do what I mean” language; it is not a functional or logic programming language where the programmer specifies the desired result, but not necessarily the steps to achieve be result. Rather, Ada is a “do what I say” language — the programmer is in complete control. The “primitives” of the language should in fact be primitive — well-understood building blocks, with clear semantics and predictable time and space performance. Abstractness is something that programmers define, using Ada’s packages and primitive types. The primitives of the language should not have semantics that are so abstract that the programmer has no idea how the feature is implemented, or how long it will take to execute. To be able to build efficient production software, it is essential that the programmer can build an accurate “intuition” about the relative expense of language features, so as to combine them in the way that achieves the required time and space performance.
	The third fundamental design philosophy that emerged was that the basic constructs of the language should be inherently safe. If necessary, the programmer should be able to bypass the consistency checks that were provided to ensure safety, but any such overrides should be clearly demarcated in the source code. The defaults should always be safe. This is in sharp contrast to C and similar lower-level, admittedly “lighter weight” languages. In C (and C++), the “default” language features provide no checks for null pointers, array overflow, numeric overflow, inappropriate type conversions, etc. It is possible in C++, and to a lesser extent in C, to construct relatively “safe” abstractions, but in both C and C++ the most basic building blocks of the language are unsafe. Creating safe abstractions using unsafe primitives is laborious, error-prone, and difficult to verify. By contrast, in Ada the building blocks are inherently safe, and an abstraction built using them automatically inherits at least the same level of safety. If it is decided to override the language-provided checks, testing and verification efforts can be focused on those places where the unchecked programming appears explicitly. In C, or C++, it is very difficult to identify all of the places in a program where potentially unsafe primitives are being used.
	In addition to all of these serious-sounding, high-minded philosophical principles, there was an overriding goal of making the language flexible, powerful, and fun to use. Early users of Ada 95 have provided welcome confirmation that we accomplished this latter goal, while remaining faithful to our more high-minded principles.
	The overall mission of the Ada 9X project was to build upon the strong foundation established by Ada 83 and produce a language that would be even more productive and would further reduce the expense of producing high-quality, highly reliable, highly adaptable software systems. We believe that part of the key to accomplishing our mission was the development of a clear language design philosophy to guide the process, rather than making each design decision independently and without fitting into an overall philosophy and mission for the language. You can see for yourself whether we accomplished our mission by acquiring GNAT, a free Ada 95 compiler developed at NYU, based on the GNU compiler back end and a new Ada 95 front end written in Ada itself. [The compiler is available by anonymous ftp from cs.nyu.edu in the directory pub/gnat. Full sources are available, as are ready-to-run binaries for DOS (using D/GPP), Linux, Sun, HP, Alpha, and various other hosts and targets.]
	In addition to GNAT, all of the commercial Ada vendors are upgrading their Ada 83 compilers and other tools to support Ada 95. In the first quarter of 1996, an “Academic Ada 95” compiler will be appearing in university bookshelves and on CD-ROM bundled with an Ada textbook, with a student price of about $60. For more information on Ada 95, including information on compilers and tools, consult one of the various Ada World Wide Web servers:

•	http://lgiwww.epfl.ch/Ada/: has the entire Ada 95 Reference Manual and Rationale online in hypertext, as well as introductions, tutorials, comparisons with other languages, etc.
•	http://info.acm.org/sigada/: has information on the ACM’s Special Interest Group on Ada, plus pointers to other Ada resources
•	http://sw.eng-eng.falls-church.va.us/AdaIC/: has information on the Ada Information Clearinghouse, plus reports from commercial projects that have been using Ada source code, etc.

	I encourage you to give Ada a try.

	[The full Ada 95 Reference Manual and Rationale are also available by anonymous ftp from sw.eng-eng.falls-church.va.us in directory public/adaic/docs/standard/95lrm_rat/v6.0.]

	Tucker Taft is Chief Scientist at Intermetrics, Inc., Cambridge, Massachusetts. He can be reached at:

Intermetrics
733 Concord Avenue
Cambridge, MA 02138
E-mail: stt@inmet.com.
��tc "<>"�
CHAPTER 5�tc "<>CHAPTER 5"�
 Addendum D�tc "<> Addendum D"�
 �tc "<> "�
Ada Implementation Lessons-Learned from SSC and CSC�tc "<>Ada Implementation Lessons-Learned from SSC and CSC"�

	The �xe "StandardSystemsCenter(SSC)"�Standard Systems Center (SSC) and the �xe "CommunicationSystemsCenter(CSC)"�Communications Systems Center (CSC/SD), in response to a request from SAF/AQK, compiled lessons-learned from their Ada and software engineering programs. The SSC programs upon which these recommendations are based include: the �xe "Logistics:LogisticModule-BaseLevel(LOGMOD-B)"�Logistic Module-Base Level (LOGMOD-B), the �xe "AirForceOperationsResourceManagementSystem(A"�Air Force Operations Resource Management System (AFORMS), the �xe "ManpowerDataSystem(MDS)"�Manpower Data System (MDS), and �xe "AirForceCommandandControlSystem(AFC2S)"�Air Force Command and Control System (AFC2S). The CSC/SD lessons-learned were based on the �xe "SARAHproject"�SARAH program.

•	Construction of Ada bindings to C products requires expertise in Ada, C, the product, and the internals of Ada and C for each platform.
•	Automated tools reduce the amount of work required to construct and port bindings and improve reliability.
•	Teams that design, develop, and maintain Ada bindings should be comprised of a stable, consistent group of people so less time is spent on familiarizing each new member with the tools, existing code, and special considerations.
•	Building applications in Ada cannot compete with rapid prototyping techniques. There are few libraries to support rapid development with Ada. Until root analysis, design, and implementation of domain and utility-level objects are available, development using Ada will continue to be very time consuming.
•	The Ada language is complex and can be hard to learn. Beginning programmers and those with a PASCAL background seem to have less difficulty in making the transition to Ada. Programmers with experience, especially long-term experience, in other languages like C, COBOL, and Assembler seem to have difficulty making the transition.
•	Just using Ada does not provide automatic reuse. Developing in Ada is like using any other language. Reuse is not automatic, it requires careful planning and a vision of what is required by more than just the application currently being developed. Reuse in Ada means a lot more than merely building generic packages that support common data structures.
•	Ada tools are just now becoming available and mature. Tools for using Ada within an XWindows environment and an object-oriented methodology are starting to mature. These are critical to the future usage of the language to support the DoD TRM.
•	The AdaSAGE tool is SSC’s most requested asset. AdaSAGE is a very good tool for Government programs being completed with limited Ada experience.
•	Software converted to Ada from another language can be a maintenance problem. For example, a very large program was converted from C to Ada. The library metric tools produced scores that indicated the code would be difficult to maintain, primarily because the original code was not engineered to take advantage of the Ada language. The code is in Ada, but it is not modular, not reliable, and probably only supportable at a high cost. Code like this example gives Ada an undeserved reputation. Systems should not be converted to Ada unless there is value added.
•	There is a great difference in the speed and efficiency among Ada compilers. Always shop around, talk to current users, and “test drive” a compiler before you commit to buy.
•	Needed capabilities in Ada compilers and development environments may differ. For example, some compiler RTEs are very efficient doing tasking and some are not. Make sure you talk to other customers of the proposed vendor who are doing work similar to what you will be doing.
•	Ada is not a “magic” solution to all coding problems. Ada does a lot of checking of the code during the compile phase. This usually makes the testing and debugging phase much easier and much shorter. However, some areas remain difficult. Plan for a lot of time to debug applications with tasking and applications that interface with a lot of assembler.
•	Ada works. Ada cannot be viewed as an “immature language.” It certainly has some advantages over other languages, but also, it is not the “Silver Bullet” that solves all problems. You can still design and produce junk using Ada.
•	Training and education are critical to a program’s success. Getting the right education on the principles of software engineering and having a defined, mature software development process will help solve problems. Ada simply gives you some of the tools you need to do the work right.
•	Ada is a means (not an end) to better design. Ada is best viewed as a tool. You still need trained engineers to effectively use any tool.
•	Networked PCs with Alsys Ada is an acceptable environment for developing Ada systems. Tools like the �xe "RemoteCompilationSystem"�Remote Compilation System, �xe "AutomatedProblemTrackingSystem"�Automated Problem Tracking System, and online Repository distributed by the STSC (produced by HQ CSC/SD) can double productivity in this environment.
•	A good development environment greatly enhances productivity. Be sure to allow enough money to properly capitalize the Ada development effort. In the long run, it is a lot less expensive to buy faster PCs than to employ more programmers.
•	Key players and expertise do not always remain within a program. Plan for several people to gain knowledge in every area. A current backup for each job is good insurance.
•	A LAN-based automated database for storing and retrieving information on development problems and their solutions is very valuable.
•	Plan for the expansion of hardware. Upgrading technology makes the difference between night and day.
•	If you use access types, be careful to release them when completed.
•	Ada libraries can become very large. Transferring them between people can be speeded up significantly if a LAN is available.
•	Some assembler is okay. In certain areas, it is beneficial to write some code in assembler and link it to Ada. This is true when speed is of importance. For instance, assembler can be used for calculating CRCs (standard mathematical tables) and I/O functions like printing, disk access, and communications.
•	Training lead time is high. It takes an average programmer almost a year to understand the Ada language enough to program effectively in it. Even then, they still do not get to see everything Ada can do and no one wants to sit down and read �xe "MIL-STD-1815A"�MIL-STD-1815A.
•	Design is the most important. From a management point-of-view, a good design makes coding easier. The effort involved can also now be accurately estimated.

��tc "<>"�
CHAPTER 7�tc "<>CHAPTER 7"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Lessons-Learned While Achieving A CMMSM Level 3 Rating�tc "<>Lessons-Learned While Achieving A CMMSM 	Level 3 Rating"�

Tom Westaway�tc "<Head 3 (14)>Tom Westaway"�
Sacramento Air Logistics Center (SM-ALC)�tc "<Head 3 (14)>Sacramento Air Logistics Center (SM-ALC)"�
Introduction�tc "<Head 2 (14)>Introduction"�
	The following article is an attempt to answer the question, “How did you achieve a level 3 rating?” I was the Software Engineering Process Group (SEPG) Team Leader from 1992 until the present time. This article is written from my perspective. When you finish reading this article, I hope you realize that achieving Level 3 status is dependent on people. It is not a matter of following a technical formula to achieve success.

Background�tc "<Head 3 (14)>Background"�
	From the early 1970s through 1989, all software effort was performed in either the Maintenance Directorate or the Material Management Directorate. In the late 80’s and early 90’s, we and all other Air Logistics Centers experienced several reorganizations. The effect of these reorganizations was to destroy the infrastructure that supported the software maintenance effort.
	When we conducted our first software process assessment in September 1991, we were rated as a Level 1 organization. However, the data showed a surprising amount of strength in both Level 2 and Level 3 key process areas in some parts of the organization. It was obvious from the results of the assessment that software organization fragmentation was a significant weakness. However, the concern of the SM-ALC Commander was that we not optimize software at the expense of our overall weapon system support. For this reason, we were directed to not consider consolidation as one of our recommendations. The concept of consolidation was not dead though, and within a couple of months, we were directed to participate in a study to determine how software maintenance should be organized at SM-ALC. The group conducting that study eventually recommended that the fragmented software groups needed to be consolidated. As a result of that study, the SM-ALC Commander in November of 1992 approved the consolidation of all maintenance software organizations into one Division, TIS. In January 1993, SM-ALC/TIS was created. In March 1993, people were transferred into the Division from their previous organizations.
Setting the Goal�tc "<Head 2 (14)>Setting the Goal"�
	Shortly before official creation of the new software division, the TI Director took the TIS Division Chief, and the Deputy Division Chief with him on a visit to the TIS software division at Ogden Air Logistics Center, Hill AFB, Utah. On the way back home, the TI Director shared the following with the TIS leaders: “My vision for you is that your division will become the Software Engineering Process Center of Excellence for the Department of Defense!” He told them to consider how the organization at Hill AFB was progressing and do it better.
	Shortly after TIS was officially formed and people were transferred into the organization, the Division Chief directed that all TIS supervisors and SEPG members participate in a 3-day team building session. I think that the Division Chief felt that his team building session had been successful. Many of us, including the SEPG, walked away from that exercise feeling very abused.
	Through the SEPG, the Division Chief met with a consultant from SEI. He was advised to have the organization’s leaders develop a written Strategic Plan that would include a statement of their vision, mission, principles, values, goals, objectives, strategies, and targets. The Division Chief then convened the division leadership once each week to establish the Software Engineering Division’s Strategic Plan. While establishing the written vision and mission statements was not too hard, establishing the principles, values, goals, objectives, strategies, and targets was much more difficult. As more detail was added to the goals, it became obvious that people were not going to continue doing business the same old way. As this realization took place, discussions became more heated, and resistance increased. After a lot of discussion, the Division’s goals were captured in print.
	Objective 3 of goal Number 1 stated that the division would achieve a CMMSM Level 2 maturity by October 1993. Objective 4 of goal Number 1 indicated that the division would achieve a CMMSM Level 3 maturity by October 1994. The entire TIS management team established reaching Level 2 maturity as the highest priority objective for the division.
	It became apparent to the Division Chief as the summer of 1993 wore on that nothing was really happening. Level 2 was an objective, but there was no evidence that any of the supervisors were taking any steps to incorporate Level 2 practices in their day-to-day activities. The common excuse was that they had too many fires they were fighting and were unable to do any “CMMSM things.”
	During the August to November 1993 time frame, the Division Chief informed all supervisors that their personal performance plans had been rewritten by him. In those plans, they were given the opportunity to establish CMMSM Level 2 practices in their areas of responsibility. To exceed the standards of performance, they were given calendar dates to have certain practices in place. To be fully successful, they were given a second set of dates. June 1994 was the cut off date to be fully successful on all of the performance standards.
	As the Division Chief continued to work with the Division leadership, he found a common theme among all of them. I characterize this common theme as follows: “What does it mean to be level 2? What does it look like? What do supervisors do? What does it mean to ‘organize, train, and equip?’ Do I want to be a supervisor?” Supervisors literally did not know what to do. They were all working hard, fighting a constant barrage of “fires.” On top of all of that, they were being told they had to operate at something called Level 2. Many began to question if they really wanted to continue being supervisors.
Training�tc "<Head 2 (14)>Training"�
	In late August 1993, the Division Chief asked the SEPG to obtain training on all the CMMSM Level 2 key process areas for the Division. At this point in time, the SEPG consisted of 2 people. I was not happy to be given this task as I had what I thought were more important issues upon which to work. This tasking absorbed most of my time for the next 4 months. We did a fly-off between several vendors and settled on Fastrak Training, Inc. as the source of our training.
	From September 1993 through July 1994, we trained approximately 100 people in the Division in the areas of requirements management, project management, configuration management, and quality assurance. In retrospect, one group that should have received this training was the first and second level supervisors — but, they did not. As a result, when we involved the supervisors in management reviews later on, they were not prepared to talk the same language as all of those who had been trained in the formal courses. They did not understand what their project managers had been trained to do, or what their own role was.
	We did try to train the management by providing one course in project management for supervisors. Every supervisor was required to attend this week long course. Most supervisors did not want to be present. A year later, most supervisors did not remember ever having been in this class. They were not prepared to participate in such a class. Most felt that they had been to all the management courses they needed and they knew everything they needed to know about being a supervisor. A year later, they would be claiming that they needed to have the same training as their project managers had received.
More Setting the Goal�tc "<Head 2 (14)>More Setting the Goal"�
	By January 1994, the Division Chief was not sleeping very well. He realized that as a Division we were not progressing fast enough. He was well aware that McClellan AFB was being considered as a candidate for closure once again. Our Commander had clearly stated that we all needed to take extraordinary measures to change the way we did business if we were going to survive. So, the Division Chief established a project and project leader to help the organization speed up its metamorphosis. The Division Chief also indicated that we were to arrange to have a Software Process Assessment performed in October 1994. He again stated, we are going to become a Level 2 organization and then we are going to become a Level 3 organization. He said that by October 1994, he wanted the organization to be Level 2, a one year slip from the objective stated in the TIS Strategic Plan.
PMIP�tc "<Head 2 (14)>PMIP"�
	Thus was born a project that we would later name the Process Maturity Implementation Project (or PMIP). The project leader rapidly put together a plan for how he was going to approach this project. The Division Chief had indicated that the project leader was to work with the SEPG in accomplishing his project. As the leader of the SEPG, I was very irritated that the Division Chief had established a separate project and named a project leader that did not have any training in process improvement work. I really did not want to work with the project leader. It seemed to me that the Division Chief was showing utter disregard for the SEPG. I had tried many times to obtain additional members for the SEPG so we could more effectively help the organization, but every time, the Division Chief had failed to provide the requested help. By creating the PMIP project he had put additional resources on the task and then taken the process improvement effort away from the SEPG. It was also distressing to observe the project leader and realize that both he and the Division Chief were continuing to act in a Level 1 way while they were telling the organization that they must become Level 2.
	At this point I had to make some personal decisions about how I was going to act. I began to realize that maybe I could turn this situation into an advantage in order to achieve what we had originally been commissioned to do. I recognized that I was a flaming introvert. I watched the project leader and realized that he was acting much more like an extrovert. So I decided to work with the project leader. I supported him in going out and doing all of the interfacing with masses of people in the organization. On the other hand, I knew some things we needed to do in order to get to Level 2. We eventually worked things out between us that I would do much of the behind the scenes work and he would do much of the visible effort. He also provided another benefit. He acted as a buffer between the Division Chief and the SEPG. I could discuss ideas with the project leader and when he understood them, he could then introduce them to the Division Chief. Through this process and over a period of time, the credibility of the SEPG increased.
	As time went on, the project leader and I established a good working relationship. I put aside my irritation and tried to use the situation to the best advantage for the organization. The project leader had an impossible task given to him, but he, and the organization were successful in achieving even more than they had set out to accomplish. After this, several things began to happen in parallel. I will discuss them one at a time.

Practitioner Involvement�tc "<Head 3 (14)>Practitioner Involvement"�
	The project leader established project leader councils. Each council consisted of representatives from specific sub-organizations and they were tasked to produce a set of strawman or template work products that could be used as starting points for each project. These strawman work products consisted of things like the software development plan (SDP). Strawman work products were produced to satisfy every key process in each of the Level 2 key process areas. All of the project leaders and practitioners in TIS are to be commended for the efforts they made that contributed to the overall effort to achieve Level 2. Every one of them took these tasks on themselves on top of heavy project work loads and pressures from their customers. In addition to the effort required to develop the strawman work products, they also then turned around and instantiated those work products for their own projects. This process of involving practitioners in these councils resulted in the following benefits for the organization:

1.	Cross pollination and sharing of ideas was fostered.
2.	Communication between practitioners in different Flights was fostered.
3.	Documented strawman work products were obtained.
4.	The documented strawman work products became a starting point for project leaders to develop final work products. This resulted in more commonality in similar work products and reduced total time spent across the Division in developing the work products.
5.	An archive of strawman work products was created.

Supervisor Responsibilities�tc "<Head 3 (14)>Supervisor Responsibilities"�
	In the April 1994 time frame, the Division Chief indicated to me that after a number of meetings throughout the Division, he was convinced that the supervisors did not know what they should be doing under the CMMSM practices we were telling everyone they had to follow. He asked if I could prepare something that would describe what the supervisors needed to do to satisfy the CMM.SM In retrospect, this was a turning point in our efforts to start a cultural change in our organization.
	I extracted all of the supervisor responsibilities from the CMMSM and put them in a separate document. I produced a matrix that indicated each of their responsibilities and how often they needed to perform that responsibility. In this document, we began to lay the foundation for one of the key supervisor responsibilities: having regular formalized reviews of all of their projects.

Establishing Organizational Policy�tc "<Head 3 (14)>Establishing Organizational Policy"�
	One of the responsibilities that appeared on the supervisor’s list required them to establish organizational policy. After several weeks, it became apparent that they were never going to have the time to do this and they also did not know what they needed to put into the policy. At this point I had to give up another principle I thought I had learned from the SEI in our early SEPG training. My understanding was that the SEPG was supposed to encourage others to do things. All we were supposed to do was stand by and provide consulting services when asked. I got fed up with that mode of operation — it didn’t work in our environment. I knew I could write the necessary policy, and I finally volunteered to write the first policy.
	I wrote the policy for project tracking and oversight very cautiously, very much aware of the resistance in the organization. When the policy was provided to the supervisors, we agreed that they would have one week to review it. After one week, I was to take all comments received and make any necessary revisions. The revised policy was to be given to the Division Chief to review and provide me his requested changes. I would then incorporate his changes, give him a final copy to sign, and then provide copies to the Flight Chiefs in their next staff meeting.
	During the development of these policies, the supervisors were very concerned about how changes could be proposed and made to the policies. It became apparent that we needed a formal way to control the configuration of these documents. We therefore established a Division Software Configuration Control Board, with part of its responsibility to control changes to Division policy.
	It was during this period that stress levels began to increase tremendously. People were very obviously on edge and, as a Division, I am sure we helped support a number of doctors with stress related illnesses and symptoms. Others decided that they had enough for one lifetime and prepared to retire as soon as they could.

Management Reviews�tc "<Head 3 (14)>Management Reviews"�
	As supervisors were told their role was to organize, train, and equip, they became increasingly restless. They wondered what their role really was. They felt that they were being told that they could no longer do that which they had the most experience doing: working on technical projects.
	One identified supervisor responsibility included in our policies required them to hold regular management reviews of all projects in their organization. Many were unclear about why that was important and did not know what to review. We produced a simple graphic that showed three boxes arranged in a triangle. One of the boxes was labeled “Project Leader Activities.” Another was labeled “SQA Audits” and the last one was labeled “Management Reviews.” We explained that there were three key elements that had to be functioning for the organization to be able to achieve Level 2 status. Each of the three, as represented on the diagram, had to function: they were checks and balances on each other. We explained that the supervisors had a key role to play in helping the organization mature.
	Once the supervisors began to accept the idea that they had an important role to play, they were open to suggestions about what they should review during a management review. The Division Chief provided them an outline of what he wanted to see when a project came to him with a project review briefing. With that outline, the first and second level supervisors had a starting point to tailor their review requirements with project leaders.
	To make sure that reviews were taking place, the PMIP team collected metrics data on management reviews and provided this data to the Division Chief at his weekly staff meetings. The constant review of this metric made it obvious when supervisors were not holding reviews with their project leaders. This visibility soon resulted in all managers holding reviews.
	Another way to ensure that adequate reviews were taking place, required that each review be documented with minutes and that those minutes be archived in the project folder. During SQA process audits, the auditors looked for review minutes. If they were not present, the project received a deficiency write-up that had to be resolved.
	Two important things resulted from the requirement that supervisors hold project reviews. First, supervisors felt a renewed sense of their importance and involvement in what was going on in their organization. Instead of having to always fight fires, this process began to give supervisors the tools to prevent fires from happening. Second, project leaders began to feel like someone really cared and was listening to what was going on in their project. They no longer felt they were struggling with their problems alone.

SQA Process Auditing�tc "<Head 3 (14)>SQA Process Auditing"�
	We started advocating SQA process auditing as early as February 1994, but it took time for the concept to mature. In March 1994 we began developing the criteria the SQA auditors would be using to actually perform their audits.
	Several problems plagued us. First, we had only one person designated for SQA. Second, we had very little support from supervisors or project leaders to actually perform process audits. The Division Chief generally supported the concept, but he wanted it to start immediately. No one was prepared to start doing any audits immediately. One individual who was providing on-the-job training to our division had experience in the SQA area and he helped develop a set of detailed process audit criteria for Level 2.
	The responsibility “triangle” that we used to show supervisors the importance of their function also pointed out the importance of SQA Process Auditing to our goal of achieving level 2. Once supervisors began to understand that concept, we began to obtain their support for performing the audits. With emerging support for the audit concept, the Division Chief asked each of the software Flight Chiefs to provide one individual to augment existing SQA resources to perform the process audits. This solved the resource problem.
	The audit team started by just reviewing the criteria for doing project tracking and oversight. It took 3-4 weeks to complete all of the audits. In the process, we found things did not work well and improved the process as necessary. We also were confronted with lots of data, little of it consistent between audit teams, so we held training sessions with the audit teams to improve consistency.
	Following this first round of audits, the auditors started a second round in which they looked at the requirements management and project planning key process areas. After that round was completed, a third round was started in which they audited all 6 key process areas at Level 2. As the second round of audits came to an end, the Division Chief requested that all deficiencies for each project be tracked daily to see that these deficiencies were being corrected. This daily reporting soon encouraged all audited projects to clean up their act. The Division Chief received daily status reports on the deficiencies. On the 17th of October, the day the formal process assessment started, the Division Chief had in his possession a set of charts that showed that on the average, the projects being examined by the assessment (23 projects total) were about 96% fully compliant with the CMMSM practices for each key process area at level 2. This data was not made available to the assessment team.
Summary�tc "<Head 2 (14)>Summary"�
	A key factor in achieving a Level 3 rating was the commitment at the top of the organization to do whatever was necessary to accomplish it. While focusing our energies on establishing the infrastructure to support Level 2 practices, the Level 3 efforts already ongoing were not neglected. Without the drive of the Division Chief and the PMIP project leader, and the support of the TI Director along with the SM-ALC Vice Commander and Commander, the efforts described above would have been futile. All of these individuals took considerable personal risk in pushing the process improvement effort.
	The SQA process audits played a crucial role in helping the organization to progress. Without the audits and the deficiency tracking process, we would have had no insight into whether TIS policies were being applied and followed throughout the Division.
	The Supervisors role was also crucial. By holding regular project reviews, they indicated that they were interested in what was going on in individual projects and that they would do their part to improve our processes.
	The SEPG played a crucial role in providing knowledgeable guidance where needed. This guidance was often behind the scenes. The SEPG was instrumental in writing TIS policy and in stimulating process auditing and project reviews.
	The most important part of this complex process of maturing an organization is the individual people within the organization. If all of the people that make up this Division had not done their best and worked well beyond normal requirements, we could not have achieved a Level 2 or 3 status. So each and every member of TIS deserves credit for what has been accomplished.
	Finally, it should be understood that what we have been through is extremely stressful. That stress level continued to rise right up to the assessment. Some people could not sleep well. Others got ulcers. Some probably gained or lost weight. The improvement effort almost ground to a halt. At that point, the pressure to change was relaxed and we began to tell the organization how much they had accomplished. That helped everyone’s morale to improve.

About The Author
	Tom Westaway is a member of the Engineering Test Branch of the Software Engineering Division at the Sacramento Air Logistics Center (SM-ALC/TIST). Tom is currently the team leader for the Software Engineering Process Group (SEPG) and has been part of the SEPG since its creation in March 1991. He was on the assessment team during the first assessment at SM-ALC in September 1991. Tom was also part of the team that created a documented software maintenance process known at SM-ALC as the Post-Deployment Software Support (PDSS) Process. For the first few years after he came to SM-ALC, he worked as a system engineer helping to prepare the Logistics Center to support MILSTAR and other satellite systems.
	Prior to joining the SM-ALC team in 1981, Tom spent about 17 years working at what was known as the Naval Weapons Center (now Naval Air Warfare Center, Weapons Division), China Lake, California. While at China Lake, Tom helped develop several radar systems and signal processing systems. During this effort, he was awarded 3 patent holding awards for some of his work. It was during these years at China Lake that he learned the value of planning, understanding processes, and project management. These are principles that he has been advocating since coming to work for the Air Force.

Tom Westaway
SM-ALC/TIST
McClellan AFB, CA 95652-
Voice: 916-643-2920 DSN 633-2920
FAX: 916-643-6292 DSN 633-6292
Internet: westaway.thomas@sma1.mcclellan.af.mil

��tc "<>"�
CHAPTER 8�tc "<>CHAPTER 8"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Software Complexity�tc "<>Software Complexity"�

Thomas J. McCabe and
Arthur H. Watson,
McCabe and Associates, Inc.
Introduction�tc "<Head 2 (14)>Introduction"�
	Software complexity is one branch of software metrics that is focused on direct measurement of software attributes, as opposed to indirect software measures such as project milestone status and reported system failures. Current military metrics programs emphasize non-complexity metrics that track project management information about schedules, costs, and defects. While such project tracking measures are necessary to any substantial software engineering effort, they lack predictive power and are thus inadequate for risk management. Complexity measures can be used to predict critical information about reliability and maintainability of software systems from automatic analysis of the source code. Complexity measures also provide continuous feedback during a software project to help control the development process. During testing and maintenance, they provide detailed information about software modules to help pinpoint areas of potential instability. Figure O-
10
 shows the control flow graph of a simple, low-ri
sk software module. Figure O-11
 shows a complex, moderate-risk software module. Figure O-1
2
 shows an extremely complex, high-risk module. Complexity metrics quantify that difference for use in software management. Measurement of software complexity provides substantial value to a software metrics program.

�
Figure O-1
0
 Simple, Low-Risk Software Module

�
Figure O-1
1
 Complex, Moderate-Risk Software Module
�
Figure O-1
2
 Extremely High-Risk, Complex Software Module

Open Re-engineering
	There are hundreds of software complexity measures, ranging from the simple, such as source lines-of-code, to the esoteric, such as number of variable definition/usage associations. It is important to select a good subset of these measures for implementation. An important criterion for metrics selection is uniformity of application. The key idea here is “open re-engineering.” The reason “open systems” are so popular for commercial software applications is that the user is guaranteed a certain level of interoperability — the applications work together in a common framework, and applications can be ported across hardware platforms with minimal impact. The open re-engineering concept is similar, in that the abstract models used to represent our software systems should be as independent as possible of implementation characteristics such as source code formatting and programming language. Complexity measurement is a fundamental application, but open re-engineering extends to other modeling techniques such as flow graphs, structure charts, and structure-based testing.
	We want to be able to set complexity standards and interpret the resultant numbers uniformly across projects and languages. A particular complexity value should mean the same thing whether it was calculated from Ada source code or from Jovial. Otherwise, to get predictive benefits from the complexity measures we would have to calibrate the results based on “similar” projects with known outcomes, and the process becomes too subjective for effective management. The most basic complexity measure, the number of lines-of-code, does not meet the open re-engineering criterion, since it is extremely sensitive to programming language, coding style, and textual formatting of the source code. The “cyclomatic complexity” measure, which measures the amount of decision logic in a source code function, meets the open re-engineering criterion. It is completely independent of text formatting and is nearly independent of programming language since the same fundamental decision structures tend to be available and uniformly used in all common programming languages. The software functions represented in Figures O-11, O-12, and O-13 have cyclomatic complexity measures of 7, 16, and 22 respectively.
	Certainly, there are valuable complexity measures that are not “open.” For example, the amount of access to global data elements is very useful in managing C projects, even though that measure is useless for COBOL in which all data is global. However, as a foundation for a complexity measurement program, it is best to concentrate on measures that can be applied consistently across projects and languages. That way, the same interpretations and methodology can be used without having to perform applicability assessments for each project.

