�tc "<>"�
CHAPTER�tc "<>CHAPTER"�
 �tc "<> "�1�tc "<> 1"�

Software Acquisition Overview�tc "<>Software Acquisition Overview"�

CHAPTER OVERVIEW�tc "<Head 3 (14)>CHAPTER OVERVIEW"�

	The software industry is reaching its 50 year mark, however, the same problems that plagued us 20 years ago still persist. DoD has had a distressing history of procuring elaborate, high-tech software-intensive weapons that do not work, cannot be relied upon, modified, or maintained. Many of these over budget, overdue programs have been canceled after reaching full-scale production with millions of dollars wasted, and not a single unit reaching the warfighters’ hands. With virtually every acquisition snafu, the software component can be isolated as the prime source of our dilemmas.
	Over the years, these problems have been studied by experts throughout the industry and Government — all reaching the same conclusion. Our inability to build reliable, economical software is not due to technical shortcomings — but is a product of poor management practice. In this chapter you will learn that software-intensive acquisitions fail due to: (1) the inherent complexity of the software entity, (2) poor estimation of size, time, and cost, (3) unstable requirements, (4) poor decision making by acquisition managers, (5) a belief that something other than improved management skills will cure our ills, and (6) failure to establish and preserve technical in-depth participation and awareness of the state of the program.
	There have been exceptions to the general rule that software-intensive systems are doomed to failure. From these successes we have learned there are certain practices we can apply to our present acquisitions so that, they too, can succeed. The common threads among successful acquisitions consist in the use of improved, modern management techniques by both the buyer and supplier. This chapter discusses using a process-driven acquisition strategy which stresses bringing a supplier on board who has: (1) the most skilled, experienced workforce, (2) a proven track record in developing software of similar size, complexity, and application domain, (3) top-level management commitment to software success, (4) a mature development process and capability, (5) a robust, proven, automated, and appropriately scaled software engineering environment, (6) a well-designed, implementable plan, (7) a defined, established set of standards to guide and control the development effort, and (8) familiarity with the application domain (e.g., there is some ‘precedence’ knowledge for the application). On the buyer’s part, being a good customer means recognizing that successful software is a people thing requiring enlightened leadership based on cooperation, disciplined trust, and inspired teamwork.
�
CHAPTER�tc "<>CHAPTER"�
 �tc "<> "�1�tc "<> 1"�

Software Acquisition Overview�tc "<>Software Acquisition Overview"�
SOFTWARE VICTORY: The Exception or The Rule?�tc "<Head 2 (14)>SOFTWARE VICTORY\:				The Exception or The Rule?"�

In 1987, �xe "DeMarco, Tom"�Tom DeMarco and Timothy Lister, reported that:

Each year since 1977, we have conducted a survey of [software] development projects and their results. We’ve measured project size, cost, defects, acceleration factors, and success or failure in meeting schedules. We’ve now accumulated more than 500 project histories, all of them from real-world development efforts...We observe that about 15% of all projects studied came to naught: they were canceled or aborted or “postponed” or they delivered products that were never used. For bigger projects, the odds are even worse. Fully 25% of projects that lasted 25 work-years or more failed to complete...For the overwhelming majority of the bankrupt projects we studied, there was not a single technological issue to explain the failure. [DeMARCO87]

This chapter tells you why software-intensive acquisition programs fail, and provides you some insight into recognizing major problems while they are still solvable. Thus, we are going to look at an array of major software-intensive acquisitions. The ill-fate of these programs reveals a legacy of buggy software that does not work, can not be trusted, and cannot be modified or maintained. Why are so many software acquisitions delivered late, of such poor quality that they are never used or are even canceled after wasted years and wasted millions?

The software industry is reaching its 50 year mark! Over the years we have benefited from the experiences and wisdom of thousands of people reflecting a wealth of knowledge on how to bring a major software-intensive acquisition to successful deployment. Today, there are better management techniques, development tools, and advanced technologies than ever before. Nonetheless, the very same problems that plagued software acquisitions 20 years ago still persist. Why have we neglected to learn from our past failures, and albeit rare, successes? What you are going to learn throughout these Guidelines is that the success or failure of a software acquisition is a people thing — not a tool or technology thing or any other kind of thing. Granted, most successful development organizations take full advantage of state-of-the-art technologies. But acquisition programs are led by people, not technology. [WHITTEN95]

It is no mystery why software acquisitions get into trouble. Enough has been written on the subject to overload a C-17 Globemaster. Poor management is cited time and again as the nemesis. If we know this, why do we keep making the same mistakes over and over? Because we do not listen, and we do not act on what we have learned! For us to conquer the software war, we must win the management battle. If we do not re-engineer the software management task, we are doomed to join the ranks of the software acquisition norm — program failure! Our purpose is to provide you with the ability to recognize major problems while they are still solvable. Once you understand what these problems are and why they occur, you will be equipped to do something about containing and/or eliminating them.

Remember, learning from past mistakes must be accompanied with a sincere commitment to better management practices. It must also come from proactive leadership to follow your convictions, to demonstrate the courage and integrity to take charge, and to strive to stay in control. As �xe "Mosemann, Lloyd K., II"�Lloyd K. Mosemann, II, former Deputy Assistant Secretary of the Air Force, (communications, computers, and support), told a large audience of software professionals at the 1995 Software Technology Conference in Salt Lake City, “I’ll stop preaching, when you start practicing!” What we preach here is founded on valuable, hard-learned lessons, and a wealth of knowledge gathered from experts and learned practitioners throughout the software community. Do not let your program become another relic on the crowded battlefield of software defeats. There are solutions. Read, absorb, and act upon what you learn in these Guidelines — then start practicing!
Software: The Highest Risk System Component�tc "<Head 2 (14)>Software\: 						The Highest Risk System Component"�

Historically, the Department of Defense (DoD) has been plagued with many well-publicized acquisition snafus. The situation was summarized in the following 1985 Business Week article.

When the Pentagon decides to build a complex new weapon these days, it often seems to run into disaster. The promise of advanced technology seduces designers and eager contractors into taking big risks with the public’s money. And frequently, these elaborate projects end up hamstrung by technical errors, management miscalculations, or congressional interference. The result is weapons that are grossly overpriced — or don’t work. [BUSWEEK85]

A decade later, problems still persist. On April 27, 1995 �xe "Conahan, Frank C"�Frank C. Conahan, Senior Defense and International Affairs Advisor to the Comptroller General of the United States, testified before the Committee on the Budget, US House of Representatives. In his statement he explained,

Over the years, we have reported on the persistent problems that have plagued weapons acquisition. Many new weapons cost more, are less capable than anticipated, and experience schedule delays. These problems are typical of DoD’s history of inadequate requirements determinations for weapon systems; projecting unrealistic cost, schedule, and performance estimates; developing and producing weapons concurrently; and committing weapon systems to production before adequate testing has been completed. [CONAHAN95]

Why is DoD still plagued with software-intensive acquisitions gone astray? When a major procurement program turns into a fiasco, when costs soar, deliveries fall behind schedule, and performance is compromised, more times than not the problem can be traced to one high-risk component — the software! In December 1990 a series of articles ran in The Washington Post explaining that:

Software problems have caused major delays of weapons systems, created malfunctioning aircraft, and cost the Defense Department billions of dollars in unanticipated costs. Officials acknowledge that virtually every troubled weapon system, from the electronics of the B-1B bomber to satellite tracking systems, has been affected with software problems. Even straightforward record-keeping systems can get bogged down; last year the Navy canceled a software accounting project nine years in the making after its cost quadrupled to $230 million. [RICHARDS901]

In the same series �xe "Greene, Col Joseph, Jr"�Colonel Joseph Greene, Jr. (USAF), head of a Pentagon software research effort, was interviewed about a study he completed on 82 large military procurement programs. Of those, Greene found that programs relying heavily on software ran 20 months behind schedule — 3 times longer than non-software-intensive programs. He calculated that those delays cost DoD 1/10th of its $100 billion research and procurement budget. Greene explained, “The department is paying a huge penalty for not dealing with its software problems. The penalty is not just late software — it is degraded war-fighting capability.” [GREENE90] (In another study The Washington Post cited, 3/4ths of 55 aerospace and defense contractors ran their software programs in an ad hoc, chaotic manner.) [RICHARDS902]

Often taken for granted in the past, software is now recognized as the highest risk system component in virtually every software-intensive acquisition. A June 1991 report of the �xe "Defense Acquisition Board (DAB)"�Defense Acquisition Board claimed that the estimated 1.55 million lines-of-code to be built for the �xe "F-22 Advanced Tactical Fighter"�F-22 — the largest software task ever undertaken for an attack/fighter program — represents the most significant threat to the successful development of the aircraft. In October 1994, F-22 program managers concurred that the avionics software integration is the most formidable task for their contractors — the accomplishment of which the successful deployment of the F-22 depends (budgetary issues not considered). [GAO951]

False Steps on the Battlefield�tc "<Head 3 (14)>False Steps on the Battlefield"�

[There is] room for a military criticism as well as a place for a little ridicule upon some famous transactions...But why this censure... to exercise the faculty of judging...The more a soldier thinks of the false steps of those that are gone before, the more likely he is to avoid them. 	— Major General Sir James Wolfe [WOLFE27]

Will studying the false steps of past software-intensive acquisitions give us insight into how not to make the same mistakes over again? Can we learn from past failures so we might proceed on firmer ground? The following discussion examines the relics of some famous program defeats that litter the software battlefield.

General Accounting Office (GAO) Reports�tc "<Head 4 (12)>General Accounting Office (GAO) Reports"�

DoD is not alone in rampant software acquisition debacles. In 1979, the GAO (the Congress’ watchdog agency) published the report, Contracting for Computer Software Development — Serious Problems Require Management Attention to Avoid Wasting Additional Millions. The results of that report and selected others over the years are listed on Table 1-1.

�
Table 1-1 GAO Reports on Software Failures

�
Table 1-1 GAO Reports on Software Failures (cont.)

The 1979 GAO report made some stirring comments about the state of software development in the late 1970s, which unfortunately concur with more recent observations. It stated:

Several factors contributed to the situation [of having software development problems]. First, the invisible nature of both the work process and its product made software projects very difficult to manage and predict. Second, the explosive growth of the use of computers created demand for new programmers, most of whom were self-taught on the job; and frequently, low productivity and poor quality resulted. Third, there was little idea then of how to train programmers properly. Fourth, a tradition grew that programmers were secretive craftspersons, whose products, during development, were their own property. [GAO79]
�
Scientific American Article�tc "<Head 4 (12)>Scientific American Article"�

Software acquisition failures are also common place in the private sector. “Software’s Chronic Crisis,” an article from the October 1994 �xe "Scientific American"�Scientific American, [see Foreword] cites the results of an IBM study of 24 leading companies developing large, distributed software-intensive systems. Of all those companies’ software programs combined,

•	55% had cost overruns;
•	68% had schedule overruns; and
•	88% had to be redesigned to be used.

According to the article, studies show that:

•	1/3rd of all large-scale software programs are canceled;
•	The average software program overruns its schedule by 50% — larger programs usually by more;
•	3/4ths of all large-scale developments are operational failures — they do not function as intended or are not used at all; and
•	Software is still hand-crafted by artisans using techniques they can neither measure nor consistently repeat. [GIBBS94]

Table 1-2 lists the major software development failures discussed in the Scientific American article.