Common Complexity Measures
	We’ve already discussed lines-of-code, which is about the weakest complexity measure in common use. A refinement is to count the lines of executable code, data declarations, comments, and so on individually, then look at derived measures such as the percentage of comment lines. These all suffer from the weakness that most of what is being measured is source text format, which is not an intrinsic attribute of the software implementation. Most languages have “pretty printers” available that reformat code to a desired set of standards, and the “indent” program for C has about 50 switches that configure behavior. This leads us to a related set of measures, that of coding standards conformance. If code is supposed to have a comment at the beginning of every procedure, the percentage of procedures that actually have the comment can be measured. While these source format measures give useful information for project management, they are not uniformly applicable. Their extreme sensitivity to cosmetic attributes of the source code makes them unsuitable as core complexity measures.
	The Halstead Software Science metrics are a significant step up in value. [HALSTEAD77] By counting the number of total and unique operators and operands in the program, measures are derived for program size, programming effort, and estimated number of defects. Halstead metrics are independent of source code format, so they measure intrinsic attributes of the software. Since different languages have different sets of operators, it isn’t immediately obvious that these measures can be applied across languages, but there’s a “language level” measure that can help with conversion. Halstead metrics are a bit controversial, especially in terms of the psychological theory behind them, but they have been used productively on many projects. The main drawback is that the mathematical formulas of the major Halstead metrics are significantly removed from the code, so there isn’t a strong prescriptive component. You can identify code as potentially unreliable, but the Halstead theory doesn’t say much about how to test it or how to improve it. Also, and this gets back to uniformity of application, there aren’t any established threshold values for what constitutes dangerous software; you’re pretty much on your own when deciding what values constitute unacceptable risk. Despite these drawbacks, Halstead metrics are very useful for identifying computationally-intensive code with many dense formulas, which represent potential sources of error that other complexity measures are likely to miss.
	The McCabe cyclomatic complexity measure is so versatile and widely used that it is often referred to simply as “complexity,” and we recommend it as the foundation of any software complexity program. [McCABE76] Since it is based purely on the decision structure of the code, it is uniformly applicable across projects and languages and is completely insensitive to cosmetic changes in code. Many studies have established its correlation with errors, so it can be used to predict reliability. More significantly, studies have shown that the risk of errors jumps for functions with a cyclomatic complexity over 10, so there’s a validated threshold for reliability screening. Also, this assessment can be performed incrementally during development and can even be estimated from a detailed design. For an individual software module, the programmer can easily calculate cyclomatic complexity manually by counting the decision constructs in the code. This allows continuous control during a project, so that unreliable code is prevented at the unit development stage. Compliance can be verified at any stage of the project using automated tools. A final benefit of cyclomatic complexity, which we will discuss in more detail later on, is that it gives a precise verifiable testing prescription — the more complex and therefore error-prone a piece of software is, the more testing it requires.
	There are several specialized McCabe metrics that are derived by calculating cyclomatic complexity after all control structures satisfying certain properties have been ignored. These metrics can thus be viewed as refinements of cyclomatic complexity for specific applications. The most widely used of these specialized metrics is “essential complexity,” which measures the amount of unstructured decision logic in software. Unstructured code, typically caused by using “goto” statements or breaking out of loops, is harder to understand and maintain than well-structured code. This is because control structures that interact in unstructured ways cannot be decomposed, understood, and modified in isolation. Essential complexity is a widely used measure of maintenance risk, and a threshold value of four is typical for quality screening. Also, while cyclomatic complexity increases gradually when code is added during maintenance, essential complexity can increase dramatically by the addition of a single software patch. The patched code then becomes a source of risk for future maintenance. Using essential complexity to screen modules after each modification during maintenance can manage this risk.
	As such, essential complexity is a good supplement to cyclomatic complexity as a cornerstone of a complexity measurement program. Although Figures O-1
0
 and O-11
 both have high cyclomatic complexity, Figure O-
12
 has high essential complexity and thus carries a significantly higher maintenance risk. Two other McCabe complexity variants, design complexity, which measures the amount of interaction between decision logic and subroutine calls, and data complexity, which measures the amount of interaction between decision logic and data references, are related to integration testing and design coupling. [McCABE89] These metrics are suitable for inclusion in a mature software complexity measurement program.

Complexity and Testing
	The Structured Testing methodology is based on cyclomatic complexity, in the sense that the cyclomatic complexity is the number of tests required. [McCABE82] Given the correlation of complexity with errors, this is a desirable result since we want testing effort to be proportional to complexity. Many other coverage-based testing techniques, from the simple ones such as statement coverage to the complicated ones such as testing all data definition-usage associations, do not have this property. You could have arbitrarily complex software with lots of statements and data associations and still satisfy those other testing criteria with one or two tests, or you might require lots of tests. With cyclomatic complexity and Structured Testing, you know in advance exactly how many tests you’ll need, so you can do detailed test planning and manage the schedules, costs, and risks associated with unit testing. Design complexity provides similar benefits for integration testing.
	However, the connection between complexity and testing goes much deeper than the number of tests. From mathematical analysis, we know that the cyclomatic complexity gives the exact number of tests necessary to test each decision outcome in a function independently. The Structured Testing methodology says that we should run such a set of tests. Thus, we’re not just testing statements or decisions individually; we’re verifying the interactions between different parts of decision logic. In the underlying mathematical model, we can construct any path from a combination of the tests we are required to run during testing, so we’re likely to detect any sources of potential error. There are techniques to calculate a set of test paths manually from the source code, and automated tools can verify that a satisfactory set of paths has actually been run during testing. The number of independent decision outcomes exercised then becomes a dynamic metric, and testing progress can be measured and managed as this number approaches the cyclomatic complexity.

Complexity and Re-engineering
	One of the most difficult tasks in software is maintaining a system without knowing the physical design of the code and how it relates to the original abstract design. For a large system, design documentation only takes you so far, then you have to work with the code. Not only does this entail risk in terms of introducing errors due to misunderstanding code, but in the absence of complexity analysis this is unmanageable risk. The scheduling and costing problems are almost as bad, since on the surface the code and documentation give very little indication of how big a particular maintenance task really is. Complexity analysis is a critical component of successful scheduling and risk management in a re-engineering environment.
	Studies confirm that cyclomatic complexity is significantly correlated with debugging time, to a much greater extent than lines-of-code. [SHEPPARD81] Cyclomatic complexity has also been used successfully as the core metric of formal re-engineering cost models, and this is an area where a lot more work remains to be done. [DeFEE94] Although cyclomatic complexity is a good foundation and has been used in numerous case studies, for something like formal estimation we should work towards including a representative mix of complexity measures such as essential complexity and the Halstead metrics. Even the number of lines-of-code has a solid place in software management — complexity metrics don’t replace your current system of software controls; they just add a new dimension of predictability, reliability, and risk management to your software process.

Complexity and Reuse
	There’s a lot of redundant code in software systems. This code duplicates the functionality and in many cases the actual implementation of other code in the system. The redundant functions tend to be maintained individually, so they diverge, and there’s an enormous proliferation of errors. Redundant code is a particular risk on systems that are funded by the line-of-code, as we’ve seen when doing Independent Verification and Validation. It’s definitely to our advantage to locate and eliminate redundant code, so that we can increase the amount of reuse and reduce the total complexity of our software. Complexity analysis can provide a lot of support. One important observation is that independent implementations of the same functionality tend to have similar control flow structure. Therefore, we can use complexity measures as a screen to identify sets of software that are potentially redundant. Using the cyclomatic and essential complexity measures to identify candidate redundant modules then proceeding to examine the full flow graph diagrams and source code, a significant amount of redundant code can be removed, with resultant benefits to system size and stability. [WILLIAMSON93]
	So, complexity measurement can help us find redundant code during maintenance. But what about preventing it during development? There are many products that locate reusable code in databases, usually based on matching text in a functional description with requirements characteristics. These techniques are valuable, but are limited by the amount of effort put into documenting the code in the repository. A supplementary approach based on complexity measurement can be used with an arbitrary collection of code with no documentation or database indexing overhead. The key lies in estimating the complexity metrics of the desired component from the design or pseudo-code, and then searching the source code database for code with similar metrics. For this application, a wide variety of metrics are useful.
	“Open” metrics are still important to find existing code in multiple languages, but if all you’re looking for is Ada, you can get a lot of benefit out of measuring specific language constructs. The main requirement for using complexity measures to find reusable code is that the range of the complexity measure can be predicted from the design specification for the code. For example, you might know that a particular routine should have cyclomatic complexity between five and eight, have 20 to 50 lines-of-code, not contain any exception handlers, and contain exactly one loop. Then, just as with a text-oriented database search, you get the number of software functions that match your criteria, and you can refine or relax the criteria until you get a reasonably sized list of candidates. At that point, you can look at the implementations and possibly save a lot of work with pretty much no extra overhead. This is just-in-time reuse, and complexity measurement provides the technology. The only organizational overhead is running a complexity measurement tool over the source code, which will be done anyway, and wasteful development of redundant code is avoided.

Implementing A Complexity Measurement Program
	Complexity measurement is such a large and powerful area that it’s tempting to assess hundreds of potential metrics, run pilot projects to assess potentially useful metrics, mandate data collection, correlate metrics with project performance, and eventually have a committee produce a complexity measurement policy. This doesn’t work. It takes years to start getting value out of that kind of process, and we need to use complexity analysis to help manage projects right now.
	The best way to implement a complexity measurement program is to start small. Collect data on a wide variety of metrics, but pick a small, validated, intuitive set of metrics to actually apply. Continue to use lines-of-code, and add cyclomatic complexity and essential complexity. Train the developers to calculate complexity by hand, and use tools to automate the process. Start using the complexity threshold of 10 immediately to improve software reliability. Start evaluating test plans in terms of complexity to make sure that error-prone code gets the testing attention that it needs. Then, once the operational benefits of complexity analysis have been widely experienced, risk management models can be refined with measures such as the Halstead metrics and data complexity.
Conclusions�tc "<Head 2 (14)>Conclusions"�
	Complexity analysis has an extremely high payoff for the investment. Moving from counting lines-of-code to calculating cyclomatic complexity has immediate, measurable benefits in terms of risk management, reliability prediction, cost containment, project scheduling, and improving overall software quality. Unlike the number of lines-of-code, a good measure like cyclomatic complexity can be used to give an objective assessment of software that is directly comparable across different projects, coding styles, and even programming languages. This enables organization-wide standards and procedures that can bring true repeatability and predictability to software. There are many valuable complexity metrics, and more are being developed every day, so it’s important to start simple, not get overwhelmed, and build a solid complexity analysis program as a foundation for adding new metrics as their benefits are demonstrated.

Thomas J. McCabe
Voice:	(410) 995-1075
Fax:	(410) 995-1528
Internet: tom@mccabe.com

Arthur H. Watson
Voice:	(410) 995-3770
Fax: 	 (410) 720-0192
Internet: arthur@mccabe.com

McCabe & Associates, Inc.
5501 Twin Knolls Road, Suite 111
Columbia, MD 21045
References�tc "<Head 2 (14)>References"�
[HALSTEAD77] Halstead, Maurice H., Elements of Software Science, Elsevier North-Holland, New York, 1977
[McCABE76] McCabe, Thomas J., “A Complexity Measure,” IEEE Transactions on Software Engineering, SE-2 No. 4, pp. 308-320, December 1976
[McCABE89] McCabe, Thomas J., and Charles Butler, “Design Complexity Measurement and Testing,” Communications of the ACM, 32, pp. 1415-1425, December 1989
[McCABE82] McCabe, Thomas J., Structured Testing: A Software Testing Methodology Using the Cyclomatic Complexity Metric, National Bureau of Standards, Special Publication 500-99, December 1982
[SHEPPARD81] Sheppard, S., and E. Kruesi, The Effects of the Symbology and Spatial Arrangement of Software Specifications in a Coding Task, Tech Report TR-81-388200-3, General Electric Company, Arlington, Virginia., 1981
[DeFEE94] DeFee, Joseph M., “Integrating Analysis Complexity Tool Output with Formal Re-engineering Estimation Processes,” Proceedings of the Second Annual McCabe Users Group Conference, Baltimore, Maryland, 1994
[WILLIAMSON93] Williamson, Eldonna S., “Determination of Redundancy using McCabe Complexity Metrics,” Proceedings of the First Annual McCabe Users Group Conference, Baltimore, Maryland, 1993.

Editor’s Note
	This article, originally published in the December 1994 edition of CrossTalk, was reviewed by subject matter experts prior to publishing. One reviewer cautioned that any attempt to apply complexity measurements requires a thorough understanding of both the method and the software. When the decision is made to choose a method to measure software complexity, there is no single method that will meet every need and the use of hard and fast rules may actually increase complexity. Questions to the STSC, regarding software metrics, should be addressed to:

David R. Erickson
Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice:	(801) 777-8057 DSN 458-8057
Fax: 	(801) 777-8069 DSN 458-8069
Internet: ericksda@hillwpos.hill.af.mil
�tc "<>"�
CHAPTER 8�tc "<>CHAPTER 8"�
 Addendum C�tc "<> Addendum C"�
 �tc "<> "�
Metrics:�tc "<>Metrics\:"�
The Measure of Success�tc "<>The Measure of Success"�

Editors Note�tc "<Head 3 (14)>Editors Note"�
	“Metrics: the Measure of Success” © 1994 was originally published as a brochure under the sponsorship of the Hughes Software Network Management Council. Reprinted with Hughes Aircraft Company’s permission. All rights reserved.
Foreword�tc "<Head 2 (14)>Foreword"�

“Our highest priority operating commitment is to quality and continuous measurable improvement in everything we do.”

	These words from the statement of Hughes Guiding Values emphasize the importance of quality and continuous measurable improvement. Measurement (using metrics) serves as a powerful management tool for evaluating effectiveness and efficiency. Metrics enable us to manage on the basis of facts and data. Continuous measurable improvement cannot be achieved without measuring an existing process, changing some aspect of the process, and then measuring the result to verify it is an improvement. Measurement is an essential element in supporting Integrated Product Development (IPD). The IPD philosophy employs multi-disciplined teams to integrate and apply the best processes to effectively develop products that satisfy every customer’s needs.
	Common software processes based on best practices are being implemented throughout Hughes Aircraft Company to gain competitive advantage and reduce risk. These processes include standard reporting practices that define the metrics for monitoring project status and for communicating that information to functional and product management.
	The metrics described in this brochure have evolved as best practices from more than 20 years of metrics data collection and reporting. They provide the means to measure cost, schedule, process, product quality, productivity, and technical parameters, each of which contribute to our fundamental measure of success — customer satisfaction. Our challenge is to continuously use data in optimizing our software development processes to ensure that Hughes remains a successful World Class performer in the global marketplace.

Terry R. Snyder
Manager, Software Engineering Division
Chairman, Software Network Management Council
Hughes Aircraft Company
Introduction�tc "<Head 2 (14)>Introduction"�
	Building a successful business often means building better software. In today’s highly competitive markets, where software is increasingly a critical factor, a company’s ability to plan and control its software development activities is essential. But, according to the Software Engineering Institute (SEI), most American companies lack a well defined and measurable process for managing software development. Typically, these companies face a high rate of failure because of unpredictable product quality, higher costs, and delivery schedules that are out of control.
	There is a better way. Using the SEI’s Capability Maturity Model as a framework, we find that implementing process maturity criteria, based on a controlled and measurable software development process, can reduce costly software errors, cut the risk factors, increase productivity and product quality, and shorten cycle time. Those organizations that achieve higher process maturity levels typically demonstrate significant control over their software development processes. One of the keys to achieving this control is the use of metrics. Basically, a metric is a standard of measurement. Just as a yardstick is used to measure height in inches or feet, a software metric allows us to use quantitative values to assess how well we’re doing in relation to things such as budget or schedule.
	Nowadays, a physician uses a digital thermometer to measure a patient’s temperature. If the temperature exceeds the norm by several degrees, it’s an indication that something may be wrong. Other tests are run to determine the cause of the increased temperature (e.g., blood pressure, respiration, and white blood count). Once the medical data (usually referred to as the patient’s “vital statistics”) has been collected and analyzed, the doctor can recommend treatment to restore the patient to health.
	Metrics have a similar function. During the life of a software development project, metrics are the statistical tools that help the software management organization determine how well it is achieving its scheduled commitments. Basically, metrics provide the factual basis for effectively evaluating a project’s performance over time (measured in relation to budget, schedule, and other key factors). Metrics are used by managers to assess the progress being made (the overall “health” of the project) or to detect unfavorable trends and do something about them before they become show stoppers. Organizations that wish to improve their software development processes can realize a significant return by establishing metrics programs that include the people, facilities, tools and training required for collecting and interpreting metrics data. Hughes Aircraft Company’s expanding emphasis on metrics reflects the company’s top-down commitment to quality and continuous measurable improvement. The story that follows provides insight into how metrics can be used to quantitatively — and successfully — manage software projects.
	This document is not intended as an academic exercise nor does it cover all of Hughes’ metrics activities. It provides a description of 12 metrics that have proven useful in the management of software development projects at Hughes. Our experience with software measurement over the years has shown us that metrics work — they help us do our jobs better. The objective in this brochure is not only to define the metrics themselves, but to describe their use (and ultimate value) in the real world by relating them to a hypothetical project.
Overview of the Sample Project�tc "<Head 2 (14)>Overview of the Sample Project"�
	This brochure uses a hypothetical software development project to illustrate the uses of metrics. It provides a basis for understanding how metrics actually function in the life and health of a project. Although the data shown is entirely fictitious, the intent is to make this generic software project as “real” as possible, based on the sort of problems one would expect to encounter in a development effort of moderate size. The project has the following general characteristics:

•	30 month schedule,
•	82,000 source lines-of-code (SLOC) delivered,
•	Staff peak of 33 people,
•	Consists of two software builds, and
•	At this point in time, the first build has been completed and we are two-thirds into the project schedule.

	The story line has one main theme: during the Preliminary Design phase, project personnel tried to reduce the size and complexity of the job through automatically generated code and software reuse. But, this inadvertently created a problem: the new design required more memory than allocated. Without metrics, the problem might not have surfaced until very late in the project, during the final stages of integration and testing (around months 23-24), resulting in a major redesign effort with a severe impact on cost and schedule. With metrics, just as in medical science, the key to success is the early detection of problems.

Project Schedule
	Project managers need to visualize how and when key activities are planned to occur over the life of the project. They also need a progress report that tells them where they are in relation to this plan. The Project Schedule is a tool that provides a “quick picture” of the project. It maps out the workflow, shows the relationships between activities over time, and illustrates progress. It can also be used to identify problems and as an aid to taking corrective action.
	The Project Schedule is structured as a timeline plotting all major activities and milestones from project inception to scheduled completion. This schedule reflects all current officially approved activities, dates, and progress status (including any slippage from the officially approved plan). Also shown (at the bottom of the schedule) is a running total of planned and actual data deliveries for each scheduled timeline increment.
	In our sample project, there were some early problems in accomplishing the software design. The need to address these design problems caused delays, which, in turn, had a ripple effect on the design reviews. However, early corrective actions allowed the overall project to recover and get back on schedule.

�
Figure O-
13

Milestone Reports
	The Milestone Report is intended to identify major software tasks specified in the Project Schedule, intermediate checkpoints for those major tasks, more detailed software component and documentation deliveries, and management-oriented activities (for example, quarterly self-audits). These milestones are listed by description, plan date, latest estimate date, actual date, and reason for slippage.
	The Milestone Summary Report is a summary of the data from the Milestone Report that can be merged with milestone data from other projects to measure the organization’s overall effectiveness in meeting its customers’ expectations for delivery. In order to merge later milestone data from many different projects, a set of standard milestones is included in all project milestone statusing and used as the basis for the data in the Milestone Summary Report.

Rate Chart Report
	Software development activities must be planned in great detail. For each of the hundreds (and often thousands) of software units, milestones are established for design, code, unit test, and integration. As time passes, the actual completion dates for these milestones are recorded. This milestone data can be used to measure the software development effort. The reporting of this status is accomplished using Rate Charts.

�
Figure O-
14

	A Rate Chart for an activity is a two-dimensional graph showing a plan line and an actual line versus calendar time. The plan line shows the percent of milestones planned to be completed versus time. The actual line shows the percent actually completed. With this effective management tool, you can quickly see where you are in relation to the plan at a given point in time, and you can visualize your rate of progress. By comparing the actual line with the planned line, management is alerted to trouble early in the development process and can consider corrective action to remedy the situation (for example, allocation of more resources).
	A phase Rate Chart simultaneously provides rate charts for design, code, unit test, and integration. A composite Rate Chart depicts, at a higher level, a weighted summation of several parallel activities of planned and actual work accomplished versus time. It is designed to provide a means to assess the overall progress and status for a project and its individual development activities.
	Most software development Rate Charts are defined and measured in terms of software units. However, any activity that can be planned as a detailed set of similar milestones can be depicted as a Rate Chart. Thus, Rate Charts can also be used to report the status of such tasks as documentation and formal test. In our sample project, the Rate Chart shows rapid early progress due, apparently, to the lower complexity of the job. But, once the design problem was caught and corrective action took effect, the rate dropped off and then gradually recovered.

Earned Value Report
	The Earned Value Report compares work accomplished against work planned. In this report, the financial budget (Budgeted Cost of Work Scheduled or BCWS) is plotted along with the actual expenditures (Actual Cost of Work Performed or ACWP). A third plot, which represents earned value or the amount of the job that has been completed (Budgeted Cost of Work Performed or BCWP), is then added to the picture. This graphically illustrates the project schedule and financial status at a glance. What you get is an overview of the project’s health. For example, if half the money has been spent (ACWP), then half the job should be completed (BCWP). If money is being expended (ACWP) faster than planned (BCWS), there should be a corresponding assessment of progress against the project’s milestones (BCWP).
	Based on the earned value plots, two additional key indicators can easily be derived and plotted: the Cost Performance Index (CPI) and the Schedule Performance Index (SPI). The CPI is the ratio of work completed in dollars (BCWP) divided by the actual cost of performing the completed work (ACWP). Values greater than “1” mean it is costing less than originally planned to perform the work. The SPI is the ratio of work accomplished (BCWP) divided by work planned (BCWS). Numbers greater than “1” signify that work is being achieved quicker than originally planned (i.e., the activity is ahead of schedule).
	We see in our sample project that, around month 8, there was a critical dip in the key indicators: money was being spent, but very little (in terms of earned value) was being accomplished. We were faced with a slowdown in performance. Immediate corrective action was needed to offset the possibility of a cost overrun and/or late delivery. Both the SPI and the CPI suffered as a result, but the project gradually recovered once the design problem was solved. Easy to use and understand, these key indicators are needed to measure and assess a project’s progress and health. They convey powerful messages. Are we meeting our schedule? Are we meeting costs? Is the project healthy?

�
Figure O-
15

Financial/Staffing Report
	The Financial/Staffing Report provides a clear indication to management of a project’s performance in relation to financial and staffing plans. The Financial graph shows the cumulative dollars spent to date compared with the projected budget. The Staffing profile reveals the number of personnel working on the project each month with respect to the planned staffing levels. The initial baseline plan is established at the beginning of the project. On a monthly basis, the actuals are compared to the plan. In the event an activity needs to be replanned, the original plan is retained as a baseline and a Current Operating Plan (COP) is used to forecast the revised spending and staffing. In our sample project, we recognized the need to take corrective action to fix the design problem highlighted in the Target System Resource Usage Report. To accomplish this, more project personnel than originally planned were assigned early in the recovery effort (during months 8-9) to preserve the schedule. Also, during months 17-20, it appeared that project staff were being redirected to other efforts and, thus, were not available to this project. The Staffing metric pointed to this problem and allowed for corrective action.

�
Figure O-
16

Size Trend Report
	The purpose of the Size Trend Report is to uncover potential development problems related to changes in code size before they become critical. This report is updated monthly to show the estimated size at completion. The size of each Computer Software Configuration Item (CSCI) is tracked via separate Size Trend Reports. The Size Trend Report is used in conjunction with the Productivity Measurement Report. If size is increasing (which is often the case in software development projects) and productivity is not above what was planned, a significant problem exists requiring immediate attention — namely, at a given productivity rate with an increasing job size, it will take longer to finish the job than what was scheduled.
	In our sample project, the size of the job (measured in equivalent source lines-of-code or ESLOC, derived from actual source lines-of-code by taking into account the reduced effort for reused and modified code) was reduced because of an efficient design that introduced more functionality in auto code and less in new code. But, we see that the size of the delivered source lines-of-code (DSLOC) ballooned because of the growth in the less efficient auto code, which directly impacted memory use. What we were faced with was a potential “fit” problem requiring more memory than allocated. A new design was required, resulting in corrective action that had an immediate impact on productivity and cost performance.

Productivity Measurement Report
	The Productivity Measurement Report is used to evaluate a project’s performance by measuring software productivity, which is based on equivalent source lines-of-code (ESLOC) produced per staff month and is reported for each Computer Software Configuration Item (CSCI). What the report shows is the planned productivity (based on the estimated size of the CSCI, cumulative planned staffing and planned percent complete) versus actual productivity (based on current estimated or actual code counts of the CSCI, cumulative actual staffing and the actual percent complete). Not only does this support better project management, but it also establishes a baseline for measuring improvement and future cost estimates needed for bidding. In our sample project, we can see that productivity was running high early in the project due to the lower complexity of the job. However, once it was realized that a portion of the design would have to be redone to correct the memory use problem, the rate of productivity slowed down dramatically (while corrective action was taken) and then gradually recovered.

�
Figure O-
17

Software Problem Status Report
	The purpose of the Software Problem Status Report is to track the maturity of deliverable products, measuring the status of known software problems that need to be fixed versus the rate of closure of problems. Software problems are tracked after software goes under configuration control, usually at the start of software integration.
	The Problem Change Request is a form used to document software problems. Based on the number of opened Problem Change Requests, the Software Problem Status Report serves as an indicator of the maturity of the software product. Software usually is ready for delivery when the rate of finding new problems has decreased significantly and the gap between opened and closed problems is near zero. The following measurements are plotted on the graph:

•	Opened shows the number of software problems that have been detected and reported by the designated project authority.
•	Resolved shows the number of software problems for which a technical solution has been found and verified.
•	Closed shows the number of problems that have had the correction verified and formally closed by incorporating the change in the product baseline.
	
	Some projects also find it advantageous to show the number of software problems a project of this size can expect to encounter over time, based on historical data from similar projects. In our sample project, the problem reporting began in month 16 as integration started. Initially, problems were detected faster than they could be resolved. Without corrective action (for example, assigning more resources), a schedule slip was likely. This project was able to eventually close the gap between opened and closed problem reports and the rate of new problem reports tapered off, indicating that the software was ready for the Build 1 demonstration during month 21.

�
Figure O-1
8

�Quality Indicator Reports
	The Quality Indicator Reports are summaries of defect data that can be used to understand and improve the software process. Software quality indicators include both product and process defects.
	Defects can be introduced into software during each phase of the software development life cycle. Procedures need to be established to prevent these defects, wherever possible, or discover their existence at the earliest possible moment. Data from Hughes projects and other industry sources shows that the earlier you catch the problem, the less costly it is to fix. The Quality Indicator Reports categorize the kinds of defects discovered and the life cycle phase in which the defects were detected. The Quality Indicator Reports consist of the following charts:

•	A summary chart showing quality indicator status,
•	Charts that focus on type of defect,
•	Charts that focus on phase detected, and
•	A quality indicator analysis report.

	The primary goal of the various charts is to provide management with increased visibility into patterns and trends appearing from the statistical summary of defects discovered during the software life cycle. This data gives the manager and technical personnel the ability to home in on the specific causes of defects. Defect prevention teams can analyze these charts and outline a plan of action to eliminate the root cause of the most frequent and/or costly defects. The Quality Indicator Reports are an increasingly important part of the Hughes approach to continuous measurable improvement (cmi).

�

Figure O-19

Defect Density Tracking Report
	Defects are quite simply deficiencies in a product or process (flaws in the design or coding process, for example) that can lead to development of a product that fails to meet customer requirements. They are found during both internal and external reviews and testing of software products under development. Projects identify defects during reviews based on review procedures and checklists. Defects are then documented when identified, including information on the type of defect, the cost to repair, and the phase in which each defect was detected.
	Defects cost time and money. Even with defect prevention techniques, experience shows that the best software processes today are not yet capable of “defect free” results. So, we can expect to find defects. Historical data from past Hughes projects indicates that it costs significantly less to find and fix defects in the development phase that caused them rather than later in the project. The early detection of problems is the key to maintaining high productivity at minimum costs.
	The Defect Density Tracking Report is used to compare the number of defects being found in each phase of software development with historically derived control limits. The control limits determine a planned range of defects for each phase that a typical project should experience. The actual defect rates being found are then compared with the control limits to provide insight into the process being used on the project.
	If the actual defect rates are within the control limits of the planned defect density, the process being used by the project is performing as expected. The fact that defect rates are lower than the lower control limit requires further analysis. It may indicate that insufficient reviews are being conducted, calling for immediate corrective action. Or, this may mean that the project has found a process improvement that has produced fewer defects. If so, the improved process should be documented for others to use. Similarly, defect rates that exceed the upper control limit indicate conditions that should be examined for possible improvements.
	In the sample project, where Coding Defect Density was measured per thousand equivalent source lines-of-code (KESLOC), we saw that the actual data was within the control limits showing that the project was performing as expected. Hughes is constantly improving its metrics program. The Defect Density Tracking Report is a recent addition and is currently being piloted on some projects.

�

Figure O-20

Target System Resource Usage Report
	Target System Resource Usage reporting is mainly concerned with the management of computer resources (e.g., main memory, processor time, mass storage, etc.), measured in terms of percentage utilized. Selection of which resources to monitor is done in the requirements analysis phase based on how critical the resource is or how risky it will be to meet the requirement.
	Initially, control limits are established that represent the maximum resource utilization allowed under the contract, along with a management reserve that decreases in size as the ability to estimate/measure the utilization improves during the life of the project. Exceeding the management reserve figure indicates a “risk” calling for management action. During the life of the project, the actual resource utilization is estimated with more and more precision until actual measurements finally replace the estimates.
	The key to success here (as in all the metrics) is to manage risk early in the project. In our sample project, the Target System Resource Usage Report provided an estimate that showed the new design would require too much memory. This estimate (long before actual memory usage could be measured) allowed us to focus on the problem early enough so that corrective action could be made with minimal effects on the project. Without the use of metrics, the problem would not have surfaced until very late in the project, during the final stages of integration and testing, resulting in a major redesign effort that would have had a severe impact on cost and schedule.

�

Figure O-21

Scope Change Report
	The Scope Change Report describes any addition or deletion in the scope of work. It forces management to “size up” a new task or requirement and assess the impact of these changes on cost and/or schedule. Essentially, it is a technique for managing (and forecasting) changes in the contract’s scope of work, common to evolutionary product development, which gives project management a basis for understanding what is currently in the baseline and what is not. This planning tool is also used to look at related new business opportunities for a project (normally follow-on work from existing contracts) and to assess their impact, both technically and financially.

�

Figure O-22

Afterword�tc "<Head 2 (14)>Afterword"�
	When flying a plane from Los Angeles to San Francisco, a pilot knows the destination and the direction in which to begin the flight. During the journey, however, winds may be encountered that cause the plane to go off course. The earlier the pilot detects the problem and corrects for the wind, the more likely the flight will arrive on schedule. Similarly, software metrics provide the software project manager with the information necessary to determine when a software development project is on course. As shown by the sample project in this brochure, metrics analysis enables early detection of problems and allows corrective actions to ensure delivery of quality products that are on time, within budget, and meet customer expectations.
	Hughes has developed several tools for in-house use in collecting, analyzing, and reporting software metrics data. These include the Quality Indicator Program (QIP) and the Quantitative Process Management Information System (QPMIS). QIP has been used to collect data on nearly 100,000 defects during the past five years. Defect prevention teams analyze this data for root causes and select pilot projects to test proposed changes. Valid improvements are incorporated into the organization’s practices and procedures.
	QPMIS captures metrics data in a common database and automates the analysis and reporting for many of the reports described in this brochure. QPMIS allows software project managers to concentrate on the content and interpretation of the data and not concern themselves with formatting reports. A centralized historical database aggregates the information from each completed project and allows electronic access to the data for organization-wide trend analysis and for future reference.
	Hughes has made a strong commitment to metrics over the years with significant support from the Software Network Management Council and the Company-wide Software Initiatives Program. Training courses are offered regularly and cover a wide range of topics related to metrics including Software Project Reporting, Introduction to Quantitative Process Management, Defects Collection, Analysis and Prevention, and Reaching for Higher Levels of Software Process Maturity.
	Software development is a human intensive activity and, as such, is subject to human error. However, many errors and much costly rework can be avoided by continuously measuring and optimizing defined development processes. Improvements pay off in many ways. Lessons learned from past projects enable new projects to be more efficient. Analysis of historical data results in greater accuracy in predicting costs, schedules, and risks during proposal activities. Even small cost performance index improvements can translate into substantial savings when accumulated over time on multiple projects.
	The successful companies of the future will be those that take advantage of metrics to institutionalize “best in class” practices and procedures for software development.

Glossary/Acronym List
ACWP	Actual Cost of Work Performed
BCWP	Budgeted Cost of Work Performed
BCWS	Budgeted Cost of Work Scheduled
CDR	Critical Design Review
cmi	Continuous Measurable Improvement
COP	Current Operating Plan
CPI	Cost Performance Index
CSC	Computer Software Component
CSCI	Computer Software Configuration Item
DSLOC	Delivered Source Lines-of-code
ESLOC	Equivalent Source Lines-of-code
FCA	Functional Configuration Audit
FQT	Formal Qualification Test
IPD	Integrated Product Development
IRS	Interface Requirements Specification
KESLOC	Thousand Equivalent Source Lines-of-code
LOE	Level of Effort
MAC	Month After Contract
ODC	Other Direct Costs
PCA	Physical Configuration Audit
PDR	Preliminary Design Review
PMO	Project (or Program) Management Office
QIP	Quality Indicator Program
QPMIS	Quantitative Process Management Information System
SDD	Software Design Document
SDR	System Design Review
SDP	Software Development Plan
SEI	Software Engineering Institute
SLOC	Source Lines-of-code
SPI	Schedule Performance Index
SRS	Software Requirements Specification
SSR	Software Specification Review
STD	Software Test Descriptions
STP	Software Test Plan
STR	Software Test Report
TD	Technical Director
TRR	Test Readiness Review

��tc "<>"�
CHAPTER 8�tc "<>CHAPTER 8"�
 Addendum D�tc "<> Addendum D"�
 �tc "<> "�
Making Metrics Work Miracles�tc "<>Making Metrics Work Miracles"�

David A Haakenson and
David R Webb
Ogden Air Logistics Center

	Let’s face it. Measurements are boring. No matter how interesting the subject being measured might seem, measurements are just numbers, and a parade of numbers across any paper is bound to make most people stifle a yawn or two. A vast majority of people (the authors included) will simply keep turning pages, looking for pretty pictures. Measurements can be represented graphically, which gives the reader pretty pictures to look at while conveying the numbers, but it doesn’t take long to realize that measurements, of themselves, tell the reader little — this many of such-and-such widget were produced. Great. Turn the page. Look for more pictures.
	It is comparisons of these measurements with others taken at various points in time that make the numbers interesting and since most of you have already seen where we are going with this, we will just blurt it out: measurements are not interesting until they become metrics. The purpose of this article is not to teach what metrics are or how to use them. We will demonstrate how, in an F-16 software project at Hill Air Force Base, we turned measurements into metrics, how we used those metrics to improve the way we do business, and how this process altered our ways of thinking. We will also share some lessons we learned that might help anyone who attempts to use their metrics for similar improvements efforts.
	In 1992, the Software Division of the Technology and Industrial Support Directorate (TIS) at Hill Air Force Base was working on the contact to upgrade the software in the suite of Block 30 F-16 (early model Fighting Falcon jet) core avionics computers in a project called System Capabilities Upgrade 2 (SCU-2). The division had been doing the F-16 airplane software for many years and the project, though somewhat arduous, was not unusual. Designers knew what to design. Coders knew what to code, and testers knew what to test. The problem was this was our first exposure to the Block 30 aircraft, and several of our old rules no longer applied. There also were other problems. There was a great deal of rework in SCU-2, much of it performed late in the project. This made life a little unpleasant for many of the workers who had to deal with long hours and short tempers. In the end, however, TIS delivered a fine product at a great price.
	Still, the amount of rework performed in SCU-2 bothered us. We began to wonder just how much better and how much more cost-effective the product might have been with less rework. We had recorded all the problem reports and their solutions, but as raw measurements, the numbers told us little. So, with our next Block 30 project impending, we decided to turn those measurements into metrics, find out what was going on, and try to correct the problem in SCU-3.
	Since a metric is, in part, a collection of measurements taken over time, we began by taking our simplest rework measurements (numbers of problem reports) and putting them on a graph with time as the X-axis (see Figures O-24 and O-25). The total number of problems reported increased as the project progressed, and the total number of problems still being worked decreased over time. We divided these problem reports into categories to fell us what their status was at any point in time and saw that problem reports were being correctly analyzed, defined, assigned, and fixed.

�

Figure O-23
 Open System Problem Reports (SPRs) Highlighted1

�
Figure O-2
4
 Closed SPRs Highlighted2

	So far, the metrics told us that we were finding problems and fixing them but did not tell us when and where those problems were found. Fixing a problem discovered early in the project is quicker, simpler, and infinitely more cost-effective than to repair a problem found near project completion. So, our paradigm shifted a bit, and we recalculated our metrics based on the new information we sought.
	The result
s astonished us (see Figure O-25
). Virtually all of the problems in SCU-2 were found in the test phase, late in production, which caused replanning, re-coding, retesting, and rework! Given the proper method of expression, our metrics stood there, stuck their tongues out at its, and wiggled their fingers under their noses. We had been doing extensive rework, but we had not realized why.

�

Figure O-25
 Valid SPRs by Phase Found and Category 3

	The positive side to this chart was that it told us that most of the problems were being found in subsystem testing, which is a CSCI-level test and is the least expensive portion of the formal testing phase. System test was finding the next largest group of problems, and this was also a fairly inexpensive test. However, a significant number of problems were being found in Developmental Test and Evaluation (DT&E), which was a flight test and therefore, expensive. Since these tests took place after the operational flight program (OFP) was released to formal testing, replanning and rescheduling was required.
	We were baffled. It was obvious we were doing something wrong. In the best of all worlds, the greatest number of problems should be found early in the project, and this number should decrease significantly with each phase until, at flight test, no problems are reported. But to discover where we needed to concentrate our efforts, we needed to find from where the problems were coming. Were our designs faulty or was it our coding? Was it a lack of proper unit testing before formal release? We didn’t know for certain, so we looked at the information another way, concentrating on which phase of the project introduced the reported problems.
	This time, we were “hit” with three
 more surprises (see Figure O-26
). First, the majority of problems were not introduced by us (not visible on the graph shown). Second, our design problems were relatively few. Third, all of our own software problems (which accounted for nearly half of the total problems) were introduced in the implementation or coding phase of our project. The first bit of information made us feel a lot better about ourselves, and the second bit told us that our designs, for the most part, were good, but that last bit of business pointed an ugly finger right into the middle of our project. This was the area where design became implementation and where ideas turned into actions. We were not doing something right. The process was broken, and we had to discover how to fix it.

�

Figure O-26
 Valid SPRs by Phase Introduced 3

	By looking at both the Detection and Introduction Summaries, it was obvious that we were not finding enough problems in our code and unit test phase, i.e., our Computer Program Test and Evaluation (CPT&E). For the most part, we are talking,; about simple problem — an incorrect constant or an improperly initialized variable — problems that, if found before formal release, would be quick and easy to fix. Obviously, CPT&E needed an overhaul.
	While trying to figure out why we were not finding more problems during the design phase, we discovered that we were finding and correcting problems during the design phase, but this was not being recorded as rework. Suddenly, we realized that one reason we only saw rework during the test phase was that we had only allowed testers to write problem reports. Designers never wrote problem reports, so we never saw that they were finding and fixing problems; therefore, our process for reporting problems was changed.
	A problem report was now required to be written before any design or code change could be accepted. Every change was now traced to a problem. We also created an online problem reporting system, which automatically logged the person who found the problem and the area in which the problem was found. This tool was able to produce a report of current problems and their status at any time. By the time SCU-3 began work in earnest, our metrics had almost begun to gather themselves.
	It also was obvious that our CPT&E process had to be altered — too many simple problems were being found by formal test. So we extended the amount of time allotted to CPT&E and involved the formal test personnel. This allowed the coders to take the time they needed to thoroughly review their code. It also gave the test people the chance they needed to firm up their test procedures before formal testing began. Any problem found during this phase was properly logged so that we would be certain to find out how many problems were fixed as this level.
	This approach had at least one major downfall. Since we were increasing the number of people reporting problems and widening the period during which problems were reported, we could significantly increase the number of problem reports found during an OFP update. We were concerned that this would make us look bad to our customer. It might appear that instead of improving ourselves and our product, we were getting worse. To offset this concern, we prepared some “customer education” material and prepared to explain what we changed, why we changed it, and why there was a sudden large increase in the number of problems. As it turned out, we need not have worried.
	When the metrics from SCU-3 started to come in, what we
 saw pleased us (see Figure O-27
). The number of reported design problems (nearly trivial in SCU-2) were equal or greater than the number of software problems, and most design problems were being found and fixed in the earliest stages of development, when it was the cheapest. It was even more satisfying to learn that the greatest number of software problems were being found in the CPT&E stage, before the software went to formal test.

�
Figure O-2
7
 Valid SPRs by Phase Found and Category 3, 4

	The number of problems reported did not increase significantly, even though we were collecting problem reports from many more sources. Was this because we were now requiring designers to report their problems and they were, therefore, more cautious? Was it because we had improved our CPT&E process? Or was it something else entirely? Our guess is it is all of the above.
	By looking at our metrics, finding our problem areas, and improving our processes, we got a return on investment that we would never have imagined. SCU-3 has yet to be completed as this article is written; we might yet see metrics that show us other less desirable trends, but for now, things are looking good.
	Not that we were satisfied; we were not. We hope to be able to find even more problems upfront, to involve the test group more in the design area, and the design group more in the test area. We were trying to make OFP development a true “team” effort, instead of the “us versus them” or “design versus test” undertaking it has been in the past. We have found that using metrics as we have changes the ways you perceive your metrics. It’s recursive. Each new view of the data making you want to view it yet another way. For example, we now have metrics not only on what problems were found and when, but also on when the problems were introduced and what the priorities of fixing those problems were. We are now looking at measuring the man-hours taken to fix each problem report so that we can better judge our rework effort.
CONCLUSION�tc "<Head 2 (14)>CONCLUSION"�
	So how are metrics made to work miracles? You watch, you record, you judge, you react, you alter the way you watch, and you keep doing that over and over. Sometimes, the miracles you find will be obvious; other times they will shock you, but from our own experience, we guarantee they will happen.

David A. Haakenson
00-ALC/TISFD
6137 Wardleigh Road
Hill AFB, UT 84056-5843
Voice:	(801) 777-0326 DSN 777-0326
Fax:	(801) 775-2541 DSN 775-2541
Internet: haakensd@software.hill.af.mil

David R. Webb
00-ALC/TIS-3/SEPG
7278 Fourth Street
Hill AFB. UT 84056-5205
Voice:	(801) 775-5372 DSN 775-5372
Fax:	(801) 777-8069 DSN 777-8069
Internet: webbda@software.hill.af.mil

Notes�tc "<Head 3 (14)>Notes"�
1.	Metric goal: to continuously reduce the number of open SPRS.
2.	Metric goal 1: to continuously monitor and reduce the number of open SPRS, especially in analysis. Metric goal 2: to continuously reduce the number of canceled and duplicate SPRs through effective communication within the assigned integrated product development teams.
3.	Metric goal: to find zero defects in configured work products. Obtaining credit for finding defects is not the metric goal. Includes valid defects found on configured work products: analysis, canceled, and duplicate SPRs are not included in this metric. Peer review results not included in this metric. Baseline defects are not included in this metric.
4.	All members of the integrated product development team are responsible for the successful implementation of the software candidate assigned to them.
�tc "<>"�
��tc "<>"�
CHAPTER 8�tc "<>CHAPTER 8"�
 Addendum E�tc "<> Addendum E"�
 �tc "<> "�
Swords & Plowshares: 	The Rework Cycles of Defense & Commercial Software�tc "<>Swords and Plowshares\: 	The Rework Cycles of Defense & Commercial Software"�

Kenneth G. Cooper �tc "<Head 3 (14)>Kenneth G. Cooper "�
Thomas W. Mullen�tc "<Head 3 (14)>Thomas W. Mullen"�
Introduction�tc "<Head 2 (14)>Introduction"�
	A worldwide survey recently revealed that less than half of all development projects meet their targets for development time and cost.1 Technological development projects dominated by software-based systems constitute increasingly significant portions of companies’ new product and business plans. Traditionally defense-oriented firms in the post-Cold War period search, with varying degrees of aggressiveness and desperation, for how to make an effective transition toward commercial markets. Companies already firmly established in commercial software markets search, with varying degrees of frustration, for ways to bring new products to market faster and at lower cost. Indeed, the success of virtually all companies has never before been more dependent upon timely, low-cost development project execution (nor more threatened by its absence).
	With the magnitude of the stakes involved, why does there seem to be so little progress in achieving better-managed software development projects? Why in such projects are cost and schedule problems so persistent and pervasive? What are the underlying sources of consistently “surprising” project overruns? Why are we so bad at estimating when developing products will be completed and ready for the market? How far must “defense” firms be prepared to go to become commercially competitive? What must both they and commercial firms alike do in order to achieve dramatic project performance improvement? Are there any fundamental lessons we can learn and transfer from one “unique” project to another?
	Here we aim to provide some initial answers to these questions. To do so we draw upon over ten years of experience, shared with our colleagues, in developing and applying computer-based dynamic simulation models2 of software system development projects. We have used such models to accurately recreate, forecast, diagnose, and improve the performance on dozens of major development programs and projects in aerospace, defense electronics, financial systems, construction, and telecommunications. Among these, many whole projects and significant segments thereof have been dedicated to software system development.
	At the core of the structure of these models is a different but straightforward view of development project work — one which recognizes the rework cycle.3 Indeed, what is most lacking in conventional methods for project planning and monitoring is any acknowledgment or measurement of rework. For all their utility, most planning tools treat a development project as being composed of individual, discrete tasks which are “to be done,” “in process,” or “done.” No account is taken of incomplete or imperfect task products, or the amount of rework needed. This is particularly inappropriate for naturally iterative development efforts; the dozens of analyses we’ve conducted show that rework can account for the majority of project work content and cost!
The rework cycle�tc "<Head 2 (14)>The rework cycle"�
	Using dynamic simulation models to analyze and aid the management of software development compelled us to simulate the performance of actual projects as they really did occur — not just how they are planned to go, or how they “should” go. Hence, we had to design and employ a structure which could accurately recreate such projects. To do so we had to treat their substantial rework explicitly, as well as its causes, detection, and execution. We developed a core structure which proved to be universally applicable to development projects and project stages. We term this structure “the rework cycle
.” See Figure O-28
.

�

Figure O-28
 The Rework Cycle

 	At the start of a project or project stage, all work resides in the pool of Work To Be Done. As the project begins and progresses, changing levels of People working at varying Productivity determine the pace of Work Being Done. But unlike all other program/project analysis tools and systems, the Rework Cycle portrays the real-world phenomenon that work is executed at varying, but usually less than perfect, “Quality.” A fraction that potentially ranges from 0 to 1.0, the value of Quality (as well as that of Productivity) depends on many variable conditions in the project and company. The fractional value of Quality determines the portion of the work being done that will enter the pool of Work Really Done, which will never again need redoing. The rest will subsequently need some rework, but for a (sometimes substantial) period of time the rework remains in a pool of what we term Undiscovered Rework — work that contains as-yet-undetected errors, and is therefore perceived as being done. Errors are detected by “downstream” efforts or testing; this Rework Discovery may occur months or even years later, during which time dependent work has incorporated these errors, or technical derivations thereof. Once discovered, the Known Rework demands the application of People, beyond those needed for completing the original work. Executed rework enters the flow of Work Being Done, subject to similar Productivity and Quality variations. Even some of the reworked items may then flow through the rework cycle one or more subsequent times.
	Undiscovered rework plays a pivotal role in the propagation of problems through a project. Lurking undetected — for example, as a software “bug,” or design flaw — it causes productivity loss and work delays, and triggers rework cycles on downstream dependent tasks. The more tightly-scheduled and parallel the project tasks, the more of a “multiplier effect” on subsequent rework cycles. Undiscovered rework is the single most important source of project cost and schedule crises. To control undiscovered rework on software development projects, we must:

•	Acknowledge its existence,
•	Plan so as to allow for it,
•	Measure it (once it is recognized as known rework),
•	Prevent it (i.e., improve “quality,” as defined here) as much as possible, and
•	Seek to find and identify it early, so as to reduce its propagation.

	We offer the following observations in the hope of spurring companies and individual managers to do just that.
Observations�tc "<Head 2 (14)>Observations"�
	The full simulation models of these development projects employ thousands of equations. They explicitly portray the time-varying conditions which cause changes in productivity, quality, staffing levels, rework detection, and work execution, as well as the interdependencies among multiple project stages. All of the dynamic conditions at work in these projects and their models (e.g., staff experience levels, work sequence, supervisory adequacy, “spec” stability, worker morale, task feasibility, vendor timeliness, overtime, schedule pressure, hiring and attrition, progress monitoring, organization and process changes, prototyping, testing) cause changes — some more directly than others — in the performance of the rework cycle. Because our business clients require demonstrable accuracy in the models upon which they will base important decisions, we have needed to develop highly accurate measures of all these factors, especially those of the rework cycle itself. We do not, however, offer here a treatise on model design. Instead, we draw upon the many real business applications of our models to provide heretofore unavailable guidelines and benchmarks on the characteristics of the rework cycle.

The Sample�tc "<>The Sample"�
	The observations come from seven defense and fourteen commercial software development efforts. They range from modest upgrades of existing systems that involve about ten people for a year, up to major first-of-a-kind system development efforts involving many hundreds of people for several years. The defense projects as a group differ from the commercial projects in many ways (average size, duration, customer for the product, etc.), so we’ve examined the averages and the ranges of values within these groups as well as across all the projects. Figure O-
29
 [not available in this format] shows the difference in planned size and duration, with the commercial projects averaging under 130,000 hours of planned work over the course of about a year’s schedule, versus 170,000 hours and a two-year-plus average planned duration for the defense projects.

The Problems�tc "<>The Problems"�
	The defense projects’ performance against plans was substantially worse than those of commercial developments. See Figure O-
30
 [not available in this format]. On average, the defense projects took about three times the planned hours, versus about 1.4 times the planned hours for the commercial projects. Schedule performance was even worse. The commercial projects were poor, taking nearly twice as long to complete as planned. On average, though, defense projects took over four times as long to complete as was originally planned.
	How could this be? These projects involved some of the brightest, most experienced, and hardest-working people in the field. They were managed by seasoned and conscientious managers using the standard planning tools, and yet they still cost many times their budgets. We acknowledge the bias caused by the fact that easy, smoothly-running projects rarely command the attention of external consultants. Still, these projects are not anomalies; recall that most projects fail to meet their targets. We believe there are systemic reasons why software development projects perform so poorly.
	To be fair, some of the problems — especially on the defense side — are due to midstream scope and specification changes by the “customer,” be they internal or external to the company. These are not fully anticipated at the start of the project, and not reflected in the original budgets and schedules (although, given the history of large projects, such changes are to be expected). The difference in the typical magnitude of midstream changes is part of the reason for the differences between defense and commercial project performance. However, even adjusted for those changes, the same patterns remain. We believe that our use of simulation modeling has helped identify the systemic causes of those patterns, through the characteristics of the Rework Cycle — rework creation, identification, and execution.

Rework Creation�tc "<>Rework Creation"�
	In the rework cycle, “quality” is the fraction of work being done at any point in time which will not eventually need to be reworked; the lower the quality, the more rework. The average levels of quality on defense projects was half that observed on commercial projects, 0.34 versus 0.68. See Figure O-3
1
 [not available in this format]. In other words, only about 1/3 of the work products being executed on a defense software development project will not need reworking (or another round of reworking), as opposed to 2/3 in commercial projects.
	The rework cycle quality on the worst of commercial projects was nearly as low as that of the average defense software project, but the best was nearly “perfect.” The best among defense efforts exhibited a 0.55 quality, but the worst was near 0.10.

Rework Discovery�tc "<>Rework Discovery"�
	We know of no company which routinely monitors or measures the amount of time elapsed between the commission of design or coding errors and their detection. And yet it is undoubtedly one of the most critical determinants of “time to market” and of the true quality (in the conventional sense) of the delivered product. Think for a moment. On projects of this nature, what would you say is the typical amount of time between making and finding an error? A week? Two? A month? The actual average across all these projects is about nine months. See Figure O-3
2
 [not available in this format].
	On this measure we find little absolute difference between defense and commercial projects, on average. In fact, the worst of commercial software projects exhibited longer rework discovery times than the worst defense projects. Perhaps this is due to the extraordinary amount of oversight, testing, and review endemic to defense projects. Regardless of the cause, it is troublesome to note that for commercial efforts the average scheduled duration of work, eleven months (versus 29 for defense), is only three months longer than the time to detect the need for a single round of rework.
	Only the relatively high levels of quality in commercial software developments prevent consistent disasters. Even so, rework discovery times which are nearly the length of the planned work explain why firms so consistently overpromise on software product introduction dates (open any business or software journal for an example). Rework keeps being found near “the last minute,” and revised announcements sheepishly admit to the delay. The more aggressively the projects are scheduled in response to competitive pressures to “be first,” or to respond fast, the worse this tendency. No “productivity” gain will help — only improvements (reductions) in the rework discovery time will.
	And when you consider that a project with a 0.34 average quality (the defense average) will require seven cycles of rework to surpass 95% real completion, for a rework discovery time of 9-10 months for each cycle would add over five years to an effort for which rework was not planned. Interestingly (and not coincidentally), that is near the amount by which real completion of defense software development projects in our sample exceeded their schedule targets.

Rework Execution�tc "<>Rework Execution"�

	As the rework cycle structure indicates, some work may cycle through multiple times before it is complete and correct. Figure O-3
3
 [not available in this format] shows the average number of full revisions5 of each task (e.g., specifications, modules). The average task product on defense projects was revised fully three times. On commercial projects, only 40% of the tasks were revised, on average. This is the major reason for the cost and schedule performance differences. Some commercial software projects saw over one full round of revisions, and defense projects as many as seven.
	So where was all the time spent? On defense projects, more time was spent on rework than was spent to do tasks for the first time. See Figure O-3
4
 [not available in this format]. An average of nearly one and a half hours were spent fixing, for every one hour spent to do it the first time. Even on commercial projects, over forty minutes were spent on rework for every hour spent on the first iteration. This is even more astonishing when put in perspective: about half of the time spent on all these software development projects was for work not even tracked in most planning and monitoring systems!
	No wonder managers of software projects have difficulty — they’re using tools that only let them see half of the job. Even worse, in the later stages of a project, 70, 80, even 90 % and more of the work is “invisible” to their planning systems. Managers and staff on these projects aren’t incompetent, they aren’t (usually) deceitful, and they aren’t lazy — they are misled by their planning tools.
	Experienced managers are certainly aware of rework, and make allowances for it. However, this means that all of their “sophisticated” planning tools become nearly worthless at the end of the project, when the bulk of the work is rework. Instead that effort is being forecasted purely on the basis of instinct. For most project managers, a handful of projects constitutes a career. By the time some managers work up to a really difficult project, they may have had little experience with “major rework” on which to base their planning (and promises). Under tremendous pressure to deliver (from senior management, the customer or the marketplace, and dependent efforts), managers’ well-intended plans and promises will be thwarted by the rework cycle.

Progress Monitoring�tc "<>Progress Monitoring"�
	Just how thwarted those plans can be is illustrated in Figure O-
35
 [not available in this format]. This “progress ramp” displays the accuracy of progress monitoring in the sampled commercial software developments. For the range of commercial efforts modeled, the display charts the perceived progress, as it was reported at different points in time, against the real progress (which excludes undiscovered rework) at that time. Perfectly accurate project progress monitoring would yield a straight 45° diagonal (hence the triangular ramp shape): at a perceived/reported condition of 20% complete, the actual % complete would be 20%, and so on. Instead, real progress is typically less than reported progress.6
	Note that the “best” of the sample achieved nearly perfect monitoring. The lower the quality, and the longer the rework discovery time (hence the more undiscovered rework), the larger the gap between real and reported progress, and the longer that gap persists: the “worst” of the commercial efforts reported 90% completion when as little as 60% was really complete. With 40% of the effort really left, it is easy to see why that last “10%” can seem to take so (unexpectedly) long, with the attendant delays in product introduction dates. Indeed, the product is often delivered when perceived “complete,” leaving it to customers to find the as-yet-undiscovered rework. Before moving on to a comparison with defense software projects, imagine the difference in ease of management and accuracy of projections just between these two commercial extremes. When considering best-practice/TQM/process re-engineering, consider the differences displayed here — all caused by variations in “quality” and rework discovery time.
	Figure O-
36
 [not available in this format] overlays the same kind of envelope for progress monitoring in the defense software efforts modeled. Generally longer rework discovery times, and notably lower levels of “quality,” produce a much more bowed shape overall, reflecting less accurate progress monitoring. The best of the defense projects is near the typical commercial project in progress monitoring accuracy. The worst among the defense efforts, with quality levels near 0.10, reports 75% completion when less than 15% is really done. After reaching 90% reported completion, the line goes nearly vertical — meaning a long time was spent thinking the end was near, only to discover more and more rework that extended the project and increased its cost far beyond the original and interim plans. By these measures again, the distance that defense firms must move in order to be viable commercial competitors is a long one. And, again, “productivity” improvement is not the answer. Instead, the answer lies in measures that are rarely monitored, let alone being the focus of control and improvement efforts — quality and rework discovery times.
Implications for improvement�tc "<Head 2 (14)>Implications for improvement"�
	The nature of the performance improvement that can be achieved if efforts are successfully focused on rework cycle quali
ty is illustrated in Figure O-
37
 [not available in this format]. The individual data points from all the software development efforts chart (a) their average quality achieved versus (b) their costs incurred, as a ratio to their budgets. As an example, we’ve circled one data point for a project that achieved an average of 70% quality, and saw a cost/budget ratio of about 1.5 (a 50% overrun).
	Of course, the accuracy of the original budgets causes some deviation among the plotted points. Nevertheless, the pattern is clear: higher quality, lower cost. Most projects with quality levels in excess of 0.70 achieve costs comparatively near their budgets. In contrast, projects with a quality less than 0.40 exceeded their budgets by factors of 3, 4, ... 5!
	We overlaid on this chart a line that plots from several simulations the resulting costs versus budget for one identical project which varies among the simulations only in the average quality achieved. We do so to drive home the extent to which quality improvement translates to cost performance improvement. With no productivity change whatsoever, a change in rework cycle quality from 0.35 to 0.55, for example, would eliminate most of the project cost overrun, reducing costs by an amount equal to the original budget.
�Conclusions�tc "<Head 2 (14)>Conclusions"�
	We need to improve our fundamental understanding of how development projects really work. In order to avoid the persistent cost and schedule performance problems so closely associated with software development efforts, we must take a more strategic and realistic view of project work content and processes. While the products and technical steps may indeed be unique, we need to recognize that there are common structures and processes, and common problem causes. Only then is it possible to extract lessons and to implement changes that achieve radical improvements in project performance and business success.
	Our experience in simulating software development projects indicates that conventional methods and systems are inadequate to support the management of such projects. Further, the improvement in project or product development performance sought by most companies is frustrated by the prevailing managerial mindset. It is a mindset encouraged by the use of systems which treat projects as the sum or sequence of purely discrete tasks.
	We need to recognize the flows of work in software development projects, flows in which there are multiple rework cycles. Managerial systems which ignore rework and its cycles are deficient, misleading, and constitute a roadblock to achieving breakthrough improvements in project and product development performance.
	Indeed, we see from the reported results a clear indication of just how dramatic a breakthrough is required in order for traditionally defense-oriented firms to transfer their substantial expertise to compete effectively in commercial markets. Their cost performance against targets must improve by at least a factor of 2. Schedule performance versus targets must improve by a factor of 3, lest faster and more nimble commercial competitors thwart the attempted transition to “plowshares.” Rework content in their projects must be cut to 1/3 to 1/2 of currently prevailing levels. The “quality” of on-going work must double. Rework detection must be encouraged, to avoid the snowballing effects of undiscovered rework. Both better quality and rework detection are required to improve radically managers’ ability to: (a) contain costs; (b) assess accurately the true state of ongoing projects’ work progress; and (c) foretell dependably the time at which developing products will be completed and delivered to the market.
	And all this presumes that commercial development efforts themselves do not improve — that they represent a standing target. This would be imprudently optimistic, for there is substantial room for improvement in most complex commercial software developments as well. Managerial, technical, and procedural improvements which could increase work quality by just 10 points would cut cost overruns in half. Most significant for commercial projects, reductions in the rework discovery time would yield a faster “time to market,” and more dependable estimates thereof. But we cannot control by mandate the “levers” of quality and rework detection in the rework cycle. Instead we need to influence them through that which we can control, or more directly influence — interim schedule targets, staffing, monitoring systems, coding techniques, testing practices.
	The role of a simulation model on a specific project is to portray accurately the project and to aid its managers in evaluating potential actions through “What if” analyses. However, employed on several development projects, the model also helps to illuminate the underlying structure of such projects. In the “rework cycle” we have developed a near-universal structure which facilitates both roles. The resulting improved understanding helps managers to identify transferable lessons. In turn, these do lead to significant performance improvements. Indeed, without some more complete and realistic “model” than is now the norm, the seemingly intractable cost and schedule problems of software development projects will continue to plague defense and commercial firms alike.