�
Table 1-2 Major Non-Military Software Failures

Battle Damage Assessments�tc "<Head 3 (14)>Battle Damage Assessments"�

Over the years, our software problems have been analyzed by the most experienced and savvy experts on the subject. The �xe "Defense Science Board (DSB)"�Defense Science Boards and �xe "Process Action Team:Report on Military Specifications and Standards (1"�Process Action Teams who wrote the reports and articles discussed below were comprised of the best and brightest software engineers from Government, industry, and academia. Their analyses of our problems, suggested resolutions, and insights into implementing solutions are as astute and knowledgeable a disposition of the software condition as can be found. As you read the following summaries, which span almost two decades (starting with the 1979 GAO report above), a startling paradox will emerge. You will see there is little deviation from the common perception that one isolated factor continues to surface as the primary cause of our software problems — poor management. The paradox is that while we have been told over and over our problems lie in management — we have made little progress in correcting our management shortfalls. Major software developments blossom into fiascoes which end in disasters with surprising constancy. The problems that were present in 1979 — that have showed their ugly heads in subsequent programs — still trouble us today. The paradox is also compounded by the fact that the development of software has become increasingly more demanding and complex. As William Wulf, former head of the �xe "National Science Foundation"�National Science Foundation’s office of computer and information science, warned in 1990, “The amount and quality of software we need is increasing constantly, and our ability to produce it is essentially stagnant. Those two things are on a collision course...[It is] absolutely a problem of much larger dimension than most people realize.” [WULF90]

The Parnas Papers�tc "<Head 4 (12)>The Parnas Papers"�

September 1985 marked the resignation of �xe "Parnas, David"�David Parnas, a leading software engineer of the time, from the Panel on Computing in Support of Battle Management, convened by the �xe "Strategic Defense Initiative (SDI)"�Strategic Defense Initiative (SDI) Organization (SDIO). In his letter of resignation, he included eight essays (published in American Scientist) detailing why he believed SDI software problems were insurmountable — that the software conceived for the system could not be built. The SDI was a massive software network linking an equally huge array of sensors and weapon systems — all software-intensive in their own right. It was to identify, track, and direct defensive weapons towards space-borne targets, the ballistic characteristics of which would not be known with any certainty until the moment of engagement. Because it was to defend against incoming nuclear warheads, operational testing of the system under real-time battle conditions would not be possible prior to its deployment. Also, because the system’s service life would be so short (30-90 minutes), there would be no time to debug or modify its mission-critical software. In his analysis of why SDI software could not be deployed with any degree of reliability, Parnas conveyed some crucial insights into the state of software development practice. Parnas told us that software is risky because, “Software is hard” [to build]. Often described as the most tasking mental activity ever undertaken by mankind, software is hard because it is so �xe "Complexity"�complex. He explained that:

•	Software development is a trial-and-error craft. People write code without any expectation that they will be right the first time. They spend at least as much time testing and correcting errors as they spend writing the initial code.
•	The military software we depend on every day is not likely to be correct. The methods in use in the industry today are not adequate for building large, real-time software systems that must be reliable when first used.
•	Good software engineering is far from easy. The methods reduce, but do not eliminate, errors. They reduce, but do not eliminate, the need for testing.
•	It is clear that the [tool] environment in which we work does make a difference. The flexibility of the [environment] allows us to eliminate many of the time-consuming housekeeping tasks involved in producing large systems.
•	Even with sound software design principles, we need broad experience with similar systems to design good, reliable software. [PARNAS85]

Of course, Parnas made his observations in the context of the most colossal real-time software system ever conceived — the SDI. But his judgment about the immaturity of software development applies to the discipline as a whole and to its inability to successfully produce any large-scale software system. Parnas did not give credence to optimistic claims of future breakthroughs in software technologies or practices of the day. He claimed they could not promise improvements significant enough to allow the SDI to be built as conceived. In fact, he called some of them “dangerous and misleading.” He also said major achievements in software quality and productivity would not come from any of the areas he examined in his essays (e.g., languages and tools, automatic programming methods, formal software verification, artificial intelligence, and software research). Parnas claimed that because software is built by trial and error, the only reliable software that can be built is that which is precedented. [NOTE: “Precedented,” as used here, refers to software which is based upon an existing model or example.] This is the fundamental motivation for advanced process models based on iterative development.

Fred Brooks’ “No Silver Bullet”�tc "<Head 4 (12)>Fred Brooks’ “No Silver Bullet”"�

The April 1987 issue of Computer included the most famous and oft quoted paper on the software dilemma ever published, “No Silver Bullet: Essence and Accidents of Software Engineering,” by software pioneer �xe "Brooks, Frederick P., Jr"�Frederick P. Brooks, Jr. In it he likened our monumental problems with software to werewolves. Like werewolves, software programs can unexpectedly be transformed from “commonplace” into untamable monsters. A normal, routine software development has the capability of becoming — without warning — a disaster marked by blown schedules, busted budgets, and bad products. Whereas, a �xe "Silver Bullet"�Silver Bullet has the power to slay a werewolf, Brooks claimed there exists no Silver Bullet that can magically slay our software problems.

Brooks saw the difficulties facing improvements in software technology as characterized by two major obstacles. One is the essence of software — the difficulties inherent in the software beast itself. The other is the accidents — those difficulties found in the production of software that are not inherent to the beast. Of the essence, Brooks, like Parnas, took the position that software is hard and always will be. It has an inherent and necessary complexity. “Software entities are more complex... than perhaps any other human construct...Software systems have orders-of-magnitude more states than computers do...[Because] the complexity of software is an essential property,” it does not lend itself to simplification techniques found in other disciplines. [BROOKS87] For instance, in mathematics simplified models of complex problems are often used as analytical tools. The essence of software is that it achieves the solution of a complex problem by compounding its complexity (i.e., the algorithms defining the solution are more complicated than the real-world problems they solve.) [See Chapter 5, Ada: The Enabling Technology, for a discussion on problem and solution domains.] [GLASS91]

Also like Parnas, Brooks analyzed the major breakthroughs in software development which have increased productivity and improved quality over the years. Advances, such as high-order languages, faster processing times, and integrated software engineering tool environments, have achieved quantum leaps in dealing with the accidents. But he, too, concluded that it is doubtful further technological advances of any magnitude will solve our chronic problems. Huge promises of Silver Bullets that will yield spectacular progress in software development (common occurrences in the hardware arena) are not to be believed.

The solutions to the software dilemma, Brooks suggests, are not as colorful as his description of the problem. They are, in fact, rather pedestrian and mundane. Brooks tells us “a disciplined, consistent effort to develop, propagate, and exploit the following suggestions should yield an order of magnitude improvement.”

•	Buy software, rather than build it. “Every day this becomes easier, as more and more vendors offer more and better software products for a dizzying variety of applications.” [Commercial-off-the-shelf (COTS) software is discussed in Chapter 13, Contracting for Success.]
•	Grow software, don’t build it. Develop software incrementally and refine requirements through prototyping. Partial solutions are easier to correct and modify than a full-blown, finished product that does not perform as envisioned. [Incremental development is discussed in Chapter 3, System Life Cycle and Methodologies; prototyping is discussed in Chapter 14, Managing Software Development.]
•	Employ and cultivate the best and the brightest. “Sound methodology can empower and liberate the creative mind; it cannot inflame or inspire the drudge. Great designs come from great designers!” [BROOKS87] [“Smart People” are discussed below.]

1987 Defense Science Board Report on Military Software�tc "<Head 4 (12)>1987 Defense Science Board Report on Military Software"�

Also in 1987, a final report was released by the �xe "Defense Science Board (DSB)"�Defense Science Board Task Force on Military Software. The Task Force was chaired by �xe "Brooks, Frederick P., Jr"�Fred Brooks and manned by some of the most diligent, astute experts in the field. It pulled no punches in waging a frontal attack on DoD’s on-going software troubles when it stated:

•	Many previous studies have provided an abundance of valid conclusions and detailed recommendations. Most remain unimplemented. If the military software problem is real, it is not perceived as urgent.
•	We do not see any single technological development in the next decade that promises ten-fold improvement in software productivity, reliability, and timeliness.
•	Few fields have so large a gap between best current practice and average current practice.
•	The Task Force is convinced that today’s major problems with military software development are not technical problems, but management problems. [DSB87]

The report assaulted not only the institutions that govern military software development, but the obstacles encountered when transitioning technology and modern management practices to a new engineering discipline. The report’s recommendations focusing on the software development task are summarized as:

•	DoD should assume software requirements can be met with COTS subsystems and components until it is proved they are unique [requirements]. [Discussed in Chapter 13, Contracting for Success.]
•	DoD management should commit to a serious and determined push to Ada. [Discussed in Chapter 5, Ada the Enabling Technology.]
•	DoD should develop metrics and measuring techniques for software quality and completeness, and incorporate these routinely in contracts. [Discussed in Chapter 8, Measurement and Metrics.]
•	DoD should examine and revise regulations to approach modern commercial practice insofar as practicable and appropriate. [Discussed in Chapter 2, DoD Software Acquisition Environment.

NOTE:	Only commercial practices which enhance the common thread attributes of successful programs referenced above should be adopted. Avoid all others.

•	DoD should mandate the iterative setting of specifications, the rapid prototyping of specified systems, and incremental development. [Discussed in Chapter 3, System Life Cycle and Methodologies.]
•	DoD should mandate the use of risk management techniques in software acquisition. [Discussed in Chapter 6, Risk Management.]
•	DoD should develop economic incentives for contractors to offer modules for reuse and to buy modules rather than building new ones. [Discussed in Chapter 9, Reuse and Chapter 13, Contracting for Success.]
•	DoD should enhance education for software personnel. [Discussed in Chapter 15, Managing for Process Improvement.]

The thrust of the report is summarized in the following statement: “We call for no new initiatives in the development of technology, some modest shift of focus in technology efforts under way, but major re-examination and change of attitudes, policies, and practices concerning software acquisition.” [DSB87]

1992 Software Process Action Team Report�tc "<Head 4 (12)>1992 Software Process Action Team Report"�

In June of 1992, the Air Force Systems Command Software Process Action Team published their final report, Process Improvement for Systems/Software Acquisition. Using a rigorous Total Quality Management (TQM) approach, the team focused their analysis on software-intensive acquisition programs where the software component could be cited as the primary contributor to, if not the main cause of, cost, schedule, and performance violations. They identified the three top problem areas as: (1) program acquisition baselines, (2) requirements, and (3) program management. The report summarized problems, provided solutions that included process changes, and made recommendations for implementing those solutions. Recommendations included organizational changes, changes to standards, regulations, and other implementation vehicles, improved training, use of better metrics, improved funding estimates, adhering to current best practices, and identifying outstanding risk areas.

•	Program �xe "Acquisition:Baseline"�acquisition baselines. Not enough schedule time is allotted to develop the necessary software. Baselines are established prematurely, and once set, there is reluctance to change them. Baselines are frozen before system and software requirements have been defined or derived and before there is an adequate basis for cost and schedule estimation, especially with unprecedented systems. Recommendations: (1) formal methodologies, (2) phased development, and (3) bidding to an open schedule.
•	�xe "Requirements, software"�Requirements. Often, there is a failure to match user needs with government/industry resources and to define and follow an adequate systems engineering process. There is also a lack of clear, well-defined requirements. Recommendations: (1) user involvement in requirements definition and on-going communication among the acquisition, logistics, developer, tester, and user communities; (2) a clearly-defined systems engineering process; and (3) an improved specification process with focus on requirements allocation, derivation, and traceability.
•	�xe "Management"�Program management. Technical reviews are improperly driven by management considerations and software documentation requirements are often excessive in volume and poor in quality. Recommendations: (1) enhancement of the technical review process for software related milestones; (2) more flexible data items to improve software documentation; (3) system acquisition training programs with more focus on software; (3) better definition of the systems engineering process with respect to the software engineering process; and (4) incorporating incremental development in software management standards and data requirements. [PAT92]
�
1994 Defense Science Board Report on Acquiring Defense Software Commercially�tc "<Head 4 (12)>1994 Defense Science Board Report on Acquiring Defense Software Commercially"�

The most recent report is that of the 1994 Defense Science Board which makes a pertinent point about the trend (or lack of trend) in DoD software acquisition when it states: “Despite the increased emphasis given to software issues by the DoD...the majority of the recommendations resulting from these studies have not been implemented.” [DSB94] Some of the report’s recommendations germane to this discussion are listed here. [Other recommendations are discussed in Chapter 13, Contracting for Success.]

•	Establish mechanisms to allow both current ability to perform and past performance as key factors in source selection;
•	Define software architectures to enable rapid changes and reuse;
•	Facilitate early system engineering and iterative development;
•	Require program managers to stay with programs at least through beta testing to maintain continuity and understanding of original requirement nuances.
Why Software Acquisitions Fail�tc "<Head 2 (14)>Why Software Acquisitions Fail"�

Software acquisitions fail because software management fails! Software management fails in three areas: administration, program measurement, and technical scrutiny. In Chapter 7, Software Development Maturity, you will learn about a method for determining the maturity of contractors and in-house software development organizations. Ratings go from a Level 1, Initial, to a Level 5, Optimizing, with levels of increasing maturity in between. Our management problems can often be blamed on the fact that our development processes are immature and chaotic. Our development costs and schedules, as well as product quality, are unpredictable. Our managers are poorly trained because the software development process is misunderstood. The maturity of the processes within a software organization is a very important determinant for software success. However, success is also dependent on the people within the organization and their ability to technically evaluate their software product.

Our quality problems quickly become exorbitant cost problems. Once the software is delivered and in the user’s hands, latent defects often need correction. As with most systems that have long operational lives, software must be modified to adapt to new or changing requirements and/or upgraded to new technologies. Before DoD’s mandate to use the Ada language, over 400 different languages were used to develop DoD software. Our software was often so unique and custom-crafted, and so poorly documented, the only one who could figure it out was the original designer — who was often off working on something else or otherwise unavailable. Phenomenal cost growths occur once the software enters its operational life. This is manifest in software that imposes heavy training loads, increases labor expenditures, and frustrates attempts at reusing software developed for one system in another.

Blum sees the software development process from three perspectives. He describes software design as looking forward, software quality assurance as looking backward, and management as looking downward. Although not earthshaking, his explanation does place management above the detailed, technical work — looking down. This, he claims, makes the management task the most arduous in software development — and consequently, the major source of all our problems. [BLUM92] In his book, The Five Pillars of TQM, �xe "Creech, Gen Bill"�General Bill Creech (USAF retired) makes the same observation:

You must do more than talk about it; you must change the organization ‘conceptually’ and ‘structurally’ to bring leadership alive at all levels. Principles flow from the top down; decisions flow from the bottom up. [CREECH94]

In other words, management fails because decision making is coming from the wrong direction. We are trying to make decisions from the top down, when they need to come from the bottom up. To control it, managers need a better understanding of the software beast. Overwhelming evidence indicates that software programs fail for the following common reasons:

•	Software’s inherent complexity (non-management related);
•	Our inability to estimate cost, schedule, and size;
•	Unstable requirements; and
•	Poor problem-solving/decision-making.

No quick, easy solutions exist for these major, recurring, oft-repeated problems. If there were, these Guidelines would not be so thick! The battle damage assessments in the previous section illustrate the severity of our problems and the range of solutions. As you will see, solutions are often interrelated and multifaceted. Those software best practices you should implement to avoid or correct these problems are discussed throughout these Guidelines.

NOTE: 	If your program is experiencing any of the following problems, it is suggested you read these entire Guidelines, and especially Chapter 16, The Challenge, which discusses “What to Do with a Troubled Program.”

Complexity�tc "<Head 3 (14)>Complexity"�

As Parnas and Brooks explained, software is risky because it is hard to build. The complexity of hardware pales in comparison with the complexity of software. For any given hardware problem, there is usually a high percent of component reuse and a finite number of solutions. With software, even with optimized solutions, there are a near-infinite number of possible correct solutions. Theoretically, any set of problems from any other discipline can be solved within the software domain. [GLASS92]

Complexity plagues us because we often fail to take a disciplined approach to design and create more complexity than needed. Although sometimes necessary to match problem complexity, software complexity should be kept to a minimum by all means. Highly complex solutions are destined to be high cost maintenance nightmares! The more complex the software — the more difficult it is to understand — the greater the chance for defects to propagate throughout the code. The cost of making changes and correcting defects often soars beyond acceptable levels, resulting in programs abandoned after exorbitant expenditures of unrecoupable resources. As �xe "Brooks, Frederick P., Jr"�Brooks tells us, the best designs are those that “produce structures that are faster, smaller, simpler, cleaner, and produced with less effort.” [BROOKS87]

Inadequate Estimates�tc "<Head 3 (14)>Inadequate Estimates"�

The fundamental reason software-intensive developments overrun cost and schedule, with resulting quality and performance shortfalls, is our inability to estimate. No matter how smooth our development process, how efficient our tools, or how smart our designers, our predictions of cost and schedule are frequently out of sync with what actually occurs in the production of a software product. We often forget that software development involves much more than simply writing code. For example, we are still learning that software inspections and testing take longer than anticipated and that maintenance consumes from 60% to 80% of our software dollars. We also do not account for the amount of scrap and �xe "Rework"�rework of code involved when a developer has an ad hoc, chaotic development process, the cost of which Boehm claims to be about 44% of every dollar spent, as illustrated in Figure 1-1. [BOEHM81] [Rework is discussed in Chapter 8, Measurement and Metrics.]

�
Figure 1-1 Defect Rework Hidden Cost [BOEHM81]

Size and Complexity Estimates�tc "<Head 4 (12)>Size and Complexity Estimates"�

Predicting the �xe "Size:Estimation"�size and �xe "Complexity:Estimation"�complexity of the software to be built is at the heart of our estimation deficiencies. Because software is intangible — we cannot weigh it, box it, put our arms around it, or paint a picture of it — our attempts at projecting how big it will be, how hard it will be to create, or how long it will take are compounded. When a software development is precedented (i.e., a similar system has been developed) size and complexity projections (and thus cost and schedule) are usually more accurate. In unprecedented systems, however, our inability to estimate the intangible is acute. [See Chapter 8, Measurement and Metrics, and Chapter 12, Strategic Planning, for discussions on software estimation and planning.]

Cost/Schedule Estimates�tc "<Head 4 (12)>Cost/Schedule Estimates"�

Programs tend to get in trouble in small, progressively compounding increments. When the product is late (and/or over cost), we apply management pressure to reduce the slack between our projected delivery date and the illusive real one. This aggravates the problem into a Catch-22 situation. With inadequate resource and schedule estimates, the time required to build-quality-in may be insufficient. Also to meet schedule and keep down cost, the next easiest thing to cut is testing. [GLASS92] Before we realize it, a late, over cost program evolves into an unreliable one. From the developer’s point of view, when a cost/schedule disaster is discovered, they often try to protect their contract through alternative proposals that attempt to deliver less for the same price. This leads to �xe "Requirements, software:Down-scoping"�down-scoping, or eliminating requirements, in an attempt to stay within initial projections. [MARCINIAK90] This is a very serious situation because it means resources have been expended, often exhausted, and the user does not get the system for which they paid. When this happens, we have the “perfect formula for a software disaster!” There are many cases of programs that have been canceled without the delivery of a single operational product after years of schedule and cost overruns.

�xe "Schedule:Changes"�Schedule changes, due to unrealistic estimates of required development time, often start as unnoticeable alterations in plans that go undetected by most managers. �xe "Schedule:Slips"�Schedule slips, starting small, have the potential of becoming major problems because even small slips impact delivery of other related elements and almost always affect cost. Late software (on the system’s critical path) causes other system components to slip their schedules while waiting for delinquent software. Failing to recognize and deal with this problem through expeditious corrective action, the situation can quickly deteriorate into another “perfect formula for a software disaster!”

Optimistic Estimates�tc "<Head 4 (12)>Optimistic Estimates"�

In DoD we are subject to spending and budgeting scrutiny from the Congress, the press, and upper management. Under pressure, contractors and military managers often make overly optimistic estimates about how much the software will cost and how long it will take to produce. We often discard pessimistic cost, schedule, and size estimates and base our projections on the best of all possible worlds. We fail to manage risk and to build a management reserve or a worst-case scenario into our cost/schedules for fear our programs will not get funded or approved if we submit more realistic figures. This increases the likelihood for “perfect formula for a software disaster” shortcuts in the development of a product that was improperly funded and scheduled. The problem, in these cases, is not the actual estimates of cost, schedule, and size (which in many cases may be reasonable estimates) — it is the failure to use these estimates to establish reasonable, attainable program baselines.

Unstable Requirements�tc "<Head 3 (14)>Unstable Requirements"�

One big cause of software program failures, upon which all the reports and studies undeniably concur, is requirements instability. Because user missions evolve as the world and threats evolve, it is reasonable to assume requirements are going to change. Thus, the first factor to consider when managing unstable requirements is to build software systems with an architectural that tolerates changing requirements. It is important, however, not to compromise the overall architectural design for a subtle near-term requirement, that if compromised, will negate the ability for future change. The second factor to consider is to control how and at what pace inevitable requirements changes are incorporated. If ad hoc, sporadic, or frequent modifications to requirements or their interpretation are inflicted on developers, creeping changes in cost and schedule are a given. Sometimes what appear to be minor changes have dramatic side-effects elsewhere in the software. If full (technical and effort) evaluation of change consequences are not included in the management process, the incremental incorporation of changed requirements can invalidate estimates of cost and schedule — diminishing product quality.

One potential source of instability is inadequately stated requirements. Indefinite and undefined software requirements also lead to creep cost and schedule changes which can continue even after the program enters development. The most important, yet difficult, software development task, requirements definition and analysis, plagues software programs in all domains — in all sectors of the industry. In DoD this is especially menacing, where if poorly executed, ill-defined requirements lead to poor specifications which impact cost, schedule, and latent defect rates. Requirements creep has the greatest impact on our inability to estimate. Figure 1-2 illustrates how the ability to predict software cost increases as requirements become progressively better defined.
[�xe "Boehm, Barry W"�BOEHM81]

�
Figure 1-2 Software Cost Estimation Accuracy versus Phase [BOEHM81]

User Involvement�tc "<Head 4 (12)>User Involvement"�

Paul Paulson, president of Doyle, Dane and Bernbach, a large New York brokerage firm, was quoted in the New York Times as saying,

You can learn a lot from the client. Some 70% doesn’t matter, but that 30% will kill you. [PAULSON79]

Misinterpretation of user requirements is a major, if not the greatest, contributor to software failure. Not understanding your client (the military user) while managing software development is one sure way to make your program crash-and-burn. Inadequately stated requirements have often been the source of costly support problems and ultimate program failures.

User involvement is critical throughout requirements analysis and design, where user feedback is essential to determine whether perceived user needs have been correctly translated into software functionality. The 1992 final report of the Software Process Action Team [discussed above] found that the primary reason for major software-intensive program failures was the inability to translate user needs into viable software requirements. The report states:

The procurement process often results in government acquisitions that fail to meet user needs. The problem is exacerbated during system development when requirements decisions are made without adequate user input and without full understanding of the overall impact on costs, schedules, performance, and other critical factors. Current Government and industry practices have led to requirements specifications that contain design information, inappropriate levels of detail, inadequate requirements, and poor traceability.

Lessons-learned from the Air Force’s �xe "Nuclear Mission Planning and Production System (NM"�Nuclear Mission Planning and Production System (NMPPS) warn that users often do not start out with a clean slate when explaining their operational, readiness, and logistics requirements. Additionally, they may view the statement of their requirements as one more document being coordinated within headquarters which can be changed with minimal impact. Personnel with operational experience can also contribute to this paradox because they, too, assume they generally know the requirements, and need to ask users fewer questions. [KEENE91]

Another example of the user involvement issue occurs when a typical program office designates someone other than the user with responsibility for defining system requirements. These user representatives, often called functional analysts, use a systems analysis approach to functional design development. While some functional analysts have extensive background in the target system, others rely on their understanding of user requirements. In both cases, understanding user requirements quickly diminishes without frequent exposure to the target system’s operational environment.

Once developed, functional specifications are passed on to programmers who must interpret specifications and write the code. Large programs can have 50 or more programmers receiving functional guidance using this methodology. Considering that initial guidance is likely to be, at best, partially flawed, a second translation compounds the situation. During system testing, efforts are expended in determining whether a software error was introduced during functional design or in actual coding. The likely result of this design-to-product process is the most costly perfect formula for a software disaster — software redesign. [HENDERSON95]

Communication�tc "<Head 4 (12)>Communication"�

The main reason errors occur during requirements definition and analysis is lack of �xe "People:Communications among"�communication. During the requirements phase, the user tries to articulate a concept of the system function and performance into concrete detail. The software engineer attempts to translate user definitions into models of required information, control flow, operational behavior, and data content. The chances for misinterpretation, misinformation, and ambiguity abound. �xe "Vessey, GEN John W"�General John W. Vessey, when serving as Chairman of the Joint Chiefs of Staff, explained that

More has been screwed up on the battlefield and misunderstood at the Pentagon because of the lack of understanding of the English language than any other single factor. [VESSEY84]

Lack of understanding of what software is, how it performs, and our difficulty in conveying what we want it to do, are compounded by the inherent shortcomings of the English language. The dilemmas confronting software engineers are expressed in the statement by the user: “I know you believe you understood what you think I said, but I’m not sure you realize that what you heard is not what I meant.” [PRESSMAN92] Under these conditions, designers fail to translate conceptual user needs into functional software requirements. Software that does not fit the needs of the customer is doomed for the trashheap! As Brooks explains,

The hardest single part of building a software system is deciding precisely what to build. No other part of the work so cripples the resulting system if done wrong. No other part is more difficult to rectify later. [BROOKS87]

Data collected at �xe "Rome Laboratory"�Rome Laboratory indicate that over �xe "Error:Cost of"�50% of all software errors are “requirements errors.” Requirements errors are more expensive to correct the further they percolate throughout the life cycle. It is often 50 times more expensive to correct a defect during systems �xe "Integration:Error rate"�integration than during requirements analysis. [DiNITTO92] Figure 1-3 illustrates how the cost to correct requirements errors increases during subsequent phases of development.

�
Figure 1-3 Error Propagation Cost

Intangibility�tc "<Head 4 (12)>Intangibility"�

The reasons we have trouble estimating how big, how complex, or how long it takes to produce software are the same reasons that confound us in determining what and how the software should perform. Software can be designed, but it cannot be built in any physical sense. Users have trouble describing something in English that is invisible, exists in an ethereal world of magnetic fields, and communicates in electronic bits and beeps.

Complexity�tc "<Head 4 (12)>Complexity"�

The complexity issue arises again when confronted with the enormous tasks we often want our software to perform. Using the SDI as an example, we undertake giant, unique developments that require years of work, and hundreds of people to produce. Being unprecedented, they cannot be built using previous knowledge and cannot be tested under actual operational conditions or in the environment in which they will be used. Nailing down how the software should perform under these circumstances is often problematic. [See Chapter 8, Measurement and Metrics, for a discussion on measuring complexity.]