Notes�tc "<Head 3 (14)>Notes"�
1.	“Strategic Management of Technology: Global Benchmarking,” Dr. Edward B. Roberts, December 10, 1992, Cambridge, MA.
2.	These project models were built using the dynamic continuous simulation language DYNAMO; see DYNAMO User’s Manual, Pugh-Roberts Associates, and Introduction to System Dynamics Modeling with DYNAMO, Richardson, George P. and Pugh III, Alexander L.
3.	The concepts and workings of the rework cycle model were explained in “The Rework Cycle: Benchmarks for the Project Manager”, Cooper, K. G., from which some introductory description here is excerpted, and first published in Project Management Journal, March 1993.
4.	Do the math: Really complete after 1st release= .34; after 1st rework cycle= prior complete + (quality • remainder)= .34 + (.34 x .66)=.56; after 2nd cycle= .56 + (.34 x .44)=.71; 3rd= .71 + (.34 x .29)=.81... after 7th rework cycle= .96
5.	Revisions reported here are normalized to be equal in effort to a full re-execution of the first release of the work product, so as to correct for significant variations in the effort content of different revisions.
6.	With the benefit of data on a completed project or project stage, one may construct one’s own “progress ramp” chart by plotting for the completed project: (1) the historically reported “% complete,” versus (2) a retrospective computation of the % really complete then (you should compute the % really complete based on hours spent to that point, relative to the total hours eventually spent).

Acknowledgments�tc "<Head 3 (14)>Acknowledgments"�
	Many years of work by our colleagues and clients have gone into making possible these observations and findings. Without naming the dozens of individuals and companies with whom we have worked, we wish to acknowledge here their invaluable contribution. We wish to thank explicitly our colleagues, Dr. Thomas G. Kelly and Alexander L. Pugh, for their substantial and timely help in preparing the material on which this article is based. The interpretation of the assembled information remains the authors’ responsibility.

About the Authors�tc "<>About the Authors"�
	Kenneth G. Cooper is Director of the Management Simulation Group and Senior Vice President of Pugh-Roberts Associates, a division of PA Consulting Group. Mr. Cooper’s management consulting career spans twenty years, specializing in the development and application of computer simulation models to a variety of strategic business issues. His clients include AT&T, Aetna, Arizona Public Service, Hughes Aircraft, IBM, Litton, MasterCard, McDonnell-Douglas, Northrop, Rockwell, and several law firms. Mr. Cooper has directed over a hundred consulting engagements, among them analyses of sixty major commercial and defense development projects. Mr. Cooper is an original author of the program management model introduced in this article. His group’s offices are in Cambridge, Massachusetts and Oxford, England. Mr. Cooper received his bachelor’s and master’s degrees from M.I.T. and Boston University, respectively.
	Thomas W. Mullen is a Senior Manager in the Management Simulation Group of Pugh-Roberts Associates, a division of PA Consulting Group. Mr. Mullen has managed and participated in over thirty consulting projects in his eight years with the firm. He has concentrated on the use of simulation models to analyze and aid major commercial and defense development programs. Mr. Mullen has worked with many clients in the aerospace, software, and financial services industries. He has also managed the development of several simulation software products. Mr. Mullen received both his bachelor’s and master’s degrees from M.I.T.’s Sloan School of Management.
�tc "<>"�
��tc "<>"�
CHAPTER 10�tc "<>CHAPTER 10"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Rate Monotonic Analysis:�tc "<>Rate Monotonic Analysis\:"�
Did You Fake It?�tc "<>Did You Fake It?"�
Reprinted from the Software Program Manager’s Network newsletter, NetFocus: Technology Update, Number 210, June 1994�tc "<Head 3 (14)>Reprinted from the Software Program Manager’s Network newsletter, NetFocus\: Technology Update, Number 210, June 1994"�

Rate Monotonic Analysis

In the past, developers have had few tools to help them ensure on-time performance of their real-time systems…A real-time system generally has several activities (or tasks), each of which must be completed by a specified deadline. Some of these deadlines may be hard (or critical) and some may be soft (such as those based on average performance). Missing a hard deadline can result in catastrophic loss of system performance or even loss of life. [OBENZA94]
RMA: Did You Fake It?�tc "<Head 2 (14)>RMA\: Did You Fake It?"�
	Did you fake it? This is the question concerned program and software managers should ask their development teams when it comes to the design and implementation of their real-time systems. Not only has “faking it” been an option when designing real-time systems, it has become the process. Unfortunately, there is immense corporate ignorance for the need of a proven analytical process to address real-time requirements at the design stage of a real-time system. With the exponential growth of the size of real-time systems, the decrease of development dollars, and the liability issues that are emerging due to defective software, faking it is no longer a viable option.
	Schedulable, “on time” software is essential for real-time systems. Without such a capability, task timing conflicts cannot be identified early enough in development to avoid timing overruns, which cause system crashes and the subsequent need for budget-busting corrective measures. Simulation alone isn’t the answer, for it doesn’t guarantee timing, besides being extremely costly in time and money.
	An alternative to faking it is Rate Monotonic Analysis (RMA). RMA is a scientific and mathematically sound way of guaranteeing the timing requirements of time-sensitive systems and is one of the most well known and often used scheduling algorithms for realtime applications. Boeing, General Electric, General Dynamics, Honeywell, IBM, McDonnell Douglas, Magnavox, Mitre, NASA, Naval Air Warfare Center, and Paramax are just some of the growing number of organizations beginning to use RMA on actual systems. RMA will increase your project’s productivity and reduce integration and testing costs, risk and complexity.
	RMA’s system scheduling heuristic is shortest-task first, so the ready task with the shortest period always runs. The analysis considers worst-case time and combinations of system load, phasing, and resource consumption, ensuring real-time performance and stability under heavily loaded conditions. RMA provides insight into the hardware and software design that effects system timing performance and helps to identify possible bottlenecks and errors that degrade schedulability. RMA has the ability to predict timeliness — processing of an event during worst-case time — and guarantees that events meet their deadlines.
	When you begin to integrate RMA into your process, you will become aware that the scheduling of tasks for a real-time system is significantly different from the traditional forms of scheduling. It will become apparent that tasks compete for resources; whether it’s a CPU, backplane bus, or network. This requires that more important tasks be given priority to execute over all other tasks. A preemption occurs when a higher priority task replaces a currently running task on a resource. Preemption by way of priorities, to increase the responsiveness of a system, brings up several questions:

·	How do you ensure beyond a reasonable doubt that the lower-priority tasks will ever get access to the resource?
·	If there are simultaneous activities, how do you guarantee that all of them are completed on time?
·	If they all cannot finish in a timely manner, which one succeed and which ones fail?
·	Is it possible for all the tasks to run in a way that guarantees timely access to the resource?
·	And most importantly, will the tasks meet their execution deadlines?

	All of these questions can be answered through the use of RMA.

	Adoption of RMA has been met with reluctance in the past. Questions arise about the costs of training, materials, and access to the appropriate tools that support RMA. Today, however, affordable CASE tools that support RMA are available, and provide a proven process as part of good engineering discipline in real-time systems. Unfortunately, management cannot promote good discipline if it doesn’t thoroughly understand real-time system development issues. System engineering practitioners need the ability to analyze the run-time performance of a real-time system at all phases of the software life cycle:

·	During the proposal phase there is a demand for support in system prototyping, iterative development techniques, and trade studies.
·	Guaranteed timing deadlines and adequate system hardware are a necessity during system requirements definition — before writing a single line-of-code.
·	At the time of implementation, the intent is to painlessly detect scheduling errors, calculate overall CPU usage, and diagnose corrective actions.
·	The objective during test is to reduce testing, verification, and demonstration validation with the confidence that the algorithmic proof used at the design phase guarantees the system performance.

	Achieving the objectives of real-time systems is possible if a system is designed with the support of a RMA CASE tool. CASE tools provide a practical, highly cost-effective, and easy way to automate use of RMA. Emerging RMA CASE tools take the guesswork out of identifying significant performance issues and can help develop an overall solution strategy as opposed to spending dollars on new hardware or using a less effective approach to modify a real-time system.
	Adopting RMA methods as part of an organization’s general engineering discipline and standard software development process will provide real cost savings and quality process improvements.

The “Did You Fake It?” Quiz

1.	When it comes to real-time software, do you practice the method of first making the software work, and then trying to make it meet timing requirements?
2.	Do you have unrepeatable system failures?
3.	Have you ever bought a larger CPU to solve timing overruns?
4.	Has rewriting your software in a different language been proposed as the answer to a timing error?
5.	Do you wish you had a process on your current real-time program?
6.	Do you think real-time means real fast?
7.	Do you wish you had an accurate account of your real-time system’s processing limitations?
8.	Are you tempted to push more processing down to an interrupt level to get your system to run faster?

	An affirmative answer to one or more of these questions indicates that your real-time systems are at high risk. Just say no to faking it by saying yes to the benefits of effectively using RMA.
RMA in Practice�tc "<Head 2 (14)>RMA in Practice"�
	A contractor had been directed by their customer to learn more about RMA and perform real-time analysis on the system they were building. They indicated that they did not need to perform any analysis because their simulation proved the system could meet timing requirements. By gathering information to understand the simulation, an RMA expert was able to extract the system design, analyze it, and identify a queue that was approaching overflow and would eventually bring the system down. The RMA expert asked the contractor to run the simulation an additional 10 minutes, which did cause the system to fail.
	A Navy contractor had been building a submarine sonar trainer. At integration testing, the system was experiencing severe timing overruns, which were causing the system to crash. RMA showed only 300 lines-of-code had to be modified to fix the timing problems. This was considerably cheaper than recoding 17,000 lines of Ada to C, which was the original plan. The real-time analysis also showed that recoding to C would not have solved the problem.

Through the use of rate monotonic scheduling, we now have a system that will allow [Space Station] Freedom’s computer’s to budget their time, to choose [among] a variety of tasks, and decide not only which one to do first, but how much time to spend in the process.
 — Aaron Cohen, then Acting Deputy Administrator of NASA in 1992

	RMA is derived from a paper presented by C.L. Liu and James Layland in 1973. In it they state that a set of n independent tasks will always meet its deadlines, for all task phasings, if:

�
C1 = worst-case task execution time of task
T1 = period of task
U(n) = utilization bound for n tasks

NOTE:	For more information on RMA, see SEI’s A Practitioners’ Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems.
REFERENCES�tc "<Head 2 (14)>REFERENCES"�
[OBENZA94] Obenza, Ray, “Guaranteeing Real-Time Performance Using RMA,” Embedded Systems Programming, May 1994
��tc "<>"�
CHAPTER 11�tc "<>CHAPTER 11"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Electronic Combat Model Re-engineering�tc "<>Electronic Combat Model Re-engineering"�

Idaho National Engineering Laboratory
March 1995
Executive Summary�tc "<Head 2 (14)>Executive Summary"�
	As modern software systems become increasingly complex and critical, executives, managers, and technical team leaders are faced with ever more difficult choices. Regardless of your position in a government organization or a commercial business operation, the insights contained in this monograph can be of benefit, and can help you achieve and keep a competitive advan�tage. Decisions regarding the disposition of existing legacy software systems can have an enormous effect on the operations — even survival — of government and commercial organizations. Many organizations are grappling with trade-offs of retiring older software systems and moving into more modern and efficient architectures, while trying to find ways to leverage some remaining capabilities of legacy systems to reduce cost and risk of software modernization.
	The United States Air Force (USAF) is facing these difficult decisions. In a cooperative effort with the United States Department of Energy’s (DOE) Idaho National Engineering Laboratory (INEL), the Air Force successfully addressed many of the hard issues facing commercial executives and managers today. The lessons learned by USAF/INEL provide valuable insights and models for action for both government and commercial decision makers. Although the project involved the re-engineering of a military software system, the applicability of the experience is appropriate across many commercial domains. The critical necessity for migrat�ing from older legacy software systems to modern software architectures crosses boundaries of virtually every application domain in the internationally competitive software marketplace.

Re-engineering Legacy Systems
	The Air Force was faced with maintaining a legacy system which provided important capabilities to its users. While the users were satisfied with the system, the Air Force was finding it increasingly expensive and difficult to maintain software written for a proprietary, “non-open” hardware platform. As maintainability of the code decreased, support costs increased, and reliability of the system deteriorated.
	The Air Force initially directed the INEL to re-host the application, and move it to an open systems architecture. Basi�cally, this effort involved translating the existing code from Fortran into C. Although the resulting code functioned properly, and the application was moved to an open systems architecture, the code itself was even less maintainable than the original Fortran software. As more functionality was added to the original application, maintainability of the software continued to decrease. INEL was then asked to conduct a study of the application, to include an analysis, evaluation, and recommendations to the Air Force as to future directions for the program. The recommendations for the future were to ensure the continuing satisfaction of the Air Force user community. The study showed the system needed to be re-engineered to provide for future user needs, and INEL recommended a blend of technologies and methods, including a layered, object-oriented software architecture, implemented in the Ada programming language. The resulting re-engineered system produced a threefold improvement in maintainability of software. Additionally, the re-engineered system has enabled new functionality to be added in a fraction of the time required with the original and re-hosted versions.

Maintainability Index and Metrics�tc "<Head 3 (14)>Maintainability Index and Metrics"�
	The decision to re-engineer a legacy software system is difficult to justify without appropriate metrics. As part of the USAF/ INEL justification, specific metrics were collected and analyzed to provide indicators of system maintainability and complexity. These metrics, in combination with independently developed polynomial equations, have been used by some organizations to calculate a “maintainability index” which provides an indication of the maintainability of a software system. Based on independent studies and separate work performed by the University of Idaho and verified in the field by Hewlett-Packard, the maintainability index confirmed INEL’s recommendation to re-engineer the application. This experience with the maintainability index, and the subsequent verification of its applicability, offer powerful insights for decision makers who are contemplating re-engineering of legacy systems. As the USAF/INEL project has shown, a maintainability index can help in providing sound economic justifications for the re-engineering of legacy software.

The Role of Software Architecture�tc "<Head 3 (14)>The Role of Software Architecture"�
	Many legacy software systems have been developed using a functional decomposition methodology (if any formal methodology was used at all). Early generations of software systems typically make extensive use of proprietary platform features, operating system calls, and language-specific constructs which severely hamper maintenance, reuse, and portability. These fundamental differences in the underlying software architecture contribute significantly to the lack of benefits to be derived from rehosting or translating efforts, as the Air Force learned on this project.
	INEL used an object-oriented layered software architecture to achieve many of the benefits of their re-engineering activity. By using layers for the application, interface, graphics, operating system, and hardware, the development team was able to deliver superb benefits to the Air Force. The layered architecture also enabled the use of a hybrid of technologies, language, and methods, in a well-engineered development effort.

COTS (Commercial-Off-the-Shelf) Software and Ada�tc "<Head 3 (14)>COTS (Commercial-Off-the-Shelf) Software and Ada"�
	For government software developers and decision makers, particularly those in the US Department of Defense (DoD), current policy requires the use of COTS software products wherever those commercial products can satisfy DoD needs. In those cases where there are no adequate COTS products, new software must be developed in Ada, unless a waiver is obtained to use another programming language. On the surface, the DoD policy on COTS and Ada seems to be fairly straightforward, but as the Air Force and INEL discovered, a superficial implementation of the policy can be extremely costly — in terms of support and funding. INEL’s experience in evaluating the “real” costs and facets of using COTS software can provide government decision makers with substantial savings in choosing between COTS and new Ada code. Decision makers and software managers are deluged with new software product offerings which claim to offer powerful capabilities and benefits. Filtering through the claims and discerning the real benefits, then comparing those benefits with the cost/ benefit of a “from scratch” application is a daunting task — regardless of your application domain.

Dual-Use Opportunities�tc "<Head 3 (14)>Dual-Use Opportunities"�
	As DoD and other government budgets continue to shrink, it is becoming more important for all government agencies to work together to exploit technologies and programs of common interest. It is also critical for government agencies to exploit technologies which have applicability in major commercial markets — what is known as “dual-use” technologies. The USAF/INEL effort is a superb example of interagency cooperation, with benefits accruing to the users, the agencies, the government, and the taxpayer. Much of the code is available as “public domain,” government-funded software, with excellent applicability in major commercial domains. The combination of object-oriented methods, COTS software, and Ada makes this project an ideal candidate for technology transfer to the private sector.

Summary�tc "<Head 3 (14)>Summary"�
	This monograph is designed to be a valuable information resource for decision-makers, software developers, and users. Most of the issues addressed are generic in nature, and span a broad cross-section of software domains. This document is part of an ongoing series of monographs which will investigate the major software challenges and solutions required for viable modern complex software systems.

Project Background�tc "<Head 3 (14)>Project Background"�
	The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) National Laboratory, located in Idaho Falls, Idaho. INEL is engaged in a wide variety of projects, ranging from computer and software systems development, to environmental programs, to energy generation .technologies, and national and international technology transfer projects. The organization has a track record for delivering complex software solutions for a broad range of applications, in both government and commercial environments.
	This project, the Electronic Combat System Integration (ECSI), was initiated by the INEL in support of die US Air Force Information Warfare Center (AFIWC) at Kelly Air Force Base, in San Antonio Texas. AFIWC’s mission includes detailed electronic combat modeling support for a variety of Air Force organizations. One of the models developed by AFIWC is the IMOM (Improved Many-On-Many) electronic combat model. IMOM is an electronic combat modeling system, which supports air operations combat mission planning. Basically, the system helps combat pilots plan their missions in an environment of hostile electronic combat systems. For example, pilots planning combat missions would be very interested in knowing the range at which a hostile radar system would detect their aircraft, so that they could avoid detection during the mission. Furthermore, using IMOM, pilots can run different scenarios showing the difference in detection ranges that would occur if they changed the altitude of the mission profile (i.e., flying in at 500 feet instead of 1,000 feet of altitude can make a huge difference in detection ranges).
	IMOM has also been incorporated into the Air Force CTAPS (Contingency Theater Automated Planning System). CTAPS is a command and control system developed by a joint Air Force/INEL team for managing complex air/land battle operations anywhere in the world. Various models of different detection devices and technologies can be depicted in the IMOM system, showing the range and capabilities of a variety of radars. Also, the effect of height above the ground of the sensor, and the effect of electronic countermeasures (ECM) can be determined. In this modern era of increasingly sophisticated detection systems and antiaircraft technologies, the success and survival of US military pilots are heavily dependent on an accurate depiction of the expected coverage of electronic combat systems.
	The benefits that IMOM provides to pilots of modern military aircraft were proven during the Persian Gulf War, where the system was used extensively by US pilots, under the auspices of the Air Force Sentinel Byte program. Sentinel Byte disseminates and displays intelligence and key early warning data for use by Air Force combat mission planners and pilots. At the time of the Persian Gulf War, IMOM was a Sentinel Byte application, having been moved from the AFIWC and CTAPS programs into the Sentinel Byte environment. The fact that IMOM could be moved from one major functional environment (CTAPS) to another (Sentinel Byte) is significant. Basically, IMOM delivered critically important capabilities to Sentinel Byte, virtually immediately, without additional development time and resources being required. Substantial additional functionality was then added to the core IMOM application, enhancing the value of the system to Allied pilots in the Persian Gulf War. This ability to move critical capabilities from one major functional environment to another has tremendous applicability in non-Air Force organizations. Similar benefits can be achieved by large government and commercial operations that are able to share and leverage common operational requirements and solutions.
	The IMOM system was originally an AFIWC in-house program used in response to tasking and requests from other Air Force components. Due to its excellent performance and capabilities, IMOM became very popular with Air Force users from other commands. As a result of this superb performance and popularity, IMOM was distributed to a broad range of Air Force users, including pilots and mission planning personnel. The graphical representation of the various IMOM family of models allows users to take advantage of the capabilities of the system in a familiar context and manner — just as they would if they were working with a manual system of maps, charts, and markers. The color graphical interface enhances the fundamental capabilities of IMOM, with corresponding benefits to its users.

Project Evolution — Translating from Fortran to C�tc "<Head 3 (14)>Project Evolution — 	Translating from Fortran to C"�
	The original IMOM capability was developed in 1984. Written in Fortran, the original version was hosted on a proprietary VAX/VMS platform, and used Tektronix PLOT-10/STI graphics. The software was designed using a top-down functional decomposition approach, with a high degree of machine dependency in the code. The IMOM system was a success from the perspective of the users, and the system established a track record of successful usage. Due to the long-term successful track record, IMOM users requested numerous enhancements to the IMOM model(s). As electronic combat threats and technologies evolved, IMOM users required additional functionality in the software. As a result of user needs and advances in electronic combat technologies, the original IMOM expanded quite rapidly, with substantial additions to the initial software system.
	In terms of current open systems architectures, the original IMOM was most definitely a “closed” system. As the Air Force and the Department of Defense migrated toward open systems technologies in the late 1980s, it became clear that the proprietary IMOM architecture needed to be modified. In 1989, the Air Force tasked the INEL with modifying the IMOM system to enable it to operate in a UNIX/Windows environment, using standard GKS graphics. To accomplish the required modifications, INEL translated the original IMOM Fortran code to C, and moved the software to a Digital Equipment Corporation (DEC) workstation. In keeping with the Air Force’s tasking, the original software architecture was retained, and the majority of the translation from Fortran to C was accomplished using an automated translation tool. The end result of this re-hosting task was an open systems implementation of IMOM which ran on UNIX, incorporated GKS (Graphical Kernel System) graphics, and used a “point and click” user interface. As was the case with the Fortran version of IMOM, the new C implementation was well-received by users of the system. Some additional functional enhancements were made to the C version of IMOM through 1991.
	The original Fortran IMOM evolved as a baseline for the additional capabilities. In 1990, INEL added the functional capabilities required by the Air Force’s Sentinel Byte program, eventually evolving the Fortran IMOM baseline through version 5.0. In addition to the Fortran enhancements, the C version of the IMOM baseline was upgraded to include the Sentinel Byte requirements. The additional models are different from IMOM, and have their own community of users, as well as a separate Air Force office. Those models, the COMJAM (communications jamming), PASSIVE DETECTION, and RECCE (reconnaissance) models, were all originally implemented in Fortran. Unlike the original Fortran versions of IMOM, the other models were not translated into C. The Ada versions were a result of the re-engineering effort conducted by INEL.
	Although the various IMOM implementations were quite successful from the users perspective, the different language and platform implementations suffered from configuration management (CM) problems. In addition to the CM challenges, the software was becoming more difficult to maintain and modify. In 1991, the Air Force realized that the existing implementations of IMOM would not be adequate to support user needs into the future. The cost of maintaining and modifying the software was becoming unacceptable, and enhancements were exacerbating the complexity of the system. As a result of these concerns, and in anticipation of expected user requirements in the future, the Air Force tasked INEL with conducting a research study to ascertain the future directions of IMOM.

Research Study — The Future of IMOM�tc "<Head 3 (14)>Research Study — The Future of IMOM"�
	INEL’s research study included four primary objectives:

1.	Determine the objectives and future goals for IMOM.
2.	Identify current industry and DoD standards which could apply to IMOM.
3.	Analyze the current IMOM implementations from a software engineering perspective.
4.	Offer recommendations to the Air Force as to how to achieve the IMOM objectives.

	Among the objectives and future goals identified for IMOM was the need to provide software which would be more maintainable and modifiable than the existing Fortran and C code. More easily maintainable code would allow the Air Force to minimize support costs without sacrificing functionality and reliability. More easily modifiable software would enable the AFIWC to keep pace with changing user needs as well as new and emerging technologies. The ability to migrate the software to more powerful computer platforms was also a sound objective for IMOM. The current industry trends and standards which could apply to IMOM included a wide variety of technologies and tools. Clearly, the need for an open systems architecture was an ongoing requirement for the future. In addition, the use of modern software development methods, such as object-oriented techniques, offered substantial promise for long-term IMOM usage and support. Other DoD and industry standards, such as the Ada programming language, were included in the INEL research study.
	As the study progressed, it became clear that there were two major factors which had a direct impact on the design and structure of the IMOM software: the software architecture; and the programming language used for the implementation. The deficiencies of the original software architecture, with its reliance on hardware-specific features and operating system calls, were perpetuated in the translated C version of the code. INEL concluded that a continuation of the original software architecture would effectively preclude any major improvements in the quality and maintainability of the IMOM software. Since INEL’s study was conducted from a software engineering perspective, the role of programming language selection in support of a well-engineered software implementation was included in their evaluation of IMOM. In this context, INEL compared Fortran and C with Ada. As INEL applied and evaluated various software engineering principles (i.e., abstraction, information hiding, encapsulation, modularity, etc.), it became clear that the Ada programming language offered superior support for a re-engineered version of IMOM.
	Ada also offered benefits in the application of an object-oriented design for IMOM. As part of their evaluation of object-oriented technologies and techniques, INEL noted the importance of applying object-oriented methods in a disciplined software engineering context, as opposed to focusing on overrated and highly abused object-oriented programming features, such as inheritance and polymorphism. The evolution of the various versions of IMOM proved the importance of a sound, flexible design as a key factor in obtaining the benefits sought by the Air Force in the areas of maintainability and modifiability. From a design perspective, as well as a software engineering perspective, Ada was a superior choice for the future of the IMOM application. INEL’s bottom-line recommendations to the Air Force were as follows:

·	Re-engineer and redesign the system,
·	Use object-oriented technologies, and
·	Use the Ada programming language.

Re-engineering IMOM�tc "<Head 3 (14)>Re-engineering IMOM"�
	INEL produced a Software Development Plan which set forth and documented the process by which IMOM would be re-engineered. The Plan emphasized the use of sound software standards, such as Ada, as well as the disciplined application of software engineering principles. The development team followed an iterative life cycle approach, to ensure flexibility and fast response to changing user requirements. The redesign of the software used object-oriented (OO) analysis and design techniques with an implementation in Ada. A hybrid OO methodology was used for the analysis and design, drawing from a variety of well-known OO methodologies offered by Rumbaugh, Booch, and Coad/Yourdon. Basically, the INEL development team used the best features of these various methodologies and combined and adapted them to fit the requirements of the IMOM software redesign. The result of the object-oriented redesign of IMOM was a reusable layered software architecture. The layered nature of the new software architecture enabled INEL to clearly define the interfaces between the layers, and implement the various pieces and subsystems of the application in a highly modular manner. The clear delineation between layers and between modules within layers was an explicit design goal to enable ease of maintenance and modifiability of the IMOM code.
	One of the major benefits of the layered reusable software architecture was the mitigation of the risk of using a mix of software technologies and methods. While INEL had recommended the use of solid technologies, such as Ada, object-oriented design, UNIX, GKS, and Motif, those technologies and methods had typically not been combined together all in the same system. The underlying software architecture allowed the use of a hybrid solution consisting of a mix of language, architecture, methodology, and technology.
	Because of INEL’s focus on a well-engineered layered software architecture, they were able to apply a wide variety of powerful technologies and methods in a disciplined and cost-effective manner. The variety of techniques, methods, and technologies were applied in a controlled and well-engineered process to produce the layered software architecture. Due to the solid success of the IMOM re-engineering effort, the Air Force directed the INEL to proceed with the re-engineering of the other electronic combat models. These other programs included Ada versions of the COMJAM, PASSIVE DETECTION, and RECCE electronic combat models. All of these models were successfully re-engineered during the 1991 - 1993 time period, using the same layered, object-oriented architecture and Ada.

Measures of Success — Speed of Development�tc "<Head 3 (14)>Measures of Success — 	Speed of Development"�
	Once the re-engineering effort was completed, and all of the IMOM “family” of models had been implemented in well-engineered Ada code, an analysis was conducted to measure the success of the program. Although IMOM users were quite satisfied, die Air Force needed to ascertain whether the fundamental IMOM goals of improved maintainability and modifiability of the software had been achieved. Over time, software systems which have been developed using top-down, functional decomposition approaches have experienced significant deterioration in terms of maintainability. This is due, in part, to the effects of adding additional capabilities and functionality, which result in substantial increases in the complexity of legacy systems. In software systems which have not been well-engineered, new levels of complexity are introduced as defects are corrected, leading to further deterioration of code maintainability.
	The introduction of new complexity, combined with the demand for new functionality far beyond the scope of the original design, has an extremely detrimental impact on the ease with which the code can be modified. The Air Force recognized that the limitations of the original IMOM software architecture precluded the implementation of well-engineered, modular upgrades to the software. Although IMOM was meeting the current needs of its user community, the Air Force was anticipating problems which would limit responsiveness to future user requirements.
	The translation of the baseline IMOM system from Fortran to C required 54 manmonths of effort. While most of the translation was accomplished using an automated translation tool, the final C implementation required a significant amount of “clean up” by the development team. By comparison, the re-engineering effort of the baseline IMOM capability from Fortran and C to Ada required 72 manmonths of effort. Both phases of the project (translation and re-engineering) used a 4-person staff of developers. The re-engineering of the additional derivative models in Ada required a total of 20 manmonths for all three models. These models included the COMJAM, PASSIVE DETECTION, and RECCE models cited earlier.
	At first glance, the Ada IMOM re-engineering effort appears to have required an additional 18 manmonths of effort to deliver the same basic capability as the Fortran and C IMOM implementations. This is definitely not the case. The re-engineering project involved the design of an entirely new software architecture, as well as the development of highly modular, reusable Ada code. Basically, the re-engineering effort was an investment in the future, with an expectation of leveraging off that investment to accommodate user needs in a more cost-effective and reliable manner.
	As evidence of the value and validity of that investment, the real payoff for the Air Force and INEL began to accrue with the implementation of the Ada versions of the additional models. The actual time required to implement each of the models in Ada was on the order of 5-6 manmonths per model. By comparison, if each model was re-engineered from scratch, they each would have required a level of effort comparable to the baseline IMOM system — the order of 70+ manmonths per model. This is a clear validation of the payoffs to be achieved with a well-engineered software development effort, with a deliberate commitment to design or maximum reuse. Although no specific metrics were collected for re-engineering, the additional models in any language other than Ada, INEL believes that it would have required significantly more time to implement them using Fortran or C. The end result is that, without the application of sound software engineering methods, including a layered, object-oriented software architecture, and Ada, each of the additional models would likely have required the same number of manmonths as the original re-engineered IMOM implementation.
	From a user perspective, the reduction in manmonths for each new model has important ramifications: the “time to market” or fielding of these critical capabilities can make an enormous difference in terms of lives and equipment or combat pilots and military mission planners. This factor is critical for most organizations, in both military/government and commercial markets. Actual tracking of IMOM project files showed that an interim release of the re-engineered Ada implementation contained 20% fewer defects than the C baselines. Members of the development team attributed the use of an object-oriented design and Ada as major factors in the reduced number of defects. The reduced defect rate was achieved even with the shorter development time for the Ada implementations.