Changing Threat�tc "<Head 4 (12)>Changing Threat"�

Military operations constantly change in response to volatile world events, often causing the mission to change midstream during development and almost routinely after deployment. These changes in world events can cause requirements instability that must be addressed in the most cost-effective and easiest manner. Because software is soft and flexible, we choose to change it rather than bend metal. For example, in response to the changing world threat, the B-1B �xe "B-1B Lancer:Conventional Mission Upgrade Program (CMUP)"�Conventional Mission Upgrade Program (CMUP) is converting the aircraft’s nuclear capability to a conventional configuration by integrating a cluster bomb unit. To perform this, 47 new software modules are being designed for conventional bomb-racks to enable switching between 500 pound bombs and 1,000 pound tactical munitions dispensers (TMDs). [SCOTT95] The conversion involves uploading newly designed modules in each weapons bay, modifying the avionics operational flight software, and reloading databases. [AW&ST92] Because software is soft, we are able to produce more flexible solutions like these than any other discipline.

�
Figure 1-4	Software Changes Convert B1-B from Nuclear to Conventional Capability

That, however, is also why our maintenance costs are more exorbitant than other disciplines. As Glass tells us, we fail again and again to realize that although software is soft, “it is not so soft that change is free. Far from it, in fact. Change is the biggest money-maker in the software world!” [GLASS91] We do not realize that unstable requirements are a characteristic of the software beast. We fail to freeze requirements at the outset of the program — when the �xe "Software Requirements Specification (SRS)"�Software Requirements Specification (SRS) is approved. If requirements keep evolving as the software evolves (and especially if there is concurrent hardware development), it is next to impossible to develop a successful product. Software developers find themselves shooting at a moving target and throwing away design and code faster than they can crank it out.

Poor Problem Solving/Decision-Making�tc "<Head 3 (14)>Poor Problem Solving/Decision-Making"�

Management is, like all other activities in software development, a problem-solving exercise. It involves deciding what must be accomplished, how to do it, monitoring what is being performed, and evaluating what has occurred. The “what” is expressed in the �xe "Software Development Plan (SDP)"�Software Development Plan (SDP) [see Chapter 14, Managing Software Development] and the “how” in an allocation of resources (e.g., schedule and budget). Too often, we stop after these first two steps.

We do not remember that software development is dynamic and our original plans and estimates must be updated. [Now we are back to the estimation problem above.] We need more time than projected, new requirements are added, key personnel are sent to other programs. We fail to monitor activities and adjust our plans and resources accordingly. [BLUM92] For example, when change requests are submitted, we fail to make a solid estimate of their impact on our cost and schedule predictions and to change those figures to accommodate the new requirements. We fail to tell our customers (the user or the Government if you are a contractor) that if they want A change badly enough, they will have to pay for it. It is easy enough to understand this problem, but few managers act on it. [GLASS92] We get caught up in trying to please and in the old tail-chasing game of catch up by subscribing to the “perfect formula for a software disaster!”

Silver Bullets�tc "<Head 4 (12)>Silver Bullets"�

Software technology has been the greatest instrument for improving man’s efficiency since the Industrial Revolution. When properly used, it provides remarkable competitive advantages. However, while software significantly increases the efficiency of its users, the way software is produced is quite inefficient. Not only is most software hand-crafted — it is produced by manual labor! Where automation has achieved the most significant increases in human productivity, little progress has been made in automating the software process. According to �xe "Jones, Capers"�Capers Jones, “The problem is that software has the highest manual labor content of almost any manufactured item in the second half of the 20th Century.” [JONES90]

Increasing software productivity and quality is the greatest challenge to our industry. To survive, we must learn to produce software cheaper, better, and faster. In our quest for a more efficient way, we fail to realize there are no easy solutions. We get caught up in the aura of our amazing software solutions to mind-boggling problems in other domains. We become enthralled with wonderful new fads and gadgets that promise to pull us out of our software production drudgeries. We subscribe to the naive belief that a single method or technology (such as computer-aided software engineering (CASE) tools, TQM, or the object-oriented paradigm) will create monumental gains in productivity and quality. We think we can tame the software beast with Silver Bullets when there are none. As �xe "Brooks, Frederick P., Jr"�Brooks tells us,

...as we look to the horizon of a decade hence, we see no Silver Bullet. There is no single development, in either technology or in management technique, that by itself promises even one order-of-magnitude improvement in productivity, in reliability, in simplicity. [BROOKS87]

So how do Silver Bullets cause program failures? Glass tells us “the search for magic solutions diverts us from the more important search for mundane ones.” We neglect proven, reliable solutions and invest in the hope that a pie-in-the-sky magic one will arrive. [GLASS92] Silver bullets are also the reason software technology transfer has been so slow. They make us focus all our attention on one method or technology promising vast improvements, rather than implementing proven ones in parallel. When building large, complex software-intensive systems, we do not realize it takes more than just one tool or technology change for significant process improvement. Multifaceted approaches, including tools, methods, techniques, and processes in parallel, are the proven way to making progress. [JONES94]

In addition, Silver Bullets have rarely been successfully transferred from the laboratory to the production line. The reason they washout is that these technologies have been unable to scale up to the demands of large software-intensive developments. While using new technologies, such as CASE, is a proven method for increasing productivity, we fail in their acquisition and continuous management. We jump on the hype bandwagon and select and acquire them without detailed knowledge of our development processes. Once a financial commitment has been made, we find the tools do not mesh well with established processes. We do not anticipate the extra time and resources required to train developers to learn the new process required by the tool, or that we may have to bend our old process to fit the tool. Many a program has failed because we have not based our tool selection on a needs-driven process and a pre-acquisition determination that they will, indeed, be beneficial to the people who have to use them. [See Chapter 10, Software Tools, for a more detailed discussion on software technology.]

Comparison of Military Software Problems with Commercial Software Problems�tc "<Head 3 (14)>Comparison of Military Software Problems with Commercial Software Problems"�

�xe "Jones, Capers"�Jones claims the military software world lags behind the civilian software world by quite a few years. The factors causing this discrepancy are listed on Table 1-3.

�
Table 1-3	Where Military Software Lags Behind Commercial Software [JONES95]

Above, you were given a list of the primary reasons why major software-intensive acquisitions fail. Jones has identified why military software programs fail compared to why commercial software programs fail. He says military software acquisition failures out number military successes, especially in logistics support and command and control (C2) applications. In the commercial world, product failure often implies failure or bankruptcy of the company itself, where the industry averages a failure rate that approaches or exceeds 50%. A general rule of thumb, he explains, is that in any given specific market niche, 10% of the commercial software products are very successful, 20% are mildly successful, 40% are marginal, and 30% are failures. The factors leading to military software and commercial software failures are listed on Table 1-4.

�
Table 1-4 Military and Commercial Software Failure Factors [JONES95]
Software Acquisition: The Bright Side�tc "<Head 2 (14)>Software Acquisition\: 				The Bright Side"�

Although software success has been the exception, rather than the rule, there is a bright side to our acquisition story. We are moving forward, we are learning from past mistakes, and we are changing our ways of doing business. Although, we have not advanced to the stage where we can say, “Beam me up, Scotty,” we are progressing. These changes and extraordinary advances in the production of software have occurred mainly because we have made changes in the way we manage our major software developments. An article published the last week of the Persian Gulf War in Fortune magazine stated that:

...much of our gee-whiz weaponry has shown that it does work, it is softening up a fanatic, battle-hard enemy, and it does save the lives of Americans and our allies...In Washington the first reaction of those who buy these things for the Government was a mixture of pride and relief. “The good news is that it seems to be working,” says �xe "Welch, Secretary John, Jr"�John Welch Jr., former Assistant Secretary of the Air Force for Acquisition.
[HUEY91]

Software Success Stories�tc "<Head 3 (14)>Software Success Stories"�

Our acquisition defeats aside, software has an extraordinary track record and has made an indelible mark on virtually every facet of life in this century. The computer, with software as its brains, landed a man on the moon. Financial transactions are performed at lightning speed while space and aircraft are tracked globally from thousands of eyes and ears above the earth. We can communicate to and from any point on this planet and purchase at the local store enough shrink-wrapped knowledge to prepare and file our taxes or to book our next flight on the Concorde. We waged a war with an arsenal of software-intensive weapons that awestruck the world — friend and foe alike.

Just a few months ago, they were the furthest things from our minds, these deadly sleek appliances resting in what �xe "Powell, GEN Colin L"�General Colin Powell calls his “toolbox” of war implements...America has discovered its arsenal—the damnedest array of stealthy, micro-processed, laser-guided, thermal-imaged, electromagnetically jamming, satellite-vectored weaponry ever imagined. [HUEY91]

In fact, the military software domain has a few best in class attributes, according to Jones, when compared to commercial software, as illustrated on Table 1-5.

�
Table 1-5 Where Military Software Excels [JONES95]

The factors to which Jones attributes the success of military and commercial software programs are listed on Table 1-6.

�
Table 1-6 Military and Commercial Software Success Factors [JONES95]

F-22 Advanced Tactical Fighter�tc "<Head 4 (12)>F-22 Advanced Tactical Fighter"�

�xe "F-22 Advanced Tactical Fighter"�Throughout these Guidelines you will find many references to the F-22 Advanced Tactical Fighter program, the most software-intensive aircraft ever to be built. In 1992, former Secretary of the Air Force, Donald B. �xe "Rice, Secretary Donald B"�Rice explained why the F-22 is a role-model program in testimony before the �xe "House Armed Services Committee"�House Armed Services Committee, “The F-22 program is a fine example of modern management in acquisition...This program is well in hand.” [RICE92]

�
Figure 1-5 F-22 Flagship Acquisition Program

A fully Ada-compliant program, the F-22 is, thus far, an excellent example of how to acquire and manage a major software-intensive system. Acting on lessons-learned from prior acquisitions, the F-22 procurement strategy was designed to avoid past mistakes by placing special attention on software risk. This strategy includes: (1) early assessment of contractor software development maturity; (2) a commitment to event-driven, rather than schedule-driven milestones; (3) use of integrated product teams to facilitate early identification and correction of problems; (4) use of Ada; (5) use of a common software engineering environment; and (6) preparation of comprehensive �xe "Software Development Plan (SDP)"�Software Development Plans (SDPs) that define rigorous quality assurance, risk management, the collection of software cost and quality metrics to track progress, and a commitment by team members to follow and enforce the SDPs. The F-22 represents a flagship program on how to achieve software success!

NOTE:	The F-22 used the �xe "Software Development Capability/Capacity Review (S"�Software Development Capability/Capacity Review (SDCCR) method [discussed in Chapter 7, Software Development Maturity] developed by ASC/EN, Wright-Patterson AFB, Ohio. The SDCCR was developed for use on embedded and other weapon systems where systems engineering is the predominate management consideration. This method has been updated and is now AFMC Pamphlet 63-103, Software Development Capability Evaluation (SDCE).

�xe "Raggio, Maj Gen Robert"�Major General Robert Raggio, director of the F-22 program office, explains why the F-22 is so important to our national security.

If history provides any lessons, chances are that sometime between now and 2012 — the year the F-22 is slated to end production — the US is likely to be in some situation where it needs to gain and maintain air superiority. If the Air Force is going to be called upon to establish that in the future, we must plan for it now. That’s exactly what we’re doing with the F-22. It combines stealth, super-cruise, integrated avionics, agility, lethality, and supportability to dominate future battles for air supremacy. [RAGGIO95]

Before a US Senate Appropriations’ Defense Subcommittee hearing, �xe "Fogleman, Gen Ronald R"�General Ronald R. Fogleman, US Air Force Chief of Staff, presented the results of numerous analyses and software simulations on the F-22’s potential influence in future battles. He said, “The F-22 gives the joint force commander at least a 30% increase in his ability to kill the other guy’s forces. It preserves, when we look at how it will impact the land battle, 18% less territory lost.” These software models indicated that four wings (442 aircraft) will reduce:

•	Friendly ground causalities by 28%,
•	Armor losses by 15%, and
•	Overall allied air losses by 20%.

Fogleman also told the Senators that, “The F-22 is 20 times more survivable than not only the F-15 as it exists today, but...just about any Western fighter. It’s a function of [radar] cross section, supercruise, and integrated avionics.” [FOGLEMAN951] Not only will the F-22 be more survivable than its predecessor, the F-15, studies show that its life cycle costs will be significantly reduced. As summarized in Figure 1-6, compared to the F-15, the F-22 will:

•	Need half the number of maintenance personnel,
•	Need half as many C-141B loads to sustain a 24-fighter squadron over a 30-day deployment,
•	Cost $500 million less to operate and support over a 20-year period,
•	Be able to operate at supercruise, supersonic conditions for extended periods,
•	Be equipped with a auxiliary power unit with an 800-hour mean-time-between-failure (MTBF) enabling it to self-start and make air starts at altitudes up to 47,000 feet, at speeds up to Mach 1, and
•	Have reduced radar cross section (RCS) with 100% line-of-sight blockage to the engine face.
 [KANDEBO95]

�
Figure 1-6 F-22 versus F-15 Life Cycle Cost Savings

On February 24, 1995, Fogleman spoke with pride about the F-22 program to the Air Force Association Air Warfare Symposium. He announced that,

Let me give you an update on this critical program. Just this last week, the F-22 had a great success story for both the Air Force and the contractor team. The F-22 Air Vehicle Critical Design Review culminated its year-long effort. They reported that the design of the F-22 is mature and that the airplane can be produced and supported. [FOGLEMAN952]

This means that the F-22’s software can be produced and supported. This is an achievement because the F-22 pilot will find himself relying more on software than any previous warfighter. Software will lighten his workload by automating many of those functions a single pilot now performs manually. By displaying less data and more information, the integrated avionics system combines information on enemy aircraft and the total battlefield environment on a single display which the pilot does not have to touch. This system also manages three major sensors: the radar, the electronic warfare system, and the communications/navigation/identification system. The concept behind the software design is to relieve the pilot of operator duties. According to the chief F-22 pilot, Paul Metz, the idea is to “let the integrated avionics, integrated subsystems, and integrated flight control systems do the mental gymnastics required to operate the aircraft.” [METZ95]

The reason the monumental F-22 software program is on track is the contractor team is using a standard set of Ada tools and proven, defined development processes. According to K. Warren Cannon, Lockheed Martin Corporation’s deputy chief software engineer, the success of the software effort is attributable to the following practices:

•	All software development teams (comprised of some 20 different companies) are using the same software engineering environment (SEE), the same development processes, and are constantly working to improve those processes;
•	An �xe "Integrated product development (IPD)"�integrated product development (IPD) team approach [discussed in Chapter 4, Engineering Software-Intensive Systems] helps software designers work with hardware designers for a fully integrated system and for better quality and configuration control;
•	All teams have received training on the tool environments and procedures; and
•	A �xe "Computer Resources Control Board (CRCB)"�Computer Resources Control Board (CRCB) exercises strict quality control over all hardware/software systems for the aircraft. [CANNON95]

Following the Dem/Val phase Fogleman discussed above, there was only a 20% growth in software size — modest compared with most software development efforts of this magnitude. According to Cannon, at this point (July 1995) the F-22 software development is only 2% behind schedule and only 5.6% over budget, which is “almost unheard of” for a program of this magnitude. [CANNON95] [See Chapter 10, Software Tools, for a discussion of the Aerospace-Defense/Software Engineering Environment (ASD/SEE) being used on the F-22 program. See Chapter 3, System Life Cycle and Methodologies, for a discussion on the incremental build methodology being used on the F-22.]

Boeing 777 Transport�tc "<Head 4 (12)>Boeing 777 Transport"�

The �xe "Boeing 777"�Boeing 777 (pronounced “Triple Seven”) seats 210-420 passengers, has complete fly-by-wire cockpit controls, has the most powerful engines ever built for an airliner, and was extensively tested and designed from scratch exclusively by software! When Boeing, America’s leading export manufacturer, undertook the development of this unique program, it was gambling on the aircraft and on itself. [PROCTOR95] With the 777, Boeing undertook the monumental task of re-inventing its manufacturing process and the way it interacts with its customers. Philip Condit, Boeing’s President, explained that, “I firmly believe corporations have life cycles. They grow, they prosper, and if they’re not careful, they atrophy and die... We want to be sitting here in 20 years.” [CONDIT95]

Boeing’s re-engineering process emphasized communication and teamwork. The $4 billion within cost and on schedule program represents the first time Boeing has included its airline customers and suppliers as members of its design teams. The teams, comprised of people who had previously never worked together, studied successful companies like Ford and Toyota. Their motto was, according to Condit, “you’re not allowed to say, ‘Airplanes are different,’ because then you don’t learn.” [CONDIT94] Boeing also placed heavy emphasis on upfront and continuous risk analysis. According to Kenneth Higgins, Boeing’s flight test director, Boeing’s top management has provided “all kinds of cooperation.” [HIGGINS95] A process emphasizing communication and teamwork, the inclusion of customers and suppliers on design teams, and the support from top management all provided an environment where intellectual engagement flourished. The result was teams of people who evaluated design decisions with respect to their impact on future design decisions and system operations — not just trying to solve near-term problems.

Boeing’s first paperless airplane’s entire 3-dimensional design was produced using computer-aided design (CAD) software. The results were the parts fit together much better, with 50% fewer design changes and errors. Software design also eliminated the costly full-scale aircraft mockup used on earlier planes to figure out electrical wire and pipe routings. Rather than steel cables, its fly-by-wire systems which control rudder, elevator, and aileron movement are completely governed by software. This saves weight, metal fatigue, and allows a more precise flight path. For instance, in a test demonstration, a test pilot rolled the jet inverted and took his hands off the yoke. Warning speakers screamed, “TERRAIN! TERRAIN!” as the ground raced to meet the plane at lightening speed. Automatically, the 777 completed the roll on its own, leveled its wings to the horizon, and continued on its flight path as if nothing had happened.
[COOK94]

777 testing also paved new ground for the airplane company. The 34 flight test pilots each logged 4,500 hours of ground test time and 1,800 hours flight test time without sitting in an aircraft. The $370-million Integrated Aircraft Simulation Lab (IASL) (nicknamed Airplane Zero and the Skinless 777) contained three major test facilities. Software systems in one lab tested the function and interoperability of the 777’s electrical, avionics, and sensor systems. Software systems in another lab tested the fly-by-wire’s electronic flight controls. Another lab tested human factors issues and the interplay among the autopilot, flight director, and aircraft information management system. Higgins exclaimed that the advanced testing performed at the IASL was fantastic, “We got a head start on problems... we were able to work out [solutions] before hand.” [HIGGINS95] Successful software testing achieved a 25% better test rate than previous programs. It also helped the 777 program maintain schedule. [PROCTOR95]

In Addendum C to this chapter [see note below], Robert Lytz explains how the success of the 777 program can be attributed to the fact that Boeing painstakingly addressed those factors that have historically plagued software developments. He cites the Scientific American and Brooks’ Silver Bullet articles [see Foreword to this volume and discussions above] which discuss these common program pitfalls. To address the software size problem, Boeing partitioned the system so software development could occur independently and simultaneously by diverse product teams. Their “Working Together” team approach addressed the communications problem; and requirements stability was enforced by a strict change control process. Program management was under control through a software metrics process enacted from program start to end. Schedule and cost were controlled by placing strong emphasis on the integration of COTS into all systems where feasible.

NOTE:	The Boeing 777 uses the Ada software language. More success stories are found in Chapter 5, Ada: The Enabling Technology, where software best practices are enhanced through the use of Ada. Also see Volume 2, Appendix O, Chapter 14 Addendum C, “On-Board Software for the Boeing 777,” and CrossTalk, January 1996, “Software Development for the Boeing 777.”

Software Best Practices�tc "<Head 3 (14)>Software Best Practices"�

In his book, What America Does Right, Robert Waterman explains that by exploring “in depth, the strategic and organizational reasons why a handful of widely admired American firms do so well...[we] learn from the best; find role models to emulate.” The addendum to this chapter discusses Motorola’s strategy for becoming a premier software company. Over the years, Motorola has saved billions of dollars and can now deliver levels of reliability unimagined only a decade ago. Winner of the coveted �xe "Malcolm Baldridge Award"�Malcolm Baldridge Award, Motorola shows us that, again, software success is a �xe "People"�people thing. Companies who strive to have their employees become the solution can dramatically cut development time and costs while increasing product quality and customer satisfaction. [WATERMAN94]

What can we learn from successful software acquisitions? Is there a common thread that runs through all that tells us how to proceed and win? In studying the winners, there are four basic activities you must perform as a manager that will be stressed and stressed again as you journey through this document:

•	You must plan;
•	You must manage;
•	You must measure, track, and control; and
•	You must understand.

Statements made about success in this context, are made in terms that are measurable, quantifiable, and repeatable. Indicators of major software-intensive acquisition success are expressed in terms of cost, schedule, performance, supportability, and most importantly, quality (as defined and agreed upon by all team members — the customer, maintainer, and developer). Well-managed programs accomplish the following:

•	Program baselines (cost, schedule, performance, and supportability) are successfully planned and executed. This includes:
•	Identifying risks and employing risk abatement techniques,
•	Estimating true costs,
•	Estimating realistic schedules, and
•	Adequately defining and satisfying performance and support requirements.
•	Risks associated with product acquisition are successfully identified, reduced, and managed. This includes:
•	Assessing alternative acquisition strategies, and
•	Performing acquisition tradeoffs between cost, schedule, and performance.
•	Quality and product supportability are accomplished and provided. This includes:
•	Employing methods for measuring and implementing improvements associated with product and process modification. [SYLVESTER91]
Software ACQUISITION: Your Management Challenge�tc "<Head 2 (14)>Software ACQUISITION\: 				Your Management Challenge"�

In a speech to the 1993 Software Technology Conference, Salt Lake City, Utah, �xe "Mosemann, Lloyd K., II"�Mosemann astounded the audience by saying:

It might surprise you, or perhaps even shock you, for me to say that the Pentagon does not want process improvement, it does not want SEI Level 3, or reuse, or Ada, or metrics, or I-CASE, or architectures, or standards. What the Pentagon wants is predictability! Predictable cost, predictable schedule, predictable performance, predictable support and sustainment. In other words, predictable quality.
[MOSEMANN93]

Predictable �xe "Quality"�quality is repeatable quality. Maturing your process cannot be accomplished unless it is first predictable and repeatable. Predictable cost, schedule, performance, and quality is a management challenge — not a technical one. To advance from an initial, ad hoc process to a predictable one you have to institute some basic program controls, the most elementary of which include:

•	�xe "Management"�Program management. The fundamental role of a program management system is to ensure effective control of schedule, resources, and quality. This requires adequate planning, clear lines of responsibility, and dedication to a quality product through quality performance. It starts with an understanding of your program’s magnitude, complexity, and all other constraints and risks. In the absence of an orderly plan, no estimates can be better than educated guesses.
•	Management �xe "Management:Oversight"�oversight. A disciplined software development program must have senior management oversight, therefore, your contractor should have scheduled in-process reviews. For example, peer inspections should be conducted to assess process compliance, quality of code and documentation, and compliance with requirements. The lack of effective and frequent review of work products typically results in uneven and inadequate process implementation, as well as frequent over (or under) commitments of resources to unrealistic cost and schedules.
•	�xe "Quality:Software quality assurance (SQA)"�Quality assurance. Quality assurance (QA) is a function required for a software development organization to be rated Capability Maturity Model (CMM) Level 2, Repeatable. However, quality is built into software through the establishment and use of good software engineering practices (e.g., Cleanroom engineering, peer inspections, etc.). The purpose of QA should be to assure a quality-based process is established and followed to build quality into the software — it is not the purpose of QA to “inspect in” quality after the software is built. To be effective, the QA team must have knowledgeable personnel who are an essential part of the development team with an independent reporting line to senior managers. The QA team must also have sufficient resources to monitor the performance of all key planning, implementation, and verification activities. This generally requires a team of about 5% the size of the development team.
•	�xe "Configuration management (CM):Change control"��xe "Requirements, software:Stability"�Change control. Control of changes in software development is as fundamental to business and financial control as it is to technical control and program stability. To develop quality software on a predictable schedule, user and technical requirements must be established and maintained with reasonable stability throughout the life cycle. Changes that must be made, must be managed and introduced in a systematic, disciplined manner. While occasional requirements changes are common, many of them can be deferred and phased in later. All changes must be controlled or orderly design, implementation, and testing is impossible, and no quality plan can be accomplished. [HUMPHREY89]
Software Acquisition Bottom Line�tc "<Head 2 (14)>Software Acquisition Bottom Line"�

The most important thing for a major software-intensive acquisition manager to remember is that, “WE ARE BUYING PROCESS AS MUCH AS PRODUCT!” The success of your acquisition depends on your developer’s ability to deliver a quality software product at a predictable cost in accordance with an established schedule. Without a mature, defined process, the desired product cannot be produced. The process is critical to program success, and the process that matters is the one in use by your developer. Thus, the bottom line for a successful program is to develop and implement a process-driven acquisition strategy.

A software development organization’s ability to produce cost-effective and quality products is based on several controllable factors. These include the development process, the skills and experience of development team, the tools used, product complexity, and environmental characteristics, such as, schedule pressure and communication. [HENDERSON95]

Process-Driven Acquisition Strategy�tc "<Head 3 (14)>Process-Driven Acquisition Strategy"�

An important method for addressing and preventing software problems is to treat the entire software development task as a process that can be controlled, measured, and improved. A development process is a set of tasks that, when properly enacted, produces the desired result. An effective software process considers the relationships of all the required tasks, the tools and methods used, and the skill, training, and motivation of the people who enable it. [HUMPHREY89] A process-driven acquisition strategy involves the following:

P	eople
R	ecord
O	rganizational commitment
C	apability
E	nvironment
S	trategy
S	tandards	

�xe "People"�People

Jeffrey Bier, Vice President of Lotus Development Corporation, described the personality traits of creative people in a speech he delivered, “Managing Creatives,” at Industry Week’s annual Managing for Innovation Conference.

Creatives are intense. They’re always thinking about work. For them, there’s no such thing as “Miller Time.” They think in their sleep...They are happy to come to work every day and solve puzzles. As one of my people says, “You come in every day and you’re given a set of games to play. Fifteen puzzles. Things don’t fit and you’ve got to make them fit.” To the creative person, that’s heaven!...In general, they work for three things. First, the ‘fun’ of creation itself. Second, ‘admiration’ — especially from their peers. Third, the excitement and ‘glory’ of taking part in a successful creation. [BEIR95]

Throughout these Guidelines, you will learn that the success or failure of your software acquisition is a people thing. It cannot be over stressed that the skills, experience, and creativity of your development personnel are your greatest resource, and the most powerful weapon you have for winning the software battle. The most crucial factor in the success of your program is to find the best company with the most talented software professionals who can do exceptional things. Skills, experience, ingenuity, and a professional commitment to process improvement and excellence are necessary to ensure your product is world-class with built-in quality. Yourdon tells us that the most successful software development “organizations are focusing their software improvement efforts on the human resource component — often referred to as ‘peopleware.’...attention to peopleware issues can literally cause 10-fold productivity improvements, while investments in CASE methodologies, or other technologies rarely cause more than a 30-40% improvement.” [YOURDON92] Remember, “an idea can turn to dust or magic depending on the talent that rubs against it.” [BERNBACH82]

�
Record

In a speech to the US Military Academy’s graduating class of 1963, General Maxwell D. Taylor, former Army Chief of Staff, explained why experience and a proven track record are so important.

Military men who spend their lives in the uniform of their country acquire experience in preparing for war and waging it. No theoretical studies, no intellectual attainments on the part of the layman can be a substitute for the experience of having lived and delivered under the stress of war.

In Chapter 13, Contracting for Success, you will learn that to deliver a successful product, you must select a developer with a proven �xe "Contractor:Track record"�track record in developing comparable software of the same application domain, size, complexity, and scope as the software for which you are responsible. As �xe "Parnas, David"�Parnas explained, because software is built by trial and error, the only reliable software that can be built is that which has been built before. By choosing a company with a record for success, you will be reducing the risk that your software will be a raw, untried, new product. Experienced developers easily draw from analogies, repertoires, and viable candidates from past, proven successful solutions. There is no substitute for a competent contractor with a record and reputation for having consistently delivered quality software on time, within budget.

Additionally, you must bring together an acquisition staff collectively knowledgeable in software and preferably having a proven track record in acquiring software-intensive systems. Such knowledge depends on a triad of education, training, and experience in software development and/or maintenance. Just sending a few acquisition personnel to a few weeks of software training is no substitute for having personnel with education, training, and actual software experience as part of your staff. If this knowledge is absent, critical acquisition decisions could be made by people who do not fully understand the issues — resulting in costly mistakes.

Organizational �xe "Contractor:Commitment"�commitment

Personnel qualifications are essential, but personnel skills must also be backed with a strong corporate history, a sound software engineering process, and organizational commitment to the success of your program. Successful software companies display the knowledge that even the best professionals need a structured, mature, and disciplined environment for them to work as a high performance team. Many companies hire only the best people, but are still plagued with software quality and productivity problems. Software organizations that do not commit to �xe "Software engineering"�software engineering discipline condemn their professionals to endless hours of solving repetitive, technically trivial problems. They may be challenged by the work at hand, but their time is consumed by mountains of uncontrolled detail. Unless these problems are rigorously managed, the best people will not be productive. Hiring smart people is vital to success, but highly-skilled, experienced people also require the support of a well-managed process to do world-class work. [HUMPHREY89]

There has been a constant struggle on the part of the military element to keep the end — fighting, or readiness to fight — superior to mere administrative considerations...The military man, having to do the fighting, considers that the chief necessity; the administrator equally naturally tends to think the smooth running of the machine the most admirable quality.
— Rear Admiral Alfred T. Mahan [MAHAN03]

In a corporate environment, a smooth running management machine is the most admirable quality by heightening their professionals’ readiness to fight your daily software battles. It also ensures low employee turnover, critical to the successful completion of every software development. For example, the �xe "Defense Plant Representative Office"�Defense Plant Representative Office (responsible for DoD contract oversight) observed that a high turnover rate of key software personnel on the RAH-66 Comanche helicopter program has contributed to schedule slippages on several critical software components: the airborne engine monitoring system, the aircraft systems management system, the control database system, and the crewstation interface management system. [GAO952]

The commitment to quality software is reflected in a company’s institutionalization of software engineering principles and concepts, technology, people, training, planning, and the allocation of resources. Quality evolves from management’s pledge to promote quality practices. Prevention and early detection of errors, continuous improvement, and communication with the customer must be the focus of the entire organization. Therefore, it is essential to select a developer who is organized to produce quality software from top management down. The people dedicated to your program must be motivated, mobilized, and trained to accomplish program objectives. Quality software cannot be developed without a plan that is interlocked with a corporate vision and its short-term, medium-range, and long-term goals for success. Organizational commitment is an essential and vital commodity. Without it, quality software is not a given.

�xe "Maturity"�Capability

You will learn in Chapter 7, Software Development Maturity, that a developer’s capability to deliver quality software at a predictable cost in accordance with an established schedule is crucial to the success of your software acquisition. This can only be determined by assessing the maturity of an offeror’s established software development process. A mature process is one that is well-ordered, defined, standardized, structured and constantly improved. Order and structure enhance the efficiency and effectiveness of repetitive, routine tasks. When developing software, we are structuring, creating, and managing phenomenally complex logical entities. Large-scale software development involves faultless performance of difficult tasks. A structured, mature process ensures that nothing is forgotten, no problem is overlooked, and that all the pieces fit together. The demands for accuracy, precision, and completeness require formal, orderly methods and procedures. A software organization with a mature process is constantly improving it by recognizing that many routine tasks are often repetitive. They measure, track, and control those tasks to determine how they can be improved and made more efficient. [HUMPHREY89]

�xe "Tools:Software engineering environment (SEE)"�Environment

In Chapter 10, Software Tools, you will learn that a software engineering environment (SEE) is the full set of facilities that support the development process, the purpose of which is to make that process more efficient and accurate. The use of a mature, robust SEE increases productivity and improves product quality by automating all the repetitive activities performed in the production of a software product. Your developer’s environment should also include a proven, mature automated process control mechanism. As our software systems grow in size, these environments integrate the support for each separate task into a support framework for the entire process. Because individual software tasks can span multiple development phases, the environment allows these separate activities to be handled in a consistent manner.

Strategy

In Chapter 12, Strategic Planning, you will learn that a development strategy is your contractor’s plan for producing your software. Without a good plan they cannot effectively manage even modestly-sized software developments. Mature organizations also have a strategic planning process that ensures their plans are complete, thoroughly reviewed, and properly approved. As discussed in Chapter 14, Managing Software Development, �xe "Software Development Plan (SDP)"�Software Development Plan (SDP) defines the work and how it will be performed. The SDP contains a definition for each major task, an estimate of time and resources required, and a framework for management review and control. When properly documented, the SDP can be used as a baseline for actual program performance which can then be compared and tracked. Mature software organizations use SDPs as:

•	A basis for getting consensus on the cost and schedule for the program,
•	An organizational structure for performing the work,
•	A framework for allocating required resources, and
•	A record of what was initially committed. [HUMPHREY95]

�xe "Standards"�Standards

As you will learn in Chapter 2, DoD Software Acquisition Environment, and Chapter 14, Managing Software Development, to ensure your program’s success, you must select a contractor who has a defined set of standards for excellence in their product and process, and a proven track record for implementing those standards with documented results. A standard is an acknowledged measure of comparison for assessing quantitative or qualitative value and is used to determine the size, content, value, or quality of a product or activity. Standards bring discipline to the process and measurable quality to the product.

There are two types of standards used to define the way software is developed and maintained. One class of standards describes the nature of the product to be developed, the other defines the way the work is performed. Typical software product standards pertain to such things as languages, coding conventions, commenting, change flagging, and error reporting. There are also standards for procedures. For instance, there are standards for software reviews and inspections, as well as standard procedures for conducting them. A review standard might define review contents, preparatory materials, participants, responsibilities, and the resulting data and reports. Standard procedures for conducting the review describe how the work is actually to be performed, by whom, when, and the disposition of the results. These standards provide operational definitions about which people can communicate and work toward. [HUMPHREY89]

In the article “Evaluating Software Engineering Standards,” Computer, September 9, 1994, a case study of a software development organization was cited that mandated compliance with structured programming standards. Upon investigation, the organization found that only 58% of the software modules they developed complied with those standards. Taking this into account, and realizing that the quality of software documentation can vary significantly from programmer to programmer, it became imperative to establish and enforce good software engineering and documentation standards. Without these, it is impossible to develop and deliver quality software products. Additionally, meaningful process improvement is only achievable when the organization mandates standards and ensures they are followed. This means you should choose a contractor who institutes and improves upon formal, repeatable, measurable process controls. [HENDERSON95]
MANAGEMENT BOTTOM LINE�tc "<Head 2 (14)>MANAGEMENT BOTTOM LINE"�

The �xe "Management"�management bottom line is continuous process improvement [discussed in Chapter 15, Managing Process Improvement]. This calls for critically evaluating key activities (processes) that span the entire organization. Integrated (cross-functional) product teams (IPT) are used to redesign processes to eliminate unnecessary or nonvalue-added tasks. Process improvement focuses on acquiring (or developing) new technologies to implement the redesigned process. We can improve our processes an order of magnitude when we rely on proven, disciplined methodologies and techniques in our acquisition and development efforts.

Leadership As Well As Management�tc "<Head 3 (14)>Leadership As Well As Management"�

�xe "Creech, Gen Bill"�Creech explains there is a difference between managership and leadership. Measuring, monitoring, tracking, and assessing are all fundamental managership ingredients which are disciplined methods for gaining and keeping control of your program. But because the success or failure of your software acquisition is a people thing, proactive leadership is essential to get the kind of development processes we want — the performances we need from our team. Leaders set norms and standards for team performance and product quality. Therefore, effective leadership stems from an understanding of how people think, what motivates them, and how to get them to perform at their highest levels.

Leadership “of the people thing” means fostering intellectual engagement wherever you find it. There are lots of techniques that have been used in the past to encourage intellectual engagement: design reviews, user challenges, looking at code (by management, not just QA), etc. It is interesting to note that David Cutler, the Windows NT leader in Microsoft, looks at the code. Where would Chrysler be if Lee Iacocca were never to look at the cars they produce? Yet, software company senior managers seldom take a look at the code. [HOROWITZ95]

Effective leaders also focus on streamlining the management process. Necessities for successful top management include: (1) a thorough understanding of the organization’s customers, their needs, and the environment; (2) recognizing the need for change; (3) defining the strategic business case for change, including a return-on-investment; and (4) focusing on processes instead of functions. [HEIVILIN95] Because process improvement is inherently painful for any organization, proactive leadership is needed to demonstrate a commitment for improvement efforts to succeed.

Leadership and command at senior levels is the art of direct and indirect influence and the skill of creating the conditions for sustained organizational success to achieve desired results. — US Army Field Manual 22-103

Being a Good Leader Means Being a Good Customer�tc "<Head 4 (12)>Being a Good Leader Means Being a Good Customer"�

Being a good acquisition manager, thereby being a good customer to your industry developer, means adopting a management philosophy of cooperation and �xe "Team:Teamwork"�teamwork. Throughout this century and on into the next, we are going to experience a climate of unprecedented global competition. The margin between winning and losing on the world scene will be very narrow. In the past, there have been adversarial relationships between Government and industry. Many government managers have thought contractors were out to pillage, plunder, and pirate our defense dollars. To win in a global environment, attitudes must change. British Army Major General J.F.C. Fuller, the father of modern armored warfare whose ideas on the use of tanks in combat decisively influenced the Germans and Soviets, defined “cooperation.”

The Principle of �xe "Team:Cooperation"�Cooperation. Cooperation is a cementing principle; it is closely related to economy of force, and therefore to concentration, but it differs from both of these principles, for while mass is the concentrated strength of the organization and economy of force the dispersed strength which renders the former stable, cooperation may be likened to the muscular tension which knits all the parts to the whole. Without cooperation an army falls to pieces. In national wars, the value of cooperation is enormously enhanced, fusing as it does, the body and soul of a nation into one intricate self-supporting organism. [FULLER23]

Enlightenment. Another ingredient for successful management is knowledge. Being a good manager means dedicating your time and efforts towards becoming an enlightened customer. Learn as much as you can about the concepts, methods, tools, and procedures related to successful software engineering covered in this text. These Guidelines merely present an overview of the breadth of knowledge you must gain to truly comprehend the complexities of developing and maintaining major software-intensive systems. Through education you will acquire the fundamental qualities needed to be a good customer: flexibility, common sense, and technical understanding. Flexibility comes from a breadth of experience and openness to new ideas. Common sense and understanding come from the assimilation of information characterized by your ability to compare, discriminate, and judge accurately. [You can obtain a current listing of available courses either by calling the training points of contact identified in Appendix A or referencing the information on-line through the web addresses given in Appendix B. Also, Appendix F has a list of reading materials to have on your night stand or carry in your briefcase on those long TDYs.] Remember,

To lead, you must know — you may bluff all your men some of the time, but you can’t do it all the time. Men will not have confidence in an officer unless he knows his business, and he must know it from the ground up. [BACH17]

Teamwork: A New Total Force Concept�tc "<Head 3 (14)>Teamwork\: A New Total Force Concept"�

Industry/military teamwork is how General �xe "Fogleman, Gen Ronald R"�Fogleman, explained we went from a fifth to a first-rate Air Force during World War II. While commander-in-chief of the US Transportation Command, he recalled observing how much of our military transportation comes from civilian industry. He said,

I witnessed our civilian airlines, maritime shipping, and the surface transportation industries in action, every day. These industries’ use of innovation, new technologies, and basic ability to track items in their systems were far ahead of the defense establishment. This was the beginning of my awareness that we might do well to...include our partners on the Air Force team. I call this a “new total force concept.” Given the political and economic climate in Washington and around the nation, it’s absolutely critical that the services adopt such an attitude.
[FOGLEMAN953]

The body and soul of our national assets must be fully exploited so we are prepared to respond to future challenges with the pride and results we delivered in �xe "Operation Desert Storm"�Operation Desert Storm. Government and industry have collaborated to solve big problems throughout history, from mobilizing for war to putting a man on the moon. Government recognized the need, industry proposed their solutions, Government reviewed and approved, and industry produced results. Coming together as an integrated unit we can achieve concentrated-strength-of-organization and economy-of-force with the same passion we have for winning on the battlefield. To win we must forge a partnership by concentrating our strengths, or we will find ourselves overtaken by our more cohesive competitors. As Benjamin Franklin warned at the signing of the Declaration of Independence,

We must, indeed, all hang together, or most assuredly we shall all hang separately.
[FRANKLIN76]

�xe "Team:Empowerment"�Empowerment. Positive things happen when you empower team members to pro-actively make incremental and revolutionary changes to their process, thus improving their ability to develop the best product to meet Government needs. This culture is created by allowing active communication and participation to occur. When problems arise, they are everyone’s problems. A team approach towards solving problems promotes a better opportunity for process improvement, enabling people to do their jobs better and deliver a quality product. This management technique results in disciplined methods, time management, development of process improvement skills, participation and involvement in decision making, boosts in morale, and effective communications. It also results in economy-of-force, improved performance, and competitive cost effectiveness. An example of industry empowerment is discussed in Chapter 12, Planning for Success. �xe "F-22 Advanced Tactical Fighter"�F-22 program managers gave industry the latitude to fly their Dem/Val test programs the way they thought would best demonstrate that program risk had been sufficiently reduced. Dem/Val was a breeze because only those performance areas the contractors identified as being critical were spot checked. General Patton spoke of empowerment when he said,

One of the hardest things that I have to do — is not to interfere with the next echelon of command when the show is going all right. [PATTON44]

Disciplined trust. �xe "Salvucci, Anthony"�Anthony Salvucci, former director of engineering and program management, Air Force Electronic Systems Center (ESC), explains that the basis upon which the government/industry partnership must be built is “disciplined trust.” Each partner must recognize that they have a different and distinct job, each of which is a necessary element of a successful acquisition process — neither of which is sufficient without the other. The Government has three responsibilities in the acquisition process: (1) to establish requirements, (2) to steward the taxpayers’ money, and (3) to be a smart buyer. Industry has the responsibility of interpreting government needs into an acceptable solution, at a reasonable cost, within a reasonable time. Herein lies the distinction between who is delivering the product and who is managing the taxpayers’ money. The Government tells industry what we want; the offeror tells the Government how they will deliver it. To be a smart buyer, you must select a winning contractor team that is competent to deliver what they promise and upon whom you can absolutely place your “disciplined trust.” You must be confident in their ability, because once you award your contract, you have bought their plan — it’s yours, you own it.

Salvucci explains that if you trust your contractors to deliver as promised, you should not tell them how to manage their process or how to report it. All you should require is access to their management reports (in their format) that let you determine whether, in fact, they have the process they promised and are successfully managing the program. Knowing what is going on, and that the contractor is doing their job by following their plan on schedule, within budget, is all we need to determine whether we are being good buyers and doing our job of stewarding the taxpayers money. [SALVUCCI93]

Team �xe "Team:Spirit"�spirit. No one is perfect. Our industry partners are going to make mistakes. When they do, just remember the magnitude of the software task they are undertaking. As Brooks told us, software is more complex than any other construct ever built by man. [BROOKS87] You must understand there will be glitches, missed schedules, and failure to achieve plans. However, early punishment is not the answer. What is required in every program is an enlightened attitude to understand why problems occur, to encourage early identification of risks, and to inspire innovative solutions. Consensus on realistic and achievable goals, mutual commitment to meet and/or exceed those goals, and team drive to quickly identify problems and shortcomings will make the difference between a program on a slippery slope to failure and one that plods forward to success.

No team is ultimately successful without a common spirit to hold it together, a shared objective to guide it, and a game plan to help it get there. The key to nonstop process improvement is for you to set aggressive goals and stay actively involved in reviewing your development team’s performance towards achieving them. Being a good customer means rewarding success and concentrating resources on those areas needing improvement. As a customer, your challenge is to provide the means and leadership for attaining the quality goals agreed upon by all owners of the process.
REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[AW&ST92] “B-1B Displays New Potential in Nonnuclear Tactical Roles,” Aviation Week & Space Technology, July 27, 1992
[BACH17] Bach, MAJ C.A., “Know Your Men, Know Your Business, Know Yourself,” 1917 address to new officers, Robert A. Fitton, ed., Leadership: Quotations from the Military Tradition, Westview Press, Boulder, Colorado, 1990
[BEIR95] Beir, Jeffrey R., “Managing Creatives: Our Creative Workers Will Excel — If We Let Them,” speech presented at Industry Week’s annual Managing for Innovation Conference, Chicago, Illinois, March 13, 1995
[BERNBACH82] Bernbach, William, as quoted in the New York Times, October 6, 1982
[BLUM92] Blum, Bruce I., Software Engineering: A Holistic View, Oxford University Press, New York, 1992
[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981
[BROOKS87] Brooks, Fredrick P., Jr., “No Silver Bullet: Essence and Accidents of Software Engineering,” Computer, April 1987
[BUSWEEK85] “Forget the $400 Hammers: Here’s Where the Big Money is Lost,” Business Week, July 8, 1985
[CANNON95] Cannon, K. Warren, as quoted by David Hughes, “F-22 to Counter 21st Century Threats; Avionics Automates Many Cockpit Functions,” Aviation Week & Space Technology, July 24, 1995
[CONAHAN95] Conahan, Frank C., “Defense Programs and Spending: Need for Reforms,” Testimony Before the Committee on the Budget, House of Representatives, GAO/T-NSAID-95-149, April 27, 1995
[CONAN-DOYLE91] Conan-Doyle, Sir Arthur, “The Five Orange Pips,” The Adventures of Sherlock Holmes, 1891
[CONDIT94] Condit, Philip, as quoted by William J. Cook, “The End of the Plain Plane: Boeing Co.’s Boeing 777”, US News & World Report, April 11, 1994
[CREECH94] Creech, Gen Bill, The Five Pillars of TQM: How to Make Total Quality Management Work for You, Truman Talley Books, Button, New York, 1994
[DeMARCO87] DeMarco, Tom and Timothy Lister, Peopleware: Productive Projects and Teams, Dorset House Publishing Co., New York, New York, 1987
[DiNITTO92] DiNitto, Samuel, A., Jr., “Rome Laboratory,” CrossTalk, Software Technology Support Center, June/July 1992
[DSB87] Office of the Under Secretary of Defense for Acquisition, Report of the Defense Science Board Task Force on Military Software, September 1987
[DSB94] Office of the Under Secretary of Defense for Acquisition & Technology, Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially, June 1994
[FOGLEMAN951] Fogleman, Gen Ronald R., as quoted by John D. Morrocco, “Balancing Act in Congress; Big F-22 Budget Drives Search for Flaws,” Aviation Week & Space Technology, April 10, 1995
[FOGLEMAN952] Fogleman, Gen Ronald R., “Getting the Air Force Into the 21st Century: The Ability to Model and Simulate Combat,” speech presented to the Air Force Association Air Warfare Symposium, Orlando, Florida, February 24, 1995
[FOGLEMAN953] Fogleman, Gen Ronald R., “Aerospace Industry Has Earned ‘Full Partner’ Status,” Armed Forces Journal International, June 1995
[FRANKLIN76] Franklin, Benjamin, statement at the signing of the Declaration of Independence, July 4, 1776, The Whistler, 1779
[FULLER23] Fuller, MGEN J.F.C., The Reformation of War, Hutchison & Co., London, 1923
[GAO79] General Accounting Office, Contracting for Computer Software Development—Serious Problems Require Management Attention to Avoid Wasting Additional Millions, FGMSD-80-4, November 9, 1979
[GAO951] General Accounting Office, Tactical Aircraft: Concurrency in Development and Production of the F-22 Aircraft Should Be Reduced, GAO/NSIAD-95-59, April 1995
[GAO952] General Accounting Office, Comanche Helicopter: Testing Needs to be Completed Prior to Production Decisions, GAO/NSIAD-95-112, May 1995
[GIBBS94] Gibbs, W. Wayt, “Software’s Chronic Crisis,” Scientific American, September 1994
[GLASS91] Glass, Robert L., Software Conflict: Essays on the Art and Science of Software Engineering, Yourdon Press, Englewood Cliffs, New Jersey, 1991
[GLASS92] Glass, Robert L., Building Quality Software, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992
[GREENE90] Greene, Col Joseph, Jr., as quoted by Evelyn Richards, “Pentagon Finds High-Tech Projects Hard to Manage: The Army Still Awaits Computerized Battlefield,” The Washington Post, December 11, 1990
[HEIVILIN95] Heivilin, Donna M., testimony before the Subcommittee on Readiness, Committee on National Security, House of Representatives, Defense Infrastructure: Enhancing Performance Through Better Business Practices, GAO/T-NSIAD/AIMD-95-126, General Accounting Office, March 23, 1995
[HENDERSON95] Henderson, COL Jerry M., “Will Army Software Win the Information War?” Army RD&A, July-August 1995
[HIGGINS95] Higgins, Kenneth, as quoted by Paul Proctor, “Early Modeling Helps Speed 777 Flight Testing,” Aviation Week & Space Technology, June 12, 1995
[HOROWITZ95] Horowitz, Dr. Barry M., personal correspondence with Llyod K. Mosemann, II, September 8, 1995
[HUEY91] Huey, John and Nancy J. Perry, “The Future of Arms,” Fortune, February 25, 1991
[HUMPHREY89] Humphrey, Watts S., Managing the Software Process, Addison-Wesley Publishing Company, Reading, Massachusetts, 1989
[HUMPHREY95] Humphrey, Watts S., A Discipline for Software Engineering, Addison-Wesley Publishing Company, Reading, Massachusetts, 1995
[JONES90] Jones, Capers, as quoted by Evelyn Richards, “Society’s Demands Push Software to Upper Limits: More Computer Crises Likely,” The Washington Post, December 9, 1990
[JONES94] Jones, Capers, Assessment and Control of Software Risks, Yourdon Press, Englewood Cliffs, New Jersey, 1994
[KANDEBO95] Kandebo, Stanley W., and David Hughes, “F-22 to Counter 21st Century Threats,” Aviation Week & Space Technology, July 24, 1995
[KEENE91] Keene, Charles A., white paper “Lessons-Learned: Nuclear Mission Planning and Production System,” AF Strategic Communications-Computer Center (SAC), Offutt AFB, Nebraska, January 17, 1991
[MAHAN03] Mahan, RADM Alfred T., Naval Administration and Warfare, Little, Brown, & Co., Boston, Massachusetts, 1903
[MARCINIAK90] Marciniak, John J., and Reifer, Donald J., Software Acquisition Management: Managing the Acquisition of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990
[METZ95] Metz, Paul, as quoted by David Hughes, “F-22 to Counter 21st Century Threats; Avionics Automates Many Cockpit Functions,” Aviation Week & Space Technology, July 24, 1995
[MOSEMANN93] Mosemann, Lloyd K., II, as quoted in Ada Information Clearinghouse Newsletter, Vol XI, No. 2, August 1993
[PARNAS85] Parnas, David Lorge, “Software Aspects of Strategic Defense Systems,” American Scientist, September-October 1985
[PAT92] Air Force Systems Command, Software Process Action Team Final Report: Process Improvement for Systems/Software Acquisition, June 30, 1992
[PATTON44] Patton, GEN George S., Jr., speech to the Third Army, “A General Talks to His Army,” June 1944
[PAULSON79] Paulson, Paul J., as quoted in the New York Times, May 4, 1979
[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Second Edition, McGraw-Hill, New York, New York, 1992
[PROCTOR95] Proctor, Paul, “Early Modeling Helps Speed 777 Flight Testing,” Aviation Week & Space Technology, June 12, 1995
[RAGGIO95] Maj Gen Robert, as quoted by Stanley W. Knandebo and David Hughes, “F-22 to Counter 21st Century Threats,” Aviation Week & Space Technology, July 24, 1995
[RICE92] Rice, Secretary Donald B., “Reshaping for the Future,” speech delivered to the House Armed Services Committee, Washington, D.C., February 20, 1992
[RICHARDS901] Richards, Evelyn, “Society’s Demands Push Software to Upper Limits: More Computer Crises Likely,” The Washington Post, December 9, 1990
[RICHARDS902] Richards, Evelyn, “Pentagon Finds High-Tech Projects Hard to Manage: The Army Still Awaits Computerized Battlefield,” The Washington Post, December 11, 1990
[SALVUCCI93] Salvucci, Anthony, “Vision for a New Acquisition Process,” speech presented to the Armed Forces Communications and Electronics Association (AFCEA) luncheon, November 19, 1993
[SCOTT95] Scott, William B., “Weapons, Avionics Upgrades Expand B-1B Options,” Aviation Week and Space Technology, February 13, 1995
[SYLVESTER91] Sylvester, R., “Process Improvement for Systems/Software Acquisition,” briefing presented to Rome Laboratories, September 23, 1991
[VESSEY84] Vessey, GEN John W., as quoted in the New York Times, February 25, 1984
[WATERMAN94] Waterman, Robert H., Jr., What America Does Right: Learning from Companies That Put People First, W.W. Norton & Company, New York, 1994
[WHITTEN95] Whitten, Neal, Managing Software Development Projects, John Wiley & Sons, Inc., New York, New York, 1995
[WOLFE27] Wolfe, MGEN Sir James, “Reflections on the Battle of Culloden,” as quoted by Liddell Hart, Great Captains Unveiled, 1927
[WULF90] Wulf, William, as quoted by Evelyn Richards, “Society’s Demands Push Software to Upper Limits: More Computer Crises Likely,” The Washington Post, December 9, 1990
[YOURDON92] Yourdon, Edward, Decline & Fall of the American Programmer, Yourdon Press, Englewood Cliffs, New Jersey, 1992
��tc "<>"�
CHAPTER 1�tc "<>CHAPTER 1"�
 Addendum�tc "<> Addendum"�

Software Solution�tc "<>Software Solution"�

Editor’s Note�tc "<Head 2 (14)>Editor’s Note"�

Effective management of software-intensive development activities requires total commitment from the top to the bottom of an organization. This article, reprinted with permission from the Software Quality Institute University of Texas at Austin, illustrates how one company recognized that software technology represents a major technological revolution, mobilized its executives to understand and address the challenge, and has developed its software solution. After you have finished these Guidelines, develop your software solution.
Software Solution: Motorola’s Strategy for Becoming	The Premier Software Company�tc "<Head 2 (14)>Software Solution\:			Motorola’s Strategy for Becoming		The Premier Software Company"�

Software is growing at a revolutionary pace. To continue our corporate success, Motorola must be equipped to compete in this world of drastic technological change. Our response to this industry upheaval is a systematic change in our software culture that meets the urgent needs of the future. When we have completed this process, we will not only be a competitor in the business of the future, we will continue to be an industry leader. We call this long-term initiative the Software Solution.

Call to Action�tc "<Head 3 (14)>Call to Action"�
	
In January 1991, Motorola gathered a team of 27 officers and facilitators for a three-day training session on software. Chairman and CEO George Fisher asked each participant to accept the challenge of changing Motorola’s software culture. Known as the Senior Executive Program (SEP) on Software, this team is charged with personal commitment and involvement to start Motorola on the path to preeminence in software. The team is dedicated to making software a core competency within the company by 1998.
	
Driven by Motorola’s senior executives, with CEO sponsorship, the Software Solution is a cooperative effort between SEP, the Software Engineering and Technology Steering Committee, Motorola University, and the Motorola Software Research and Development. Now in their third year, the executives are divided into smaller teams in these focus areas: Vision/Marketing, Management, Process/Metrics, Tools/Technology, People, and Benchmarking.
�
In early 1991, I charged a team of Motorola’s senior executives with the responsibility of assessing the importance of software to Motorola’s future. I felt we could generate significant new business opportunities with improved software development performance. The SEP group conducted its own analysis and came to the same conclusion. This group has taken leadership responsibility. I continue to be an active participant. I ask all Motorola executives and managers to seek the information and training needed to understand the software issues in their organization and contribute to the software solution. We need their commitment and personal involvement. 			
— George Fisher, Chairman and Chief Executive Officer

Change Inside for Change Outside�tc "<Head 3 (14)>Change Inside for Change Outside"�
	
The mission of the Software Solution is to create, initiate, and execute software initiatives that cause change to occur at an accelerated rate — in effect, to create the software solution. For Motorolans, this means developing the approaches that will give us the capabilities we need to achieve world-class status in software. We believe this competence is fundamental to achieving our business goals. The strategies we are pursuing urgently demand that we achieve excellence in developing and using software. The Software Solution will be a pivotal factor in achieving our growth and financial goals in the next decade.

Radical Surge in Software Growth�tc "<Head 3 (14)>Radical Surge in Software Growth"�
	
The growth in software-driven products dominates all facets of business, including management information systems (MIS), financial reporting systems, manufacturing systems, product design, customer order systems, and consumer products. As Motorola continuously improves its software development processes, it will simultaneously improve quality, reduce cycle time, increase productivity, and increase customer satisfaction in all areas of operations for both internal and external customers. Increasingly, software — not hardware — is playing a role in the functionality of electronic products.

To Lead in Systems, We Must Lead in Software�tc "<Head 3 (14)>To Lead in Systems, We Must Lead in Software"�
	
Globally, the software application industry is estimated to be about $175 billion and it is growing at a double-digit rate. While you might say “software isn’t my business,” in truth, it is everyone’s business. Software competence is the key to Motorola’s continued leadership in systems. Because product differentiation depends less on hardware and more on software, hardware prices and profit margins are decreasing. Software allows Motorola to provide the customer with value-added services and features and to earn a higher profit margin. We must learn to leverage the strategic advantage of software. For example, here are the opportunities when we sell a flexible platform radio system:

•	Software enables us to differentiate our hardware from that of our competitors;
•	Features can be tailored for customers’ needs;
•	Software can provide for future needs, ensuring a continuing customer relationship; and
•	Customer demand for internally produced software applications may spawn a new service business.

Motorola is not alone, however, in its quest for software excellence. Dozens of our competitors are pursuing similar initiatives; among them are Hewlett-Packard, IBM, Toshiba, Philips, and many companies in Europe and Japan.

People Make It Happen�tc "<Head 3 (14)>People Make It Happen"�
	
While tools and process improvements are important in our quest for the Software Solution, people are our most important resource. This is especially true in software engineering, which is a people-intensive endeavor. In fact, there are approximately 12,000 software engineers and others involved in software functions currently employed at Motorola.

To achieve our 1998 goal, we will need to attract, retain, and develop world-class software talent and provide a culture that permits such talented people to achieve excellence. To create a software-friendly environment, technical and nontechnical managers alike will need a general knowledge of software and its development process. This will also help managers to seek people with intellectual engagement in the design. Such people think beyond the immediate design issues, and think across disciplines, e.g., software logic designers would think about both software development and future user needs, continually assessing the impact of their design decisions on those future needs. Intellectually engaged people anticipate and are disciplined. Anticipation is the key to creativity, with discipline being the key to realized creativity — a successful program has both.

Changing the Way We Work and Our Workplaces�tc "<Head 3 (14)>Changing the Way We Work and Our Workplaces"�
	
Writing software is a team effort, and, as Motorola continues to move toward systems development, these teams will grow in number and size. At the same time, software and hardware requirements must be integrated, and this requires the smooth interaction of many teams.
	
The nature of our work will require advanced skills in systems design, software architectures, and — most of all — software program management. A commitment to training is absolutely essential. Even the physical work spaces of our engineering people will change to accommodate the unique requirements of software design work and teamed programs.

Training Leads the Way to Improvement�tc "<Head 3 (14)>Training Leads the Way to Improvement"�
	
To effectively manage in the new software culture, managers need to understand the complexity and time requirements of software engineering. To help them gain this knowledge and enable them to set realistic goals for their businesses, courses are being developed by Motorola University’s College of Software Engineering and Technology. Through this training, they will gain the skills and tools to expertly manage the members and teams and bring a program to a successful conclusion, on time and within budget.

The strategies we are pursuing demand that we achieve excellence.
	
In all areas of Motorola, software engineering will increase as part of an engineer’s job, and basic software development ability will be a requirement in all engineering disciplines. In addition, on-going training and education are paramount, as new software development tools and techniques are introduced in this rapidly changing field. By gaining new skills, our engineers can improve the software development process and reduce the engineering time to market.
�
Becoming a Part of the Software Solution�tc "<Head 3 (14)>Becoming a Part of the Software Solution"�
	
Clearly, the Software Solution will require effort from all. Where does one begin?

•	Get the training to understand the issues and the tools to address them.
•	Make software issues a featured item in your planning processes for business, strategy, technology road maps, and organizational and management development plans.
•	Learn as much as you can about software development from industry leaders, or confirm that your current software objectives correspond to those of the best in class.

Software is everyone’s business.

Understanding the Software Revolution�tc "<Head 3 (14)>Understanding the Software Revolution"�
	
Along with Motorola’s courses and programs, the following publications will help you build an awareness of software issues and create software solutions in your business.

Fred Brooks, The Mythical Man-Month, Addison Wesley, 1975. This classic text, written by a manager of one of IBM’s largest software development efforts depicts many of the problems (and some of the solutions) associated with software development. Written in an informal style, the book contains many anecdotes.
Fred Brooks, “No Silver Bullets,” IEEE Computer, 1987. In the style of his other works, Brooks considers recent issues such as object-oriented methodology and Ada. He concludes that improvements are occurring but there is no Silver Bullet, or simple solution, for dealing with software development.
Tom DeMarco, Controlling Software Projects, Yourdon Press, 1982. This is a thorough and pragmatic treatment of many aspects of software development management, including program metrics and software quality issues.
Tom DeMarco/Tom Lister, Peopleware: Productive Projects and Teams, Dorset House, 1987. This is a discussion of the social, ergonomic, and workplace factors that influence software development and management.
Richard Fairley, Software Engineering Concepts, McGraw Hill, 1985. Fairley’s is one of the first text books to address fundamental issues in software engineering development and management.
Ann Miller, “Engineering Quality Software,” Motorola Six Sigma Series, Addison-Wesley, 1992. This paper discusses software defect detection and prevention techniques, with emphasis on a new technique called preview. Preview has been successfully used in Motorola GSTG and Satellite Communications.
Richard Thayer, Software Engineering Project Management, IEEE Computer Society Press, 1988. This tutorial contains numerous short articles on a wide range of topics related to software engineering management.
Edward Yourdon, The Decline and Fall of the American Programmer, Simon & Schuster, 1992. This book anticipates that America will lose market share if businesses do not improve their effectiveness in managing software development processes and provides guidance on how to do so.
�
	We know it represents a massive change in culture for Motorola to achieve the Software Solution. It is also an absolute business imperative that we achieve this change in a most urgent fashion. Culture change is a learning process. And at first, the process is frustratingly slow. To achieve cultural change, you need leadership, vision, strategy, timelines, training, communication, goals and measurements, baselining, support structures, and — most of all — a sense of urgency.
	Clearly we have a very long road to travel before we can claim significant progress across the board, but islands of excellence are beginning to appear. 		
— Bill Millon, Vice President and Director Software Solution and Technology.

Version 2.0
CHAPTER 1 Software Acquisition Overview

1-� PAGE �
45
�

Version 2.0

1-� PAGE �
41
�

Version 2.0
CHAPTER 1 Addendum