Measures of Success — The Maintainability Index�tc "<Head 3 (14)>Measures of Success — 	The Maintainability Index"�
	INEL’s research study indicated that the use of well-engineered software architectures, combined with object-oriented analysis and design, and an implementation written in Ada, would result in software that was more maintainable than code which was developed using top-down methods written in other languages. INEL set out to verify that the expected results and benefits had been obtained. One of the most impressive and critical effects of the Ada re-engineering effort was the impact on the measured maintainability of the code. The maintainability index of the IMOM Ada code was more than three times greater than the index for the equivalent functions written in Fortran or C. This is based on several software metrics which were collected and analyzed by the INEL development team, leading to the calculation of a “maintainability index” for the fielded software.
	INEL conducted a static analysis of the source code of the various Fortran, C, and Ada implementations. Using PC-Metric, a source code analysis program, the development team calculated the value of two widely known software metrics: Halstead’s effort/module; and McCabe’s cyclomatic complexity/module. These metrics were just two factors which INEL used to assess the maintainability of the IMOM family of software. Using the values from the Halstead and McCabe metrics, INEL then applied a set of field-proven polynomial metrics to calculate maintainability indices for each of the IMOM baselines. The polynomial metrics were developed at the University of Idaho and have been validated in the field by Hewlett-Packard (HP). Hewlett-Packard has set a “maintainability cutoff” of 65 on the maintainability index. Based on HP’s experience with software in the field, a software package with a maintainability index of less than 65 is considered to be “difficult to maintain.” HP’s separate evaluation and independent use of the maintainability index verified that it was applicable for HP’s software systems. INEL applied the maintainability index to the IMOM family of software systems to provide a comparison and perspective as to the maintainability of the Ada, Fortran, and C versions of the IMOM baseline. The Fortran and C versions showed an accelerated decline on the maintainability index, while the Ada implementations stayed constant. The Fortran and C versions of the IMOM software were becoming “more maintainable” as additional functionality was added. In contrast, Ada versions of IMOM exceeded the HP cutoff value, and stayed virtually constant, even with additional functionality being added.

Measures of Success — Software Complexity�tc "<Head 3 (14)>Measures of Success — Software Complexity"�
	Tracking the trends indicated by the metrics, INEL documented a dramatic increase in the complexity of the Fortran-based models of IMOM. The trends in the Fortran models showed a nonlinear increase in software complexity as IMOM evolved from version 4.0 to 5.0, with a corresponding projection for continually worsening maintainability over the life of the application. For the C versions of the IMOM baseline, the complexity was roughly the same as the Fortran implementations. This rough equivalency is due in part to the fact that the C code was derived from the Fortran software, using the same basic software architecture, indicating a functional equivalency between the various language implementations of IMOM. For example, the Fortran version 4.0 is functionally equivalent to the C version 1.0, and the Ada version 1.0.
	The average cyclomatic complexity (a measure of the number of paths through source code) for the Ada IMOM baseline was slightly larger than 3, while it was more than 9 for the Fortran implementation. For the C version, the complexity metric was greater than 13. The several-fold increase in complexity for the Fortran and C versions in comparison to the functionally equivalent Ada code has a direct effect on the maintainability of the respective language implementations. The maintainability of the Fortran and C code markedly decreased over time, while the maintainability of the Ada code stayed virtually constant. The consistency of the maintainability of the Ada code indicated a significant reduction in the complexity of each individual module. Each IMOM baseline module written in Ada was smaller, simpler, and easier to read and understand than the equivalent programs written in Fortran and C. The bottom-line benefit for personnel engaged in software maintenance and modifications was that less effort was required to understand the function and execution of each subprogram.
	The Ada IMOM version 2.0 has many more functional capabilities than version 1.0. Contrary to the trends of the Fortran and C implementations, the increased functionality in the enhanced Ada code has not increased the complexity of the code. The cyclomatic complexity of the Ada IMOM version 2.0 had the same relative magnitude as the Ada version 1.0, indicating that the modifications and maintenance of the code had little impact on the complexity of the Ada software. The number of unique operators and operands in the Ada versions of IMOM greatly increased in comparison to the Fortran implementations. The number of unique operators were 1.8 times higher in the Ada IMOM version 1.0 than in the Fortran version 4.0, and there were 2.5 times as many unique operands in the same Ada version. The total number of operators and operands also nearly doubled.
	One of the primary reasons for the increase in unique operators and operands in the Ada code is that the Ada software has many more local variables, less globally accessible data, and passes many more formal parameters between modules. These facets, in turn, are “by-products” of the object-oriented design, and the layered reusable software architecture, where well-defined interfaces between objects, layers, and components are required. Basically, these characteristics of the Ada code reflect the application of the proven software engineering principles of modularity and information hiding.
	Even with the additional volume of code in the Ada version of the IMOM baseline, the Halstead-estimated effort, as a complexity indicator, was 53% less for the Ada code than it was for the equivalent Fortran implementation. This is in spite of the fact that the Ada version has 63% more executable statements that the Fortran version, and more than four times as many subroutines. The fact that Ada source code, unlike many languages, is not terse, cryptic, or obscure, contributed significantly to the expanded number of statements and subroutines. The size of the Ada modules was much smaller than the modules written in Fortran and C. The Fortran IMOM baseline was comprised of about 334,000 lines-of-code, with the typical use of global data access and Fortran subroutines that is common with functionally decomposed software designs. By comparison, the Ada implementation was comprised of 213,000 lines-of-code, which means that the Ada modules, although more numerous, were also much smaller than the equivalent Fortran components. The reasons for the reduced lines-of-code in the overall systems include the following:

·	A significant amount of code was shared between modules,
·	More streamlined implementation of required functions, and
·	Changes in the functionality of the models.

	The smaller code modules in Ada offer additional benefits to the Air Force in terms of maintainability and modifiability. Smaller, easier-to-understand modules enable the use and exploitation of the reusable layered software architecture, with explicit support for the object-oriented design employed by the INEL development team. The Ada modules are easier to work with, test, and modify, thus facilitating the iterative software life cycle approach chosen by the INEL team. The discrete and well-defined interfaces between modules prevents major surprises when the software is integrated and tested — an area that is historically a major source of delays and problems and cost increases.
	Code modules of low complexity and size also have an impact on the effectiveness of all support personnel. Additionally, the number of people required to provide support, as well as the skill and experience of the support staff, are directly affected by the low complexity and size of the IMOM baselines. With small and easy-to-understand modules, new maintenance personnel can be brought up to speed very quickly, with minimal impact on the quality and responsiveness of support. Furthermore, with easy-to-understand code packages, highly-skilled senior software engineers who are expensive and in short supply, can be much more productive and efficient. Less senior personnel can be used to conduct routine support, error fixes, and modifications to the code, freeing the senior staff to address more complex support requirements. Finally, fewer people are required to provide on-going maintenance and support, with a corresponding reduction in resource allocation and funding.
	By comparison, the Fortran and C versions of IMOM, due to a significant degree to their much greater levels of complexity, are very challenging and difficult to maintain and modify. Safe and reliable maintenance and modification of the Fortran and C code requires the allocation of very experienced, very costly, and very scarce software engineering talent. Even senior and experienced personnel will require much more time to assimilate and understand the intricacies and complexity of the non-Ada implementations of IMOM. For both government/military and commercial organizations, the ability to allocate top software talent to areas with a higher return on investment (i.e., the design of new systems) can have a profound effect on the efficiency of operations. In military commands, where deployment of systems like IMOM to remote areas of the globe is common, the capability to maintain and modify critical software systems is often measured in terms of lives and equipment. Making software easier to maintain and modify with fewer people and with people who are less experienced provides an enormous return on investment.
	From an operational perspective, the combination of the layered software architecture, object-oriented design, and Ada has shown conclusively the effect of software as a “force multiplier” for the US military. Without that working combination of technologies and methods, the benefits of the USAF/INEL re-engineering effort would have been substantially reduced. INEL also studied the three additional electronic combat models which were implemented (RECCF,, PASSRVE DETECTION, and COMJAM), to compare results on those derivative models. The trends discovered in the IMOM baseline also showed up in all three of the other models, including the following:

·	The Ada version contained many more modules than the Fortran implementation. This is, to a significant degree, the result of a completely different software architecture being used for the well-engineered Ada versions of the models.
·	The Ada code modules were smaller in size than the Fortran versions. The smaller modules greatly facilitate the understanding and maintainability of the software. The modules are easier to comprehend, modify, and reuse.
·	Each of the Ada modules is much simpler than the Fortran modules, as measured by the cyclomatic complexity values.

Measures of Success — Module Maintainability�tc "<Head 3 (14)>Measures of Success — 	Module Maintainability"�
	To provide a more detailed examination of the complexity and relative maintainability of the various systems, INEL conducted another analysis using the same polynomial model cited earlier. For this analysis, however, instead of evaluating an entire model (i.e., all of the IMOM baseline), INEL calculated the maintainability index for each subroutine of each software baseline. In other words, each subroutine in the Fortran, C, and Ada IMOM baselines was evaluated, and a maintainability index calculated. Once each subroutine in each of the various IMOM baselines was evaluated and a maintainability index calculated, the modules were then categorized according to their respective maintainability values. Modules with a maintainability index of less than 65 (deemed unmaintainable by Hewlett-Packard) were categorized as “low.” Modules with a maintainability index between 65 and 85 were ranked as “medium.” Modules with a maintainability index higher than 85 were rated as “high.” The Ada modules in the implementations of the various IMOM models were substantially more maintainable than the modules written in either Fortran or C. Generally, nearly two-thirds of all of the Ada modules rank in the “high maintainability” category. Conversely, around half of all of the modules written in Fortran and C are rated as “low maintainability.”
	There was also a downward trend in maintainability as the Fortran and C versions were modified and additional functionality was added. In both the Fortran and C implementations, the number of modules which fell into the “low maintainability” category increased over time. Conversely, the number of Ada modules which were rated for high maintainability remained relatively constant over time and with additional functionality. The INEL development team attributed the benefits of the Ada versions of IMOM to the emphasis on sound software engineering, the use of the layered software architecture, the application of object-oriented design, and the stability, clarity, and software engineering support of Ada.

Software Reuse�tc "<Head 3 (14)>Software Reuse"�
	Software reuse does not enjoy a commonly accepted definition. Basically, “reuse” means many different things to different people, depending on their area of expertise, technical background, etc. The premise and promise of software reuse has been analogous to a technical “holy grail” for many years. The DoD and other government agencies, as well as major commercial enterprises, have pursued high degrees of software reuse as a means of lowering software costs, increasing productivity, improving reliability, and leveraging investments in software. Unfortunately, the promise of software reuse has not been widely attained, due to a variety of factors and impediments.
	The INEL development team was able to amply demonstrate that software reuse is not a myth, and that significant levels of reuse can be obtained, with corresponding benefits to both developers and users. As a foundation for obtaining substantive reuse, the underlying software architecture and software design are critical. The INEL team designed the Ada IMOM baseline with reuse in mind, with the expectation of reusing significant amounts of code as new models were added to the IMOM family. The layered software architecture was a key element in the attainment of high degrees of reuse in the re-engineered Ada implementations of the IMOM family of models. The INEL development team, knowing that additional models and functionality would be required beyond the initial IMOM baseline, planned their software architecture accordingly. They structured the layers to enable high levels of reuse within the domain-specific portions of the applications, an used layered “application frameworks” to leverage their investment in common interfaces.
	For example, by planning for and designing the system for reuse, INEL was able to develop common user interfaces (man-machine interfaces, or MMI) which could be reused for all of the IMOM models. Because of the structured, object-oriented layers of their design, the development team was able to simply concentrate on the engineering algorithms of each new model or function (RECCE, PASSIVE DETECTION, and COMJAM), without concern for the underlying software architecture and MMI.
	The layers also provide insight into the “type” of reuse attained. Basically, reuse can be separated into two general categories: domain-specific, and general purpose. Using the “Application Layer” as an example, there was significant reuse across that layer which was domain-specific to the IMOM models. INEL achieved high levels of reuse in both the domain-specific and general purpose layers of the ECSI effort. The middle layers were analogous to “application generators” and were reused throughout every layer. For example, the “Interface Layer” provided reusable code which could be applied throughout the vertical range of layers. These generic reuse capabilities can provide powerful advantages for users and development teams, for requirements such as mapping tools. By reusing the common constructs for maps (i.e., bearing, heading, coordinates, etc.) the INEL team has established a generic mapping tool with a general applicability for a wide variety of domains. By using this tool, a developer would be able to quickly produce a capability equivalent to a software program of 50,000 to 100,000 lines-of-code. The tool has the additional advantage of being comprised of code which has already been tested and fielded.
	Generally, INEL realized a “reuse rate” 65% which means that 65% of the Ada code modules were reused in one or more applications. The savings which resulted were impressive: without that level of reuse, each of the three IMOM models (other than the baseline) would have required at least another 100,000 lines of new code. Stated another way, a less structured and disciplined approach would have necessitated a minimum of 300,000 lines of additional new code development. The impact on productivity and “time to market” is the most obvious benefit of the reuse rates achieved by the development team. There was also a substantial benefit which accrued due to the reduction in testing and integration, since the reused modules had already been through that process. The reduction in risk, due to the virtual elimination of the new errors that would have occurred with the development of new code, was also noteworthy. The bottom line for the reuse of Ada code in the various IMOM models can be summed up with this observation by a representative of the INEL development team:

Due to the insight and foresight of the Air Force, we were encouraged to apply sound software engineering rigor and discipline. We were allowed to apply the appropriate methods in the up-front engineering of the system, to ensure a payoff to users in the future. If we had not been able to design for reuse, and actually take advantage of reused Ada code on this project, each of the derivative models would have taken significantly more time to develop. The results achieved on ECSI are a validation of the benefits and return on investment which can be realized by applying a soundly engineered mix of technologies and methods.

	If a poor process had been employed for ECSI, and sound software engineering had not been used, each of the three additional models (COMJAM, RECCE, and PASSIVE DETECTION) would have required 72 manmonths of development time, for a total of 216 manmonths. By taking advantage of Ada code reuse (in support of the engineering process used by INEL), all three of those models were implemented in a total of 20 manmonths — less than one-tenth of the time without reuse.
	As most software engineers and managers know, reuse can be achieved with software designs, as well as actual code. One of the highest payoffs can be achieved by reusing are designs, including object-oriented designs. INEL recognized during the analysis phase of their effort that each of the four IMOM models had a wide variety of components which could be shared among the models. Each of the applications contained common or similar user interfaces, modeling algorithms, graphics, and electronic components. During the design phase, the development team focused on determining the appropriate abstraction for each object class and its respective role within each IMOM model. The level of reuse for each object was directly linked to its role within the various models. Some object classes had the potential for reuse outside the electronic combat application domain, others could be shared by two or more of the IMOM models, and others were highly specialized and specific to a particular role within a single model. By evaluating the specificity of the various object classes, the INEL development team was able to make decisions as to when to design for broad reuse (i.e., outside the electronic combat domain) and when to limit the design to a specific IMOM model. The development team discovered that most object classes in the IMOM domain were conceptually the same although their characteristics and roles within each of the models were different. When those differences were relatively minor, an object class was designed which would meet the multiple requirements. Even with the broader requirements, this approach added little additional complexity to the object classes.
	The results of this approach were impressive. Interim releases of the four IMOM models indicate the benefits to be derived — the four models in those releases had approximately 112 object classes, of which 73 were shared between two or more software systems. Each class had an average of 1,200 lines of commented source code. There were 11 algorithmic or interface libraries which are shared between the models. INEL discovered that reuse is not the general panacea which is often touted as a goal for software development. For certain types of problems, and within specific application domains, reuse can improve the quality of software and enhance the development process. The greatest reuse is possible when sharing objects within the same specific application domain by a single software development team. Beyond those parameters, object reuse is still quite difficult to achieve.

The Benefits of Ada
	Throughout this monograph, the benefits of Ada in terms of its explicit support for software engineering discipline and object-oriented design have been cited as major factors in the success of the USAF/INEL project. The Ada language features provided excellent support for the implementation of the layered software architecture, as well as the attainment of significant levels of code reuse. Furthermore, Ada’s strong typing, parameter checking in subroutine calls, and array constraints contributed to the benefits achieved in the ECSI program. In addition to these powerful attributes and benefits, the clarity of Ada source code and the benefits of that characteristic must be specifically cited. The names of variables used in the Ada IMOM baseline are more descriptive of the actual items or phenomena being represented than comparable representations in the Fortran version. The Fortran baseline used primarily six character identifiers for variables and subroutine names, a limitation which was carried over to the C-based translation. The descriptors in the Ada version allowed the “real world” to be more accurately represented in the actual source code. The C version of the IMOM baseline was just as terse as the Fortran version, due to the fact that the C code was translated from the Fortran and retained the same brevity for variable names. C has earned a reputation for being more terse than other programming languages, so it can reasonably be expected that a new version of IMOM written in C would still include terse names for variables.
	The additional clarity of the Ada source code pays substantial dividends in the areas of maintenance and modification of the software. Maintenance personnel are able to relate or “tie” Ada source code to design documents and change requests more effectively and efficiently than with comparable Fortran and C implementations. The clear and descriptive nature of variable names in Ada help significantly in reducing error rates and the introduction of new defects during code maintenance and modification operations. Ada’s package construct also supports the use of layered, object-oriented, flexible software architectures. The Ada package basically consists of two parts: the package specification and the package body. The specification part of the package enables a sound engineering implementation of the software requirement, through its support of encapsulation, information hiding, abstraction, etc. Interfaces between packages are specified and verified before the package body is written. The inputs, outputs, and assumptions for each package are clearly delineated and established.
	The package specification provides a great deal of information to maintenance personnel, akin to a high-level summary of the characteristics of the package. In addition to defining module interfaces, package specifications also offer essential insights to the humans who must be able to understand the inner workings of the software modules to be able to maintain and modify the code in a reliable, cost-effective manner. Neither Fortran nor C provide any comparable capabilities to the Ada package specification. The clarity of Ada source code (Ada code is written in English, as opposed to obscure symbols and other representations, and resembles a structured English outline), combined with the structured nature of its package specifications, has a profound effect on documentation and software reuse. By minimizing the complexity and size of Ada code modules, Ada software implementations become virtually “self documenting” due to the explicit representation of the function and interfaces of the respective modules. The extensive information included as part of the package specification enables developers to ascertain the potential for the reuse of existing modules in other applications, without having to delve into the source code of the package body itself. The improvements in efficiency, accuracy, and productivity are substantial.
	The INEL development team discovered that the learning curve for Ada is far less than perceived. The team was able to assimilate fundamental Ada constructs within a minimal period of time. Furthermore, the team was able to use and apply engineering discipline and methods using specific features of the Ada language. As the INEL team noted, “You do not have to use all of the features of Ada to make effective use of the language.”

Ada and COTS
	As mentioned in the Executive Summery policy requires the use of commercial-off-the-shelf (COTS) software whenever they will satisfy requirements. For those applications where COTS is inadequate to meet DoD needs, new software must be developed in Ada. The USAF/INEL re-engineering project had some valuable experiences in effectively applying that policy. Many of the “COTS or Ada” decisions for the IMOM models were obvious. For example, INEL did nor want to write its own operating system, or its own version of UNIX or Motif/X, Similarly, existing software interfaces or drivers to peripheral devices did not warrant the development of new Ada code. The flexibility of the layered object-oriented software architecture enabled the development team to mix and match the appropriate technologies and tools without sacrificing maintainability and the ability to add new functionality. To meet the requirements of IMOM users, the INEL team had to develop two “spin-off” products: the Data Stream Analyzer and FormBuilder. The Data Stream Analyzer was basically a generic parser which translated data from one format to another. This is a valuable and essential capability for IMOM users, since different sources provide data in different formats. The Data Stream Analyzer takes care of converting differing formats into one which can be accepted by the various IMOM models.
	In the case of the FormBuilder, the Air Force and INEL both knew that there were several COTS products on the market which provided the capability which was needed. The basic requirement was for an application programmers interface for developing Motif-based graphical user interfaces (GUls). At first glance, it appeared that simply buying a COTS form-building tool would be the best choice for the Air Force, and in keeping with DoD policy. Fortunately for the Air Force (and the taxpayer), INEL went beyond a “first glance” evaluation. The INEL team used GKS (Graphical Kernel System) for a significant length of time on the ECSI project. Although GKS is a standard, the implementations of the standard by commercial vendors are not consistent. By using commercial product implementations of GKS, INEL and the Air Force were dependent on product changes and support from vendors, who were subject to commercial market influences and different business goals. This risk was realized by the development team when the vendor of the GKS product being used for the ECSI project suddenly decided to discontinue marketing and supporting their implementation. INEL also did not want the Air Force to be subjected to the additional cost of GKS runtime licenses, so the development team built their own graphics package, called FBGraphics. For the Motif-specific requirement, INEL discovered that many COTS form-building tools worked effectively, and provided the capability to develop GUIs for applications. However, the tools all generated substantial amounts of code which was Motif-specific. This Motif-specific code, while performing the GUI tasks required for an application, was not itself readable or maintainable. INEL was thus able to justify the development of a FormBuilder written in Ada, which did not have the overhead of licensing fees and the generation of unmaintainable code. The development team required only two months to develop the Ada-based capability.
	While the policy of “COTS first, Ada second” makes sense or many applications, there are significant hidden costs and other factors which need to be considered. For example, configuration management (CM) of an application can become a nightmare for program managers and maintenance personnel, if multiple COTS products are incorporated into a system like IMOM. As COTS vendors make changes and offer new releases, the impact of those changes can have serious and unforeseen effects on the rest of the system. If a fielded system uses several COTS products, the CM problems can be rapidly compounded over time. When evaluating a choice between COTS capabilities and new Ada software, decision makers must take into account much more than just the perceived “up-front” costs. In the case of the IMOM effort, INEL only required two months to produce a capability which could have been superficially satisfied by a COTS product, but the COTS solution would have been a serious detriment to the maintainability and modifiability of the IMOM models over time.
	The IMOM family of models also required a database management system (DBMS) capability to meet user needs. In keeping with DoD’s “COTS first” policy, it has become popular and common for program managers to pursue the use of commercial database management products, especially relational DBMS capabilities. For the ECSI effort, the INEL team evaluated the efficacy of using a COTS DBMS versus writing the appropriate capability from scratch. Their solution for DBMS for ECSI was straightforward and easy to maintain, and consisted of ASCII flat files. This solution met user needs, and saved the Air Force substantial time and development resources.

Dual-Use Potential
	Since the software developed for the IMOM models has been paid for by the US Government, some of it is “in the public domain” and available for use by other government agencies and private enterprises. Some of the code has obvious commercial applicability and reuse potential, while other pieces of the IMOM applications are limited to specific domains. Clearly, the Data Stream Analyzer and FormBuilder tools are ideally suited for commercialization and exploitation by private companies. Similarly, other government organizations can derive substantial benefits from the use of these “free” tools. The user interfaces and graphical capabilities of the IMOM implementations have widespread generic applicability. The point and click nature of the user interface, along with the color capabilities of the various representations, are common features in most modern commercial systems. As an example of possible dual-use applicability, the generic mapping “application generator” cited earlier could be used by some commercial developers. Commercial developers who require basic mapping functions, as well as state and local governments engaged in economic development programs, are examples of organizations who could benefit from mapping software which is well-engineered and implemented in an international standard programming language. Other industries, such as aviation, marine, oil exploration, and land management/industrial planning operations could also make use of this generic capability.
	By virtue of the partnership between the Air Force and the Department of Energy’s INEL, the process of dual use has already begun. The INEL has, as part of its mission, the transfer of technology to the commercial sector. Many significant software capabilities embodied in the IMOM models offer valuable features and benefits for commercial exploitation and use.
Summary�tc "<Head 2 (14)>Summary"�
	The IMOM re-engineering project provides valuable lessons for both government and commercial software developers and decision makers. As modern systems continue to grow in size and complexity, the critical nature of well-engineered software in the success and survival of virtually all organizations is becoming more pronounced. The intelligent selection and application of solid methods and technologies are essential facets for progress. Key decisions related to the migration from legacy systems to more powerful distributed client/server architecture require sound justifications. The cost of maintaining and modifying legacy software is a critical factor in justifying a re-engineering effort. The “hidden” costs of providing adequate capabilities to the user base are often substantially higher than the explicitly measured costs of support.
	The IMOM re-engineering project provided conclusive lessons as to the importance of software architecture in achieving significant software-related benefits. The program also showed that the application of object-oriented methods, in the context of a disciplined software engineering process, can deliver major gains in reuse, productivity, and maintainability. Finally, the IMOM re-engineering effort showed the value of Ada in obtaining maximum payoffs from an investment in software engineering practices. The benefits achieved in applying sound software engineering principles were multiplied by the explicit support that Ada provides for that disciplined approach. Simply stated, the magnitude of the benefits obtained would have been substantially lower if another programming language had been used. The IMOM formula for success was: Good people, with knowledgeable managers applying sound software engineering methods, implementing in Ada, with the needs of the user as the objective. That formula works for all segments of the global software community.
Bibliography�tc "<Head 2 (14)>Bibliography"�
Coleman, D., “Assessing Maintainability,” 1992 Software Engineering Productivity Conference Proceedings, Hewlett-Packard, 1992, pp. 525-532
Idaho National Engineering Laboratory, “Improved Many-On-Many (IMOM) Model Research Study,” EGG-EE-9555, Rev. 0, May 1991
Oman, P. and J. Hagemeister, “Construction and Validation of Polynomials for Predicting Software Maintainability,” Software Engineering Tet Lab, Report #92-06 TR, University of Idaho, July 1992
Welker, K., M. Snyder, and J. Goetsch, “Ada Electronic Combat Modeling Experience Report,” Presented at OOPSLA ’93
Welker, K., “Application of Software Metrics to Object-Based, Re-engineered Code Implemented in Ada,” Masters Thesis, University of Idaho, April 1994
Welker. K. and M. Snyder, “Electronic Combat Model Re-engineering,” ECSI Project briefing slides, 1994
��tc "<>"�
CHAPTER 13�tc "<>CHAPTER 13"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Contracting for Success�tc "<>Contracting for Success"�

Jerome S. Gabig, Jr.
Abstract�tc "<Head 2 (14)>Abstract"�
	Senator Cohen’s scathing report, “COMPUTER CHAOS: Billions Wasted Buying Federal Systems,” alludes to “inevitable problems with software development” that cause cost overruns and schedule slippages. Cost overruns and schedule slippages need not be “inevitable.” This presentation focuses on two critical success factors that enable the government to greatly increase the probability of a successful software development contract. The first critical success factor is equitably allocating the risks between the parties. The second critical success factor is structuring the evaluation criteria to maximize the probability of selecting the best qualified offeror.
Overview�tc "<Head 2 (14)>Overview"�
	Where an agency must use a vendor to perform a software project, there are two critical success factors regarding the contracting process that greatly increase the probability of a successful software development effort. The first critical success factor is to structure the contract to allocate equitably the various risks between the parties based on which party is best able to manage the risk. The second critical success factor is to structure the evaluation criteria to maximize the probability of selecting the best qualified offeror.

The Importance of “The Written Word”�tc "<Head 3 (14)>The Importance of “The Written Word”"�
	A congenial relationship between the contractor and the government is almost indispensable to the successful completion of a software development effort. One might think that a congenial relationship would diminish the importance of the “written word.” Instead, by minimizing the probability of misunderstandings, a well-written contract is a major contributor to a congenial relationship between the parties. As recognized by the Software Technology Support Center, “once the initial contractor enthusiasm is over, the written word...has the most influence on contractor actions.” Experience has shown that when “the written word” is unambiguous as to the duties and responsibilities of the parties, the animosity that arises from quibbling over performance obligations usually can be avoided.

Structuring The Contract to Best Allocate Risks�tc "<Head 3 (14)>Structuring The Contract to Best Allocate Risks"�
	DoD has consistently recognized the need to structure contracts to allocate risks in an equitable and sensible manner:

The contacting approach selected for each acquisition phase must permit an equitable and sensible allocation of risk between Government and industry. (DoD Directive. 5000.1, Feb. 23, 1991, at C.3.)

	Risks essentially fall within three categories: cost, schedule, and performance. Each of these three categories of risk deserves a separate discussion.

Cost Risks�tc "<Head 3 (14)>Cost Risks"�
	The foremost way of allocating cost risks is through the selection of the type of contract. For instance, FAR § 16.103(b) states that a firm-fixed price contract “shall be used when the risk involved is minimal or can be predicted with an acceptable degree of certainty.” Although rarely followed by contracting officers, the FAR also admonishes that the contract type generally should be negotiated with the offerors:

Selecting the contract type is generally a matter for negotiation and requires the exercise of sound judgment. * * * The objective is to negotiate a contract type and price (or estimated cost and fee) that will result in reasonable contractor risk. [FAR §16.103(a)]

	The reasonableness of the cost risk to the contractor is a factor of how accurately the contractor can estimate the cost to perform the work. The highly recognized work of Barry Boehm, as shown in Figure O-
38
, reveals the increasing degree of accuracy for estimating costs as a software development project proceeds through the phases of the waterfall model. Superimposed under the x-axis of Figure O-
38
 is the linear progression of contract types in the sequence in which they represent decreasing risk to the contractor. The superimposed x-axis should not categorically dictate the contract type for any particular phase of a software development project. Nevertheless, Figure O-
38
 correctly suggests that as the relative accuracy of the cost estimate increases, it is appropriate to select a contract type that correspondingly places increased cost risks on the contractor.

�
Figure O-3
8

The Premature Use Of A Fixed Price Contract Invites Failure�tc "<Head 3 (14)>The Premature Use Of A Fixed Price Contract Invites Failure"�
	Within the government, there has been a long-standing aversion to cost-reimbursement contracts because of a lingering suspicion that contractors are not motivated to work efficiency. Another suspicion has been that a contractor is less likely to assign its best software engineers to a cost-reimbursement contract. As a norm, fixed price contracts for complex software development contracts are not conducive to the iterative nature of the process. The following excerpt expresses a user’s perception of the anticipated “give and take” necessary to refine the software requirements specification:

Actually, the software specification review is an iterative process with the iterations consisting of the contractor submitting a draft of the spec, the technical monitor reviewing and recommending changes to the draft, the contractor making some changes and resubmitting a revised draft. The iterations continue until the program manager feels that the software requirements specification establishes the allocated baseline for its CSCI.

	Yet, on a fixed price contract, the contractor is apt to regard anything beyond the second iteration as unwelcomed meddling by the user’s technical staff. Such behavior by the government’s technical representatives may result in the contractor submitting claims. A fixed price contract that is inundated with valid claims typically does a poor job of shifting cost risks to the contractor.

�The Premature Use Of Fixed Price Contracts Favors Vendors With Immature Processes�tc "<Head 3 (14)>The Premature Use Of Fixed Price Contracts Favors Vendors With Immature Processes"�
	A major difference between a vendor with mature processes and a vendor with immature processes is the consistent capability to accurately estimate the costs to perform a software development project. Figure O-
39
 graphically depicts the relative accuracy of a cost estimate by a SEI Level 1 vendor in contrast to a cost estimate by a SCE Level 3 vendor.

�
Figure O-
39

	As shown in Figure O-40, the SEI Level 1 offeror is much more likely to be quantumly incorrect in its estimate than the SEI Level 2 offeror. Moreover, the probability is that the SEI Level 1 offeror will underestimate the cost of the project.
	Routinely, where the SEI Level 1 vendor overestimates a project, its proposal is at a competitive disadvantage and rarely receives the award. Conversely, where the SEI Level 1 vendor underestimates a project, its proposal gains a competitive advantage and frequently wins the award. The net result is that, over a period of time, the Level 1 vendor’s portfolio of contracts predominately consists of fixed price contracts that are experiencing significant overruns. Anecdotal evidence strongly supports that once a Level 1 offeror begins to lose money on a fixed price contract, the likelihood that the software will be completed to the satisfaction of the agency is greatly diminished.
	Unlike most SEI Level 1 vendors, SEI Level 3 vendors have invested heavily into process improvements. Consequently, in terms of reduced overhead, the Level 1 offeror enjoys a conspicuous price advantage. In light of this price advantage, vendors with Level 3 and higher rated processes are reluctant to spend their bid and proposal money on fixed price acquisitions unless the evaluation criteria is structured to favorably consider their superior capabilities and processes. Unwittingly, the government sometimes deters highly competent vendors from submitting a proposal by improvidently selecting the contract type or not astutely drafting the evaluation criteria. (See generally, the discussion below which essentially states that selecting a highly competent vendor is one of the two critical success factors to a software development project meeting the cost, schedule and performance requirements.) Plain and simple, discouraging the best qualified offerors to submit proposals greatly decreases the probability of a successful software development effort.

Performance Risks
	Cost risks, performance risks, and schedule risks are generally interdependent notwithstanding that they are usually addressed separately in risk mitigation plans. The interrelationship between cost and performance risks is exemplified by the following observation of the Court of Claims:

[C]ontractors are businessmen, and in the business of bidding on Government contracts they are usually pressed for time and are consciously seeking to underbid a number of competitors. Consequently, they estimate only on those costs which they feel the contract terms will permit the Government to insist upon in the way of performance.

	This observation is particularly applicable to software development contracts. It is a common attribute of the software development process that the preponderance of the requirement must be decomposed before a comprehensive specification can be drafted. Without a thorough specification to uniformly bind all offerors to a common baseline of performance, the competitive pressure to underbid competitors motivates offerors to only bid what the government can “insist upon by way of performance.” Once the contract is awarded, the tact the vendor took to win the contract usually necessitates that the contractor contest the allocation of performance risks in each instance where the specification is not abundantly clear. Hence, it is not until late in the software development cycle that the government can effectively shift the risk of nonperformance onto the contractor.
	An environment where a vendor frequently contests what the government perceives as a contractual obligation is not only disruptive to the smooth progression of work, but also it can be inimical to the much needed congenial relationship between the parties. The following is an extract of a decision of the Armed Services Board of Contracts Appeal which exemplifies the debilitating bickering that can arise where a fixed price contract is used without a detailed specification:

The lesson-learned is abundantly clear but frequently overlooked. Before the government selects a fixed price contract ostensibly to place the cost risks on a vendor, the government should scrupulously examine the specification to assure that the performance risks are unequivocally passed to the vendor.

	A fixed price contract only encourages a contractor to perform the bare minimum since anything more must be paid from potential profits. The incentive to perform only the bare minimum is especially strong where the contractor begins to lose money on the venture. Accordingly, a fixed-price contract does not necessarily motivate the contractor to make the refinements that exceed the bare minimum. An example would be where the contractor is obligated to prepare the software requirements specification. Any money saved using a fixed-price contract might be a false savings since a substandard specification can be ruinously expensive to correct later in the software development process where, for lack of diligence, previously undiscerned requirements are discovered. Another example would be late in the software development cycle where the software satisfies the functionality of the software requirements specification but the software needs some minor enhancements to be user-friendly. Such enhancements are less likely to be made voluntarily where there is a fixed price contract.

Changes Can Impact The Previous Allocation Of Performance Risk�tc "<Head 3 (14)>Changes Can Impact The Previous Allocation Of Performance Risk"�
	An endemic problem with large software development projects has been excessive changes. Generally, the causes of excessive changes are either a substandard requirements analysis or requirements that are too dynamic to be effectively “frozen” into a specification. A landmark GAO report documented why changes frequently are not recognized as contributing to performance risk:

•	Changes requested after projects have started, which seem trivial to the customers, have often required major rework and have resulted in delays and increased costs.
•	Changes are not usually as thoroughly researched as original design concepts and sometimes have unforeseen effects on other parts of the system.
•	Effective use of contract phasing can be destroyed by constantly making changes to work that was competed and approved in earlier phases.

	Additionally, because software is generally perceived as pliable, the users frequently do not appreciate the cost impact of seemingly minor changes. The National Research Council has observed:

Late discovery that some required functions intended to be implemented in hardware cannot practically be so implemented and are shifted to software. This shift might not occur save for the prevalent optimistic view of the pliability of software. In truth, software is not pliable in large, complex systems; a small change in software function can ripple through many interfaces amounting to a major redesign effort, particularly if the added function was not anticipated during the decomposition of CPCIs and modules.

	With regard to the cost risks, it is a fundament rule of government contracts that the contractor is entitled to compensation for the “unanticipated and extra out-of-pocket expenses it incurred in performing the contract as a result of the changes.” It is not so widely recognized that changes can sometimes impact the previous allocation of performance risks. Specifically, where the government has crafted the contract to place the performance risks on the contractor, changes that require a contractor to perform in a manner different from what the contractor originally intended can transfer the performance risks from the changes to the government.

Performance Risk Regarding Architecture�tc "<Head 3 (14)>Performance Risk Regarding Architecture"�
	Within the past several years, there has been increased recognition that fundamentally flawed architectures are one of the leading causes of fatality among large software development contracts. Where the architecture is fundamentally flawed, the consequences are catastrophic — often the entire project is either abandoned or restarted. A technique to reduce the risk of a flawed architecture is to require offerors to submit a preliminary software architecture in their technical proposals.
	The risk of a fundamentally flawed architecture is particularly high for unprecedented projects. In those instances, a proven technique for the government to reduce performance risks is to award parallel development contracts with two different vendors who propose dissimilar architectures. Typically, sometime between the preliminary design review and the critical design review, the agency exercises a “down-select” decision to proceed with only one of the two contracts. When the decision is made is usually a factor of how apprehensive the government is about the design, the criticality of the software in terms of the agency’s mission, and the availability of money to continue funding two contractors. The down-select decision is normally exercised in the form of an option to the contract of the selectee.
	In addition to the obvious advantage of not having to select an architecture until it has been analyzed in detail, the use of parallel development contracts offers another benefit to the government. Experience has shown that when contractors recognize that they are in competition for the privilege of retaining the project for its life cycle, the vendors are significantly more conscientious about the quality of their work. The competing vendors are also more likely to assign their best software engineers to the project. Ironically, despite the substantial advantages to parallel development contacts, they are rarely used within DoD for large software development projects. The most frequent reason for not using parallel development contracts is failure of the agency to budget adequate money. In retrospect, the failure to make the investment in parallel development contracts for the software architecture has often been regretted.

The More Participatory The Government Is In The Design, The More Difficult It Is to Shift Performance Risks to The Contractor�tc "<Head 3 (14)>The More Participatory The Government Is In The Design, The More Difficult It Is to Shift Performance Risks to The Contractor"�
	The general rule is that the party that has responsibility for the design of a system is accountable if the design results in the failure of the system. Not surprisingly, this rule causes the government to have a preference for performance specifications. A problem arises where the government uses a performance specification but insists upon a highly participatory role in the design of the system. This situation can place the contractor in a dilemma because the government can thwart a contractor from proceeding by failing to approve a review. Although the government can use reviews to “hold the design in hostage,” the government has cleverly defined the term “approval” to distance itself from sanctioning the design.
	Research has not disclosed any cases involving software development contracts where the government’s participation in the design has caused the government to assume some of the responsibility for the performance risk. There are other decisions, however, which establish this principle of law. For example, the NASA Board of Contracts Appeal rejected an attempt to hold a contractor completely liable for design flaws that hampered the construction of a scientific facility. Specifically, the NASA Board stated:

In our opinion, this theory completely ignores the elaborate Government organizational structure for both design and construction of facilities, the review and approval requirements built into the contract, the pervasive role of the JSC project engineer who also served as the Contracting Officer’s representative.

	Similarly, the Armed Services Board of Contracts Appeal was unwilling to hold Boeing responsible for the cost of redesigning a fuel-drainage system for the KC-135A aircraft where the government expressed safety concerns after the critical design review.

[T]he Government was anything but passive in monitoring and approving appellants Preliminary Design as it pertained to the drainage. * * * The highly structured dialogue between the Government and appellant generated by the Critical Design Review defined the more detailed Part II Development Specification.

	In light of the above precedent, when planning its acquisition strategy, the government should first ascertain if it intends to play a pro-active role in the design before the government agrees to pay a premium ostensibly to place the performance risk on the contractor. For example, the government should first ascertain if it intends to rely heavily on a Federally Funded Research and Development Center (FFRDC) as an assertive systems engineer or if it intends to rely heavily on a pervasive IV&V contractor. In essence, the highly participatory role of a FFRDC or an IV&V may impede the government from placing the performance risks on the contractor. Stated differently, if the government wishes to shift the performance risk to the contractor, the contracting officer should assure that the government’s technical representatives are merely reviewers of the contractor’s work rather than participating in the design of the software.

Schedule Risks�tc "<Head 3 (14)>Schedule Risks"�
	According to Doctor Fredrick Brooks, “more software projects have gone awry for lack of calendar time than for all other causes combined.” Before probing into the reasons why schedules often doom software development projects, it is important to appreciate the interrelationship between cost, performance and schedule risks. With regard to schedule impacting costs, there is a clear correlation between the number of people on a project and their productivity. In essence, there are efficiencies to be gained when a dedicated but small workforce methodically develop software over a lengthy period of time. The schedule can be expedited, to some degree, by adding additional software engineers. The following table of a hypothetical project is indicative of the dependent relationship between cost and schedule:

SCHEDULE (Months)�SOFTWARE ENGINEERS�STAFF MONTHS�
COSTS��9�30�270�$4,500,000��12�20�240�$4,500,000��15�14�210�$4,000,000��18�10�180�$3,750,000��Table O-
6

	The correlation between schedule and performance risks is that, in attempting to meet an unrealistic schedule, contractors often expedite the process in a matter that is harmful to quality. Frequently, the resulting product is too defective to perform as required. That GAO has repeatedly observed that unrealistic schedules increase performance risk:

Technical problems result from the need to meet deadlines — programs are often designed and written hastily, and are tested and documented inadequately or not at all. Thus quality is sacrificed to urgency. Documentation — material prepared to explain a computer program — is often deferred until after the program is running and sometimes is never completed. When programs are later modified or converted, the work is usually done by someone other than the originator. If documentation is missing, incomplete, or obsolete, a great deal of the original development work often must be repeated.

	As shown above, the schedule can force quality to be sacrificed for urgency. When quality is sacrificed, often the software is degraded or rendered unusable.
	In the past, many DoD software projects succumbed to unrealistic schedule that were generated under the euphemism of being “success oriented.” In 1994, the Air Force published an excellent handbook which acknowledged that unrealistic schedules had a debilitating effect on software development projects. The handbook explains why “success-oriented schedules are seldom successfully achieved.” The handbook also provides some useful guidance on what it calls “schedule-plus contracts.” In essence, these contracts are structured to use award fees or incentive fees to motivate a contractor to be realistic in bidding schedules. Equally as important, “schedule-plus contracts” are not as likely to cause the contractor to “sacrifice quality to urgency.”
The Evaluation Criteria Should Be Structured to Maximize The Probability of Selecting a Highly Competent Vendor�tc "<Head 2 (14)>The Evaluation Criteria Should Be Structured to Maximize The Probability of Selecting a Highly Competent Vendor"�
	One expert has observed that “the competency of the contractor is the single most important ingredient in the recipe for successful contract performance.” For software development contracts, it is axiomatic that the greater the competence of the software development contractor, the greater the probability that the software development project will be successful. Consequently, it behooves the government to structure the evaluation criteria to maximize the probability of selecting a highly competent vendor.
	In his book, The Decline And Fall Of The American Programmer, Edward Yourdon summarizes the startling results of some careful studies which reveal that there can be an enormous variation between the capabilities of software engineers. Equally as surprising, there is no simple means to readily distinguish between the top quartile and the bottom quartile of software engineers:

When a programmer is good,
He is very, very good,
But when he is bad,
He is horrid.

	This conclusion was based on the results of a programming exercise given to a group of 12 experienced programmers. Careful records were kept to see how long the programmers took to finish various phases of the programming job, and what results they produced. The outcome was staggering: the best person in the group finished coding and debugging the exercise 28 times faster than the worst person, and the best program was approximately 10 times more efficient (in terms of memory and CPU cycles) that the worst. Equally important was the discovery that the actual performance of the programmers had no significant correlation with years of programming experience or scores on standard programming aptitude tests.
	In the same way that there are an enormous variations among the capabilities of software engineers, so too there are enormous variations among the capabilities of software development vendors. Moreover, just as there is no simple way to readily discern which software engineers are in the top quartile, so too there is no simple way to readily discern which software development vendors are in the top quartile. The following discussion is to provide guidance on how the government can distinguish the relative competence of software development vendors.

Software Engineering Institute’s Software Capability Evaluations�tc "<Head 3 (14)>Software Engineering Institute’s Software Capability Evaluations"�
 	The SEI’s Software Capability Evaluations (SCEs) enable a contracting activity to appraise the maturity level of the offerors. Since ample guidance can be obtained from the SEI on SCEs, this paper will not explain the intricacies of how SCEs are conducted. Suffice it to say that SCEs are expensive and burdensome for both the offerors and the government. As a rule of thumb, a SCE is appropriate where the cost of the software development is expected to exceed ten million dollars or where more than 50,000 lines of code are expected. An exception to the rule might be appropriate where there is a critical need for the software or where human life would be in jeopardy if the software failed.
	There are various ways in which a SCE could be considered by the source selection authority. One technique is to make the SCE an affirmative responsibility criteria. For example, the evaluation criteria could state: “To be eligible for award, an offeror must attain, through a Software Capability Evaluation, Maturity Level 3 or higher.” Before using such an evaluation criteria, the procuring activity should recognize that a high standard such as Level 3 might be challenged by a protest. Under the Competition In Contracting Act, agencies must achieve “full and open competition.” The Federal Acquisition Regulation defines this term to mean that “all responsible sources are permitted to compete.” To have the protest denied, the agency must show that its minimum requirement is for a Level 3 offeror. Since Level 3 represents less than 10% of the vendors in the software development industry, the agency should have a convincing reason why a Level 2 vendor is not a responsible source. Rather than take the risk that the GAO or GSBCA would disagree with the agency’s justification to exclude lower level offerors, contracting activities should consider other approaches which are easier to reconcile with the Competition in Contracting Act.
	Another technique is to establish the rating which the offeror obtains during the SCE as a separate evaluation criteria. Hence, using the above scenario, a Level 2 offeror is not automatically excluded form consideration. Instead, with regard to that evaluation factor, a Level 2 offeror is placed at a competitive disadvantage in relationship to a Level 3 offeror. To have a significant impact on the source selection decision, the evaluation criteria involving the SCEs should be placed relatively high in the relative order of importance among the other evaluation criteria.
	A third possibility is to make the SCE a “general consideration.” A general consideration is factor that permeates the other evaluation criteria. The most widely used general consideration is past performance. There is a logical correlation between an SCE and past performance. Each is a reliable indicator of future success. This logical correlation evinces that an SCE is highly suitable to be a general consideration. The disadvantage of using an SCE as a general consideration is that it does not afford the SCE the dignity it deserves in playing a pivotal role in the selection of the awardee. Stated differently, a SCE deserves more visibility since the maturity of a vendor’s processes is perhaps the paramount indicator of whether the vendor will be able to successfully develop the software. Moreover, if a source selection authority inadvertently relies directly on the SCE in making a selection rather than factoring the SCE into his assessment of the established evaluation criteria, a disappointed offeror might be able to protest successfully.
	As stated in the prior paragraphs, there are various ways in which an agency can consider an SCE in making its source selection decision. The method that the agency intends to use should be identified in Section M of the RFP. The Comptroller General will sustain a protest where the offerors have not been advised of the relative order of importance of the evaluation criteria:

It is fundamental that offerors must be advised of the basis upon which their proposals will be evaluated. A solicitation that does not set forth a common basis for evaluating offers, which ensures that all firms are on notice of the factors for award and can compete on an equal basis, is materially defective.

	In summary, it is imperative that Section M of the solicitation clearly state how the agency will use the SCE as part of the evaluation process.

Past Performance�tc "<Head 3 (14)>Past Performance"�
	A vendor who has had a consistent history of successfully performing software development efforts is more likely to successfully perform on future software development efforts than a rival vendor who has had a checked history. Unlike a SCE, which only validates that a vendor has the necessary processes, past performance is a strong indicator of whether the vendor has the fortitude to “make it happen.”
	In recent years, the federal government has become more adamant about relying on past performance in awarding contracts. In a policy letter dated January 11, 1993, the Office of Federal Procurement Policy (OFPP) mandated that past performance be an evaluation factor for all competitively negotiated contracts that were expected to exceed $100,000. The letter also directed the larger agencies to create databases on vendors’ past performance. Additionally, in 1994, the OFPP Director obtained pledges from fourteen agencies that they would weigh past performance equally with the other nonmonetary evaluation criteria.
	Agencies are afforded considerable discretion in making judgments on past performance. For example, an Air Force procurement of training devices for the F-15 and F-16 aircraft rated an offeror as high risk. The offeror had received more poor performance evaluations than favorable evaluations on previous contracts. The offeror protested to the GAO. In denying the protest, the GAO concluded that the Air Force’s risk assessment was reasonable. Additionally, sometimes an offeror seeks to contest a poor rating that it received on another contract. A disappointed offeror has little recourse when it wishes to dispute an unfavorable evaluation. The fact that a disappointed offeror disagrees with an agency’s evaluation of its past performance does not invalidate the agency’s conclusion.

Previous Experience�tc "<Head 3 (14)>Previous Experience"�
	Like past performance, previous experience is a credible indicator of the likelihood that an offeror can successfully perform. For instance, if a Level 1 vendor struggled to complete a previous software project, that vendor still might be preferable to other Level 1 offerors for a comparable project merely because the vendor probably learned many lessons which will benefit it on a subsequent project.
	Ideally, the government desires a vendor with both previous experience and an excellent record of past performance. The source selection official faces a more difficult decision where the first offeror has had comparable previous experience but also has had a checked record of past performance. A second offeror lacks previous experience in the domain involving the specification but does have a laudatory past performance record. There is no textbook answer as to which offeror should be selected. The government should, however, anticipate such a quandary and draft its evaluation criteria to accurate forewarn offerors which evaluation criteria is more important.
	Previous experience is sometimes expressed as a definitive responsibility criteria. Although definitive responsibility criteria are apt to be protested by vendors who are excluded from competing, the GAO will uphold the agency’s decision if it is reasonable. For example, the GAO upheld the decision of the Air Force to exclude an offeror who lacked personnel that were experienced in maintaining a land mobile radio system. The following extract from the decision reveals the GAO’s willingness to defer to the agency on definitive responsibility criteria involving previous experience:

Given the agency’s explanation . . . that the equipment involved here is used by those units at the base responsible for human safety and the safeguarding of information relating to national security, we have no basis for objecting to the imposition of the experience requirements. Specifically, we see nothing improper in the agency’s taking steps to insure that the personnel maintaining the specialized equipment are particularly well-qualified to do so, and the experience requirements seem to us to be reasonably aimed at achieving this end.

	Although the GAO is deferential to an agency’s determination of the requisite experience an offeror should have, the GAO will sustain a protest if the agency’s position is unreasonable. For instance, in acquiring software support for a shipboard command and control system, the Navy required “detailed knowledge of the JOTS II Plus program.” An offeror who had a detailed knowledge of an earlier version of the software was excluded from the competition. The GAO sustained the protest of the excluded offeror. Sometimes an agency errs on the side of caution when establishing its minimum experience requirements. The agency later determines that, although a proposal that does not comply fully with the solicitation, the proposal is capable of meeting the agency’s requirements. If the agency seeks to award to an offeror who does not meet the minimum experience requirements of the solicitation, the award can be successfully protested. In those circumstances, the correct action for the agency is to reduce the minimum experience requirements by amending the solicitation and then seeking a new BAFO.

Sample Problems
	According to Gabig’s Premise, “best brochuremanship — not best value — frequently wins government contracts.” Not surprisingly, many sophisticated vendors use professional proposal writers to respond to RFPs. The net result is that the quality of the contractor’s proposal may not be indicative of the quality of the technical staffs that will ultimately perform the work. A useful technique to minimize the impact of Gabig’s Premise is to use sample problems. One possibility is to identify as sample problems a few modules that are suitable candidates for rapid prototyping. Another possibility would be to draft the sample problem to address some difficult interfaces that are anticipated during the performance of the contract.
	It is not uncommon for a disappointed offeror to protest that its poor score on the sample problems should have been brought to its attention and that it should have given an opportunity to revise its answer. To protect itself again such protests, the agency should draft the solicitation to emphasize that the purpose of the sample problem is to test the offeror’s understanding of the problem as well to test the offeror’s technical competency. Under those circumstances, as shown by the following quote from a GAO decision, the protest is likely to be denied:

It is also apparent that the Air Force wanted to gauge the offerors’ independent management and technical abilities and expertise to propose, on their own, solutions to a variety of complex engineering tasks. While the pointing out of deficiencies in the proposed solutions might well have produced improvements in the offerors’ approaches, what was to be evaluated here was not how well an offeror could improve the problem areas, but rather how well an offeror could independently size up a problem and come up with a viable, efficient solution.

	Consistent with the theme that sample problems are a test, they should be given letter grades — A,B,C,D, or F. A pass/fail grading scheme is vulnerable to being struck down as being inconsistent with the nature of negotiated procurements.

�Avoiding “Buying-In”
	FAR § 3.501-1 defines buying-in as submitting an offer below anticipated costs, expecting to: (a) increase the contract amount after award (e.g., through unnecessary or excessively priced change orders); or (b) receive follow-on contracts at artificially high prices to recover losses incurred on the buy-in contract. Software development contracts are especially vulnerable to “buying-in.” In addition to having a high incidence of changes, the opportunity for follow-on maintenance contracts at artificially high prices is particularly great.
	Many vendors are unaware that the FAR does not prohibit “buy-in.” Instead, the FAR only admonishes the contracting officer to “take appropriate action to ensure buying-in losses are not recovered by the contractor.” For a cost-reimbursement contract, the best way to protect against buy-in is to use a vigorous cost realism analysis. The FAR recognizes that for “cost-reimbursement contracts the cost proposal should not be controlling, since advance estimates of cost may not be valid indicators of final costs.” Consequently, an agency is granted considerable leeway to reach an independent evaluation of what it will cost the offeror to complete the project.
	An excellent example of an agency asserting its prerogative to adjust a cost proposal for cost realism occurred during an Air Force procurement for software development to support the Joint Space Intelligence Center in Cheyenne Mountain. The Air Force made a $29 million cost realism adjustment to a $69.7 million proposal from McDonnell Douglas Electronics Systems Company. A subsequent protest by McDonnell Douglas was denied by the GAO.
	If the contract is fixed price, the best way for an agency to protect against a buy-in is to use a best value procurement. A best value procurement provides the agency with greater flexibility to make tradeoff decisions. Moreover, the cases involving best value have upheld an agency’s decision to spend considerably higher sums of money to achieve superior technical performance.
	For a complex software development project, it is not enough that the contracting officer merely comply with his obligation under the FAR to guard against the contractor being able to recover its losses. Buying-in usually results in an antagonistic relationship between the parties since the contractor typically is looking for a way to “get well.” Conversely, the government obligated to resist the contractor’s attempts to “get well.” In light of the fact that a congenial relationship is almost indispensable to the successful completion of the project, it is in the government’s interest to avoid awarding to an offeror who is buying-in if it is at all possible.
	Notwithstanding the techniques mentioned above, often the evaluation criteria greatly constrain a source selection official’s flexibility to avoid awarding the contract to an offeror who is buying-in. Although rarely explained to the source selection official, there are two other factors which may be considered despite the factors not being expressed in Section M. The first factor is that an agency may infer that the risk of poor performance increases where a contractor is forced to perform a contract with little or no profit. This observation is consistent with the FAR. FAR § 15.901(b) recognizes that profits “stimulate efficient contract performance.” Inferentially, a lack of profit suggests that the contractor is not stimulated to perform the contract efficiently. The second factor is to assume that the contractor will be forced to pay its workforce low compensation. The source selection official may assume that the low compensation will impacting the offeror’s ability to recruit and retain highly quality software engineers. The anticipated difficulty for the offeror to recruit and retain a high quality workforce is justification to increase the agency’s assessment of the risk of nonperformance.

About the Author
	Jerome Gabig, Jr. is Of Counsel in the Washington, D.C. office of Venable, Baetjer, Howard & Civiletti where he specializes in government software development contracts. Through a variety of assignments as an Air Force officer, he gained considerable experience in contracting for software development:

1990-92	Deputy Staff Judge Advocate, Electronic Systems Center (Air Force Materiel Command), Hanscom AFB, MA
1990-87	Director of Contract Law, Armament Division (Air Force Systems Command), Eglin AFB, FL
1987-83	Staff Judge Advocate, Air Force Computer Acquisition Center (Air Force Communications Command), Hanscom AFB, MA
1983-80	Director of Telecommunications & Acquisition Law, Air Force Communications Command, Scott AFB, IL

	Mr. Gabig is the course director for Federal Publications’ program on software development contracts. Additionally, he is the author of Federal Publications’ text entitled Government Contracting For Software Development. Mr. Gabig has graduated from West Point (engineering), Harvard University (management & administration), and the University of California (law). He has instructed at George Washington University, the Army JAG School, the Air Force JAG School, the Defense Systems Management College, the DoD Computer Institute, and the Naval Post Graduate Institute. He performed extensive research and analysis to support the Section 800 Panel. Mr. Gabig founded the Information Systems Committee of the American Bar Association’s Public Contract Law Section which he currently serves as Vice-Chair. He is a National Contract Management Fellow and recipient of the Delaney Award for 1993. His numerous publications have appeared in The Harvard Journal of Law & Public Policy, The Public Contract Law Journal, The National Contract Management Journal, Program Manager, Contract Management, and The Computer Lawyer.

�

Jerome S. Gabig, Jr.
Venable, Baetjer, Howard & Civiletti
Suite 1000
1201 New York Avenue, N.W.
Washington, D.C. 20005
Voice: 202-962-4953
Fax: 202-962-8300
Internet: JGabig@Venable.com
�tc "<>"�
��tc "<>"�
CHAPTER 15�tc "<>CHAPTER 15"�
 Addendum B�tc "<> Addendum B"�
 �tc "<> "�
Training —Your Competitive Edge in the ‘90s�tc "<>Training —Your Competitive Edge in the ‘90s"�

Eileen Steets Quann,
President, Fastrak Training, Inc. �tc "<>President, Fastrak Training, Inc. "�
	
	How many of you had a car in the shop in the last year — yours, your spouse’s, or a son’s or daughter’s? Could I see a show of hands please? How many of you thought the mechanic who worked on that car was overtrained? Cars have changed a lot in the last 10 years and mechanics are constantly going to classes to certify themselves on new technology. Last week, when I drove my husband to pick up his car from the dealer’s service department, I asked the manager how much training their mechanics receive. About two months in the first two years and then about two weeks a year after that to stay current on the new models. That’s about 8-10% of their time in the first two years in formal training classes, plus OJT and 4% annually after that to maintain their skills. Is your auto mechanic getting more training than your software engineer?
	If you’ve been to see a doctor in the last year, did you think that the doctor was overqualified to deal with your problem? Probably not. We expect doctors to stay current on the latest medical findings. We expect them to continually read medical journals, and attend medical conferences. We expect them to be knowledgeable about the latest cure for whatever ails us. We expect the people who service our needs to stay current in their field.
	The 1980s saw an explosion of technology unprecedented in the his�tory of mankind. Computers became better, faster and cheaper. The growth in raw computing power was exponen�tial. Dr. Fred Brooks, in his well-know book “The Mythical Man-Month” was describing system development in the 1960s, and stated that memory on a Model 165 computer rented for about $12 per kilobyte per month. Last week I received a flyer which advertised a 540 MB hard drive for under $400. To rent that much memory for a single year back then would have been over $77 million. Better, faster, cheaper, no question about it. Hardware has be�come a disposable commodity. New generations of machines are available every 18 months, and computers be�come virtually obsolete in less than 5 years.

New generations of hardware are available every 18 months, and computers become virtually obsolete in less that 5 years ... Software has changed equally as much.

	Software has changed equally as much. Let me make an analogy. How many of you have teenage children? Can I see a show of hands? Do they ever need money? I have two teenage boys and I know for a fact that they do. Suppose I make a deal with my 17 year old son Sean to build a dog house in our back yard. He and I agree on a price for his effort and we sit down at our kitchen table and design it. He picks up the wood at our local lumber yard, and builds it over the weekend, with some oversight and positive words of encouragement from me. Let’s assume he builds a beautiful dog house, the best in the neighborhood.
	Now it’s time to build your retirement home. How many folks here would be willing to have Sean build it? By the way, if anyone is interested, please see me after this session — I’m his agent. However, I suspect that I won’t find any takers. The fact that he can build that doghouse does not qualify him to build your home. You have no reason to believe that he knows anything about reading a blueprint, plumbing, wiring, roofing, flooring, insulation, inspection requirements, or any of the other things you need to know to build a house.
	Let’s assume that you have found the builder for your retirement home. An RFP is published to build a skyscraper in downtown Salt Lake City. What are the odds that your home builder would bid on it? Not likely. It’s a pretty different business. Walls of glass, steel beams and concrete, elevators — not the stuff our homes are typically made of.
	While it’s pretty obvious that the skills required to build a dog house, a single family home and a skyscraper are quite different, I would suggest that the differences for software are just as real, but not as obvious. We would never describe the primary dif�ferences between these structures as size — 2 square feet, 2000 square feet, 2 million square feet, but we often describe software in terms of its size — 200 lines of code, 20,000 or 2 million lines of code. And in software, we often mistakenly assume that anyone who can write 200 lines of code can write 2,000 or 20,000 or 2 million, given enough time.
	What makes these structures different? Tools, for one thing. To build a skyscraper, I need a crane. Suppose I give Sean a crane. Now can he build a skyscraper? Of course not, yet that is exactly what we often do in software. We expect tools alone to solve the problem. Don’t misunderstand, we need those tools, it’s just that tools alone are not the answer. Another difference is that it takes a lot of people to build a skyscraper. Suppose I bring Sean’s entire senior class to Salt Lake City and give them all cranes. Now can they build a skyscraper? No way. We do that in software too. We staff up with people who have built doghouses, give them cranes and expect them to build skyscrapers. And then we get angry when they fail. The real problem is that the process is different.

A huge gap exists today between our formal education and what we need to know to stay competitive, and that gap is widening.

	In today’s DoD environment, we are finding that our requirements more often that not are for skyscrapers, yet our staff, experienced in building doghouses, and sometimes single family homes, are not given the training they need to produce those skyscrapers. If I want these people to build skyscrapers, they need to be trained in new processes, new standards and procedures, new methods, and new tools. If I am their employer, I would expect that it would be my responsibility to see that they got the training that they needed. Why is it so hard to accept that in the software industry?
	Today’s educational system was custom made to fit the industrial age, developed for a society in which it made sense to treat everyone the same. They needed to educate factory workers and the managers of those workers. The mass production oriented society relied on uniformity to produce results. Students learned almost everything they needed to know in school and education, for the most part, ended at graduation. Unfortunately, that formula no longer equates to success in business. Many of us have been educated by industrial age standards and then thrown into the information age to compete. A huge gap exists today between our formal education and what we need to know to stay competitive, and that gap is widening.
	Our management structure is also a product of the industrial age. Uniformity, control and centralization in the factory were the ideals of industrial society. Responsibility rested with the bosses, who made the decisions that were implemented by the workers who followed orders. Training was limited to teaching new employees the specific job skills for their positions. That paradigm worked well in the industrial age, but it falls apart when we are competing in a global marketplace for which the only constant is constant change and survival demands continually improving our products, our services and our ability to respond quickly. The notion that workers are supposed to be already trained may have made sense 50 years ago — it simply doesn’t today.
	Technology concepts are ushered in faster than our ability to master, or even understand them, unless we are perpetually in a learning mode. We are perceived as the leaders of technology, yet all too often we are woefully ignorant of technological progress. I attended a one day technical exhibit two weeks ago. The themes were multimedia, client server networks and information engineering. Two thousand people attended. Ten years ago, that conference could have been held in an elevator. We cannot allow our software engineers to become technologically obsolete.
	Where will the software of the future come from? In this month’s IEEE Spectrum magazine, there is an article about the growth of the software export industry in India. In 1985, India exported $24 million worth of software. They expect to export $350 million this year, with projections of $1 billion by the year 2000. About 60% of India’s exported software goes to clients in the United States.
	Recognizing the export potential for this industry, India’s largest software houses invest heavily in skills training and continuing education programs to keep abreast of developing technology. Some Indian companies spend as much as 5% of their annual revenues on training, many times what we currently spend in the United States on our software resources. The Wall Street Journal stated that Japanese and European firms spend 4 to 6% of their operating budget on employee education, while US firms spend only about 1.5%. Even American companies noted for their training programs, Motorola, IBM and others, are way below the percentage for India.
	What about the quality of their software? Many of these Indian companies are working toward certification under ISO 9001, which corresponds roughly to the Level 3 on the Software Engineering Institute’s Capability Maturity Model. And they’re looking beyond that standard to the Malcolm Baldrige National Quality requirements. Other developing nations are also moving into software as a viable, profitable export. These will be our competitors in the global marketplace, and unless our attitude towards continuous training and learning changes, we may not be much competition for them.
	Every person in this room will be technologically obsolete by the year 2000, if we don’t do something about it. So what can we do? Peter Drucker, the management guru, in an article in INC magazine stated simply, “Assume that it is the responsibility of the organization to train.” With the continuous changes in technology, our software engineering work force cannot stay competent and current without support from the organization.
	I would like to add, “Assume that it is the responsibility of the individual to learn.” We no longer live in an age where education can stop when we graduate from college. The explosion in technology is both exciting and frightening. We can envision a future with wonderful new ideas, yet we may be afraid that we will become obsolete. And perhaps some of us will. But that is our choice — not our mandate.
	The most successful people in the next 10 to 20 years may not neces�sarily be the smartest ones today, or the ones who know the most right now. The technology they know now will be obsolete by then. Success in the infor�mation age will be defined by your ability to learn. Knowl�edge will become obsolete so quickly that the only survivors will be the life long learners.
	In the world in which change is the constant, the critical skills we need are the ability to think, to analyze and to learn...the best learners are becoming the most valuable people in our organizations.
	In the world in which change is the constant, the critical skills we need are the ability to think, to analyze and to learn. These are not necessarily skills we were born with, and unfortunately, in many cases, they are not skills that we have been taught. They are however skills that we must acquire because the best learners are becoming the most valuable people in our organizations. And the respon�sibility for learning begins with the individual. Look to the people to the right and left of you that you have just met. One of you three is in a learning mode right now and may already be a life long learner, one of you could be�come one, and one of you will be tech�nologically obsolete by the year 2000. Which one are you?
	What is a life long learner and how do you become one? First of all, a life long learner reads. I went to the newsstand near my office three weeks ago and counted 47 computer related magazines. How many do you sub�scribe to? How many do you read? How many business newspapers and magazines do you read? This is a soft�ware conference. How many books have you read on software engineering this year? Ever? What were the last five books that you read that related in any way to your professional growth? When was the last time you were in a library?
	Life long learners don’t stop their formal education when they graduate from college. When was the last time you were in a classroom to improve your professional skills? In�terestingly, very few people take advan�tage of educational opportunities offered to them by their employers. The March 1994 issue of Benefits and Compensation Solutions reported that less than 7% of employees take advan�tage of educa�tional assistance programs at their place of work.
	A life long learner never thinks that he or she is too smart to learn. How many of you have small children? A child is born wanting to learn. Among their first words is certainly the question “Why?” They must ask that question and others a hundred times a day. Perhaps we all need to ask why more often. Every time we are afraid to ask questions, afraid it will make us look stupid, we lose an opportunity to learn. The life long learner has not lost the ability to ask why, or what, or how. They have confidence in their ability to learn because they have done it over and over again. They know that the learning stretch — when we are pushed to perform beyond what we already know — can be painful, frightening for fear of failure, humbling for we have to admit that we don’t know, but also exciting, exhilarating and rewarding when we succeed. By the way, if you’ve been in a job for two or three years and feel like you’re not learning, you’re probably due for a stretch assignment.
	Even while we recognize that it is the responsibility of the individual to learn, individual learning alone cannot save an organization. To be competitive as an organization, we must institutionalize the learning process. Organizations must provide the climate and opportunity for learning. We must foster the learning organization.
	In a learning organization, emphasis is on creative thinking. People are encouraged to ask the right questions, rather than learn the right answers to predictable questions. Mistakes are recognized as an essential part of learning. I enjoyed the analogy of Robert Rosen in his book, The Healthy Company in which he says, “Mistakes are as natural a part of learning as sore muscles are of athletic training.” With spring finally arriving, many of us will start up new exercise programs and rediscover muscles we forgot we had. If we quit with the first sore muscle, we’ll never get in shape. Likewise, if we quit after our first mistake, we’ll never learn.
	A learning organization provides training that is consistent with the goals and business plans of the organization and follows up to make sure that the goals are being met. Every employee has his or her own personal training plan, evaluated regularly, that is consistent with the goals of the organization. The SEI Capability Maturity Model talks about software process improvement. An organization’s ability to improve is in direct proportion to its ability to learn. An organization that cannot learn cannot improve.
	I believe that for most software organizations, moving from Level 1 to Level 2 is the most difficult step because it demands a culture change. Individuals must commit to learning and organizations must commit to training, or there won’t be any change. If you can get over those two hurdles, movement up to the higher levels is much easier. You cannot institutionalize process improvement without institutionalizing individual learning and organizational training.
	We do training in Level 2 Key Process Areas. I have discovered that I can now tell within a couple of days of working with an organization, whether it will ever become a Level 2. You just have to listen to the people to find out. Let me give you two examples. In one organization, where we give classes in Project Management, Requirements Management, QA, CM and a variety of other courses, the classes are always filled by the technical staff. On the evaluation forms they frequently say, “My boss needs to hear this.” Yet when we have scheduled classes for the managers, short overviews to tell them what their employees were learning, not a single manager attended. Rarely do students get to apply what they have learned in class to their job. The employees are discouraged.

Assume that it is the responsibility of the organization to train ... Assume that it is the responsibility of the individual to learn.

	In another organization, at the start of every new class, the director comes in, tells everyone why they are there, outlines for them the goals of the organization and ties the class objectives to the organization’s goals. He then encourages them to learn everything they can and to come back ready to apply what they have learned on the job. The students are enthusiastic, many of them clearly in a learning stretch. The contrast between the two groups is striking. One of them will succeed. An organization’s ability to improve is directly proportional to its leaders’ commitment to create a corporate culture that not only invites but actually demands continuous learning.
	The learning organization must be led by a learning leader — someone who is actively committed to his or her own learning. Learn�ing leaders attend training with or before their peo�ple. They define the goals for their organization, and then commit the resources to make it happen. They don’t set arbitrary dates for “Becoming a Level 2” without understanding what that means, without putting in place the mechanisms and committing the resources that can make it possible.
	In the leading edge companies, continual learning is recognized as an essential ingredient to competitiveness and survival. They understand that the only competitive advantage an organi�zation in the information age will have is its ability to learn faster than its com�petitors. They make the commitment to spend the money required for training, but only after they make sure that the training is linked to their business strategy. They don’t waste training dollars.
	Unfortunately, I think the DoD supported software industry has fallen very far behind in the learning process. We put off training with every budget cut and think somehow that we have saved money. We expect contractors to always provide trained workers and don’t acknowledge the continuous nature of learning. Much of the money we do spend on training is wasted because it is not directed at the goals of the organization. Our model for training must be dramatically overhauled. First, we must link training dollars to business strategy. Training dollars must be budgeted first, not last. Our greatest resource is our people and the maintenance of that resource requires continuous investment in training just to stay current. For every dollar spent on hardware or software, another dollar must now be budgeted for training. And because of downsizing and reduced budgets, it may be necessary to get that dollar from the hardware and software budgets.
	As an individual, you must make the conscious decision to become a life long learner. The bad news is that even if you know everything there is to know technically in your field today, you will be obsolete in five years if you don’t learn anything new. The good news is that if you commit to life long learning today, you can be the technological leader in five years.
	If you are a manager, your success depends upon your ability to inspire the best in your employees, to expand their competence and capacity and to create the right conditions so that they can learn. It is your responsibility to ensure that training is adequate, appropriate, directed at the goals of the organization and not wasted.
	If you are the leader of an organization, you must recognize that the competitive edge in the 90’s will go to the organizations that train their people. You must define the goals for your organization, communicate those goals to your people and allocate the resources to support those goals. Your organization can lead or it can follow, but in the fee for service environment, being competitive may mean the difference between surviving and thriving or going out of business. As you drive onto the information highway of the future, check your rear view mirror. The competition from around the world is gaining on you.
	Our success, indeed our survival in this rapidly changing world, will depend upon our ability to respond to change. To do that, we must be able to think, to analyze and most importantly to learn. Training is your best competitive strategy in the 90s. Don’t pass up that opportunity.

About the Author�tc "<Head 3 (14)>About the Author"�
	Eileen Steets Quann is the founder and president of Fastrak Training Inc. Incorpo�rated in 1987, Fastrak is a recognized resource for training and mentoring in soft�ware engineering process, object-oriented methods, and the Ada programming language within DoD, NASA, the FAA, and many of the major aerospace and defense contractors. In both 1993 and 1994, Wash�ington Technology identified Fastrak as one of the 50 fastest growing high technology companies in the Washington DC area. In 1993, INC. Magazine recognized Fastrak as one of the 500 fastest growing privately owned companies in America.
	Ms. Quann has over 20 years of experience in the software industry and is an instructor on management, software process improvement, and Ada topics. Active in the Ada community, Ms. Quann was the 1989 Program Chair and 1990 Conference Chair for the Washington Ada Symposium (WAdaS). She represented industry training on the education panel for the DISA-sponsored Ada Dual Use Workshop in 1993. Ms. Quann was a distinguished reviewer for the Ada Quality and Style: Guidelines for the Professional Programmer (SPC-91061-CMC). She is a member of the AFCEA International Steering Committee on Women and Minorities. Ms. Quann has published articles and papers on management, software engineering, and training issues.

Eileen Steets Quann
Fastrak Training Inc.
9175 Guilford Road, Suite 300
Columbia, Maryland 21046
(301) 924-0050.
��tc "<>"�
CHAPTER 15�tc "<>CHAPTER 15"�
 Addendum C�tc "<> Addendum C"�
 �tc "<> "�
Lessons-Learned from 	BSY-2’s Trenches�tc "<>Lessons-Learned from 	BSY-2’s Trenches"�

Robert F. Sullivan Jr.
Introduction�tc "<Head 2 (14)>Introduction"�
	You’ve read the headlines. You’ve watched “60 minutes.” Large government software development programs ending up in huge cost overruns, way over schedule, and no clear indication of either the quality or the functionality that the government is receiving for the enormous price tag. Everyone wonders what went wrong. So when a subset of the seven sensor AN/BSY-2 Combat System (the single sensor AN/BQG-5) was deployed on the USS Augusta in 1994, and initialized properly the first time it was powered up on the submarine, and generally performed outstanding in its first sea trials, you have to start asking what went right. The following areas are arguably the most succinct summary of what went right. However, there are a great many lessons learned. These 4 key areas are not a silver bullet. The areas are:

·	Emotional Mission Statement. There was a strong, emotional purpose attached to the project and everyone involved bought into it;
·	Process improvement culture. Over the course of the project, there were vast, and essential process improvements;
·	Strong configuration management. Reliable, effective, automated baseline control and problem reporting;
·	Use of Ada. Strong typing, information hiding, and other factors lead to a solid, reliable product.

	To get an appreciation of BSY-2 and the magnitude of its success, you have to appreciate the immense size of it. It is over 3 million lines of tactical code, with several million lines of support software. The tactical code is broken up into over 100 CSCIs. Most CSCIs were assigned to an individual team. Several of the CSCIs are so large and complex, no one person knows all the details the CSCI. Needless to say, no one person knows all the details of the entire system.
	For sure, there is some breakthrough technology involved. But the challenge of creating that technology is dwarfed in comparison with the challenge of creating the countless pieces of “trivial” functionality that must all play together. Taken individually, most of the pieces are relatively easily understood. But that’s the danger and the ultimate challenge. Few of the pieces can be taken individually. They all must play together with other pieces. The inter-team interaction required to pull this off is unlike any other program. Its difficult enough to balance the dynamics within one team. Imagine trying to balance the dynamics of over 100 interacting teams? Imagine if the teams are spread over several geographic locations? Imagine if not all the people on a given team report to the same functional management? Imagine if the support groups like configuration management, test support software, simulation/stimulation software, and CSCI integration report to different management than the majority of organizations they serve? Sounds like a formula for disaster? Well it could have been. The successful techniques can be broken up into management of 3 categories: people, process, and technology.
People�tc "<Head 2 (14)>People"�
	There is little breakthrough technology involved, so we aren’t talking about finding a few superstars, giving them everything they want, and watching them do good things. We are talking about finding scores of solid, team players. This challenge is more difficult than any technology problems faced. You need to find good people, properly reward and motivate them, ensure a dynamic organization that responds well to change, and balance inter-team dynamics.

�Motivation

Create an emotional mission statement that achieves buy-in from the entire team and their families.
	
	This project required a tremendous, sustained commitment for many years. With anything this size, there will be built in bureaucracy, to the point where it’s hard to do the right thing; much easier to conform to inefficient rules and regulations. But conformation leads to stagnation and over the 7 years, there are bound to be profoundly better ways of doing business.
	How do you get several hundred people motivated to sustain long hours away from their families and friends, work crazy hours and keep bucking the system to make it better, no matter how hard it is? Just like you’ll see in many “peak performance” books, the trick to superhuman effort, be it individual or team (although much more vital to a team), is commitment to an important mission. Everyone needs to feel important and adequate. What better way than to contribute to something vital to our nation’s security? The Seawolf computer system!!! The Soviet Union had caught us sleeping, had advanced their submarine technology beyond ours and we needed to catch up in a hurry.
	What a motivator! Everyone knew the importance of their contribution. Everyone wanted nothing but the best in quality. No one would settle for anything less. The customer didn’t need to worry about getting shortchanged. There was a passion for quality, a passion to build the best that America had to offer, the best in the world. One bad apple couldn’t spoil the show, a dozen others would expose and correct the problem and preserve the integrity of the project. A tremendous emotional motivator produced superhuman results.
	Any motivator such as this must be emotional. It has to touch the families of the engineers, not just the engineers. There is a sacrifice on everyone’s part, and everyone must know what they are getting for that sacrifice. Peace of mind, the Seawolf sub will protect us from the bad guys. It will make the world safe for democracy and freedom. And we would prosper as a company with it. We have found that financial rewards are a side effect of a good emotional motivator. It is much more effective than a financial motivator, alone.
	Print up T-shirts, get coffee mugs and hats with exciting, emotional logos and pictures. Outfit the family with the paraphernalia. Have family events and tours of the facilities. One of the most difficult aspects of this job was the security. We were sequestered off in a closed room. No family members allowed. It was 6 years into the program before I thought to bring home the office seating diagram. My wife was elated because she could relate better to my world. A simple little picture gave her a whole new understanding and appreciation for my work. And it increased her buy-in.
	Watch the results. If the family buys into the mission statement, you’ve got it made. Tremendous things will happen. If the family doesn’t buy in, you’ve got an uphill battle.
	So how did we keep going when the Soviet Union collapsed and removed the threat, thus removing the main point of the mission? It’s never been the same. But that doesn’t mean it demoralized everyone. Sure, there were a few rough months. Sure, many good people left. Sure, some people retired on the job. Then throw on top of that the congressional budget cuts, eliminating production of several systems per year to only 2 systems overall!!! Not only is the mission removed, but the economic stability is damaged. Family security is at risk. How can you recover from something like this?
	We did the only thing we could. We found another mission. We would strive to make the Seawolf technology be the foundation for the New Attack Submarine (NAS). The NAS is vitally needed for trouble areas like the Persian Gulf, where our current subs are too big or not sensitive enough. It wasn’t a great substitute, but it was the only option available. It revitalized many and gave the promise of economic stability and growth.
	We were back on track. Until the NAS funding got delayed, pending the success of the Seawolf. Now the pressure was on. Our economic stability was tied to the completion of this program, and even then, there was no guarantee. There might be a delay between the end of the Seawolf and any NAS funding. The family security was damaged. The mission was weakened. Luckily, there was enough momentum and enough process safeguards that the project will complete no matter what. Had this happened a few years ago, we would have been another disaster on 60 minutes.

	In summary, if you don’t have an emotional mission, get one.

Change Is Good

Create a culture where constant change is encouraged, embraced, and rewarded.

	People tend to resist change. It makes them uncomfortable. It’s harder because you have to learn a new way of doing business. It worked this way before, why can’t we stick with it?
	With a program this size, most of the old rules are history. With the global competition, most of the old rules are history. One management expert describes the only true, sustainable, competitive edge, as the ability to learn faster than the competition.[1] Learning new things implies changing the way you do business. On a program that stretches over 7 years, there are going to be vast changes in industrial best practices. If you don’t prepare for change, it will hurt. Either you won’t change and become obsolete, or the changes will not be embraced properly and you won’t get the payoff.
	How do you prepare for change? Well, it’s got to start with upper management, and end with everyone involved. It’s got to be embraced by everyone, including (and especially) the customer. The typical DoD project gets its share of standards imposed on it (including the contract itself). However, these standards are made to be tailored to industry and the contractor’s best practices. It is in everyone’s best interest to do this. Blindly adhering to a standard is no excuse for thinking, adapting, and changing. You and your customer should approach each standard as if its first requirement read, “You shall continuously refine, document, and improve your interpretation and implementation of this standard”. Associating change with a “shall” makes it a requirement that needs to be met.
	What happens too often is the customer and the contractor’s standards enforcers, commonly known as gatekeepers or speed bumps, enforce the standards for the sake of enforcing the standards. There is no room for interpretation or change. There is often no written interpretation either. This mindset is deadly. It leads to demoralization and resentment. It stifles creativity. It creates bottlenecks with no apparent value added. We’ll talk more about the process specific aspects of this later but let’s concentrate on the people aspects now.
	You’ve heard of manufacturing success stories where direct discussions with people doing the work, senior management, and the customer produced miracles. Software development is no different. If change and improvement are part of the contract, part of the requirements, and embraced by everyone involved (especially the people in the trenches), people will create better solutions than any standard could have dictated or even hoped for. There is no standard process or guideline that should be imposed blindly on any software project, let alone imposed across the board on a huge project. Once a standard is in place, naturally it should be documented and enforced to the extent practical. But if the culture is not in place to constantly refine and improve standards and their implementation (yielding more efficiency without a compromise in quality), you will waste big bucks, and build frustration and resentment.
	With the refinement must come the rewards. Now there are several lessons here. First, the struggle to implement change is often made unnecessarily difficult due to the bureaucracy, or inertia built up. Without the culture described above, you often end up with these brick walls on both sides — contractor and customer are both afraid to change. The walls are protected by the standard’s enforcers (gatekeepers). Interpretation and implementation is often dictated or heavily influenced by the gatekeepers. The engineers implementing the standard are often unequally represented, both internally and with discussions with the customer. The fear is that the engineers will take the shortest path, thus compromising quality and product integrity. But in reality, rigid adherence to any standard cannot, by itself, ensure a quality product. Yet for any standard or process to be effective, the people doing the work need to buy into the spirit of the standard.
	This apparent deadlock can be broken by tapping into the natural tendency of many (some argue all) engineers — they like to complain. They are constantly striving to avoid the hard stuff. But that is the irony. That is what they are trained to do, to create products and services that make tasks convenient, easy, or efficient. Without problems to complain about, they have no mission (there’s that word again). Encourage and develop their complaining skills, and demand that they do something about it (active complaining). This is a reward in itself. By having more control of their own destiny, just about anyone is bound to have an increase in morale.
	In this new style organization, the gatekeepers (for both contractor and customer) are still a vital piece of the puzzle. After all, a standard or process is nothing if it is not followed. The typical gatekeeper is very knowledgeable in the vast myriad of standards. As a change is proposed, the new role of the gatekeeper should be to ensure continued compliance with the contract (including standards imposed by the contract). Embrace the change as something that will make the standard, and consequently the product, better, not as something that threatens it. When a change causes a requirement (or interpretation of a requirement) in the contract to change, they should participate in the modification of the contract.
	A very effective vehicle to accomplish this is a “Memorandum of Agreement” or a “Memorandum of Understanding.” These are nothing more than a change to the contract or an interpretation or clarification of the contract. However, it is drafted with the help of the people implementing it. Since it is drafted by the people charged with implementing it, by default it carries a much higher probability of success than one drafted by some authority. This is not meant to be a dissertation on how to coddle an engineer. Complaining must be measured against productive change. Changes must be weighed against programmatic (cost and schedule), contractual, and technical objectives. But there is often tremendous room for flexibility within these constraints, especially over a long development cycle. With this flexibility will come improved morale.
	Now all pieces described here are vital to a creating successful culture of change. The people implementing a standard must be equally represented on all decisions relating to that standard. The people enforcing the standard must know and embrace their role. The customer must encourage change by the contractor. And management must reward change when it pays off. One final note relates to an observation and suggestion on an ideal organization to implement change. Most organizations, once they establish a process, establish some form of process improvement team. This can range from informal to formal. In either case, there are often strong individual advocates for change that get involved one way or another. But even the most staunch advocates for change are susceptible to building walls and impeding change. Advocates for change often fight passionately about a few key issues that are close to their heart, often after they have spent many frustrating hours struggling with the current system. They typically can not sustain the energy necessary to constantly improve and question other aspects of the system.
	To solve this, I suggest an organization where the improvement team is constantly changing also. This can be “chaired” by the same person but the people doing the leg work need to have fresh legs. By making the team’s accomplishments recognized, involvement on this team becomes a reward, an opportunity. You will get plenty of fresh legs asking to get a chance to play. The veterans are still required to make sure the integrity of the product is maintained. But by constantly getting fresh legs, a fresh look at existing problems, you foster more innovation. And the competition can instill renewed vigor in the veterans.

	In summary, change is not only good, it is required.

Diversity

You need to motivate as many people as possible, to be as productive and happy as possible.

	With any large program, you will have a melting pot of people. From self starters, to superstars, to lazy but effective (if properly motivated) people, you’ll see them all. The trick is to get as many people as possible, as productive and happy as possible. This involves quite the juggling act when there are scores of engineers, each with their own aspirations and needs. The corporate ladder becomes harder and harder to climb. Much of the management and senior technical people are entrenched in their positions, and necessarily so for consistency and continuity to the program. After all, we are talking about many years of development.
	This is an eternity for a project. What’s in it for the average engineer? Where’s the career path, the upward mobility? Sure, there will be some attrition in the management and senior technical chain but there are dozens waiting to fill those shoes. The key becomes making each contributor feel like a vital piece in the big picture. Software development is a team sport. On a large program, it becomes a multiple team sport. You can’t rely on a few superstars to carry the whole load. Upper management needs to balance the importance of each team. Middle management or the team leader needs to balance the importance of individuals on each team. As a project matures, different teams play different roles. At one time in the program, a certain team may be facing the number 1 high risk issue on the program. This team will get more than its share of attention. If the team performs well, it will get some rewards. The balance of criticality, performance, and rewards, as perceived by other teams, is the most important factor in keeping a diverse project productive.
	This balance requires a positive environment. On a project where it is so difficult and long, it is easy to get caught up in the practice of catching people doing something wrong. After all, we all need to look for problems to solve, we all need to constantly improve to stay competitive. But the masses will thrive in a culture that catches people doing something right, and rewards those positive actions. The typical rewards just don’t cut it on a large program. Most organizations will have some form of management awards, some will also have peer awards. Certainly, these and salary actions are the most tangible rewards. But this is only the tip of the iceberg. The rewards must be as diverse as the people involved. Each person has attached their own emotional reasons for their commitment to the mission. Understand that reason, each person’s motivation, and you have the key to the proper rewards.
	For example, some people are motivated by a purely technical challenge. This person would be thrilled to receive a gift certificate to a local computer bookstore, or a personal Internet account, or attendance to an industry conference. Others are motivated by family security. What about a family oriented reward? Like a dinner certificate for the entire family? The late hours wouldn’t hurt so bad, the spouse and kids would think the company really appreciated the whole family’s commitment. Another example is someone with many leisure activities. Some unexpected paid time off after a few long months would make it easier to work the overtime when it is called for again (and you know it will be called for again, and again, and again). The rewards don’t need to cost money to be effective. A visit by someone from upper management to a team meeting before, during, or after a big deadline to say thanks for the effort goes a long, long way towards instilling a feeling of appreciation.
	Earlier we talked about perception. This is nine-tenths of the law. The perception of balance is more important than the reality of balance. Not all jobs are glorious. Not all teams get the exciting work. Not all teams are equal (nor should they be). But all jobs and teams are vital. All teams must feel vital. It may take some creative advertising to increase the perceived criticality of some tasks, and the team that performs those tasks. Equally important, if a team doesn’t have the reputation for performance yet gets recognized for an achievement, resentment will grow. And obviously no one team should get all the glorious work. Balance the perception between teams and you are half way there.
	If you don’t achieve this type of balance, you will fail in other inter-team aspects. All teams will need to interrelate to other teams in some way. The products produced by one team may need to be used by another team (e.g., a document produced by the Systems Engineering Team needs to be used as the requirements for building the product by the Software Engineering Team). Personnel may need to be reallocated from one team to another. If the teams aren’t balanced, you will see negative side affects in the team members, and in the team leaders (e.g., middle management). This will produce an impossible situation to deal with for upper management. Now we aren’t saying make everything equal. Balance does not imply equality. Some jobs are more difficult and will need better players. Some jobs are less difficult and can get by with lesser skilled players. The point is the differences in skill level needs to be accepted, and respected, not flaunted. Below are some examples.
	One of the main reasons for poor proliferation of reusable software components is the “not invented here” or NIH syndrome. Inter-team conflicts reinforce NIH. We have seen reuse fail and we have seen it work. In all cases, it can be largely attributed to poor or good team dynamics. In one of the failures, the people doing the work did not have a strong reputation for technical abilities. The result was the other teams had an inherent resistance to adopting anything produced by this team. Contrary, in one of the best success stories, some of the best technical people of two teams were pooled together to create a reusable application architecture. Because the right people were chosen and their abilities were respected (not flaunted), adoption of the architecture was not questioned.
	On any project, there will be changes in the needs of (people) resources for all teams. On a huge project, any given person will likely work on several different teams over the life of the project. If there are inter-team conflicts, it will be reflected in the middle management. They will start to protect “their” best players to keep their team strong, rather than to let the best person fill a particular need on another team. The result is the whole project suffers. You can work around weak links in the system but eventually these weak links will reflect on the entire project. You’ve got to be able to “repair” or help the weaker links by improving that team. Sometimes this demands drafting someone from another team. If there is any conflict between teams, human nature will often keep management from sacrificing on his or her own team rather than doing the right thing for the good of the entire project.
	Ironically, when the manager has been willing to sacrifice a key player for the good of the entire project, that player (and most others on the team) feel deeply committed to that manager. They tend to be willing to go out on loan, as long as they can stay functionally assigned to that manager. So the unselfish manager gets the best of both worlds he or she helps the program and also earns tremendous loyalty and respect from the players.
	Another classic example is the typical “advisor” organization, or staff engineers. This is supposed to be the group of experts and hot-shots. Their charter is to provide advice and guidance, and to set policy and direction. Think about the resentment this organization will face if the people in this group are not perceived as experts? Or if the people in this group are arrogant, or condescending. Who would go to them for help and advice? This type of group is perceived as a service group. As with any service group, the customer (in this case, the other teams) must come first. Service must be with a smile. All actions by this group must show tangible benefits to the teams they serve. What you are trying to do is get other teams to learn from this group. Respect, integrity, and benefits are the key ingredients. Get your service teams to exhibit these characteristics and watch the results.

In summary, balance the perception (of criticality and rewards) between teams, then balance the perception within each team.

Software Architects

Like a building, a software system needs a solid architecture.

	In analyzing an individual team, or more importantly, a collection of tightly coupled teams, it is helpful to use Dr. Covey’s jungle warfare model.[2] There are the people wielding the machetes (coders), people sharpening the machetes and motivating the wielders (managers), and the lookout up in the tallest tree directing the energy of the machete wielders, guiding the path, making sure they are in the correct jungle (software architect). To this model, we would like to add the policy makers, the ones that put the team in the jungle in the first place with some objective (systems engineers). Without a balance in all parts, a team will lose effectiveness. If one team within the entire project loses effectiveness, other teams suffer and need to compensate.
	Our experience has been that the most difficult role to fill is the lookout, the team leader, what we call a software architect. A software architect is a good communicator, an effective system engineer, an interface expert, and a proficient software designer. Often the ideal software architect can pound out excellent code and a typical reaction is to keep that person producing. This is a mistake. Many people can develop into proficient or adequate coders. Not everyone can become a proficient designer. Fewer still can become interface experts. Even less can understand requirements, the big picture. Rare is the individual with all the other attributes plus the ability to communicate.
	These software architects must be carefully detected, and removed from a heavy production role. They are much more effective in this new role. On a large project, software architects are needed to provide the glue to hold the entire system together, especially in the early phases. It is difficult to document and articulate precisely a software architecture. It is more of a concept than a collection of rules. Until the foundation of the system is matured, the software architects must provide guidance and direction to ensure that all the pieces will fit together.
	This is where interface definition and communication skills are most vital. Interfaces are the biggest (and sometimes the only) inter-team communication method. The combination of the CSCI architecture and the interface definition becomes the architect’s leverage and communication vehicle. In designing interfaces, data format and content is important, but message sequencing in all phases of a CSCI’s life are more tightly coupled to a CSCI’s architecture. The sequence of messages must take into account initialization, reconfiguration, failures, and restoration. The CSCI’s tasking interaction model, input and output mechanisms and sequencing, and major state sequencing (e.g., initialization, reconfiguration, etc.) all make up its architecture. Understanding the true requirements is essential to this task. As you can see, this is a rare individual.
	Software architects are not always easy to spot, although there are trends. There seems to be an inbred attitude to be unselfish, to sense the greater need, to work on what’s really important, not what’s urgent. They are compelled to climb the tree to get a look (at the big picture), rather than to attack every clump of brush (code) they see. However, since they can produce, if pressured, they will produce, and often with star or superstar results.
	Here is the danger. It is very difficult to comprehend that your best coder, who also happens to be your best (and quite possibly your only) architect, should be taken off coding and put on requirements analysis, interface design, software tasking interaction, and design guidelines. Why can’t he or she just review other peoples design or code to make sure it is close enough, while he or she keeps swinging the machete? Why have the lookout direct the energy of the machetes before its expended? Energy spent is not recoverable. Development dollars spent are not recoverable. This is your most precious resource. And a good software architect can give you the most effective balance.
	How? By making sure the vital tasks are done with consistency and accuracy. Requirements analysis is accepted as vital. But different pieces within a CSCI are often reviewed by different people. Often designers or coders are given a piece of the CSCI and allowed to run with the entire piece, from requirements analysis to tasking structure and software design, to coding and integration. The results can range from excessive use of tasking, to incompatible interfaces, to correct implementation of the requirements but discovery that the requirements had some fundamental flaw. This cost is compounded in a large system. The results often affect another team. Expand the problem from a stand-alone functional piece of one CSCI to a more complex scenario, the requirements for a thread of functionality that spans several CSCIs. Without a software architect ensuring that the thread will work from a structural and architectural point of view, its not worth getting the other players in the game yet.
	Good team dynamics are essential to effectively utilizing a software architect. The architect doesn’t typically write requirements, but guides their writing, ensures that each requirement fits in with the vision for the architecture. This can cause problems if the architect and systems engineers don’t share mutual respect. It is even more difficult if the systems engineer is part of a different functional organization. On the positive side, establishing the position of software architect frees up a lead design spot for an individual CSCI. This gives other engineers a growth position and a chance to learn from the architect.
	Some CSCIs need a software architect all to themselves, while in other cases one architect best serves a collection of interrelated CSCIs. Interaction between CSCIs is the most important aspect to manage early, and the most chain reactive. With a large program and the typical matrix organization, it is inevitable that the ideal coupling of CSCIs to architect will cross some organizational boundaries. Tough. If you don’t do it, you will pay many times over. Give up your architect for the good of the project. Give the architect the authority to influence your CSCI’s structure, to be consistent with the rest of the group.

In summary, identify and support Software Architects. It is a key ingredient to success.
Process�tc "<Head 2 (14)>Process"�
	Effective use of a process was one of the most important lessons learned. We define a process as the set of procedures used to produce some result. Thus, process affects every aspect of the development. The key areas presented here are the initial establishment of a process, several life cycle specific issues, the waterfall versus spiral (or evolutionary) development model, and configuration management.

Initial Establishment of a Process

Lets figure out how we want to do business, before we do business.

	Initial establishment and continuous improvement of a software development process is an investment and an attitude. You need to assign some of your best people to defining it (investment). One of the biggest dangers is letting who ever is available work on process. The group defining and improving the process is viewed as a service group. Remember the lessons about team dynamics. The service group must command respect and exhibit integrity. The group must provide demonstrable benefits. By putting some well respected individuals on this team, you start off on the right foot.
	Initial establishment is often one of the most difficult hurdles in any organization. If there has been no formal process, it is difficult to comprehend the need for one (attitude). This is compounded when tackling a project that dwarfs any other project performed by that organization. It is difficult to anticipate just how different this large project will be. The need for a solid process that is embraced by all grows exponentially with project size. Obviously you need to change the attitude if you want the process to pay dividends. If the leaders have bought into the need for a process, and participate in its creation and maintenance, the rest will follow and watch for results (which must come soon).
	Here are some tips on how to start. First, get complete buy in from your leaders. This must eventually include all groups that will be touched by the process, from the program office and systems engineering, to software design, test, integration, quality assurance, configuration management, and last, but not least, the customer. Start with a small group of representative people that can work together. It doesn’t matter that you might be leaving someone important out yet, getting the ball rolling is most important at this stage. The people that will eventually use this process need to see momentum, not promises.
	Start out simple and flexible. Don’t take the whole life cycle at once. Grow the process. As you tackle different pieces of the life cycle, add the appropriate organizations to the team. One size will never fit all so don’t try to spell out all possible combinations. Rather, strive for the architecture of the process. Let each team or subsystem tailor the process for their specific applications. Here is where the software architects can play a key role. You don’t want each team to do their own thing, because that cancels out the consistency across the board, which is important for efficiency in the support organizations and to the customer. Try to keep each team or subsystem’s tailoring definition to one or two pages.
	Strive for readability first, completeness second. It doesn’t matter if the process is 100% complete if no one reads it, follows it, or checks for compliance. Challenge each step to calculate the added value. Value is a difficult quantity to measure or anticipate. Perception plays a strong role here. If everyone perceives a certain step adds value, they will attempt to follow it rigorously. As discussed previously, rotate people on the process improvement teams to keep fresh ideas coming.
	One final note on participation. Similar to the team dynamics lessons, all groups that touch the product in some way, shape, or form should be represented in the process and on the process definition / improvement team. If one group is excluded (by their or someone else’s choice), problems will arise. Resentment will build. Quality will suffer. You need complete participation.

In summary, process is an investment and an attitude.

Interfaces

A large system lives or dies by its interfaces.

	Interface definition is not part of the classical life cycle. Yet interface definition on a large, distributed system is vital. This can not be stressed enough. The problem is compounded when the development team is geographically separated. Concurrent development and the typical waterfall mentality add further complications.
	Typical implementations of MIL-STD-2167A call for an IRS (Interface Requirements Document) and an IDD (Interface Design Document). The way I look at the interfaces is like a contract. If I sign my CSCI up to an interface, I am signing a contract that I will hold up my end of the deal. I am assuming the other side of the interface will do the same. It is an excellent vehicle to manage parallel development. However, it takes quite an effort to completely define one CSCI’s interfaces. It is not a waterfall type activity. It can not be completely specified up front, any more than the requirements for a CSCI can be completely specified before designing or coding anything. The amount of detail required to unambiguously specify an interface is tremendous. Here are some tips for success. As discussed previously, the software architects should play the lead role in managing interfaces.

Utilize Code in the IDD�tc "<Head 4 (12)>Utilize Code in the IDD"�
	The use of code in the IDD, to the extent possible, provides an unambiguous definition. The use of Ada allows complete message formats to be specified. But this is the easy part of interface definition. The format of a message doesn’t impact the CSCI architecture as much as the communications address of the message, sequencing, frequency of transmission, initiating conditions, and expected responses. These latter interface requirements can have a direct effect on a CSCI’s tasking structure, its architecture. Some of these items may be well represented in code. For example, the frequency of transmission can be a constant. The initiating conditions and expected responses could often be specified as the identifier of another message (e.g., this message is initiated upon receipt of message X). As we’ll discuss later in the section about reusable CSCI architectures, this type of information can go a long way toward removing any ambiguity from interfaces. The more information that is unambiguous, the more effective parallel development will be, and the easier integration will be.
	For Ada to Ada interfaces, as long as both sides utilize the same compiler, the definition is sound. If the interface is from an Ada to non-Ada CSCI, it isn’t obvious how to proceed. The Ada CSCI needs the definition to be in Ada anyway, so as a minimum, that work needs to be done. Here is where I would recommend the generation or purchase of a tool. This tool would take the Ada interface definition and generate the non-Ada definition. In the case of an assembler based CSCI, the complete definition could be specified using “equate” statements. This type of convention would need to be specified at the start of a program.

Put Inter-Process Interfaces in the IDD�tc "<Head 4 (12)>Put Inter-Process Interfaces in the IDD"�
	The larger the CSCI, the larger the need for some type of internal interface definitions. This does not need to be formal, as in an IDD. But we have seen large programs with few CSCIs struggle due to a lack of internal interface control. In these programs, large CSCIs may physically be spread over several processors and/or processes. These CSCIs could be better managed by either splitting the CSCI (across physical boundaries, i.e., processor or process boundaries, or individual Ada programs), thereby causing more information to be put into the IDD, or by documenting internal CSCI interfaces (again, using physical boundaries) in the IDD. Putting these internal interfaces in the IDD causes some benefits. First, it raises the importance of the interface. It won’t be carelessly changed. Second, it allows more parallel development by establishing a contract between the different pieces of the CSCI. Third, it benefits integration. By putting these interfaces in the IDD, it allows test software, simulation / stimulation software, and data collection software to utilize the same interfaces as the CSCI under test.
	Typical embedded systems often have one application process per processor, but as future systems move to a COTS (commercial-off-the-shelf) hardware environment, many processes may co-reside on the same workstation. This increases the need to document these interfaces in a formal manner.

Keep SRS Interface References to the Message Level�tc "<Head 4 (12)>Keep SRS Interface References to the Message Level"�
	We’ve seen a lot of SRSs, and we argue that they could all adequately specify the requirements by referencing only the message level. The key things needed within an SRS are the processing and sequencing around the messages. What happens before sending this message, what should we do when we receive this message. The algorithmic details in the SRS may imply some data format content but refrain from putting that detail in the SRS.

Combine the IRS with the IDD�tc "<Head 4 (12)>Combine the IRS with the IDD"�
	All SRS messages must be represented, one for one, in the IDD. Since the SRS doesn’t mention message content, only message name and sequencing/processing requirements, the IDD is still free to implement that message using any style necessary. On a distributed system, each CSCI under test will need to be stimulated using the IDD anyway. The IRS interfaces are of no use. The requirements in the SRS for message sequencing are utilized to generate test cases for formal CSCI testing. The message content details from the IDD are used to create the test case messages.
	Within the IDD, all sequencing details for SRS specified messages become requirements. All message content becomes implementation. Implementation only messages are still allowed in the IDD. These messages are typically utilized for low level handshaking that is not appropriate for an SRS. Since the IDD contains as much code as possible, including the complete message format, it gives you binding power and a built in management capability. The IRS is paper or an electronic model, and has no binding power. Therefore, it will inevitably drift out of date. If everyone is forced to use the same Configuration Managed IDD when building their code, interface problems will tend to settle themselves.

Configuration Management�tc "<Head 4 (12)>Configuration Management"�
	Once an interface agreement is reached, get that agreement into the formal program baseline as soon as possible. Ideally, the interfaces would enter into the baseline before or during design of the components that will utilize the interface. This preserves the investment in the component and increases the importance to the contract. As discussed above, forcing the use of the formal program baseline IDD helps resolve conflicts.

Distributed Object Systems�tc "<Head 4 (12)>Distributed Object Systems"�
	One final futuristic point is about distributed objects. There is much work going on in this area and it could solve a lot of the interface problems. By localizing the data and its functions into an object that is shared between applications, it localizes all the processing associated with the data into one entity (e.g., a single Ada package). The single entity can be built by a single group. This will eliminate much of the interpretation problems of today’s message based systems, where the source group builds some processing, and the destination group builds the rest of the processing.
	Until there are standards and environmental support for distributed objects, intelligent linkers can give some benefit today. Many Ada environments provide linkers that only include subroutines that are referenced by the program. Thus, we could create packages that encapsulate all the processing related to a message, including creation, population, transmission, receipt, usage, and release. This naturally partitions into source and destination subroutines. The source CSCI only references the source subroutines, the destination CSCI only references the destination subroutines. The linker is intelligent enough to only include the appropriate subroutines in each CSCI’s image, thus optimizing image size. The package can be built by one individual or team, reducing or eliminating the possibility of ambiguity.

	In summary, manage the interfaces, and you can manage the project.

Integrated Product Teams

Reduce inter-team conflicts by creating integrated product teams.

	As discussed above, team dynamics are difficult to balance. Why not avoid the balancing act as much as possible? Integrated product teams are the answer. By locating all the people responsible for building and testing a product or component under the same functional management, and ideally in the same physical location, you tear down many artificial walls Within a CSCI, the key functional areas include systems engineering, and software test. Within a subsystem (a collection of similar or tightly coupled CSCIs), support software and CSCI-CSCI integration should be joined with the development team.
	Here are some examples of the benefits of eliminating these walls. If the requirements generation and software design are tightly coupled, there will be more flexibility and support for the spiral development model. The requirements vital to CSCI architecture can be prioritized first. Complex requirements can be prototyped to see what makes sense, and what is unrealistic. Including software test on the same team allows them to be involved in more discussions, allowing them to achieve a better understanding of the CSCI under test. The manager must not allow the independent validation process to be compromised, but the benefits far outweigh the risks.
	On a larger, subsystem scale, combining support software and CSCI-CSCI integration with the development teams removes several problematic walls. Support software is often a lower priority. By including them on the same team, there is more flexibility of moving people around, more sharing of knowledge, more assurance that the true requirements for support software will be built. Traditionally, one of the biggest walls is between the development team and CSCI-CSCI integration. Here is where the individual pieces of the product must come together into a system. Here is where early requirements, interface or design flaws will show up for the first time. Tension can easily build and finger pointing is a natural response. Finger pointing can build walls in a flash. If we are all part of one big team, the possibility of everyone being committed to an integrated product increases. There are less turf wars. You should never hear a developer saying to an integrator, “I don’t have a requirement to do that.” An integrated team like this should all adopt this extra requirement — “we shall build a product that works reliably, and meets the budget and contractual obligations.” Adding this requirement eliminates a lot of finger pointing.
	One specialty note on integrated product teams. Often there are organizations with specialized integrators, or integration support teams. These teams often are the wise old lab gurus. They have the ability to set up procedures and techniques that will help other integrators and developers. Often, there are also several CSCIs that form the services layer of functionality, the layer that other applications will utilize to perform their tasks. This includes the operating system, inter-program communications, display interfaces, resource management, and data management. These two groups have tightly coupled responsibilities, yet they are often chasing conflicting priorities and deadlines.
	By combining the two teams, you have the ability to influence the design of the service layer with hooks and angles that will pay for themselves many times over in integration.

	In summary, combine teams for better productivity and efficiency.

Reuse

Reuse offers an often elusive payback.

	Reuse, like process definition, is an investment and an attitude. It requires an investment by your best engineers to find what should be reusable, and build it so it is easy to use and reliable. This also helps with the attitude, having respected engineers sign off on a product makes its adoption easier. Sometimes, the attitude requires some legislation. Engineers are always trying to create. Trying to get them to reuse a component gives the perception of removing some of the creativity. But if the policy is established and the cost savings obvious, they will stop complaining, stop trying to show why they can’t reuse a particular component (or why they could build a better component), and get on with it.
	When dealing with reuse across teams, solid cost models must be established. These models must take into account the extra cost of building something for reuse as well as the payback when something gets reused. Middle management often gets measured on cost. Who would volunteer to spend extra money to build something reusable if there wasn’t a mechanism to reflect the extra cost of construction and the payback when it is reused? How successful a reuse program is often comes down to deciding whether or not to make an investment in good people to manage and implement the program.
	One overlooked possibility for reuse is a common CSCI software architecture. This helps in several ways — by using a proven architecture, each development team would not have to spend time integrating the basics — it would be a given. Integration of CSCIs would be simplified, and people would be more able to adapt to new assignments on other CSCIs. Understanding the basic CSCI architecture would need to be done once. Understanding each CSCI’s unique part would be the only task on a reassignment.
	Most CSCIs in a distributed system can initialize in the same basic way, elaborate, open their communications agents, request disk-based data, signal that they are ready to run, then run. And all but the hardest real time CSCIs could utilize the same type of input / output mechanisms and tasking structure. The use of common Ada package specs, and either unique package bodies or separate subprograms gives developers a compile-time binding to the common architecture.

	In summary, reuse is an investment and an attitude.

Waterfall versus Spiral Model

The waterfall model has many shortcomings for large systems.

	There is much enthusiasm in the literature for the spiral model of software development — design a little, code a little, test a little. On a project that must follow MIL-STD-2167A, and is too large to comprehend by one person, it may be difficult to decide where to start designing. Plus, the typical contract is structured with big, waterfall type events such as SSR (System Segment Review), PDR (Preliminary Design Review), and CDR (Critical Design Review). This waterfall contract encourages everything to proceed in parallel. In reality, some pieces (e.g., CSCIs) will progress more quickly than others, and some pieces are needed to mature earlier than others.
	Why not structure the waterfall events in phases? Establish a layered approach to the system with the service layer first. Then add the other functionality into phases based on its criticality to the mission. Write the contract to have the SSR, PDR, and CDR for each phase. This allows the critical layers to mature when necessary. It also allows more resources to concentrate on the biggest risk areas up front. Having the service layer built first gives many benefits. It allows all future development and integration to start with a solid system foundation. It allows tools and integration techniques to be matured as development and integration needs dictate. If the service layer were being built concurrently, there is often not enough resources to add the integration hooks and handles. But if the service layer is established, mature, and baselined, the layer experts could easily enhance it to grow with integration’s needs.
	Ideally, CSCIs will interface only with other CSCIs from the same phase. This sounds nice but will rarely happen in practice. In this case, we suggest a phased delivery for the CSCIs. Perform some top level design on the interfaces with CSCIs in later phases, but only build the portion that interfaces with CSCIs in this or earlier phases. This may sound radical but countless dollars are spent on rework because of immature interface contracts. By the time the later CSCI really evaluated the interface, it was found to be inadequate, thus wasting all the time spent by the earlier CSCI. Now for trivial interfaces, they can be specified early, but for any nontrivial interface, it pays to wait until both sides are really ready to sign a binding contract.
	In keeping with the spirit of the spiral model, the contract must grow too. But it must grow together. This lock-step approach to the spiral model has some nice benefits. A functional system is ready much sooner, and much more often. Updates have less of a ripple effect since both sides of an interface have waited to take the next step together. This scheme causes some different tracking models to show progress. Functional threads, spanning more than one CSCI and the associated messages, become the ideal tracking mechanism. It is relatively easy to identify the messages and software components that support that thread, thus it is relatively easy to track their implementation progress. A good Configuration Management (CM) system will assist in this task by allowing related changes to be grouped or tracked together.
	Using the spiral model also moves emphasis from documentation to functionality. The sooner this shift occurs, the better. The documentation is essential but it should not drive the program. Integrated product teams also greatly assist with implementing the spiral model.

	In summary, structure the contract to map to the spiral model.

Configuration Management

Without a solid CM process, you will struggle.

	Configuration management (CM) is important to any size project. It is absolutely required for a large project. All items generated on the project should be controlled in some manner. This includes all requirements, white papers, designs, code, test data and results, integration scenarios and results, everything. Now the degree to which each piece of information is controlled varies. Some items require customer approval to change. Milestones such as CDR trigger the transition from informal (or developmental) (DCM) to formal CM (FCM). Other items such as software development folders are always under DCM and never under FCM. One can think of the difference in the degree of formality in terms of who should approve changes or proposed changes. The less critical or smaller the chance of a ripple effect, the closer the approval should be to the person making the change (if there is no chance of a ripple effect, it may be appropriate to have no approval). The more critical or higher the chance of a ripple effect, the more people should be involved with approving the change. Ideally, the DCM and FCM environments should be one in the same. As the degree of formality increases, the approval simply increases to the appropriate level(s).
		CM serves as a natural communication mechanism. Using only baselined items to perform all software builds, document generation, etc., provides a controlled mechanism to help mature the system (a nice complement to the spiral model). Once the community buys into utilizing CM properly, product integrity improves. This can be achieved for little cost. CM doesn’t have to be expensive, but not having CM is very expensive. Having DCM and FCM can provide some other benefits as side effects. Some obvious benefits are automated build support. Further, automated tools can be run on the baseline to calculate metrics, and perform compliance and consistency checks. The life cycle can be modeled in the automated CM systems. This modeling allows the developmental and maintenance process to be enforced, automated, and tracked.
	For example, let’s assume the process for a given CSCI is design, code, test, then baseline into FCM. As the design review is completed, the librarian could enter the review results into the system and the system would automatically register the items that completed the review. This could then be used to calculate some “percentage complete.” The same analogy could be used for code and test. Once baselined, the items should only change for additional functionality or rework. In either case, the change causes the items to revert back to some previous process phase (either design or code in this example). By indicating the items that must change, the process phase, and an estimate of the effort to implement the change, the system can keep track of how much additional functionality or rework is outstanding.
	Some specific items that require extra attention are interfaces. These can be inter-CSCI interfaces or intra-CSCI interfaces. We’ve already discussed inter-CSCI interfaces and the importance of managing them, including configuring them. For intra-CSCI interfaces, utilizing Ada and the package spec, we can achieve similar control and benefits. Placing a more formal level of control on package specs elevates their importance and reduces the risk when developing in parallel. For example, after a design review the package specs may be placed into DCM and the CSCI team leader must approve all changes to them.

	In summary, establish a complete CM process — don’t start coding without it.
Technology�tc "<Head 2 (14)>Technology"�
	On a program this large, it may seem odd that we aren’t talking much about technology. There were some high-tech developments in fault tolerance and sonar. But as far as the use of technology to manage the program, there wasn’t too much to talk about. We had a variety of homegrown interface and integration tools that were utilized with much success. We had an enormous UNIX development and integration environment that gave us the horsepower needed to manage the vast amounts of data and code. There was always a search for silver bullet tools that would alleviate this or that problem. Most proved to be of arguable value. The only technology we want to single out is the Ada language itself.

Use of Ada

Ada was designed for large programs.
	
	We feel no other language (except possibly C++) would have survived on a program of this scale. The benefits provided to us by Ada were tremendous. Sure, we stressed the Ada environment often, and broke it more than a few times. But the benefits far outweighed the problems. You’ve no doubt heard about the benefits of information hiding. We’ve already discussed the use of Ada for interfaces. Below are some additional benefits and techniques learned.

There’s No Substitute for Experience
	Ada is a rich language. It provides many features that need to be used in moderation on a large, real-time program such as this. Experience with the run-time properties of some of Ada’s more mysterious features paid off time and time again. In examples where a team did not have access to an experienced Ada person, often the results showed. Some of the dangerous features were over use of generics and tasks, use of variant records (caused many run-time problems), too much nesting of generics and packages, and too much information in the package spec (resulting in global objects).

Self Documenting Code
	Maintenance on a large program such as this is actually performed ongoing. People leave or get reassigned and someone needs to pick up and finish where the originator left off. Reliance on external documentation often proves to be futile. When well designed, Ada code can be self documenting. Naturally, there were exceptions to the rule. But when done properly, the maintenance payoff was felt early.

Use Tasks Wisely
	Tasks are not free. In a real-time system, improper use of tasks can wreak havoc. But when used properly, tasks provide a natural expression of the real concurrency problem being solved. When possible, utilize a common CSCI architecture. Here are a few suggestions on the use of tasks.

·	Utilize the main program — it is in reality a task. We suggest using the main program to orchestrate the application’s major state changes (e.g., initialization, shutdown, etc.). This allows a single reference to understanding each application’s state transitions. By using common package specs for the common components of each application, the main program can even be common (yielding a common architecture). Even if it isn’t, using this approach provides a consistent scheme among all CSCIs.
·	Utilize an event management scheme within tasks, as appropriate. An event management scheme is a method where multiple, simultaneous events are managed within one task. This allows for more concurrency without more tasks. By constructing a common event management package early, you enable designers to reduce the number of tasks needed.

Integration Techniques
	Several Ada environments provide excellent program debuggers. These tools are tremendous in isolating problems. Adding TEXT_IO statements to display intermediate states, events, and results also help isolate many problems. However, there will undoubtedly be problems that can’t be found or even isolated with debuggers due to the timing or real-time nature of the problem. TEXT_IO may cause performance problems and therefore be impractical for all problems. We offer the following hybrid approach.
	Sophisticated logic analyzers exist that can unobtrusively capture data from a system. By taking advantage of the analyzer’s strengths, namely the ability to capture data from a specific address range, we can add instrumentation to key algorithms and functions and gain a tremendous insight into the underlying system. For example, we might create a block of 10 integers, each one corresponding to some key function. Whenever one of the key functions invoked, say a memory allocation routine, the function writes a code (in this case, the amount of memory allocated) to the corresponding integer. The code should be designed in such as way as to allow analysis of the operation through the logic analyzer. The analyzer simply captures all “writes” to these integers. Simple tools can decode the results. The instrumentation doesn’t add any significant overhead, but the results can help find many tough problems.

Design for Tuning Up Front
	Integrating a large system will require many intermediate test environments. There won’t always be the complete system to work with. Some components will need to be simulated, some will need to be turned off. Designing up front to support tuning is one of the most important factors for success. Utilizing the service layer and / or configuration files to turn on or off functionality, can provide the needed integration flexibility. With this mechanism in place, the TEXT_IO approach to logging events and data can also be useful.

Ada Is Not for Everything
	Ada is not ideal for everything. Operating systems and low level functionality may be better served with C or assembler. Graphical User Interface functionality can benefit from automated tools that generate C or C++ code. Accepting this fact, you next need to deal with a mixed (Ada to non-Ada) environment. As discussed in the interface section above, do not treat this environment lightly.

	In summary, Ada has what it takes for large systems.
�Summary�tc "<Head 2 (14)>Summary"�
	Models such as that presented above should help guide medium to large scale programs. Given the proper management support and risk management strategies, the processes and technology for tackling tomorrow’s complex systems exists today.
References�tc "<Head 2 (14)>References"�
[1]	Tom Peters, “Thriving on Chaos”, Harper Collins.
[2]	Dr. Steven Covey, “The Seven Habits of Highly Effective People”, Simon and Schuster.
[3]	F. Gregory Farnham and Kevin J. McSweeney, “Going to Sea with Ada”, Defense Electronics, October 1994.
[4]	F. Gregory Farnham, “Lessons Learned on BSY-2”, Software Technology Conference, April 1993.

About the Author
	Robert F. Sullivan Jr. is Vice President of Technology and Product Development at PROSOFT, Inc., located in Syracuse, NY. He is responsible for development and improvement of PROSOFT’s state of the art Configuration Management product, XStream.

�

DIRECT COMMENTS, QUESTIONS, OR REQUESTS FOR ADDITIONAL COPIES TO:�tc "DIRECT COMMENTS, QUESTIONS, OR REQUESTS FOR ADDITIONAL COPIES TO\:"�
�tc ""�

Software Technology Support Center�tc "Software Technology Support Center"�
Ogden ALC/TISE�tc "Ogden ALC/TISE"�
7278 Fourth Street�tc "7278 Fourth Street"�
Hill AFB, Utah 84056-5205�tc "Hill AFB, Utah 84056-5205"�
(801) 777-8045�tc "(801) 777-8045"�
E-mail: custserv@software.hill.af.mil�tc "E-mail\: custserv@software.hill.af.mil"�

Version 2.0

Version 2.0

Version 2.0
APPENDIX O Additional Volume 1 Addenda

O-� PAGE �
108
�

Version 2.0

O-� PAGE �
2
�

