Version 2.0

Version 2.0

CHAPTER 14 Managing Software Development

tc "<>"
CHAPTERtc "<>CHAPTER"
 tc "<> "14tc "<> 14"
Managing Software Developmenttc "<>Managing Software Development"
CHAPTER OVERVIEW

In 1975, MITRE and John Hopkins University Applied Physics Laboratory (APL) conducted studies for DoD concerning weapon systems software management. They concluded that the major contributing factor to weapon system software problems was a lack of discipline and engineering rigor applied consistently to software acquisition activities. They also concluded that it is essential to require the development contractor to apply a highly disciplined set of engineering practices to the detailed design and implementation phases of development. Once your contractor is onboard, you must ensure a disciplined, controlled, engineering process is established and maintained. The most successful management approach is one that is founded on the principles of continuous process improvement where quality is the goal. Quality is achievable through a quality process, hands-on management, and by following the guidance provided in this chapter which is based on lessons-learned DoD and industry-wide.

By making quality the number one priority, all other elements of success fall in line. This entails championing a process-approach to software development where reassessment of methods, procedures, tools, and products is a common activity. Quality is defined as the degree of excellence in your product. Product quality and process quality are, however, interdependent and inextricably linked to one another. Product excellence cannot be achieved unless a quality process is in place to development it. This can only achieved through strict adherence to software engineering discipline.

Statistically sound management techniques transform the software process into an engineering process. Engineering discipline must be embraced from the total life cycle, total systems perspective. Separating hardware from software violates the most fundamental principles of systems engineering and can only increase overall program risk. A systems perspective focuses on producing engineered software that is reliable, maintainable, efficient, timely, and affordable. This is accomplished by concentration on error prevention (rather than correction) through a defined process, cohesive teamwork and communications, control of procedures, and satisfaction of user needs.

The biggest development issue (and the phase requiring the largest commitment of resources) is the definition and analysis of user requirements. This area requires strong, decisive leadership to be successful. Requirements must be scrubbed to only those that are essential. Planning for evolutionary, incremental requirement upgrades is the most efficient method for controlling requirements creep. The VHDL hardware design language simulates hardware requirements (primarily for embedded processors) and reduces the risk of inadequate hardware selection before all software requirements are established.

One approach for ensuring successful requirement validation is prototyping, which gives users a touch-and-feel for how the system will perform once built. Another area requiring your attention is software design, where building quality in is the goal. The best way to guarantee quality software is through its architecture. A quality architecture is one that is flexible, allows for evolutionary change of the system, and based on approved architectural standards.

Although quality cannot be tested into software, testing is an important quality control activity. Testing for defects early on is an important process improvement tool. It enables cost-effective defect resolution, identification, and removal through a self-correcting development process that is stable, modeled, measured, and predictable. Efficient testing engineers quality into software fast — at reduced cost.

Technical documentation helps users and maintainers in the operation and support of your product. Software documentation is a large determinant of product quality. It is also a major factor in support success. Be careful not to overload your development effort with unnecessary, costly-to-produce documentation requirements. Trim the documentation fat where possible, and only produce that which is essential for engineering, configuration management, and PDSS needs.
tc "<>"
CHAPTERtc "<>CHAPTER"
 tc "<> "14tc "<> 14"
Managing Software Developmenttc "<>Managing Software Development"
WINNING THE BATTLE WITH QUALITY

In 1732, Field Marshall Maurice Comte de Saxe, victor of the Battle of Fontenoy and one of the most innovative soldiers of his day, made a perceptive statement that applies to winning in today’s software arena:

It is not the big armies that win battles; it is the good ones. [deSAXE32]

Like the good army, it is the good software that wins the software management battle. How to manage the development of good software is the focus of this chapter.
In Chapter 1, Software Acquisition Overview, you were told that the most common problem cited in major software-intensive acquisitions has been poor management. Most DoD programs have been managed by cost and schedule — not the xe "Quality"quality of deliverables. When the pressure of meeting schedules and reducing costs intensifies, quality is sacrificed. To accelerate a late product, the first thing managers do is to cut back on those activities not absolutely essential for product delivery — usually verification and testing. This always results in diminished product quality. [GLASS92]
Too often, program managers are not process-oriented and do cultivate a process to control the effort. As you learned in Chapter 12, Strategic Planning, even with the best process in the world, if you have not planned for sufficient schedule time and money to build quality into your product, your program is doomed. It follows that to avoid repeating past failures, you must pursue an alternative management style that improves upon the cost/schedule paradigm. The equation for software success must change from:
Software Product = On Time + Within Cost
Quality must be factored into the equation as the driving factor for all software development management. The equation for software success must be:
Software Product = Quality + On Time + Within Cost

[GLASS92]

[Refer to Chapter 8, Measurement and Metrics, for a definition of software quality.]
Walt Disney expressed this concept of quality when he said,

I don’t worry whether something is cheap or expensive. I only worry if it is good. If it is good enough, the public will pay you back for it. [DISNEY76]
Requirements definition adequacy, the degree of software engineering discipline applied during design, and the quality of the development process are all important to the production and maintenance of quality software. Emphasizing that quality must be built-in, rather than tested into the product before delivery, must be a management prerequisite. Testing can only asymptomatically reduce the risk of latent defects — but cannot eliminate it. Quality must be built into software requirements and designs by including fault-tolerance and the removal of all failure modes.

xe \b "Development"SOFTWARE DEVELOPMENT PROCESS

The software development process consists of the way by which people, procedures, methods, equipment, and tools are integrated to fulfill user requirements through the production of a high-quality software product. By xe "Language, programming:Standardization"standardizing on a disciplined process and comprehensively defining that process, you will reap the benefits of reduced training requirements, maximized use of available resources, increased productivity, and product predictability.
Statistical management techniques provide the discipline that transforms software development into an engineering process. They are key to producing quality software products that are reliable, maintainable, efficient, timely, and affordable. Whichever practices you include in your management process, a total system/total life cycle approach to building quality software is a must. Examples of the software engineering practices used to build-in quality on the xe "Space Shuttle"Space Shuttle [and the chapters where they are discussed] relevant to all major software-intensive systems, include:

•
Quality engineering,

•
A defined software development process,
•
Formal peer inspections [discussed in Chapter 15, Managing Process Improvement],
•
Rigorous configuration management [discussed in Chapter 15, Managing Process Improvement],

•
Continuous process improvement [discussed in Chapter 15, Managing Process Improvement],
•
Statistical process control [discussed in Chapter 15, Managing Process Improvement],
•
Defect causal analysis and prevention process [discussed in Chapter 15, Managing Process Improvement],

•
Automation of software production processes [discussed in Chapter 10, Software Tools], and

•
Quality monitoring metrics and interpretation [discussed in Chapter 8, Measurement and Metrics]. [KELLER93]
xe "Systems engineering:Systems perspective"Systems Perspective

The 1991 final report of the Government/Industry Acquisition Process Review Team, Clear Accountability in Design (CAID), identified significant areas for process improvement in major Air Force acquisitions. These findings are particularly meaningful when employing a systems perspective. CAID solutions focused on three opportunities for management process improvement applicable to all major software-intensive systems.
•
Design management and review [reviews and audits are discussed in Chapter 15, Managing Process Improvement],

•
Risk management [discussed in Chapter 6, Risk Management], and

•
Effective teamwork with clear roles.

The report found that all areas for process improvement are based on an underlying set of conclusions:


It is the Government’s responsibility to define requirements and industry’s responsibility to design to those requirements;


Strong focus is needed on demonstration milestones with specific entry/exit criteria;


System development is an evolutionary process that requires continuous cost, schedule, and performance tradeoffs, especially in requirements, objectives, design, and testing;


Early and continued emphasis must be placed on effective teamwork between the Government and industry;


Program teams must focus on sound, upfront risk management using effective abatement techniques and adequate funding; and


A judicious amount of common sense and a willingness to deviate from the norm, when necessary, is essential for quality system development.
xe "Management:Of design"Design Management and Review

The CAID team found that new xe "Requirements, system:Operational"operational requirements developed by using commands become effectively frozen when transferred to the acquisition command. While the acquisition command and defense contractors may be involved early on in influencing systems requirements, the program office and industry perceive that operational requirements are fixed and cannot be violated. Once the system-level specification is placed on contract, the contractor translates requirements into a system design with the Government giving advice at Preliminary Design Reviews (xe "Preliminary Design Review (PDR)"PDRs) and Critical Design Reviews (xe "Critical Design Review (CDR)"CDRs). Any changes impacting specifications must be processed through the laborious xe "Engineering change proposal (ECP)"Engineering Change Proposal (ECP) process. Government and contractor cost and schedules are increased by inflexible specification management and government design control at the detailed solution level. This results in the translation of operational requirements into fixed specifications — negating the possibility for alternative solutions. The process does not address system development realities where the design is iteratively refined and matured, reflecting technical tradeoffs.
The CAID report’s solution to these DoD-wide acquisition problems was an xe "Evolutionary:Development"evolutionary system development process. Combined government/industry teams must be involved in influencing and recommending the tradeoffs essential to defining xe "Requirements, software:Minimally acceptable"minimally acceptable requirements. These teams must also participate in developing the acquisition strategy at the very beginning of the process.

xe \b "Team:Teamwork"Effective Teamwork with Clear Roles

The CAID report further recommended that DoD program managers be empowered to lead a xe "Team:Government/industry team"government/industry team [known as Integrated Product Teams (IPTs) or Integrated Process Teams (IPTs)] effort dedicated to balancing technical risk, time, and money. Representatives assigned to the team should be given full authority to represent their parent organization to strengthen the authority of the team and improve the timeliness of decisions. These teams must be formed early, with core team support at Milestone 0 and full-team support at Milestone I and beyond. There must be a continuity of xe "People:Key"key personnel, a commitment to xe "Concurrent engineering (CE)"concurrent engineering, and collocation of team members where practical within Government and industry. The report also recommended that the Government match the contractor’s organization where possible — not the other way around.
The team must establish an evolutionary management process to achieve and maintain a balanced requirements baseline consistent with tradeoff planning. The team must maintain close and continuous communications and protect against unwarranted direction to contractors through simple and timely memoranda of understanding (MOU). The Government must have timely access to contractor cost, schedule, and technical performance databases, and use as many meaningful progress milestones as possible. The team must also establish common goals and mutual motivations to foster frank, constructive dialogue, recognizing that some government/industry goals and incentives are inherently different. [CAID91]
xe "Process:Focused approach"Process-Approach to Quality

An important factor to always remember when following a development methodology is that no technique should be used without a predefined commitment to mold that technique to meet your specific program needs. Lessons-learned from the Air Force xe "Nuclear Mission Planning and Production System (NM"Nuclear Mission Planning and Production System (NMPPS) recommend that software development programs be structured with relatively short intermediate steps that give the user something concrete to see and touch. This approach fulfills several objectives: (1) it provides quantifiable evidence of program progress; (2) it permits incremental evaluation of the delivered product; and (3) it contributes to increased commitment to the program. [KEENE91] However the process is executed, in whatever sequence, the elements of the process can be defined as follows. The problems often encountered in these activities are listed as areas for process improvement.

•
xe "Requirements, software"Requirements. The recurring problem with requirements is the tendency to state a solution to the problem — rather than strict definition of the problem. If a solution or partial solution is specified, the definition becomes a requirement which can prematurely preclude alternative solutions.
•
xe "Design"Design. A recurring problem during design is stopping too soon (leading to an insufficient solution) or not stopping soon enough (leading to an implementation phase overlapping with the design phase) — wasting time and money.
•
xe \b "Implementation"Implementation. Problems during implementation include misunderstandings of interfaces and processes. Software applications are made of a myriad of minute details, many of them related and many of them complex systems in their own right. xe "Defect"Defects due to a lack of understanding, design flaws, and carelessness are a very human by-product during xe "Coding"coding.
•
xe "Testing"Testing. The major problem with testing is impatience. Testing is the painstaking process of trying out all requirements, all the structural elements, and as many logic path combinations as cost, schedule, and common sense will allow. The temptation here is to stop short, declare the software ready, and ship it off to the users.
•
xe "Maintenance"Maintenance. The greatest problem during software maintenance is poorly designed, poorly developed code, and inadequate or nonexistent documentation. [Maintenance is discussed in Chapter 11, Software Support.] [GLASS92]

Software Development Plan (SDP)xe \b "Software Development Plan (SDP)"Software Development Plan (SDP)

tc "<>"
The ability to win the software battle depends on the success of the plan. As Napoleon explained,

Nothing succeeds in war except in consequence of a well-prepared plan.

[NAPOLEON08]
The SDP (usually submitted in draft form with the offeror’s proposal) is the key software document reflecting the overall software development approach. It includes resources, organization, schedules, risk identification and management, requirements management, supportability, training, open systems and standards compliance, Ada use (or Ada waiver rationale), tools and environments, data rights, metrics, quality assurance, control of nondeliverable computer resources, and identification of COTS, reuse, and GFS the offeror intends to use. SDP quality and attention to detail is a major source selection evaluation criterion. [Refer to MIL-STD-498 for suggestions on SDP content and requirements.]
CAUTION!
A poorly written SDP is a warning sign! If awarded the contract, an offeror with a deficient SDP has a low probability of successfully completing their obligation to the Government! Be aware also of those offerors who talk a good game. A well-written SDP must be backed up by a high software maturity assessment [discussed in Chapter 7, Software Development Maturity] in addition to other source selection discriminators.
An xe "Development:Evolutionary"

xe "Evolutionary:Development"evolutionary development approach with xe "Development:Incremental"incremental delivery of capability and software prototyping techniques can yield early results and demonstrate the contractor’s competence to develop software components accurately and reliably. An early “warm-and-fuzzy” about the SDP builds the foundation for the teamwork and disciplined trust vital to life cycle cooperation and success.
Software Development xe "Development:Recommendations"Recommendations

The use of modern software development techniques, CASE tools, and metrics are essential for successful software development and support. You must ensure these are used for all software efforts and provide the guidance and resources for their implementation. Specifically, you can greatly help your program by doing the following:

•
Program management by committee is ineffective. A single manager is needed with the rank, background, responsibility, and authority to carry out the program.

•
You must actively pursue a commitment to quality from your industry/government development team. Quality can be implemented through training and by formally establishing quality objectives within your software requirements specification. This will increase the importance and visibility of software quality by providing clear, measurable goals. The cost of quality will be balanced with improved product performance, cost, and schedule.

•
Make sure all stakeholders (users, developers, testers, and maintainers) participate jointly in requirements definition and analysis, and that they are mutually responsible for ensuring requirements are clearly documented, implementable, and testable.

•
Make sure requirements documents clearly define the quantifiable attributes of quality code.

•
Use xe "Commercial-off-the-shelf (COTS) software"COTS and reusable components when appropriate. However, be aware of associated data rights issues that may affect supportability.

•
Mandate maximum use of modern development practices, such as object-oriented analysis and design, during early program phases.

•
Require that contractors use an appropriate set of CASE tools and acquire CASE tools for in-house use in progress tracking. Ideally, each member of the contractor team, including all subcontractors, will use the same CASE toolset/software engineering environment (SEE). Where all team members have the same toolset, the opportunity for integration problems is greatly reduced.
•
Encourage evolutionary introduction of standard CASE tools for all subprocesses including development, testing, and maintenance. However, purchase, train for, and employ only those tools for which corresponding processes have been defined.

•
Allow adequate time to learn and gain experience with both the method employed by the CASE tool and the tool itself. [Consult STSC tools documents and the I-CASE program office at Gunter AFB for further guidance.]
•
Do not modify COTS. Use them for their intended purposes in their intended environment.
•
Preplan replacement of COTS items. Include commercial-item support requirements in your procurements.

•
Put architectural requirements in software specifications.

•
Emphasize early satisfaction of architectural requirements before a large investment in design and coding of applications software.

•
Incentivize contractors to reuse architectural concepts that are proven to be effective.

•
Make sure architecture configuration is controlled throughout the life cycle.

•
Maximize the use of Ada and COTS tools.

xe "Development:Lessons-learned"Lessons-Learned from SSC and CSC

•
Understanding the development approach and methodology used by the developer makes it easier for all team members to stay focused on the task, reduces rework, and eliminates confusion over changes in the process. The development methodology should be documented in the SDP and refined throughout the development life cycle based on lessons-learned.

•
A standardized representation of the problem domain (through the use of a graphical OOA tool) helps functional users and systems analysts obtain a common understanding of the system’s functionality and requirements.

•
Several steps must be taken prior to a site visit to define user requirements: (1) form small 2-3 person teams; (2) obtain and review organizational charts and background material for the site to be visited; (3) review problem domain policies and regulations; (4) identify site POCs and phone numbers; and (5) establish the objectives and parameters for the visit.

•
Coordinate the requirements definition visit with the OPR, and if that person must do the interview scheduling, emphasize the necessity for at least an hour break between each interview.

•
Appoint a team coordinator for each requirements definition visit. The coordinator’s responsibilities should include: appointment verification; team assignments to meet schedule changes; conducting after-hour reviews and recaps of the day’s activities with other team members; maintaining focus on the visit’s objectives; and ensuring gray areas are resolved before the team leaves the site.

•
During systems requirements review, place more emphasis on reviewing the systems requirements and interfaces, than on program methodology and metrics.

•
On requirements definition trips, it is helpful to talk to groups that interface with the domain being modernized to clarify or uncover requirements. Include supported functions or agency interviews as part of the requirements definition process.

•
The systems analyst must work closely with the users and other members of the requirements analysis team. During systems analysis, functional users should be allowed to pursue breadth and depth of analysis as ideas occur to them. In addition to facilitating the flow of ideas, the analyst must ensure the analysis continues in a timely manner. Analysis must not get bogged down in details which can best be addressed in a subsequent development phase.

•
Rewrite the SSR section of the SDP and add the requirement to present information on the scope and methods used during requirements definition.

•
Using a generic term before applying technical solutions can cause confusion and miscommunications. POSIX should not be referred to as a single standard when it actually represents a family of standards. The definition for POSIX compliance is: (1) an application is compliant if all of the services it uses are part of the approved platform/set of standard services; (2) a platform is compliant if it supplies all the services required by a standard; and (3) in the event of an overlap, the application must choose between services. (Ada LRM services are preferred.)

•
The function point count of an OOA model can inflate inherited attributes and services; therefore, the counting methodology should be refined to give a clearer representation of the functionality of object-oriented systems.

•
As an OOA model grows in size and complexity, a configuration management function should be added to the analysis model. Because a minor change made in an object can cause catastrophic changes in the model, all but one team member should have read-only permissions with its use. If changes to the drawing or underlying documentation are needed, the files can be released (write permissions temporarily granted) while changes are made.

•
Because problem domain issues come up during team reviews, functional user participation on review teams provides quick and efficient closure to these issues.

•
Training on the reusable software architecture is required for the entire design team.

•
Select a modeling methodology that provides a clear, single representation of the system as it evolves throughout the development process. Multiple model representations create confusion and increase risk.

•
To eliminate confusion on where to obtain edits for a data element (the SRS or the data dictionary), metadata should be captured in a single repository. A data dictionary team (comprised of analysts, data dictionary experts, and dictionary users) should be established to coordinate all data dictionary efforts.

•
Changes to the design model and documentation impact on the generation of the SRS; therefore, a technical review team should review the documentation produced by the model prior to porting the documentation for formal delivery.

•
Unfamiliarity with data dictionary naming conventions unfavorably impacts SRS generation and the approval of data elements.

•
Lack of designers during the requirements analysis phase produces gaps between the analysis and design; therefore, designers should be included on the requirements analysis team.

•
A prototype should be built along with the requirements analysis model so that prototypers can ask the analysts what each software function should perform and whether or not the placement of functions is accurate.

•
Ensure tailoring of the DID used to generate the SRS is finalized before work on the requirements analysis model begins.

•
Maintaining and posting requirements analysis changes reduces unnecessary prototyping of obsolete class-and-objects and avoids confusion as to what has been prototyped and what has not.
•
The screen design group should consist of a team leader, a scribe, and technical representatives from the task (less than 7 members is recommended). A flexible screen design that reflects user input makes transition to the final screens easier.

•
To increase prototyping efficiency, prototyping should start as the requirements analysis model is being built. Objects should be coded as they are created, so that functions (services) can be attacked early. To reduce the risk of prototyping objects and services that may change, the systems analysts must provide estimates of stability. Prototypers should only implement the most stable objects first.

•
Prototypers must be involved in reviewing software requirements, as they bring needed expertise. Traditionally, this has not been the case. If prototypers still have work remaining when the requirements review occurs, they should suspend that work, because the final requirements will impact whatever prototyping occurs.

•
A clear representation of the problem domain is essential for the understanding of and communication about the system. The notations in the Coad-Yourdon methodology graphically represent generalization specialization structures and the attributes required in each part of the structure. [COAD90] [The Booch notation is very fuzzy on atomic level versus non-atomic level classes.] A single consistent representation is needed across all phases of the life cycle (i.e., a single model).

•
Screen design rules development is time-intensive. It takes time to role play the functionality of each screen. Use information captured prior to screen design to speed up the process. Rules for functionality should be added to the design folders and used during screen design.

•
Alternate screen design layouts, based on human engineering considerations, should be introduced early in the design process and presented to the users for their consideration.

•
The Government Technical Review stands alone as it precedes all major reviews. This repeatable process should be included in the SDP.

•
A “Phase Kick-off” meeting should be held prior to each phase of development. This ensures that team members understand the major activities and deliverables associated with the current phase. The meeting should address the near-term schedule, planned activities, and deliverables. Representatives from recently completed (or still in process) task(s) should be invited to share their lessons-learned.
•
Internal Review (IR) screen design meetings should not devote time to designing or redesigning screens. The package should be reviewed by the assigned reviewers and their objections and comments presented and discussed. The screen design team submitting the screen package should conduct a pre-IR to review the package and incorporate objections or comments from within the team. This ensures the package submitted to the reviewers has been informally pre-reviewed and accepted by the team — reducing the actual time necessary for the IR meeting.

•
The IDEF0 model is difficult to maintain given the evolutionary nature of the software development process. Updating the IDEF0 model is often neglected and process improvement becomes based on process analysis charts. The purchase of additional copies of the tool, Design/IDEF, helps to distribute this maintenance load.

•
A set of standards should be adopted before a screen is baselined.

•
The lack of coding guidelines can cause considerable revision of software considered complete. Therefore, use a set of checklists for software coding style and content using the Ada Quality and Style Guide from the Software Productivity Consortium.

•
Formal guidance must be documented and guidelines in place prior to implementing data standardization.
•
Ensure the data standardization team consists of people with appropriate levels of technical, functional, and corporate knowledge.

•
Document and inform all data standardization team members on generic element naming guidelines to ensure modifiers are used.

•
Define the process for submitting data elements in the SDP. The timing should be no later than the point at which the task’s subject areas have been reasonably stabilized.

•
Ada training needs to be thorough with a hands-on approach to using the analysis model produced by the Software Architecture Group.

•
A detailed document on what is needed and available in the way of hardware/software resources should be made at the onset of each new task to mitigate potential risks in meeting deadlines.

•
Use the documentation capabilities of the Ada design model. Add documentation to the description of the top-level architecture.

•
Consider the look, feel, and design of all the other architecture components when designing a new component. Move on with design and Ada specifications before implementing Ada bodies.

•
The amount of time given to design must be enough to fully mitigate potential risks. For example, changes to the design that are implemented after portions of the design have been coded require significant time and effort better spent in upfront design. Therefore, it is recommended that the design on the xe "Object-oriented:Design (OOD)"OOD model (architectural design) be complete across all components of the top-level architecture before coding. Detailed design should then proceed incrementally to mitigate risk.
NOTE:
See Chapter 5, Ada The Enabling Technology, for a description of the programs upon which these lessons-learned are based. See also Volume 2, Appendix O, Additional Volume 1 Addenda, Chapter 14, Addendum C, “On-Board Software for the Boeing 777.”
xe \b "Requirements, software"Software Requirements

Paul Paulson, president of Doyle, Dane and Bernbach, a large New York brokerage firm, was quoted in the New York Times as saying,

You can learn a lot from the client. Some 70% doesn’t matter, but that 30% will kill you. [PAULSON79]
You must approach the requirements task with strong leadership that emphasizes risk reduction through xe "Evolutionary:Development"evolutionary development [discussed in Chapter 3, System Life Cycle and Methodologies] and xe "Prototyping"prototyping to ensure quality issues are translated into functional requirements. The software system must, in addition, be analyzed within its environmental framework. This analysis may be performed in accordance with one, or several, xe "Structured analysis"

xe "Development:Strategies:structured analysis"structured analysis techniques (such as xe "Decomposition:Functional"functional decomposition, hierarchy diagrams, object-oriented analysis, data flow analysis, or state transition charts). Methods include: xe "Object-oriented:Development (OOD)"object-oriented (data-oriented) [COAD90], xe "Development:Strategies:process-oriented"

xe "Process:Oriented-development"process-oriented (functional or structured analysis) [YOURDON90], and xe "Development:Strategies:Behavior-oriented"

xe "Behavior-oriented development"behavior-oriented (temporal, state-oriented, or dynamic; e.g., essential systems analysis) [McMENAMIN84]. Each of these techniques view the system being developed from a different perspective.
The approach selected by the development team depends on the type of software system being defined, and the approach that most clearly states the problem. Further analysis involving user scenarios, transaction modeling, performance modeling, and consistency checking among viewpoints must also be performed. This ensures overall requirements consistency. Requirements so derived must then be validated with the users prior to development to guarantee that the system can, and will in fact, be built. xe "Requirements, software:Validation"Validation approaches include performance modeling and prototyping of those software components deemed critical to software success. Another good litmus test for the validity of a requirements package, used on the xe "F-22 Advanced Tactical Fighter"F-22 Program, is to check whether designers from two different development team organizations have identical understanding of a set of bottom-level elements in the requirements hierarchy. If not, your team process is flawed, and the chances the pieces produced by various team members will integrate smoothly is close to zero.

Requirements must be clearly documented and implementable. They must also be well-stated so they are easily understood by the designer and programmer. One measure of clarity is that requirements must be xe "Testing"testable. If requirements are satisfied, you should be able to quantitatively test them. Classic examples of untestable requirements are those that state the system must be “user friendly” and provide “rapid response.” Such requirements are meaningless to the designer, and are a potential source of endless arguments when the software is delivered.
A description of requirements tests (or measures) must be included in the specification. xe "Testing:Of requirements"Testing must demonstrate that, if successfully completed, the delivered software will satisfy the requirement. The need for testable requirements demands that testing issues are addressed early in the program. Software test personnel (in addition to the developers, users, and maintainers) must take an active role in the requirements definition, analysis, and software design phases. The formal assessment of xe "Quality:Objectives"quality objectives should be an integral part of this effort. Unless a user need is correctly and completely stated, it is unlikely that either quality code will be written or a test can be performed to determine if the software satisfies the need and quality requirements [e.g., quality attributes such as those listed in Chapter 8, Measurement and Metrics, Table 8-4.]
Many techniques have been developed to assist in specifying and documenting requirements, such as xe "Integrated Computer-Aided Manufacturing Definition"IDEF and xe "Tools:Computer-aided software engineering (CASE)"CASE tools [discussed in Chapter 10, Software Tools]. Whatever the tools or methods used, the analysis should include a basic series of requirements activities.

•
If requirements are uncertain, build a prototype or model the information domain,

•
Create a behavioral model that defines the process and control specializations,

•
Define performance, constraints, and validation criteria,

•
The SRS must be written or depicted, and

•
Conduct regular formal technical reviews. [PRESSMAN93]

Figure 14-1 illustrates the requirements definition and analysis process performed for the F-22. A joint relationship among all stakeholders must continue throughout development. Eventually, this effort will result in documentation or data that directly cross-references test cases to requirements and code. At the same time, developers and testers should independently plan, design, develop, inspect, execute, and analyze software test results.

[image: image1.wmf]S

y

s

t

e

m

F

u

n

c

t

i

o

n

A

v

i

o

n

i

c

s

F

u

n

c

t

i

o

n

S

e

n

s

o

r

F

u

n

c

t

i

o

n

R

a

p

i

d

p

r

o

t

o

t

y

p

i

n

g

m

o

d

e

l

p

r

o

v

i

d

e

s

t

h

e

t

o

o

l

f

o

r

a

n

a

l

y

s

i

s

a

n

d

o

p

t

i

m

i

z

a

t

i

o

n

o

f

d

e

s

i

g

n

a

l

t

e

r

n

a

t

i

v

e

s

S

e

n

s

o

r

M

o

d

e

A

n

a

l

y

s

i

s

o

f

A

l

t

e

r

n

a

t

i

v

e

s

T

r

a

c

e

a

b

l

e

F

l

o

w

d

o

w

n

D

E

T

A

I

L

E

D

H

W

/

S

W

R

E

Q

U

I

R

E

M

E

N

T

S

Figure 14-1 F-22 Requirements Processtc "Figure 14-1 F-22 Requirements Process"
NOTE:
See Addendum B of this chapter, “If Architects Had to Work Like Programmers.”
xe "Software Requirements Specification (SRS)"Software Requirements Specification (SRS)

The successful completion of the requirements phase results in a Software Requirements Specification (SRS). Common sense must be used when writing these specifications so that they are realistic, achievable, and not just bells-and-whistles. It must be kept simple and short. xe "Quality:Attributes"Quality attributes [discussed in Chapter 8, Measurement and Metrics] should be defined such that the designer knows how to go about achieving them, and the user knows whether they have been achieved when the software is delivered. [GLASS92] Remember, quality must be testable and measurable. To achieve this, there must be an open, honest, and cooperative free exchange of information between the Government and the developer (contractor) as reflected in the SRS.
The specification process is one of xe "Representation"representation. Requirements must be represented in such a way as to facilitate their successful implementation into software. The characteristics of a good specification are:
•
Functionality is separated from the implementation. Specifications must be expressed entirely in the “what” form, rather than the “how.”
•
The specification language must be process-oriented — the process to be automated and the environment in which it is to function and interact must be defined.

•
The specification must describe the software within the context of the entire system.

•
The specification must be an empirical representation, rather than a design or implementation representation, of the system.

•
A specification must be comprehensive and formal enough to determine if the implementation fulfills randomly selected test case requirements.

•
The specification must be flexible, enhanceable, and never totally complete.

•
The specification must be localized, loosely coupled, and dynamic. [PRESSMAN92]

Dobbins claims that as long as developers insist on writing software requirements in prose form, requirements will continue to be the source of expensive software defects. He recommends the acquisition and use of one or more of the emerging specification generation techniques, many of which require the use of CASE tools. The tools selected should be based on ease-of-use and the ability to perform comprehensive real-time analysis and evaluation of the requirements package as it is being developed. [DOBBINS92]
xe \b "Interface:Interface Requirements Specification (IRS)"

xe "Interface"Interface Requirements Specification (IRS)

Never lose sight of the fact that hardware and software development are intimately related. Although they are developed in unison, for major programs, software is always on the system’s xe "Critical path"critical path. Early consideration of how the software is to interface with the system and other software is necessary to achieve the benefits of cohesive, xe "Interoperability"interoperable systems. Proper xe "Integration"integration of hardware and software can be assured through carefully identified xe "Interface:Requirements"interface requirements and prudently planned reviews, audits, and peer inspections [discussed in Chapter 15, Managing Process Improvement]. Such systems provide improved accuracy, currency, and quality. Early identification of integration and interface requirements also prevents xe "Redundancy"redundancy.
Software interface requirements are documented in the IRS. In complex system developments, with multiple developers, each contractor must have a baselined IRS to ensure interface discipline. There must also be a requirement that each contractor’s software system interface with other designated systems. Otherwise, each contractor can change their interface at will, affecting other contractors’ efforts. Not baselining xe "Interface:Interface Control Document (IRD)"Interface Control Documents (ICDs) also gives contractors a mechanism to shift the schedule continuously. While ICD changes can lead to additional expense, uncontrolled change is even more dangerous. A more acceptable method is to develop to a given version of an ICD while still having the contractor maintain and update that ICD. The contractor then assumes the responsibility of maintaining current ICDs and of meeting the requirement. Program milestones should be used to determine which ICD is being used to develop any given phase of the system.
NOTE:
Refer to Requirements Determination Process by EDS. See Volume 2, Appendix E for information on how to obtain a copy.
xe "Management:Of requirements"

xe "Requirements, software:Management of"Requirements Management

Management of technical requirements is the most important, and often overlooked, software management issue. Ideally, requirements are fully identified before the SOW is written. In practice, this is almost never the case. In large, complex software-intensive systems, requirements continually evolve throughout the system’s life. Therefore, they must constantly be managed because they significantly impact total system development cost and schedule. Requirements creep often occurs on long procurements. The users have time to see the possibility of all the features they can have, or want changes to their original vision of the product. The operational environment changes or technology advances. The software contractor may want to accommodate the user, but through requirements creep, loses control of the product. If your contractor is unable to do so, it is your job to step in, hold the line on requirements, and take control of a situation that can run up cost and schedule at lightning speed. Failure to draw a line in the sand on user requirements can be downright fatal for your program. xe "Requirements, software:Freezing of"Freezing requirements through firm baselines is essential. It does not, however, make it impossible for the user to make changes. Evolutionary/xe "Requirements, software:Incremental build-up of"incremental buildup of functionality is possible if it is planned and budgeted to occur at xe "Milestone:Decision"milestone decision points where requirements are re-baselined. xe "Configuration management (CM):Version control"

xe "Version control"Version control and tracking, including updating documentation, are other essential parts of the requirements configuration management task [discussed in Chapter 15, Managing Process Improvement]. Figure 14-2 [not available in this format] illustrates how F-22 requirements were baselined with planned incremental buildups of functionality.

Your contractor’s SDP should address their understanding of the requirements xe "Requirements, software:Stability"stability issue, how well they will manage the requirements xe "Requirements, software:Change process"change process and xe "Requirements, software:Evolutionary"

xe "Evolutionary:Requirements"evolutionary requirements. [MARCINIAK90] Your contractor’s management of requirements must stress a commitment to an iterative process that utilizes structured requirements methods and appropriate tracking and analysis tools. xe "Requirements, software:Traceability/tracking"Traceability from original, identified needs to their derived requirements, designs, and implementations must be assured. This process must also identify major stakeholders (or viewpoints) of the system. You must ensure that individual stakeholder needs are consistently collected, analyzed, and documented. A formalized process must also be used to enfranchise stakeholders through requirements teamwork. A two-way requirements traceability matrix should be used to ensure completeness and consistency of requirements among all levels of development (from top-level down to code-level). [SHUMATE92] [For help in choosing automated tools for requirements analysis and control refer to the STSC’s Requirements Analysis and Design Tools Report, March 1994.] A xe "Team:Software requirements team"requirements team includes multiple working groups, such as:
•
An xe "Operational Requirements Document (ORD)"

xe "Team:Operational Requirements Document support team"Operational Requirements Document Support Team,

•
A Program Requirements Team, and

•
An xe "Operational Requirements Document (ORD):Operational Requirements Working Group"

xe "Team:Operational requirements working group"Operational Requirements Working Group. [SPAT92]

xe "Prototyping"Prototyping

Prototyping, along with a structured analysis process and performance modeling, is an effective means to evolve and clarify user expectations. They can be used to resolve conflicts among cost, schedule, performance, and supportability; to ensure users and developers have the same understanding; and to xe "Requirements, software:Validation"validate requirements. Prototypes provides a better way for resolving the statement, “I’ll know it when I see it,” than documenting requirements in English, with all its ambiguities. [KINDL92] Prototypes, which include the results from rapid prototyping techniques, executable models, and quantitative descriptions of behavior (such as structured prototyping languages or graphical representations), are powerful tools for deriving correct hardware/software partitioning, for performance testing, and for eliminating significant sources of risk. Remember, prototypes must be useful, not just demonstrations or models of the system.
Prototyping involves the early development and exercise of critical software components (e.g., user interfaces, network operating systems, resource managers, and key algorithm processors). They are comprised of the user interface, its interaction details with the proposed system, and executable functional models of critical algorithms. They are different from demonstration systems [discussed in Chapter 12, Strategic Planning] which provide usable evolutionary increments. Normally, in MIS and C3 systems, prototypes demonstrate screens and limited functions — not actual software that works!

One method for developing a prototype to is build it from xe "Reuse:Prototyping with"reusable components. Because the components already exist, a prototype built from reusable parts is the easiest, cheapest, and quickest to build. It can provide rapid functionality since it is built from previously coded and tested components. Another way to build a working prototype is through a tool such as xe "Tools:Design tools:Universal Network Architecture Services (UNAS)"UNAS [discussed in Chapter 10, Software Tools] which can generate a demonstrable level of functionality in Ada code. An ability to plug-in, plug-out xe "Commercial-off-the-shelf (COTS) software"COTS products can also greatly speed up the prototyping process. The least desirable prototyping approach is one which uses xe "Language, programming:Higher order (HOL)"HOLs and/or rapid prototyping tools that only build a quick-and-dirty skeleton of the system. While the external facade (e.g., front-end screens with no code behind them) may give the user a touch-and-feel for what the final system will be like, there is nothing behind that front-end prototype (i.e., no functionality that the user can execute to determine if it will do something useful).

[YOURDON92]

You must make sure your contractor’s SDP addresses coordinating prototype development with the system end-xe "User"user to ensure a realistic requirements validation process occurs. As a minimum, the user must review and approve all prototypes of critical components. Reiteration of this process is often necessary to include additional requirements analysis, specification, and validation if the prototyping exercise falls short of user expectations. The approval of the prototype(s) constitutes a xe "Requirements, system:Baseline"

xe "Baseline:System requirements"baseline for system requirements to be incorporated in the xe "Software Requirements Specification (SRS)"SRS.
Prototyping xe "Prototyping:Benefits"Benefits

Major prototyping benefits include: clearer understanding of requirements, particularly if a user-interface prototype is demonstrated; quicker identification of design options and how they may be implemented into code; and resolution of high-risk technical issues in areas where the system may be pushing software state-of-the-art. Prototyping also has a high impact on a certain class of defects and can be used as an effective xe "Defect:Prevention"defect prevention technique. Although with large, complex software developments it is usually not possible to derive all the functional requirements upfront, there is evidence that software developments using prototyping tend to reach functional stability quicker than those that do not. With prototyping, on the average, only 10% or less functions are added after the requirements phase; whereas, without prototyping 30% or more functions are added after requirements analysis. This leads to unanticipated and unfunded cost and schedule overruns. Also, defect correction costs associated with these late, rushed functions, exacerbates the problem, as they are more than twice as high as those made in earlier phases of development. [JONES91]
A xe "Prototyping:Pre-contract award"pre-award prototype can be used to determine the offeror’s understanding of the requirement, which in turn helps the offeror project a more realistic estimate of system development cost and schedule. While prototyping involves time and resources, experience shows that the lead time to a fully operational system is generally less when prototyping is used. The prototype allows users and designers to know what is wanted, and having already built a simplified version, the fully-developed system is less expensive and time-consuming. The final product is also more likely to perform as desired with fewer surprises when delivered.
xe "Prototyping:Cautions about"Cautions About Prototypes

Do not mistake a prototype for more than what it is — a shortcut for demonstrating software functions/capabilities and for eliciting user buy-in. Quality control and assurance (testing) and supportability issues (e.g., technical documentation) are seldom addressed, as these activities negate the benefits of the prototype. Deming talked about the “burn-and-scrape” method of quality control for toast, comparing it to getting it right the first time. [DEMING82] The requirements for toast are certainly easier to understand than the requirements for most software systems, so some scraping is understandable. However, uncontrolled prototyping can result in an endless, unproductive sequence of burn-and-scrape developments. Remember, prototypes are a quick-and-dirty way to evaluate whether the proposed design meets user needs and are generally produced with throwaway code. They are also not developed with supportability, readability, and usability in mind, and bypass normal configuration management, interface controls, technical documentation, and supportability requirements. Therefore, you must refrain from expanding a prototype without baselines, interfaces, capacity studies, and thorough documentation.

[KINDL92]

NOTE:
Refrain from forcing coding standards on prototype development as they can adversely impact the benefits of prototypes.
Another caution about prototypes is they must be well-planned and designed to address significant sources of risks you have thoroughly identified and documented in your xe "Risk:Risk Management Plan (RMP)"Risk Management Plan. You must make sure every effort has been made to understand the requirements before building any prototype, and then ensure that the prototyping effort is converging on a requirement(s) validation. To benefit from the prototyping exercise, require that each prototyping effort concludes with the delivery of a written report stating what was done, the results, their implications, and the degree to which the prototype met stated objectives.

[HUMPHREY90]
When using prototype demonstrations during source selection, the requirement for a development maturity Level 3 or higher [discussed in Chapter 7, Software Development Maturity] must be a prerequisite. If supportability (or reliability, portability, interoperability, etc.) are high risk drivers, these capabilities can be included in your functional description of offerors’ prototype demonstrations. However be aware, without a sound software engineering process to back it up, source selection prototype demonstrations can be deceptive with false-positive results. An example is the overhaul of Air Force Logistics Command’s enormous materiel requirements planning system (a database of approximately 390 gigabytes containing an inventory of one million weapons part items worth $28 billion).

The award of the $210 million contract in 1984 required that each competing firm deliver a working prototype of the proposed system. Although the compute-off proved to be a useful method, it illustrates the need to consider the other source selection variables discussed throughout these Guidelines rather than relying on any one discriminator. Although the company with the best prototype won the contract award, the tactics used to win the 100-yard dash demonstration did not work well in the actual contract performance marathon. Once awarded the contract, the winning company continued to use the same quick-and-dirty methods for large-scale production that they used for the prototype demonstration. Thus, they had trouble delivering software with acceptable defect rates and in producing quality documentation. [There was a happy ending to this example, as the company in question was able to turn deliveries around through process improvement and a commitment to sound software engineering principles.] [ANTHES90]

xe "Requirements, hardware"Hardware Requirements

A major concern during software development is how to get the most advanced computer hardware technology available. The goal is to get the most crunch (computer power) -for-the-buck. The question to be answered is how to have the most efficient, advanced equipment possible throughout the system life cycle. Because computer hardware improves at an exponential rate, and user requirements grow and change with technology’s leading edge, hardware technology is a major source of change over the system’s life. Computer hardware requirements definition (e.g., digital systems, digital line replacement units/modules, digital circuit cards, complex digital components) is often a considerable management challenge. The translation of hardware requirements through the design specification down to gate-level schematics requires that designers work across a wide range of xe "Abstraction"abstraction. The rush to lock into hardware designs before completing essential tradeoffs is often a source of substantial program risk.
VHSIC/ VHDL

The DoD xe "Tools:Simulation tools, hardware:Very High Speed Integrated Circuit (VHSIC) Hardwar"

xe "Very High Speed Integrated Circuit (VHSIC) Hardwar"Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), xe "American National Standards Institute (ANSI):ANSI/IEEE1076"ANSI/IEEE 1076 (used with commercially available design, analysis, synthesis, and accelerator tools) provides the capability to simulate the hardware design before it is built. The use of xe "Simulation, hardware"hardware simulation as part of a disciplined engineering process (particularly for embedded weapon systems computers) can greatly reduce risk and the costs associated with front-end design and analysis of digital systems. VHDL allows simulation and debugging of the hardware design, and definition of inputs/outputs and interfaces before a commitment is made to logic gates. These tools give designers the ability to employ systems engineering tradeoffs, design simulation, and design iteration, as well as to make design changes and to examine architectural alternatives prior to hardware selection.
Hardware xe "Hardware:Selection"Selection

Ideally, computer hardware selection should be delayed until completing sufficient requirements analysis to predict the processing power and throughput necessary for successful execution of the planned software. Delaying hardware selection might be feasible if contract support is provided through a systems integrator on a cost-reimbursable basis, and flexibility is allowed in timing and selection. More importantly, selecting computer hardware late in the software development process encourages the development of portable software that can be easily migrated among different hardware platforms.

In reality, the recommended hardware is often not only part of the winning contractor’s proposal, but an integral part of their cost estimate. If you receive a proposal keyed to a specific hardware set, this can be considered a weak proposal. Studies have shown that in major software-intensive systems acquisitions (e.g., weapons systems and C3I systems) the cost of developing software can be as much as 80% of the cost of the hardware and software combined. If an offeror bases their cost estimates on a specific hardware set, they probably do not have a very good understanding of the proposed system.
NOTE:
Modifying a system performance requirement is not necessarily a bad thing or a sign of failure. Lessons-learned show that it is often not worth paying 30% more to get the last 5% of originally-specified performance. In software terms, it may be frivolous to spend another million dollars on hardware to reduce terminal response time from 2.1 seconds to the specified 2.0 seconds.
Too often hardware acquisition is conducted separately from the software development process. In this case, the software effort cannot be delayed and completed out of context from its eventual operating environment. Hardware selection must proceed in concert with the software effort which must be completed within hardware environmental constraints (e.g., centralized versus distributed environment, specific database management system, compilers, etc.).
NOTE:
In recent years, lessons-learned have shown that hardware is procured too early. Hardware sits around and waits for the software to be developed, and is effectively obsolete when finally implemented. Another common occurrence is that hardware is often budgeted too early. If hardware is not purchased within the fiscal period for which it was budgeted, the funds are removed from the program.
Factors to consider in hardware selection are xe "Requirements, hardware:Quantitative performance requirement (QPR)"quantitative performance requirements (QPRs) [e.g., “throughput,” discussed in Chapter 8, Measurement and Metrics], especially if C3 requirements are being defined. To properly determine/simulate loading for a QPR measurement, an assessment of how the proposed software/hardware will perform together is essential. xe "Operating system"Operating system upgrades (projected by COTS hardware vendors) must also be considered as they affect future system growth needs. There are three principles to follow in the initial stages of computer hardware selection (which also apply to software architecture design):

•
Follow standards, either de facto or specifically defined,

•
Follow an open systems architecture, and
•
Plan for evolutionary change over the software life cycle.
In integrated airborne avionics environments, severe physical and connectivity constraints may exist. Nevertheless, every effort must be made to use xe "Standards:Hardware configuration"standard computer hardware configurations with well-understood performance characteristics. Although not similarly affected by physical constraints, some intelligence systems, C2 systems, and MISs must operate with large existing suites of hardware and software. The technical and cost benefits/penalties of compatibility with these pre-existing systems must be assessed. Even when analysis indicates continuing a sole source, proprietary environment is cost-effective, DoD’s preference is an xe "Open systems:Architecture"open systems architecture [discussed in Chapter 2, DoD Software Acquisition Environment].
CAUTION!
“Every vendor with an open mouth claims to have an open system.” [THOMPSON91] Unless vendors follow industry/government-approved standards [discussed in Chapter 5, Ada: The Enabling Technology, and Chapter 2, DoD Software Acquisition Environment], the system is not truly open. On the other hand, the considerable time it takes to develop and validate industry standards often leads vendors to use de facto standards. THE POINT IS TO SELECT SYSTEMS THAT ARE “COMPATIBLE” AND “INTERCHANGEABLE” WITH PRODUCTS FROM A WIDE VARIETY OF VENDORS!
xe \b "Design"

xe "Quality:Design"Design

The importance of software design can be stated simply: design is where the quality goes in. This is the critical activity where your choice of a developer [based on the source selection criteria discussed in Chapter 13, Contracting for Success, and throughout these Guidelines] pays off. Skills, experience, ingenuity, and a professional commitment to process improvement and excellence are necessary to ensure your product has quality built-in.
Software design is the pad from which development and maintenance activities are launched. Software design is the process through which requirements are mapped to the software xe "Architecture"architecture. Design is also divided into two phases so architecture and requirements allocations are in place before components are detailed. Partitioning the process into two (or more) phases provides the Government with an opportunity to formally review the design as it evolves [e.g., Preliminary Design Review (xe "Preliminary Design Review (PDR)"PDR) and Critical Design Review (xe "Critical Design Review (CDR)"CDR)]. Remedial actions can be taken before the design becomes too detailed. The two-phase process also gives you a chance to subject the high-level design to external review (e.g., by systems and hardware engineering team members). This ensures compatibility with other system software and hardware with which the software must interact. [MARCINIAK90]
The xe "Design:Architecture"architectural design defines the highest-level relationship among major software structural components, representing a holistic view of the system. Refinement of the architecture gives top-level detail, leading to an architectural (preliminary) design representation where software units (CSUs) are identified. Further refinement produces a xe "Design:Detailed"detailed design representation of the software, very close to the final source code. [PRESSMAN92] [Bottom-up design is this process in reverse.] Detailed design involves refinements of the architecture (CSUs) leading to algorithmic representations, controls, and data structures for each architectural component. It may be possible to produce poor code from a good design — but seldom is it possible to produce good code from a poor design. Design is the “make-it-or-break-it” phase of software development. [GLASS92]
Within the context of architectural and detailed design, a number of activities occur. All the information gathered and analyzed during requirements definition flows into the design activities. The software requirements expressed in the form of information, functional, and behavioral models are synthesized into the design. The design effort produces an architectural design and a detailed design (comprised of a procedural design, a data design, and an interface design). The xe "Design:Procedural"procedural design translates structural components into a procedural representation of the software. The xe "Design:Of data"data design transforms the domain model (created during requirements definition) into the data structures required to implement the software. xe "Design:Interface"Interface design not only defines how the software is to interface with other system software and hardware, but with the human-machine interface. Figure 14-3 illustrates how information about the software product, defined during requirements analysis, flows into the design which in turn flows into the coding and testing phases. [PRESSMAN92]
[image: image2.wmf]P

r

o

c

e

d

u

r

a

l

D

e

s

i

g

n

A

r

c

h

i

t

e

c

t

u

r

e

D

e

s

i

g

n

D

a

t

a

D

e

s

i

g

n

T

E

S

T

P

r

o

g

r

a

m

M

o

d

u

l

e

s

I

n

t

e

g

r

a

t

e

d

a

n

d

V

a

l

i

d

a

t

e

d

S

o

f

t

w

a

r

e

I

n

f

o

r

m

a

t

i

o

n

D

o

m

a

i

n

M

o

d

e

l

B

e

h

a

v

i

o

r

a

l

M

o

d

e

l

F

u

n

c

t

i

o

n

a

l

M

o

d

e

l

O

t

h

e

r

R

e

q

u

i

r

e

m

e

n

t

s

D

E

T

A

I

L

E

D

D

E

S

I

G

N

A

R

C

H

I

T

E

C

-

T

U

R

A

L

D

E

S

I

G

N

C

O

D

E

I

n

t

e

r

f

a

c

e

D

e

s

i

g

n

Figure 14-3 Ingredients of Software Designtc "Figure 14-3 Ingredients of Software Design"
For software to achieve a high degree of excellence, it must be defect free; i.e., reliable. Adding the dimension of xe "Reliability"reliability to the quality equation (especially for weapon system software) translates into a design requirement for xe "Fault:Tolerance"fault-tolerance. Software designed to be fault-tolerant possesses the following characteristics:
•
xe "Defect:Confinement"Defect confinement. Software must be designed so that when a defect occurs, it cannot contaminate other parts of the application beyond the module where it occurred.
•
xe "Error"Error detection. Software must be designed so that it tests itself for, and reacts to, errors when they occur.

•
xe "Error:Recovery"Error recovery. Software must be designed so that after a defect is detected, sufficient internal corrective actions are taken to allow successful execution to continue.

•
xe "Design:Diversity"Design diversity. Software and its data must be designed so fallback versions are accessible following defect detection and recovery. [GLASS92]

xe "Design:Simplicity"Design Simplicity

When your developer decomposes the solution from the high-level design to lower-levels of detail, it must be kept simple. Whatever design methods employed, the underlying issue is to keep it within human limitations for managing complexity. Since automatic software design has still to evolve as a practical reality, you must apply sound engineering discipline to support your quality design goals. Thus, the design solution must be broken down into intellectually manageable pieces (modules). Ideally, modules should contain no more than 100-200 lines-of-code. Remember,

Deal with the difficult,

While it is still easy.

Solve large problems

When they are still small.

Preventing large problems

By taking small steps

Is easier than solving them.

By small actions

Great things are accomplished. —Lao Tzu
Throughout the design process, the quality of your developer’s evolving design should be assessed though a series of informal in-house walkthroughs, formal technical reviews, and peer inspections [discussed in Chapter 15, Managing Process Improvement]. To evaluate design quality, the criteria for a good design must be established in the xe "Software Requirements Specification (SRS)"Software Requirements Specification (SRS). Applying software engineering to the design process encourages the use of fundamental quality design principles, a systematic methodology, and thorough review of the connections between modules and with the external environment.
During design, the xe "People:Skills/talent"skills of your software developer are put to the acid test. Quality software must achieve the goals of software engineering by fulfilling the quantifiable principles of well-engineered software [discussed in Chapter 4, Engineering Software-Intensive Systems]. To refresh your memory, these include:


Abstraction and information hiding,

Modularity and localization, and


Uniformity, completeness, and confirmability.

Be aware, skilled Ada designers require up to 50% more time during design than software designers using other languages (which will be recouped during the integration and testing phase). Experienced Ada engineers take the extra upfront time to build the quality you want into the product where it belongs, in the design. Ultimately, the test of whether the software you build is a quality product is xe "User:Satisfaction"user satisfaction. But from a software engineering perspective, quality software must possess the measurable quality attributes assigned during requirements analysis that characterize the desired system. [See Chapter 8, Measurement and Metrics, Table 8-4 for a list of quality attributes.]

xe "Design:Architecture"Architectural Design

A good software architecture should reflect technical certainties and be independent of variants, such as performance, cost, and the specific hardware selection. It must also address higher-level concepts and xe "Abstraction"abstractions. Lower-level details are dealt with during the detailed design phase which defines the particular modules built under the architecture at the software engineering level. By defining only essentials (or certainties), rather than incidentals (or variants), a good architecture provides for the evolution of the system and for the incremental or evolutionary upgrading of components. A sound approach for the software architect is to address (and to commit to) certain essentials and to be independent of variable incidentals. The hallmark of a good architecture is the extent to which it allows freedom and flexibility for its implementors.
Architectures must address the relationships among system components (i.e., the xe "Interface"interfaces between them). xe "Language, programming:Standardization"Standardization of data interfaces, their implementation, access, and communication improves the quality and consistency of data and the overall effectiveness of the system. Data and system interfaces for MIS and C3 systems should be compliant with DISA’s xe "Architecture:Technical Architecture for Information Management"

xe "Architecture:Technical Architecture Framework"Technical Architecture Framework for Information Management (TAFIM). A xe "Architecture:Standards-based"standards-based architecture reflects a managed environment (based on defined standard interfaces) that describes the characteristics of each architectural component. It is depicted through classes of architectural platforms that are, by definition, modular, highly reusable, and inherently flexible. It provides a high degree of xe "Interoperability"

xe "Open systems:Interoperability"interoperability in that the architecture is owned by the user — not the vendor. [DMR91]
In building a standards-based architecture you should also make sure your software architecture is built using lateral vision (i.e., from an agency, command, and user perspective). Once standards-based architectures are built, they must then be integrated into reuse repositories [discussed in Chapter 9, Reuse]. A rule of thumb is to use the standards that are out there; e.g., xe "Standards:Government Open Systems Interconnection Profile (G"GOSIP, xe "Standards:Portable Operating System Interface for UNIX (POSI"POSIX, xe "Standards:Structured Query Language (SQL™)"SQL, etc.. You should also ensure that your developer makes sound decisions about user interface standards. For MISs, a framework should be picked from the TAFIM. The “Command Center Store” of Electronic Systems Command provides a generic architecture and reusable components common to many C2 systems.

A user interface, such as xe "Standards:OSF/Motif"OSF/Motif for xe "Standards:Interface:XWindows"XWindows, should also be considered. Client/server roles, a migration strategy application (or model layer), and binary application portability with purchased software are also important factors. xe "National Institute of Standards (NIST)"NIST, xe "Federal Information Processing Standards (FIPS)"FIPS, and commercial standards should be used, when appropriate. Figure 14-4 illustrates the standards-based architecture planning process. [DMR91]
[image: image3.wmf]I

m

p

l

e

m

e

n

t

a

t

i

o

n

O

p

p

o

r

t

u

n

i

t

y

I

d

e

n

t

i

f

i

c

a

t

i

o

n

4

R

e

a

l

i

t

y

T

e

s

t

i

n

g

o

f

A

r

c

h

i

t

e

c

t

u

r

e

7

H

a

r

v

e

s

t

i

n

g

B

e

n

e

f

i

t

s

6

M

i

r

g

r

a

t

i

o

n

O

p

t

i

o

n

s

5

A

r

c

h

i

t

e

c

t

u

r

a

l

F

r

a

m

e

w

o

r

k

1

T

a

r

g

e

t

A

r

c

h

i

t

e

c

t

u

r

e

D

e

f

i

n

i

t

i

o

n

3

B

a

s

e

l

i

n

e

D

e

f

i

n

i

t

i

o

n

2

(

A

r

c

h

i

t

e

c

t

u

r

a

l

F

r

a

m

e

w

o

r

k

V

i

s

i

o

n

a

n

d

I

s

s

u

e

s

D

o

c

u

m

e

n

t

)

(

A

r

c

h

i

t

e

c

t

u

r

a

l

A

s

s

e

s

s

m

e

n

t

D

o

c

u

m

e

n

t

)

(

I

m

p

l

e

m

e

n

t

a

t

i

o

n

P

r

o

j

e

c

t

P

l

a

n

s

)

(

A

r

c

h

i

t

e

c

t

u

r

a

l

C

o

n

s

t

r

u

c

t

i

o

n

P

l

a

n

)

(

O

p

p

o

r

t

u

n

i

t

y

I

d

e

n

t

i

f

i

c

a

t

i

o

n

D

o

c

u

m

e

n

t

)

(

T

a

r

g

e

t

A

r

c

h

i

t

e

c

t

u

r

e

B

l

u

e

p

r

i

n

t

D

o

c

u

m

e

n

t

)

(

A

r

c

h

i

t

e

c

t

u

r

a

l

B

a

s

e

l

i

n

e

S

t

u

d

y

D

o

c

u

m

e

n

t

)

Figure 14-4 Standards-Based Architecture Planning Process [DMR91]tc "Figure 14-4
Standards-Based Architecture Planning Process [DMR91]"
The baselined architecture and plans for the system’s evolution impact your developing application in significant and important ways. Thus, you must pay close attention to the architectural design process as it is critical to the success of your program. Management considerations include:
•
A clear vision of requirements and functionality must be created early,

•
Unnecessary complexity must be relentlessly eliminated from systems and software, and

•
Careful control of requirements is vital.

During architectural design, requirements are allocated to a number of components, such as objects or functional requirements. xe "Requirements, software:Implicit"Derived requirements are also defined and allocated. Derived requirements may reflect the need to reuse existing components, to design components for reuse, to take advantage of available COTS software, or other factors such as security and safety design constraints. While not originally stated in the requirements specification, derived requirements impact on quality and performance and must be reflected as functions (or objects), mapped from the xe "Software Requirements Specification (SRS)"SRS to the architecture.
The product of the architectural design phase is the software xe "Architecture"architecture. The architecture reflects two characteristics of the software solution: (1) the hierarchical structure of procedural components and objects (modules), and (2) the structure of data. It evolves from xe "Partitioning"partitioning related elements of the software solution. To achieve openness to xe "Commercial-off-the-shelf (COTS) software"COTS, xe "Government-off-the-shelf GOTS)"GOTS, and xe "Non-developmental item NDI)"NDI solutions, two forms of system partitioning should be achieved. First, systems interfaces, functionality, and data schema must be partitioned within the software architecture such that there are no barriers to the inclusion of the best available technology which requires an awareness of available technology and probable technological progress. Second, the architecture must be partitioned such that those modules that will not change are divorced from the path of those modules slated for evolutionary improvements. In addition, the requirement for an xe "Open systems:Architecture"open systems architecture [discussed in Chapter 2, DoD Software Acquisition Environment] requires that designers possess an early and knowledgeable awareness of market evolution (and indeed revolution) in the burgeoning software technology arena. [FAA94] The architecture should reflect a tradeoff between needs and currently available technology, whereas interfaces must be designed such that a change within one element of the architecture has minimal impact on other elements.

These related software elements were derived from related elements of the real-world problem domain [discussed in Chapter 4, Engineering Software-Intensive Systems], implicitly defined during requirements analysis. The architecture also defines the underlying software structure. It gives a representation of how the software is partitioned (not allocated) into components and their interconnection. It provides a picture of the flow of data (including database schema, message definitions, input and output parameters, etc.) and the flow of control (including execution sequencing, synchronization relationships, critical timing constraints or events, and error handling). It outlines the xe "Integration:Rules for"rules for integration of system components which involves timing and throughput performance attributes and interconnection layers, standards, and protocols. The architecture also distinguishes between hardware structure and software structure, and provides for the future allocation of software components to hardware components. [PAYTON92]
NOTE:
See Volume 2, Appendix G, Tab 1, “The Importance of Architecture in DoD Software,” and Tab 2, “A New Process for Acquiring Software Architecture.”
In unprecedented, major software-intensive systems, certain software components often must be custom designed to meet specialized requirements. xe "Tools:Computer-aided software engineering (CASE)"CASE tools should be used to partition and layer the architecture to isolate those functions which are necessarily unique. One of the biggest issues in integrating uniquely developed software with multiple xe "Commercial-off-the-shelf (COTS) software"COTS software packages is xe "Open systems:Interoperability"

xe "Interoperability"interoperability [COTS is discussed in Chapter 13, Contracting for Success]. A solution to this problem is the introduction of a “middle layer” of software that isolates the interface between the unique infrastructure and the COTS. The advantage to using such a middle layer is that it xe "Encapsulation"encapsulates unique protocols so new COTS products can be plugged-in as they become available. Mission-unique software must be designed such that the components of the software infrastructure are transparent to the application code. An analogy to the software middle layer can be made to adapting an electrical appliance to a wall plug. If your radio has a 3-prong plug but your wall circuit only accepts a 2-prong, you can place a 3-prong/2-prong adapter between the two without having to modify either the wall circuit or the radio. [Refer to Chapter 10, Software Tools, for a description of xe "Tools:Design tools:Universal Network Architecture Services (UNAS)"UNAS, a tool to assist software architects with a library of pre-existent architectural parts. UNAS also provides the ability to quickly model different architectural solutions in executable Ada code, thus allowing for tradeoffs and demonstrations of alternative approaches.]

NOTE:
See Chapter 2, DoD Software Acquisition Environment, for a discussion on open systems architecture requirements.
Addressing Architecture in the RFP

As part of the xe "Request for Proposal (RFP)"RFP, you should require early delivery and qualification of the software architecture as part of the basic contract. This delivery should be prior to xe "Critical Design Review (CDR)"CDR of the application software. It is also prudent to require delivery of the proposed architecture in executable Ada code as part of the contractor’s proposal for consideration during source selection. UNAS, and equivalent middleware, provide the capability for offerors to make such submissions. MITRE suggests that qualification standards for contractor-delivered software include, as a minimum:
•
Demonstrated conformance of interfaces to a layered standard [in addition to the overview layer standard],
•
Demonstrated and validated architectural features,

•
Software maintainability,

•
Physical reconfigurability,

•
Interconnect extensibility,

•
Usable performance margin, and

•
Software portability. [HOROWITZ91]

MITRE also suggests you require that offerors describe their control process for enforcing open systems architectural standards. Items to look for in offerors’ responses include:

•
Architecture elements that cannot be changed except by the software architects;

•
A standardized method used for communication between applications; and

•
Standard tools used to facilitate the integration of application software with the architecture.

 [HOROWITZ91]

You should further require that the architecture be xe "Configuration management (CM)"configuration managed and that a prototype model of each architecture be developed. The development (and/or acquisition) of an array of support tools to enhance the integration of applications within the architecture should also be encouraged. [HOROWITZ91] Especially with weapons systems, not all software functions will be solvable with commercially available products. The architecture must, therefore, ensure that unique mission-specific software will interface with commercially available products. The use of isolation layers and automated products for encapsulation are essential. Use of an integrated tool environment, such as the xe "Rational"Rational Environment,™ [discussed in Chapter 10, Software Tools] should be encouraged as it provides the capability for automating the partitioning process, architecture synthesizing, coding of low-level design attributes, and compliance with standards. [A sample RFP paragraph is found in Volume 2, Appendix M describing the requirement for software development technology scalability (also discussed in Chapter 10, Software Tools).]

xe "Preliminary Design Review (PDR)"Preliminary Design Review (PDR)

The PDR is a formal government/contractor review conducted for each CSCI to verify the top-level software architecture design is consistent with defined software requirements and suitable for the detailed design. The following topics are covered during the PDR:


The over software structure to the computer software component (CSC) but not in all cases to the lowest unit level in the software hierarchy [structure charts are one method for depicting the software architecture];


Functional flow showing how SRS allocated requirements are accomplished.


Control function descriptions explaining how the executive control of CSCs will be accomplished. Start, recovery, and shutdown features are described for each major function or operating mode.


Storage allocation, timing, and resource utilization information describing how the loading, response, and scheduling requirements will be met by the selected digital hardware and the software design.


Software development facilities and tools that will be used for the detailed design, coding, and testing of the software. These facilities and tools include compilers, simulators, data reduction software, diagnostic software, a host computer, and test benches.


Plans for software testing, with emphasis on integrating CSCs in a phased manner. In particular, top-down, bottom-up, or combination strategies are considered, and an effective strategy for the hierarchical software design selected.


Human engineering of software-controlled control and display functions. Preliminary versions of user’s manuals are reviewed to verify that human factor and training considerations are correctly addressed.

The contractor should answer following questions at the PDR:


What is the software design structure, the resulting major input/ output flows, and the relationships between CSCs?


Is the overall software structure consistent with a structured, top-down, object or other design and implementation concept?


Are all common functions identified and units or subroutines designed to implement these functions?


Is the interface between CSCs and the operating system or executive clearly defined? Are the methods for invoking each CSC’s execution described?


Has a CSC been designed to satisfy every system requirement?


Is the traceability relating each CSC to specific software requirements documented?


Is software being designed in a manner that provides for ease of modification as planned for in the SDP?


How will the software be integrated with the hardware during full-scale engineering development?


When will the system and software designs be baselined?


Are sufficient memory and timing growth capacity being incorporated in the system and software design?


How will software testing be performed? What levels of testing will be employed? Will an independent analysis and evaluation be accomplished?


How will testing be used to clearly identify deficiencies as either software or hardware related? How will it be determined if errors/defects [defined in Chapter 15, Managing Process Improvement] are caused by either the hardware or software? How will regression testing be performed?


How will the software be supported in the field? What hardware and software will be needed for the support base? How will it be procured?
Detailed xe "Design:Detailed"Design

The detailed design is a description of how to logically fulfill allocated requirements. The level of detail in the design must be such that software coding can be accomplished by someone other than the designer. The design of each functional unit (module) is performed based on the software requirements specification and the software test plan. The unit’s function, its inputs and outputs, plus any constraints (such as memory size or response time) are defined. The detailed design specifies the logical, static, and dynamic relationships among units. It also describes module and system integration test specifications and procedures.
The software design may be created using xe "Ada:Language features:specification"Ada unit specifications to formally define the interfaces among objects in the solution domain. The advantage of this approach (even at this early stage) is that the system can be initially compiled, with Ada used as a checking mechanism for logical inconsistencies. By using a proper set of SEE design tools, completed unit designs are under configuration management control. In addition, requirements can be tracked and the SEE used to develop external documentation.

As stated above, when designing Ada software and using Ada as the xe "Language, programming:Program design language (PDL)"program design language (PDL), more resources are needed during the design phase. Experience shows that experienced Ada designers can improve the quality of the design by highlighting interfaces and by capturing many important design decisions. If xe "Design:With Ada"Ada is used as the PDL, some compilation can begin during design and Ada can be used to detect and correct interface problems early in the life cycle. Also, an Ada SEE usually has documentation tools that can traverse a collection of program units and extract important design components, including commented annotations. Therefore, with Ada it is possible to semi-automatically produce design documentation, easing the designer’s job. [xe "Booch, Grady"BOOCH94] A tool (such as xe "Tools:Design tools:Universal Network Architecture Services (UNAS)"UNAS or equivalent) should be used that can quickly model alternative design architectures in executable Ada code. Software engineering techniques can then be used to evaluate and make tradeoffs among the different approaches which are finally narrowed down to an optimum solution. As the exploratory process proceeds, the design process becomes more formal. From a quality perspective, the design approach used by your developer must be determined by the nature of the application problem. Your design architecture might be based on either functions, data, objects, or a combination thereof.
xe "Design:Functional"Functional Design

For heavily logic-oriented applications (such as real-time systems) where the problem involves algorithms and logic, a xe "Development:Strategies:function-oriented"function-oriented approach is often used. Function-oriented design depicts information (data and control) flow and content, and xe "Partitioning"partitions the system into functions and behaviors. From the single highest-level system description, the system is partitioned into functions and subfunctions with ever increasing levels of detail. The value of a function-oriented design is that it provides manageable levels of complexity at each phase of the design process. It also identifies and separates the functions performed at each phase of application execution. This xe "Decomposition:Functional:heirarchical"hierarchical decomposition by function leaves, however, the question as to what is the most abstract description of the system.
The design focuses on those requirements most likely to change (i.e., around functionality). But, if the specification is poorly written, designers are faced with the problem of having to deal with a top-down design for which they are unable to locate the top. Another problem with hierarchical methods is, as decomposition occurs by defining one level at a time, it can delay the discovery of feasibility problems lurking at lower levels. This can be dealt with by using an iterative process in which low-level problems are addressed with a redesign starting from the top-down. [GLASS92] Another drawback with functional design methods is they have limited software reuse benefits. They can lead to the redundant development of numerous partial versions of the same modules — decreasing productivity and creating configuration management overloads. [AGRESTI86]
Data-Oriented Design

For heavily data-oriented applications (such as MISs) where the problem involves a database or collection of files, a xe "Design:Data"

xe "Development:Strategies:data-oriented"data-oriented design approach is often used. This approach focuses on the structure and flow of information, rather than the functions it performs. A data-oriented design is a clear cut framework: data structure is defined, data flow is identified, and the operations that enable the flow of data are defined. A problem often encountered with a data-oriented approach is a “xe "Structure-clash"structure-clash,” where the data structures to be processed are not synchronized (e.g., input file is sorted on rank, whereas output file is sorted on time-in-grade). Solutions to the clash problem can be the creation of an intermediate file or the conversion of one structure processor into a subroutine for the other. [GLASS92]
Object-Oriented Design

A variety of object-oriented (OO) methodologies and tools are available for software development. Each approach emphasizes different phases and activities of the software life cycle using various terminologies, products, processes, and implementation techniques. The impact of a methodology on the conduct and management of a software development effort can be extensive. Therefore, if you decide to employ an OO approach, you should encourage your developer to investigate and select the OO approach that best fits your specific program needs. [JURIK92] An xe "Object-oriented:Design (OOD)"object-oriented design (OOD) method focuses on interconnecting data objects (data items) and on processing operations in a way that modularizes information and processing rather than processing alone. The software design becomes decoupled from the details of the data objects used in the system. These details may be changed many times without any effect on the overall software structure. Instead of being based on functional decomposition or data structure or flow, the system is designed in terms of its component objects, classes of objects, subassemblies, and frameworks of related objects and classes. xe "Strassmann, Paul A"Strassmann explains that component-level software objects can be quickly combined to build new applications. These objects are then candidates for reuse on multiple applications — lowering development costs, shortening the development process, and improving testing. Because objects are responsible for a specific function, they can be individually upgraded, augmented, or replaced — leaving the rest of the system unchanged.

[STRASSMANN93]
xe "Object-oriented"Object-oriented technology lets software engineers take a kind of velcro (or rip-and-stick) approach to software development. The idea is to encase software code into xe "Object"objects that reflect real-world entities, such as airplanes, crew chiefs, or engineering change orders. The internal composition of objects is hidden from everyone but the programmer of the object. Once molded into objects, the encapsulated code can be stored in repositories that are network-assessable by other designers. As needed, component-level objects can be quickly grafted with other objects to create new applications. [JENKS93]

Using a familiar graphical user interface, such as windows and icons, the object-oriented approach lets developers visualize and design applications by pointing-and-clicking on the objects they wish to use. This approach cultivates xe "Object-oriented:Reuse"

xe "Reuse:And object-oriented development"reuse because objects can be used in multiple applications, lowering development costs, speeding up the development process, and improving testing. Because objects are responsible for a specific function, they can be individually upgraded, augmented, or replaced, leaving the rest of the application unaffected. [STRASSMANN93] OOD has the added benefit of allowing xe "User:Involvement"users to participate more closely in the development process. It is very difficult to describe in writing what a software application is supposed to do, whereas a graphical representation is easy to visualize and manipulate. Objects help all involved in the development process (the systems/software engineers, programmers, and users) to understand what the application should do. [JENKS93]

Object-Oriented Baseball

Object-oriented development differs from traditional functional decomposition methods in that it addresses the identification and definition of objects. Firesmith uses the OO simulation of a baseball game to explain the concepts of OOD, as illustrated in Figure 14-5. xe "Encapsulation"Encapsulation joins methods (procedures) and variables (data) to create objects [e.g., models of individual players, coaches, managers, umpires, balls, bats, bases, stadiums, and rules]. Not all objects have the same properties. Some of the objects are xe "Concurrency"concurrent with their own thread of control [players, coaches, managers, umpires], whereas other objects are sequential [bats, balls]. Some objects are tangible [players, balls], whereas other objects are intangible [rules, statistics]. Objects [players] also have xe "Attribute"attributes [batting averages, salaries], operations [run bases, pitch, catch, chew tobacco], and xe "Exception"exceptions [pulled hamstrings].

[image: image4.wmf]U

M

P

I

R

E

S

R

U

L

E

S

e

n

f

o

r

c

e

p

l

a

y

b

y

P

L

A

Y

E

R

S

C

O

A

C

H

E

S

M

A

N

A

G

E

R

S

T

E

A

M

S

c

o

n

s

i

s

t

o

f

c

o

n

s

i

s

t

o

f

c

o

n

s

i

s

t

o

f

S

T

A

D

I

U

M

S

B

A

L

L

S

B

A

T

S

B

A

S

E

S

p

l

a

y

i

n

c

a

t

c

h

a

n

d

t

h

r

o

w

s

w

i

n

g

r

u

n

Figure 14-5 Object-Oriented Baseball [FIRESMITH93]tc "Figure 14-5 Object-Oriented Baseball [FIRESMITH93]"
Data and functionality are xe "Localization"localized within the objects rather than being scattered as in functional decomposition methods. This creates a stronger, more powerful form of xe "Modularity"modularity. Objects [players] are black boxes with a visible specification that explains both the object’s responsibilities [strike ‘em out, hit home runs] and a hidden body [nerves, muscles, bones]. The attributes and operations are encapsulated together within the object. How the attributes and operations interact and are implemented is irrelevant (i.e., xe "Information hiding"information hiding) to the outside observer [fans are not concerned with a player’s anatomy, as long as he plays well]. One of the main goals of OOD is to produce objects with well-defined xe "Interface"interfaces. By implementing the software engineering principle of information hiding, program intervals can be hidden within the software leaving the interfaces between modules independent and robust. [Every time Mussina pitches, the ball always goes over home plate at the same speed, at the same place, and with the same force.]
Some objects are composed of xe "Aggregate"aggregates of other objects [each team consists of a specific manager and a specific set of players, coaches, and trainers], as illustrated in Figure 14-6. In addition, objects usually always fall into xe "Class"classes of related objects. When describing an object in general terms, it is typically referred to in terms of classes-of-objects [coaches, players], rather than an individual instance of the class [Sparky Anderson, Cal Ripken]. Understandably, an infinite number of objects can be created from a standard class. Classes usually exist in xe "Hierarchy"hierarchies of superclasses (superior objects) and subclasses (dependent objects) [pitchers and catchers are subclasses of the superclass baseball players]. Subclasses inherit the properties of their superclasses. That is, through xe "Inheritance"inheritance methods are passed on to subclasses (called descendants) or methods are received from superclasses (called ancestors). [STRASSMANN93] Subclasses inherit the attributes, operations, and exceptions of superclasses [pitchers and catchers inherit the salary ranges (attributes), the required training (operations), and world records (exceptions) of the superclass baseball players]. Figure 14-7 illustrates an example of a classification hierarchy of concurrent classes.

[image: image5.wmf]L

e

f

t

F

i

e

l

d

C

e

n

t

e

r

F

i

e

l

d

R

i

g

h

t

F

i

e

l

d

A

n

n

o

u

n

c

e

r

'

s

B

o

x

P

i

t

c

h

e

r

'

s

M

o

u

n

d

T

h

i

r

d

B

a

s

e

S

e

c

o

n

d

B

a

s

e

F

i

r

s

t

B

a

s

e

B

a

t

t

e

r

'

s

C

a

g

e

V

i

s

i

t

o

r

'

s

D

u

g

o

u

t

I

n

f

i

e

l

d

h

a

s

c

o

m

p

o

n

e

n

t

s

O

r

i

o

l

e

s

D

u

g

o

u

t

O

r

i

o

l

e

s

L

o

c

k

e

r

R

o

o

m

H

o

m

e

P

l

a

t

e

h

a

s

c

o

m

p

o

n

e

n

t

s

O

u

t

f

i

e

l

d

h

a

s

c

o

m

p

o

n

e

n

t

s

B

l

e

a

c

h

e

r

s

h

a

s

c

o

m

p

o

n

e

n

t

s

O

r

i

o

l

e

P

a

r

k

a

t

C

a

m

d

e

n

Y

a

r

d

s

h

a

s

c

o

m

p

o

n

e

n

t

s

Figure 14-6 Aggregation Hierarchy Exampletc "Figure 14-6 Aggregation Hierarchy Example"
[image: image6.wmf]O

U

T

-

F

I

E

L

D

E

R

S

P

I

T

C

H

E

R

S

C

A

T

C

H

E

R

S

I

N

F

I

E

L

D

E

R

S

M

A

N

A

G

E

R

S

B

A

S

E

B

A

L

L

P

L

A

Y

E

R

S

C

O

A

C

H

E

S

F

A

N

S

T

E

A

M

M

E

M

B

E

R

S

U

M

P

I

R

E

S

P

E

O

P

L

E

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

h

a

s

s

u

p

e

r

c

l

a

s

s

Figure 14-7 Classification Hierarchy Example [FIRESMITH93]tc "Figure 14-7 Classification Hierarchy Example [FIRESMITH93]"
Classification is often difficult because there are different ways to classify the same objects [baseball players can also be classified as rookies or veterans]. Subclasses have single inheritance when they only inherit from a single superclass, whereas they have multiple inheritance when they inherit from more than one superclass [Fernando Valenzuela is a member of the class “pitchers” and a member of the class “athletes,” which also includes race horses]. Dynamic inheritance occurs when the class an object belongs to changes over time [as an infant, Reggie Jackson was not a member of the baseball players class].

Just as umpires can send pitchers, outfielders, catchers, and basemen to the bench with the same message [“Strike three, you’re out!”], xe "Requirements, software:Overloading"overloading occurs when the same name is given to different objects, attributes, messages, operations, or exceptions in different scopes. Just as pitchers and batters respond differently when they hear the same phrase, “Play ball!” xe "Polymorphism"polymorphism occurs when different objects respond differently to the same message. [Ada’s strong typing feature helps prevent overloading and enforces polymorphism.]
Objects and classes are associated with each other in various ways. They xe "Collaboration"collaborate with one another, often as equal partners, to accomplish their mission [win the pennant]. Thus, object-oriented software has fewer strict control hierarchies than functionally designed software. For example, the pitcher [Mike Mussina] throws the ball to the catcher [Chris Hoiles] and Hoiles throws it back to Mussina without each toss having to be directed by the coach [Johnny Oates]. A xe "Message"message is a request by one object to another object to carry out one of its methods. Thus, objects interact by sending messages [signals] to each other [Hoiles signals Mussina to throw a fast ball by rubbing his nose; the umpire yells, “You’re out!” to Cecil Fielder, the opposing batter]. Figure 14-8 shows messages sent from two concurrent objects (circles) to two sequential objects (boxes).

[image: image7.wmf]h

i

t

,

m

i

s

s

p

i

t

c

h

,

c

a

t

c

h

B

A

T

p

i

c

k

u

p

,

s

w

i

n

g

,

d

r

o

p

F

I

E

L

D

E

R

M

U

S

S

I

N

A

B

A

L

L

Figure 14-8 Message Passing Exampletc "Figure 14-8 Message Passing Example"
Because a great number of objects and classes exist in any complex application, software developers must be able to organize them into manageable collections. Objects and classes can be grouped into subassemblies which in turn can be grouped into xe "Language, programming:Assembly"assemblies [players can be organized into teams and teams organized into leagues]. Application frameworks are reusable designs that occur over and over again in the same solution domain, just as the basic structure of baseball teams is repeated over again in the various leagues around the world.

[FIRESMITH93]

Problem Domains and Solution Domains

Object-oriented development pioneer, Grady xe "Booch, Grady"Booch, explains how OOD methodology facilitates developers in solving real-world problems through the creation of complex software solutions. The concept of problem domains and solution domains is illustrated in Figure 14-9. The xe "Domain:Problem"problem domain has a set of real-world objects, each with its own set of appropriate operations. These objects can be as simple as a baseball bat or as complicated as the xe "Space Shuttle"Space Shuttle. Also in the problem domain are real-world algorithms that operate on the objects, resulting in transformed objects. For example, a real-world result may be a course change for the Space Shuttle. When developing software, either the real-world problem is modeled entirely in software, or for example in embedded software, real-world objects are transformed into software and hardware to produce real-world results. No matter how the solution is implemented, it must parallel the problem domain. Programming languages provide the means for abstracting objects in the problem domain by implementing them into software. Algorithms, which physically map some real-world action (such as the movement of a control surface), are then applied to the software object to transform it. The closer the xe "Domain:Solution"solution domain maps your understanding of the problem domain, the closer you get to achieving the goals of modifiability, reliability, efficiency, and understandability.

[image: image8.png]PROBLEM DOMAIN

LR 2 CRUERTS

Programmer’s
ion

SOLUTION DOMAIN fuman

interpreation
ofresuatss

PROSRANYING LANSUAGS
OBILOTE AND DPLRATIONS

o1 FIT AR

Figure 14-9 Problem Domain/Solution Domain Analytical Processtc "Figure 14-9
Problem Domain/Solution Domain Analytical Process"
OOD differs fundamentally from traditional development, where the primary criterion for decomposition is that each software module represents a major step in the overall process. With OOD, each system module stands for an object or class of objects in the problem domain. [BOOCH94] Of course, you will not always have perfect knowledge of the problem domain; instead, it may be an iterative discovery process. As the design of the solution progresses into greater states of decomposition, it is likely new aspects of the problem will be uncovered that were not initially recognized. However, if the solution maps directly to the problem, any new understanding of the problem domain will not radically affect the architecture of the solution. With an object-oriented approach, developers are able to limit the scope of change to only those modules in the solution domain that represent changing objects in the problem domain. [The Space Shuttle mission will always be fulfilled by a space vehicle (constant); how that vehicle is propelled (variable) may change as technology advances.]

[image: image9.png]

Figure 14-10 Space Shuttle Defect Detection/Removal/Prevention Is Criticaltc "Figure 14-10 Space Shuttle Defect Detection/Removal/Prevention Is Critical"
The OOD method supports the software engineering principles of abstraction and information hiding, since the basis of this approach is the mapping of a direct model of reality into the solution domain. This strategy also provides a method for decomposing a software system into modules where design decisions can be localized to match our view of the real world. It provides a uniform means of notation for selecting those objects and operations that are part of the design. With Ada as the design language, the details of operations can be physically hidden, as well as, the representation of objects. Figure 14-11 [not available in this format] summarizes how the OOD approach reduces risks and lowers costs. [SA92]

xe "Critical Design Review (CDR)"Critical Design Review (CDR)

The purpose of CDR is to verify that the detailed software design is complete, correct, internally consistent, satisfies all requirements, and is a suitable basis for coding. The CDR follows the Detailed Design phase, and the successful completion of CDR marks the completion of the Detailed Design phase. The CDR is performed to establish the integrity of a computer program design before coding and testing begins. When a given software system is so complex that a large number of software modules will be produced, the CDR may be accomplished in increments during the development process corresponding to periods during which different software units reach their maturity. For less complex products, the entire review may be accomplished at a single meeting. The primary product of CDR is the formal review of specific software documentation, which will be approved and released for use in coding and testing. CDR covers the following topics:


Description of how the top-level design, presented at the PDR, has been refined and elaborated upon to include the software architecture down to the lowest-level units.


The assignment of CSCI requirements to specific lower-level CSCs and units.


The detailed design characteristics of the CSCs. These detailed descriptions shall include data definitions, control flow, timing, sizing, and storage allocation. Where the number of units is large and the time for the CDR limited, the description concentrates on those units performing the most critical functions.


Detailed characteristics of all interfaces, including those between CSUs, CSCs, and CSCIs.


Detailed characteristics of all databases, including file and record format and content, access methods, loading and recovery procedures, and timing and sizing.


Human engineering considerations.


Life cycle support considerations that include a description of the software tools and facilities used during development that will be required for software maintenance.

The contractor should answer the following questions at CDR:


Are each unit’s inputs/outputs clearly defined? Are the units, size, frequency, and type of each input/output parameter stated?


Is the processing for each unit defined in sufficient detail, via flow charts, programming design language (PDL), structured flow charts, or other design language so that the unit can be coded by someone other than the original designer of the unit?


What simulations, models, or analyses have been performed to verify that the design presented satisfies system and software requirements?


Has machine dependency been minimized (e.g., not overly dependent on word size, peripherals, or storage characteristics)? Have machine dependent items been segregated into independent units?


Has the database been designed and documented? Has it been symbolically defined and referenced (e.g., was a central data definition used)?


Have the software overall timing and sizing constraints been subdivided into timing and sizing constraints for individual units? Are the required timing and sizing constraints still met?


Have all support tools specified for coding and debugging (i.e., pre- and post-​processor) been produced? If not, are they scheduled early enough to meet the needs of the development schedule?


Are the software test procedures sufficiently complete and specific so that the test can be conducted by someone else?


Do the test procedures include input data at the limits of required program capability? Do test procedures contain input that will cause the maximum permitted values and quantities of output?


Do test procedures exercise representative examples of all possible combinations of both legal and illegal input conditions?


Are there any potential software errors that cannot be detected by the test runs in accordance with the test procedures? If so, why? What will be done to make certain the software does not have those errors?


How will detected errors be documented? How will corrective actions be recorded and verified?


What progress has been made in developing or acquiring the simulations and test data needed for testing? Will they be available to support these testing efforts? How will they be controlled during the test effort?

xe "Testing"Testing

Testing has been the most labor-intensive activity performed during software development. As illustrated on Table 14-1, testing often requires more effort than the combined total for requirements analysis and design by as much as 15%. It has also been a significant source of risk, often not recognized until too late into cost and schedule overruns. There are two basic reasons why testing is risky. First, testing traditionally occurs so late in software development that defects are costly and time consuming to locate and correct. Second, test procedures are ad hoc, not defined and documented, and thus, not repeatable with any consistency across development programs. We enter testing without a clear idea of what and how it is to be accomplished. Testing can be a major source of wheel spinning which can lead from one blind alley to another.

[image: image10.wmf]LIFETIME COST (%)

DEVELOPMENT (%)

Development

20%

Analysis and design

35%

Coding

15%

Testing

50%

Operations

Insignificant

Maintenance

80%

NOTE

: Development productivity is 10-15 lines-of-code per person-day.

Maintenance estimates vary from 40% to 80%.

Table 14-1 Software Development Life Cycle Cost [BOEHM76] [BROOKS75]tc "Table 14-1
Software Development Life Cycle Cost [BOEHM76] [BROOKS75]"
Historically, software testing has been a process that checks software execution against requirements agreed upon in the SRS. The goal of software testing was to demonstrate correctness and quality. Today, we know this definition of testing is imprecise. Testing cannot produce quality software — nor can it verify correctness. Testing can only confirm the presence (as opposed to the absence) of software xe "Defect"defects. The testing of source code alone cannot ensure quality software, because testing only finds faults. It cannot demonstrate that faults do not exist. Therefore, correcting software defects is a fix, not a solution. Software defects are usually symptoms of more fundamental problems in the development process. Development process problems might be the failure to follow standard procedures, the misunderstanding of a critical process step, or a lack of adequate training.

Thus, the role of software testing has evolved into an integrated set of xe "Quality:Software quality assurance (SQA)"software quality activities covering the entire life cycle. Software tests apply to all software artifacts. To engineer quality into software, you must inspect, test, and remove errors and defects from requirements, design, documentation, code, test plans, and tests. You must institute an effective defect xe "Error:Prevention"prevention program that engages in accurate defect detection and analysis to determine how and why they are inserted. [KINDL92] Remember, “Error is discipline through which we advance.” [CHANNING92] Although testing cannot prevent defects, it is the most important activity for generating the defect data necessary for process improvement.
Developmental testing must not interfere with, nor stand apart from, daily development activities; it must be embedded within your development process. Furthermore, given the uniqueness of each DoD software development program, the embedded testing methodologies you apply must be customized to your environment. If testing standards are instituted and the testing process is properly planned, the time and effort required for testing can be significantly reduced.

[MOSLEY93]

Testing xe "Testing:Objectives"Objectives

Because testing is not limited to the testing phase, but spans the entire software development, your developer’s Test Plan must state general objectives for the overall testing process and specific objectives for each development phase. The primary objective should be to assess whether the system meets user needs. Other objectives depend on the software domain and the environment in which the system will operate. Testing objectives also focus on verifying the accomplishment of quality attributes, as discussed in Chapter 8, Measurement and Metrics. The bottom line with testing is test early, test often, and use a combination of testing strategies and techniques. Also, automate every testing activity economically and technically feasible.

NOTE:
See Chapter 10, Software Tools, for a discussion on automating the testing process.
xe "Defect:Detection"Defect Detection and xe "Defect:Removal"Removal

Defect detection and removal is the most basic testing objective and the one aspect of quality that can be measured in a tangible and convincing way. Defects (and their removal) can be measured with great precision, and their measurement is one of the fundamental parameters to include in every testing and measurement program. Programs performing well in defect removal normally perform well in other aspects of quality, such as requirements conformance and user satisfaction. Conversely, programs with inadequate defect removal are seldom successful in achieving other quality goals. [JONES91] Therefore, you must make sure your contractor measures and documents defects throughout the life cycle.
It is important to understand that “xe "Error"errors” relate to early phases of development: requirements definition and design specification. An error in requirements or design will cause the insertion of one or more “defects” in the code. However, a defect may not be visible during code execution — neither during testing nor operation. If a defect is executed, it may result in a tangible fault, or it may not. Programmers xe "Debug"debug code to correct defects by testing for tangible failures. But the lack of failures cannot guarantee the absence of defects. Even if the defect executes, it may not be visible as output. Furthermore, defect correction does not necessarily imply that the error (source of the defect) causing the defect has been corrected.
There are three broad classifications of defects, named after the development phase where they are found: unit/component defects, integration defects, and system defects. xe "Defect:Unit"Unit defects are the easiest to find and remove. When system testing and a test is failed, you cannot tell if the failure is caused by a unit, integration, or system defect. It is only after the failure is resolved that we know from where it came. As discussed above, system testing is more expensive than unit testing and any unit defect remaining during system testing translates into costly scrap and rework [discussed in Chapter 8, Measurement and Metrics]. xe "Defect:Integration"Integration defects are more difficult to detect and prevent because they occur from interaction among otherwise correct components. Component interactions are combinatoric — i.e., they grow as n2 (the square of the number of components integrated) or worse (e.g., n! — that number factorial). An integration testing objective is to assure that few, if any, harmful component interaction defects remain before going to system testing. During system testing, we have the added complexity of multitasking, i.e., the order in which things happen can no longer be predicted with certainty. This uncertainty and the issue of timing is rich soil for ever more complex xe "Defect:System"system defects. [BESIER95]

NOTE:
See Volume 2, Appendix O, Additional Volume 1 Addenda, Chapter 4 Addendum B, “Software Reliability: A New Software OT&E Methodology.”
You might ask, if the defect cannot be detected and does not show itself as output, why bother removing it? With mission and safety critical software operating under maximum stressed conditions, the chances of a latent defect-related software failure often increases beyond acceptable limits. This dichotomy amplifies the need to detect, remove, and ultimately prevent the causes of errors before they become illusive software defects. Latent, undetected defects have the tendency to crop up when the software is stressed beyond the scope of its developmental testing. It is at these times, when the software is strained to its maximum performance, that defects are the most costly or even fatal. [KINDL92]

NOTE:
See Chapter 15, Managing Process Improvement, for further discussion of defect causal analysis, defect removal efficiency, and defect prevention.
The number of errors (unintentionally injected into software by requirements analysts and designers) and defects (injected by programmers while interpreting designs) can be quite large. For complex software systems they can number in the tens-of-thousands. [PUTNAM92] Jones has noted defects for varying sizes of systems to range from 50 to 95 defects per KLOC. [JONES86] Most of these, however, are removed before delivery by the self-checking of analysts and programmers, by design reviews, peer inspections, walkthroughs, and module and integration testing. Jones estimates the pre-delivery xe "Defect:Removal:rate"defect removal rate using these techniques to be at about 85%.
For systems where failure to remove defects before delivery can have catastrophic consequences in terms of failed missions or the loss of human life, defect removal techniques must be decidedly intense and aggressive. For instance, because the lives of astronauts depend implicitly on the reliability of xe "Space Shuttle"Space Shuttle software, the software defect removal process employed on this program has had a near perfect record. Of the 500,000 lines-of-code for each of the six shuttles delivered before the Challenger, there was a xe "Defect:Zero defects"zero-defect rate of the mission-unique data tailored for each shuttle mission, and the source code software had 0.11 defects per KLOC.
[KOLKHORST88]
NOTE:
This is not to imply the Challenger disaster was caused by software defects. It was merely the cutoff point for the report upon which this example is based.
These impressive figures reflect a formal software engineering process that concentrates on learning from mistakes. Finding and correcting mistakes must be a team effort where no individual is held responsible or singled out. Management must treat finding defects as a positive activity left to the team’s discretion (management and the user are not included). Figure 14-12 illustrates the steps performed for every software defect found on the Space Shuttle program, regardless of significance. Process improvement is relentlessly achieved by performing feedback during steps 2 and 3. Much credit for this achievement is attributable to peer inspection techniques [discussed below], pioneered by IBM-Houston.

[image: image11.wmf]P

r

o

c

e

s

s

E

l

e

m

e

n

t

A

P

r

o

c

e

s

s

E

l

e

m

e

n

t

B

P

r

o

c

e

s

s

E

l

e

m

e

n

t

C

P

r

o

c

e

s

s

E

l

e

m

e

n

t

D

P

r

o

d

u

c

t

2

R

O

O

T

C

A

U

S

E

D

E

F

E

C

T

I

N

T

R

O

D

U

C

E

D

3

D

E

F

E

C

T

E

S

C

A

P

E

D

D

E

T

E

C

T

I

O

N

3

D

E

F

E

C

T

E

S

C

A

P

E

D

D

E

T

E

C

T

I

O

N

4

S

I

M

I

L

A

R

A

D

D

I

T

I

O

N

A

L

U

N

D

E

T

E

C

T

E

D

D

E

F

E

C

T

S

O

R

I

G

I

N

A

L

D

E

F

E

C

T

1

S

T

E

P

S

P

E

R

F

O

R

M

E

D

F

O

R

E

V

E

R

Y

D

E

F

E

C

T

(

R

E

G

A

R

D

L

E

S

S

O

F

M

A

G

N

I

T

U

D

E

)

(

1

)

R

e

m

o

v

e

d

e

f

e

c

t

(

2

)

R

e

m

o

v

e

r

o

o

t

c

a

u

s

e

o

f

d

e

f

e

c

t

(

3

)

E

l

i

m

i

n

a

t

e

p

r

o

c

e

s

s

e

s

c

a

p

e

d

e

f

i

c

i

e

n

c

y

(

4

)

S

e

a

r

c

h

/

a

n

a

l

y

z

e

p

r

o

d

u

c

t

f

o

r

o

t

h

e

r

,

s

i

m

i

l

a

r

e

s

c

a

p

e

s

Figure 14-12
Space Shuttle Defect Removal Process Improvement [KELLER93]tc "Figure 14-12
Space Shuttle Defect Removal Process Improvement [KELLER93]"
NOTE:
See Chapter 15, Managing Process Improvement, for a discussion on the Cleanroom statistical software testing and verification process.
xe "Defect:Removal:strategies"Defect Removal Strategies

Given the magnitude of errors associated with requirements and design, it is obvious that these huge sources of errors must be included in your xe "Quality:Software quality assurance (SQA)"quality control/assurance strategies. PAT teams, demonstrations, prototypes, and peer inspections are all necessary to control front-end sources of errors. Testing and peer inspections are also necessary for discovering inserted defects. It is important to recognize the upfront costs of inspections and testing, as well as the expected downstream cost, quality, and schedule benefits. [BRYKCZYNSKI93] Incentives should be provided to contractors who demonstrate savings through the inspection and defect removal data they produce and validate.
Finding and removing defects is the most expensive activity in which the software industry invests. However, organizations who engage in quality control and defect prevention have an enormous competitive advantage over those who do not. Given the low average efficiencies of most defect removal methods, it is imperative that your developer use a variety of removal techniques to achieve a high cumulative removal efficiency. Special attention must be given to the defects accidentally introduced as the by-products of fixing previous defects. The total quantity of bad fixes averages about 5% to 10%, which directly relates to the complexity of the product being repaired. Leading commercial and DoD software developers, for example, may include as many as 20 to 25 different defect removal activities. Serious quality control requires a combination of many techniques each aimed at a class of defects for which its efficiency is the highest. The bottom line in choosing your defect prevention and removal strategy is to choose the combination of methods which will achieve the highest overall efficiency and quality gains for the lowest total life cycle cost. [JONES91]
xe "Testing:Developer testing"Developer Testing

Testing is usually divided into two activities — unit testing and systems testing. xe "Testing:Unit testing"Unit testing is often accomplished in an incremental design/code/test fashion, where more and more of the completed system is progressively tested during each increment. Test cases are selected to force the occurrence of defects. The results of unit tests are then analyzed to see if any defects have occurred, and a xe "Debug"debugging process is performed to remove them. A description of the type, cause, and correction of defects is then placed in a database for future process improvement analysis. The purpose of unit testing is to remove all defects from the component under test. The easiest way to accomplish this is to begin as early as possible with xe "Testing:Of requirements"requirements testing of the component. xe "Requirements, software:Component"Component requirements are easily tested as they represent but a small subset of the requirements for the whole software product. Structure-driven, statistic-driven, and risk-driven testing are also performed during unit testing. [GLASS92] There are two basic types of testing performed at the unit and system level: structural testing (also called glass-box or white-box testing) and behavioral testing (also called functional or black-box testing).
xe "Testing:Structural"Structural testing, or testing-in-the-small, ideally involves exhaustively execution of all paths of control flow in a module or system. In reality, exhaustive path testing is impossible because the number of potential paths can be infinite. For example, consider an Ada paragraph containing 10 alternate pathways. This module has 10 billion potential operating states because for each iteration, up to a maximum of 10, there are 10 potential paths that can be executed (10 to the 10th power). If you could generate and execute one test case every minute, it would take over 19,000 years to test just this one module. Also, path testing cannot detect missing paths and cannot detect data sensitivity defects. Thus, structural test case design must be based on random and/or selective testing of control flow. Structural testing techniques include:


Statement coverage,


Decision coverage,


Condition coverage,


Decision/condition coverage,


Multiple decision/condition coverage,


Independent path coverage, and


Structured tableau. [MOSLEY93]

xe "Testing:Behavioral"Behavioral testing, or testing-in-the-large, focuses on requirements. For example, testing consists of testing all features mentioned in the specification. Behavioral testing be performed, in theory but not in practice, with total ignorance of how the object under test is constructed. It is not concerned with the internal structure of behavior of the module or system, but only with the instances when the program or module does not behave as indicated in its functional specifications. In contrast with exhaustive path testing, behavioral testing focuses on exhaustive input testing, which is also an impossible task. The number of possible valid inputs approaches infinity, as does the number of all possible invalid inputs. Thus, behavioral test case design must be based on random and/or selective testing of inputs. Behavioral testing techniques include:


Equivalence partitioning,


Boundary analysis,


Cause effect graphing,


Structured tableau, and


Error guessing. [MOSLEY93]

Neither testing approach alone is enough. Behavioral testing should be used throughout development, while structured methods are best used later in the process. Both methods are complementary; however, some redundancy of test case design exists between certain techniques within the two approaches. The tester should select and use a combination that maximizes yield and minimizes redundancy. Again, automated tools that build test cases are a sound investment.

xe "Testing:Unit"Unit Testing

A xe "Unit"unit is a component. A component is an aggregate of one or more components that can be tested as an aggregate, such as subroutines, functions, macros, the application and the subroutines it calls, communicating routines, or an entire software system. In unit testing is usually performed by the programmer who created the unit.
The xe "Cargo Movement Operations System (CMOS)"Cargo Movement Operations System (CMOS) is a sound example of why early unit testing pays off. The CMOS SPO, HQ AFMC’s xe "Logistics:Air Force Logistics Information File (AFLIF)"Air Force Logistics Information File (AFLIF), Federal Express, and United Parcel Service participated in a software prototype demonstration of transportation data exchange using the EDI. To meet their challenge, a new testing methodology was incorporated within the CMOS SPO’s software development process.
During requirements definition, mobility planners from HQ USAF, Air Combat Command, xe "Standard Systems Center (SSC)"Standard Systems Center (SSC), and base-levels redefined and refined support requirements and produced the first iteration of an integrated prototype concept of operations. During design, specifications were developed (through a series of technical interchange meetings and system status reviews) which were easily included in the baseline documentation. During the code and test phase, the contractor coded and tested the new software. End users validated the user interface, and CMOS SPO functional analysts tested and validated each of the contractor’s modules as they were completed. This process was labeled “Unit Test 3 (UT3).” UT3 represents a significant departure from the normal software development life cycle where software is fully developed and delivered to the Government before xe "Testing:Functional certification test (FCT)"functional certification testing (FCT) is performed. By using the UT3 approach, problems identified by the SPO were immediately corrected by the contractor.
Qualification testing was accomplished in two phases. The first 30-day test phase (performed in an in-house, integrated laboratory testing environment) was accomplished using actual Seymour-Johnson AFB deployment data and scenarios. SPO personnel and operators participated. Corrections to software problems and operator-requested changes were accomplished quickly, and then recycled into the integrated testing environment. The second phase (conducted at Seymour-Johnson) included paperwork and live exercises which used actual Seymour-Johnson AFB deployment data and scenarios. Software problems and operator-requested changes were corrected at the contractor’s facility and sent via modem back to the base in a matter of days.

The new CMOS unit testing process was expected to deliver a better product, decrease development time by 30 days with fewer problems, and incorporate enhancements resulting from earlier user involvement. To prove these assumptions, some modules were omitted from the UT3 process. Table 14-2 summarizes the software deficiencies found during integration testing of the modules that did and did not go through the UT3 process. Changing the SPO’s functional testing to perform it early in the design and code phases (rather than after formal delivery) produced the following successes:

•
The design and test schedule was decreased by 30 days;

•
No critical errors were discovered during qualification testing in modules that underwent the UT3 process;

•
The number of significant and minor errors was reduced; and

•
Hands-on training for SPO personnel started before formal software delivery.

[image: image12.wmf]SOFTWARE

PROBLEM

REPORT (SPR)

CATEGORY

% of

TOTAL not

UT3'd

NO

UT3

UT3'd

TOTAL

SPRs

Critical

Significant

Minor

Enhancement

100.00%

60.00%

65.00%

56.45%

3

3

13

35

0

2

7

27

3

5

20

62

Table 14-2 CMOS Integration Test Results of UT3/Non-UT3 Modulestc "Table 14-2
CMOS Integration Test Results of UT3/Non-UT3 Modules"
This success story led to other changes in the CMOS software development process. FCT will now be replaced by UT3 and a new approach to writing test plans is also underway. Before further UT3 begins, a test description shell will be written based on operational scenarios. The detail of the test descriptions will then be added as the scenario undergoes UT3 testing. This leads to accurate test descriptions while decreasing the overall time for software coding and testing.

[HEITKAMP94]

xe "Testing:Unit testing:problems"Cautions About Unit Testing

Not all unit testing has been as successful as the CMOS effort. One problem with contractor unit testing is that often the tester is biased. Most unit tests (called white box testing) are designed by the same programmers who produce the code, as they are believed to be the only ones who understand it. This proves unsuccessful because, unfortunately, the people who create defects are the least likely to recognize them. Another problem is coverage. The ideal unit test data set is one that exhaustively executes every path of control flow in a module. In reality, this is impractical and nearly impossible because the number of possible paths is often infinitely large.

[HUMPHREY90]

NOTE:
In the book, Microsoft Secrets, Cusumano and Selby say that Microsoft produces a daily software build each night, and makes the developer use it the next day. [CUSUMANO95] This early testing pays off in that problems are found earlier. This is also one of the techniques inherent in Cleanroom engineering [discussed in Chapter 15, Managing Process Improvement].

Integration Testing

While unit testing is performed by programmers on the modules they develop, xe "Testing:Integration testing"integration testing is performed to determine how the individual modules making up a subsystem component perform together as an integrated unit. With large software developments, integration testing often involves the software of many developers where individually developed modules are combined into various software subsystems and tested as integrated units. As a manager, you must be aware of the political problems associated with integration testing of multiple vendor products. Often, when a defect occurs on the interface between two supposedly pretested and correct components, neither developer wishes to take the blame for the defect and finger pointing occurs. Each developer believes they have a perfect module and that the defect must have been caused by — and thus must be fixed by — the other guy. This situation takes a mix of tact and diplomacy on the integration test manager’s part to resolve these problems and get the defects corrected. [GLASS92] Figure 14-13 [not available in this format] illustrates how software test stations are used to support all aspects of software integration testing on the xe "F-16 Fighting Falcon"F-16 avionics program.

System Testing

xe "Testing:Systems"System testing (conducted by the systems developer) usually begins after integration testing is successfully completed. Some redesign and tweaking of both the hardware and software is performed to achieve maximum levels of performance and to iron out bugs. System testing is very much like integration testing where components are integrated into whole parts, but not necessarily whole software parts. As with integration testing, the system tester tries to invoke defects while the individual component developers are responsible for their repair. The system tester is also responsible for resolving any political problems that arise. [Remember, it is essential to perform adequate end-to-end testing prior to signing-off on standard form DD-250s for software.] Figure 14-14 [not available in this format] illustrates the systems integration and testing process for F-16 avionics.

xe "Testing:Government testing"Government Testing

Operational system testing of major Air Force software-intensive systems is conducted by an interdisciplinary, independent testing agency. The xe "Air Force Operational Test and Evaluation Center ("Air Force Operational Test and Evaluation Center (AFOTEC) is a separately operated agency that reports directly to the Chief of Staff of the Air Force. The Center is comprised of a headquarters at Kirtland AFB, New Mexico, detachments at operational locations, and AFOTEC test teams at designated test sites. AFOTEC plans, directs, controls, independently evaluates, and reports on the operational test and evaluation (OT&E) of all major Air Force weapon systems, weapon system support systems, C2, and MISs. It supports system development and production decisions by providing operational assessments and initial xe "Operational test and evaluation (OT&E)"OT&E to determine operational effectiveness (how well the system performs) and suitability (including reliability, maintainability, and supportability). Table 14-3 lists the AFOTEC publications you should consult for guidance on software OT&E procedures.

[image: image13.wmf]PAMPHLET

TITLE

AFOTECP 99-102,

Volume 1

AFOTECP 99-102,

Volume 2

AFOTECP 99-102,

Volume 3

AFOTECP 99-102,

Volume 4

AFOTECP 99-102,

Volume 5

AFOTECP 99-102,

Volume 6

AFOTECP 99-102,

Volume 7

AFOTECP 99-102,

Volume 8

Management of Software

Operational Test and Evaluation

Software Support Life Cycle

Process Evaluation Guide

Software Maintainability

Evaluator's Guide

Software Usability Evaluator's

Guide

Software Support Resources

Evaluation Guide

Software Maturity Evaluation

Guide

Software Reliability Evaluation

Guide

Software Operational

Assessment (SOA) Guide

Table 14-3 AFOTEC Software OT&E Pamphletstc "Table 14-3 AFOTEC Software OT&E Pamphlets"
AFOTEC xe "Air Force Operational Test and Evaluation Center (:Testing objectives"Testing Objectives

AFOTEC cites five objectives in testing system software.

Usability,


Effectiveness,


Software maturity,


Reliability [discussed in Chapter 4, Engineering Software-Intensive Systems],
•
Safety [discussed in Chapter 4, Engineering Software-Intensive Systems], and


Supportability [discussed in Chapter 11, Software Support].

Usability

xe "Usability"Useability evaluations concentrate on the operator’s interaction with a software-intensive system. Observation of test events should reveal strengths and limitations of the system’s operator-machine interface and its supporting software. A usability questionnaire is used to assess the usability characteristics of confirmability, controllability, workload suitability, descriptiveness, consistency, and simplicity. [See AFOTECP 99-102, Volume 4, Software Usability Evaluator’s Guide.]
Effectiveness

xe "Effectiveness"Effectiveness evaluations concentrate on ensuring all critical software is exercised in operationally representative scenarios. Software effectiveness is determined by (and dependent on) system effectiveness.
Software Maturity

xe "Maturity:Of software"Software maturity [as opposed to software development maturity discussed in Chapter 7] is a measure of the software’s evolution towards satisfying all documented user requirements, as illustrated in Figure 14-15. [Refer to AFOTECP 99-102, Volume 6, Software Maturity Evaluation Guide.] The main AFOTEC indicator of software maturity is the trend in accumulated software changes to correct deficiencies, provide modifications, and accommodate hardware changes. The software maturity test objective considers software fault trends, severity, and test completeness while taking into account planned software modifications.

[image: image14.wmf]A

c

c

u

m

u

l

a

t

e

d

S

o

f

t

w

a

r

e

P

r

o

b

l

e

m

s

A

v

e

r

a

g

e

P

o

i

n

t

/

P

r

o

b

l

e

m

A

v

e

r

a

g

e

C

l

o

s

u

r

e

T

i

m

e

S

O

F

T

W

A

R

E

M

A

T

U

R

I

T

Y

M

e

a

s

u

r

e

o

f

t

h

e

s

o

f

t

w

a

r

e

'

s

p

r

o

g

r

e

s

s

i

n

i

t

s

e

v

o

l

u

t

i

o

n

t

o

w

a

r

d

s

a

t

i

s

f

a

c

t

i

o

n

o

f

a

l

l

d

o

c

u

m

e

n

t

e

d

u

s

e

r

r

e

q

u

i

e

m

e

n

t

s

Figure 14-15 OT&E Process for Software Maturitytc "Figure 14-15 OT&E Process for Software Maturity"
Software maturity uses a xe "Maturity:Of software:severity point system"

xe "Severity point system"severity point system to track unique problems. A weighted value is assigned based on the severity of the failure as defined in the xe "Data:Management Plan"Data Management Plan. Software faults of higher severity are assigned a higher value than those of less severity. As the test progresses and new fault data are collected, they are plotted against a time line. Ideally, the slope of the curve should decrease with time. This maturity assessment method is illustrated in Figure 14-16.
[image: image15.wmf]C

H

A

N

G

E

P

O

I

N

T

S

T

i

m

e

P

r

o

b

l

e

m

s

D

i

s

c

o

v

e

r

e

d

x

S

e

v

e

r

i

t

y

L

e

v

e

l

s

=

C

h

a

n

g

e

P

o

i

n

t

s

P

r

o

b

l

e

m

s

C

o

r

r

e

c

t

e

d

x

S

e

v

e

r

i

t

y

L

e

v

e

l

s

=

C

h

a

n

g

e

P

o

i

n

t

s

Figure 14-16 Software Maturitytc "Figure 14-16 Software Maturity"
AFOTEC Software Evaluation xe "Air Force Operational Test and Evaluation Center (:Testing tools"

xe "Tools:Testing tools"Tools

The AFOTEC software evaluation tools [AFOTECP 99-102, Volumes 1-8] should be used throughout the acquisition and development phases of major systems software. They are based on COTS software metrics, ensure credible evaluations, and help to reduce life cycle costs and schedule. Software evaluation approaches differ among programs; however, the AFOTEC mission is to evaluate software as an integral part of the overall system (as opposed to evaluating it as a separate entity). It uses the same fundamental OT&E processes for MIS and embedded weapon systems software based on the premise that if the system works, the software works!
NOTE:
To be effective, software operational test planning must take place throughout the development process. Often, the developer and the SPO are reluctant to provide the operational tester with the documentation and materials needed to perform an effective evaluation of software maturity, reliability, supportability, usability, and effectiveness. Achieving cooperation among the system developer, the SPO, and the operational tester is an essential management prerequisite.
AFOTEC xe "Air Force Operational Test and Evaluation Center (:Lessons-learned"Lessons-Learned

AFOTEC has provided a list of lessons-learned based on the experiences of programs having completed the OT&E process.


Deputy for Software Engineering (DSE)"Deputy for Software Evaluation (DSE). A DSE should be assigned as early as possible to the SPO to become familiar with the system and to assist in detailed software OT&E planning. The DSE should be onboard at least 6 months prior to the first OT&E test event. (Larger programs may require even more lead time.) The DSE, a software systems engineer, serves as the software evaluation team leader, is assigned to the test program, and coordinates and controls the completion of OT&E test plan objectives pertaining to software and software support resources.

Documentation"Documentation. The DSE and software evaluators must be provided current documentation and source code listings in time to perform evaluations. Promised deliveries not received can cause problems; therefore, it is to everyone’s benefit to deliver requested documentation on time. You must also identify early the requirement for special sorties, equipment, and analysis support so that test requirements are accommodated.

Testing xe "Testing:Terminology"terminology. Your team must come to terms with discussions over terminology and definitions (software faults, defects, errors, bugs, etc.). Industry-accepted definitions of software errors and defects (faults), found in the ANSI/IEEE, Glossary of Software Engineering Terminology, are listed in Table 14-4. [ANSI/IEEE83] A xe "Failure"failure is an observable event (an effect). A xe "Fault"fault is the cause of a failure. A fault may be caused by software or hardware. A software xe "Defect"defect is the human-created element that caused the fault, such as those found in specifications, designs, or code. The bottom line with AFOTEC is, if an action is required of the operator due to a failure — it must be documented.

Testing:Documentation:Final Test Report"Final test reports. Striving for correct technical content, software test teams often write final test reports but are frustrated when OT&E headquarters personnel rewrite them for format and content. Time constraints and pride-of-authorship can strain tensions between the test team and headquarters. One solution is to have the two teams work together to review final report drafts early in the process. Also make sure that the report is written for a wide spectrum of readers, computerese is kept to a minimum, and that it is tailored for a senior officer audience with emphasis on results and recommendations.
[image: image16.wmf]CATEGORY

DEFINITION

Error

Fault

Debugging

Failure

Testing

Dynamic

analysis

Static analysis

Correctness

Verification

Validation

A discrepancy in implementing requirements or design specification.

An error may manifest itself as incorrect or undesired results.

A defect in code that has the potential to cause (possibly invisible)

incorrect or unexpected results. Faults are also known as bugs.

Faults in code usually result in errors.

The process of locating, analyzing, and correcting suspected faults.

The execution of a software fault or defect that manifests itself as

incorrect or undesired results.

The process of exercising or evaluating a system or system

components by manual or automated means to verify that it satisfies

specified requirements or to identify differences between expected and

actual results.

Testing by executing code.

The process of evaluating a computer program without executing it:

e.g., review, desk check, inspection, or walkthrough.

The composite extent to which:

(1) Design and code are free from faults.

(2) Software meets specified requirements.

(3) Software meets user expectations.

(1) The process of determining whether or not the products of a given

phase of the software development life cycle fulfill the requirements

established during the previous phase.

(2) Formal proof of program correctness.

(3) The act of reviewing, inspecting, testing, checking, auditing, or

otherwise establishing and documenting whether or not items,

processes, services, or documents conform to specified requirements.

The process of evaluating software at the end of the software

development process to ensure compliance with software

requirements.

Table 14-4 ANSI/IEEE Software Engineering Terminology [ANSI/IEEE83]tc "Table 14-4 ANSI/IEEE Software Engineering Terminology [ANSI/IEEE83]"
NOTE:
“Timing” is more important in real-time systems than in any other software development. The SEI has developed a method, Rate Monotonic Analysis (RMA), for managing the scheduling and execution of tasks for real-time systems. [See Chapter 10, Software Tools, for a discussion on RMA and Volume 2, Appendix O, Additional Volume 1 Addenda, Chapter 10 Addendum B, “Rate Monotonic Analysis: Did You Fake It?”]
xe \b "Implementation"Implementation

Implementation is where the software is xe "Coding"coded, xe "Testing:Unit testing"unit tested and xe "Integration"integrated into a functional software product. The purpose of this phase is to put the design produced during the previous phase into practical effect. With xe "Ada"Ada as the implementation language, this phase is relatively easy and is, in essence, an extension of the design process. The design phase produces a detailed design represented by a complete specification for a set of Ada program modules. During the coding phase, all that is required is that the modules (units) be implemented. Of course, as units are coded, further decomposition may be required. In this regard, the design/code/test phases lose their distinction and should form an iterative process at each stage of the solution. Ada tools (such as syntax-directed editors) can increase programmer efficiency and software quality by making coding easier and by enforcing the creation of syntactically correct Ada modules. [BOOCH94]
BUILDING SECURE SOFTWARE

tc "<>"
xe "Security"

xe "Safety"Security is an essential element of many major DoD software-intensive systems. Adversaries actively collect information about our new systems and software to negate their combat effectiveness and eliminate our advantage of surprise. You must actively plan for and apply OPSEC measures to protect crucial information throughout your acquisition process. The OPSEC process helps guide the development of OPSEC measures. The process asks: what needs to be protected, from whom, is there a potential for exposure of critical information, what are the risks, and how is protection to be accomplished? This team effort must be revisited as your program matures and parameters change. A well thought out plan of protection and its judicious application will ensure the integrity and combat effectiveness of new systems and help us attain our mission objectives.

xe "Planning:For security"Security Planning

Security is the crucial aspect of strategic system and software planning often overlooked. DoD contingency strategists (wargamers) envision the objectives of war in the 21st century, not as attacks to destroy enemy lives, but as maneuvers to gain control of those invisible, more vulnerable, more significant and consequential software-driven systems. Weapons systems dependent on satellite communications for target positioning, global financial systems, highly distributed military logistics and air traffic control systems, and secure telecommunication networks are “soft” because they are highly pregnable. [BLACK93] Due to its vulnerability, failure to plan for software security could prove catastrophic. Today, reports abound of hackers gaining unauthorized access to software systems, sometimes creating serious damage. Other software-related security problems have resulted in severe financial loss or even loss of life. The protection of your software must be a major element in your strategic planning process.
The common objective of acquisition activities is the production of combat-ready weapon systems and/or support for those systems to further our national defense. The advantage we seek, the success of our defensive efforts, is often expressed in the element of surprise. Surprise, in this instance, means that our systems, when deployed, can operate in hostile environments and do the job for which they were designed. Lack of surprise means that an adversary already knows enough about our systems to counter them and/or to render them ineffective once deployed . Lieutenant General V.A. Reznichenko, authoritative tactician for former Soviet Union ground forces, explained why security is so important.
Surprise makes it possible to take the enemy unawares, to cause panic in his ranks, to paralyze his will to resist, to drastically reduce his fighting efficiency, to contain his actions, to disrupt his troops’ control, and to deny him the opportunity to take effective countermeasures quickly. As a result, this makes it possible to successfully rout even superior enemy forces with the least possible losses to friendly forces.

[REZNICHENKO84]
Some program managers consciously omit security (and safety) requirements from their plans, as they believe such considerations will significantly increase software development costs. As in risk abatement, the benefits of including software security requirements upfront must be weighed against xe "Life cycle:Software:cost"

xe "Cost:Life cycle"life cycle costs. Not planning for security upfront and having to address these requirements after development is underway (or the system is deployed), can severely impact the cost of your software development (and system life cycle costs) as they constitute significant xe "Cost:Driver"cost drivers.
It is imperative that your new software (and hardware) be fully protected commensurate with your program requirements and sensitivities throughout the development life cycle to ensure it is fully combat effective at IOC and that the element of surprise is retained. It makes little sense to expend valuable resources (manpower, money, and time) on software that is compromised before it can fulfill design and mission objectives. Software protection must be an integral and normal part of all acquisition activities.

Power relationships among nations have changed. Increasingly, perceptions are focused on economic matters where onetime friends and allies are now viewed as competitors and even adversaries. Battlefields are now boardrooms. There is at least one constant currency of power, however, and that is information. Information processed into intelligence provides a basis for sound decision making in both military and corporate combat. [PATTAKOS93]

Building preemptive defenses into your software is one way to fight the software security war against hackers and enemy access to our vital information resources. Another method is to build in the ability to bounce back quickly if penetration is accomplished. You must, therefore, plan for nonlethal warfare risks to be prepared, through prevention and circumvention, for today’s software-versus-software battlefield.
NOTE:
See Addendum A of this chapter, “Multilevel Information Systems Security Initiative.”
Operations Security (OPSEC)

xe "Security:Operations security (OPSEC)"OPSEC is specifically designed to control and protect information of intelligence value to an adversary. This information is called xe "Security:Critical information"critical information. Critical information includes the specific facts about our intentions, capabilities, limitations, and activities needed by adversaries to guarantee the failure of our mission. It is the key information about our programs, activities, hardware, and software, which if lost to an adversary, would compromise that program. Critical information may be either classified or unclassified. It is not only the classification of the information that is important, but also the value of the information to an adversary. It requires the safeguarding of all classified information and protection from tampering for unclassified information.
OPSEC is implemented by the development of an xe "Security:Operations security (OPSEC):OPSEC plan"OPSEC Plan. The plan is based on a thorough analysis of the important and sensitive aspects of your program (or software system) and of the environment for which the software is being developed. OPSEC planning follows the xe "Security:Operations security (OPSEC):OPSEC process"OPSEC process, a logical method of information analysis and evaluation guiding protection and control. The OPSEC process can be applied to virtually any software development activity, and is as simple or complicated as the situational environment warrants. The steps in the OPSEC process are:
•
Identify critical information,

•
Describe the intelligence collection threat,

•
Identify OPSEC vulnerabilities,

•
Perform risk analysis, and

•
Identify countermeasures to control and protect the information.

The plan summarizes the results of this analysis process and becomes the framework for subsequent software protection measures.

Critical information. Because you have to know what to protect, the first step is to identify critical information and the indicators that point to or may divulge it. The first listing of critical information is in the Operational Requirements Document (ORD) developed by the user, which is very broad and general. As your program proceeds, this list must constantly be reviewed and refined. As your program matures, the list of critical information will become more specific and detailed.tc "<>Critical information. Because you have to know what to protect, the first step is to identify critical information and the indicators that point to or may divulge it. The first listing of critical information is in the Operational Requirements Document (ORD) developed by the user, which is very broad and general. As your program proceeds, this list must constantly be reviewed and refined. As your program matures, the list of critical information will become more specific and detailed."
xe "Security:Threat"

xe "Threat"Threat. The threat is specific information about an adversary’s capabilities and intentions to collect critical information. It begins with the identification of the adversary(ies). The adversary’s resources/assets available to collect critical information and the degree of the intent to collect is then assessed. The threat assessment must be specific (e.g., geographical location, facility, program office, software system, laboratory, or contractor facility). Threat information must be obtained in coordination with the OPSEC officer or through local liaison officers and organizations (e.g., the Air Force Office of Special Investigations, Air Intelligence Agency, or the National Air Intelligence Center. Intelligence collection of threat information is also included in the xe "Security:System Threat Assessment Report (STAR)"

xe "Threat:System Threat Assessment Report (STAR)"System Threat Assessment Report (STAR) validated by the xe "Defense Intelligence Agency (DIA)"Defense Intelligence Agency (DIA).
xe "Security:Vulnerability"

xe "Vulnerability"Vulnerability. Critical information and indicators of critical information are compared with the threat to determine if an OPSEC vulnerability exists. For an OPSEC vulnerability to exist, critical information must be potentially open and available to an adversary, and that adversary must have some type of collection platform in place to obtain the information (e.g., a spy satellite, an agent, an intelligence gathering ship, or communications network access). If sensitive information is available and an adversary can collect it, then an OPSEC vulnerability exists.
xe "Security:Risk assessment"

xe "Risk:Security"Risk assessment. A risk assessment is a cost/benefits analysis of proposed protective measures and the mission imperative. Several factors drive this assessment. First, no system can be 100% secure unless it is sealed off from all outside influences. Second, whatever protective measures are used, they must not unduly hinder or prevent mission accomplishment or the attainment of program objectives. Finally, a balance must be found that provides the maximum possible protection while maintaining program integrity.
xe "Measurement/metrics:OPSEC measures"

xe "Security:Operations security (OPSEC):OPSEC measures"OPSEC measures. Various methods must be developed that best meet operational protection requirements while mitigating the identified OPSEC vulnerability. OPSEC measures are program specific and must be tailored to the identified vulnerability. OPSEC measures include:
•
Action control measures. These are actions that can be executed to prevent detection and avoid exploitation of critical information. You should avoid stereotyped procedures which can be exploited by an adversary. Examples of action control include making preparations inside buildings rather than outside, conducting activities at night, and adjusting schedules or delaying public affairs releases.
•
xe "Counter measure"Countermeasures. These are methods to disrupt adversary information gathering sensors and associated data links or to prevent the adversary from obtaining, detecting, or recognizing critical information. Examples include jamming, masking, encryption, interference, camouflage, and diversions.
•
xe "Counter analysis"Counteranalysis. These are methods to affect the observation and/or interpretation of adversary analysts. They do not prevent detection, but enhance the probability that the detectable activity is overlooked or its significance is misinterpreted. Counteranalysis measures provide uncertainty and alternative answers to adversary questions. Deceptions, including covers and diversions, are in this category of OPSEC measures. Detailed planning of deceptions are separate from protection planning. However, close coordination between OPSEC and deception planners will facilitate the desired result.
•
Protective measures. These measures can and should include the use of all established security disciplines.
Although security is ultimately your responsibility, program protection is not a one-person job. OPSEC measures run the gamut of possibilities and there is ample help available. Each MAJCOM, product center, logistics center, test range, and laboratory has an identified OPSEC point-of-contact. Indeed, each security discipline has a point-of-contact. Software xe "Protection"protection is, thus, a coordinated team effort — the same as other program activities.
Historically, it has been difficult and expensive to design and build secure/trusted data systems. The traditional way of building secure systems has been to use logical and physical separation (i.e., an “air gap”) based on providing a physically secure facility for each system, with everyone in the facility cleared to the level of the most sensitive data. This method is not only expensive, but very inefficient, and has several undesirable properties such as the cost of duplicating facilities, and multiple sets of hardware and software. There is also an inability to share personnel talent and skills due to the need for separation and number of expensive clearances for people who have no access to the data itself. Possibly the most serious issue is the inability to share data. This creates serious data concurrency problems as duplicated data in the myriad of systems are updated at different frequencies — greatly increasing the probability of error as the number of instances increases. This was a major problem during the xe "Operation Desert Storm"Gulf War. Virtually all the data needed was in theater, but it was not accessible in a way that allowed coherent data fusion and integration.
This problem should soon be totally eradicated. All necessary COTS components for building operational systems [i.e., hardware/operating systems, networks, and xe "Database:Relational database management system (RDBMS)"relational database management systems (RDBMSs)] are xe "National Computer Security Classification (NCSC)"

xe "Security:National Computer Security Classification (NCSC)"National Computer Security Classification (NCSC) evaluated at the CB/B1 and B2 levels. The old quandary that “COTS products are not secure” and “secure products are not COTS” is no longer true. Today it is possible to get a hardware/operating system-network-RDBMS combination that was evaluated together, which greatly reduces the accreditation effort of the developer and the user.
The RDBMS is the most critical portion of the secure solution. The first, and most important, concern should be a vendor’s overall philosophy and commitment to developing secure products. Some build a minimally compliant product so they appear to have complete secure and non-secure product suites. Serious secure product vendors meet the extreme assurance requirements required at the B2 level and above, while others have layered C2/B1 level features that meet the minimal assurance requirements at B1 and below. Vendors who are serious about the secure products market also view security as an attribute of their product — not as a 150% to 200% premium over the price of their standard product.

Compatibility of the vendors’ products at various levels is a major development security issue. Compatibility has many benefits such as the ability to partition data and applications across different levels without having to duplicate the applications. For example, the ability to access untrusted administrative systems and secure operational systems in the same application is useful. Also desirable is the ability to separate very sensitive SCI data into a B2 assurance RDBMS engine, routine operational data into a B1 assurance RDBMS, and other administrative data into a C2 assurance RDBMS. This makes data and security administration easier while retaining the usability and functionality of one logical database with joins and other transaction management capabilities. In addition to only having to develop one set of applications, this capability has several performance advantages. Joins are required only in those less normal scenarios where multiple kinds of data are required in a single transaction. Otherwise, a single server is used, increasing the apparent network bandwidth for users at different levels. The RDBMS’ distributed capabilities should make the data partitioning invisible to the client-user so the only relevant issue is the client security level, not specialized knowledge of the physical data schema.

All secure products are evaluated against the xe "Trusted Computer System Evaluation Criteria (TCSEC"

xe "Security:Trusted Computer System Evaluation Criteria (TCSEC"Trusted Computer System Evaluation Criteria (TCSEC) defined in xe "DoDD 5200.28"DoDD 5200.28 (the Orange Book) and its various interpretation guides. The xe "Security:Orange Book"

xe "Orange Book"Orange Book is a statement of the DoD basic security policy and relies on the xe "Security:Bell-Lapadula Security Policy Model"

xe "Models:Bell-Lapadula Security Policy Model"

xe "Bell-Lapadula Security Policy Model"Bell-Lapadula Security Policy Model. The principle of the Bell-Lapadula model is access mediation based on the relative values of a user’s (subject) clearance level and the data (object) classification level as conveyed by appropriately assigned security labels. The salient features of the model are a “subject” may access “objects” at its session (login) level and below, and “may-write objects” at its session level only.
This policy has some onerous implications for RDBMS.’ The most serious of which are that implementation of this policy dictates that: (1) UNIQUEness of a primary key is only guaranteed within a single security level; (2) an index on a table exists at a single security level; and (3) referential integrity is guaranteed only at a single security level. Related issues are the serious covert channels in databases centered around the physical storage of labels in each row and the serialization of row IDs. The management of data integrity locking mechanisms at different security levels is also a problem. (xe "INFORMIX"INFORMIX uses a unique security metadata approach which eliminates all these covert channel issues by avoiding the need to physically store labels in each row.) To support complex and sophisticated application development, most secure RDBMS’ provide a means for mitigating these problems.

The crucial item is the safety and granularity of these mechanisms. Most secure RDBMS’ support the simple, but coarse, method of using a configuration option to set it to either “on” or “off.” A more sophisticated approach is to support a set of discrete privileges granted and revoked selectively by the xe "Security:System Security Officer (SSO)"System Security Officer (SSO) to facilitate a specific task. These discrete privileges are manageable at a granularity no greater than a transaction boundary, and deal with the granularity of indices, uniqueness of primary keys, referential integrity across levels, and locks at multiple levels.

The selection of a secure RDBMS should not lock a developer into a particular hardware environment. A committed secure products vendor will support mainstream hardware platforms and operating systems (e.g., HP, Sun, IBM, DEC, Harris, AT&T, and SCO). They will also support all applicable standards [such as FIPS 127, FIPS-156, XOPEN, RDA, ANSI XXX, and de facto standards (e.g., DRDA, ODBC, and TCP/IP)] in their standard and secure products. A secure product should not have a significant performance degradation over an equivalent non-secure product. Vendors should publish official audited benchmarks of both secure and non-secure products. An example of such a product is the xe "INFORMIX:Online Secure Product"INFORMIX Online Secure Product. [See Volume 2, Appendix A for information on how to contact INFORMIX.]

NOTE:
See US Department of Commerce, NIST Special Pub 800-7, Security in Open Systems, July 1994.
SOFTWARE DOCUMENTATION

xe \b "Documentation"Documentation must support the entire life cycle. Most importantly, it provides fundamental guidance for xe "Support:Post-Deployment Software Support Plan"PDSS. Documentation can be categorized as being either technical or managerial. xe "Documentation:Technical"Technical (or engineering) documentation is necessary as it records the engineering process and helps software engineers know where they are, what they have produced, and how. It also helps maintainers and other engineers understand the code developed by others. xe "Documentation:Management"Management documentation is that produced for the Government or the development organization to aid in monitoring the contractor’s development progress in achieving program milestones and in fulfilling performance requirement specifications.
Although it often represents the foundation of a successful software development, documentation can also represent a significant source of cost and schedule risk. Perhaps the most decorated, colorful, and outspoken US Marine in history, Lt. General Lewis B. “Chesty” Puller, condemned documentation when he stated: “Paperwork will ruin any military force.” [PULLER62] Not only will it ruin any military force, paperwork will ruin any software development. Overloading your contractor with excessive documentation requirements takes away from engineering activities — costing valuable time and money.

Conversely, too few requirements for technical documentation may cause loss of program visibility and control. xe "Design:Documentation"Design documentation that does not reflect the delivered software’s current state is worse than no documentation at all. It translates into high maintenance costs when attempts to enhance or upgrade the system are hampered by insufficient information on the delivered source code. Allocating operational functional requirements to configuration items should be both a management and a technical decision as it establishes the framework for collecting information on software requirements, design, code, and testing. Shortcuts on maintaining/updating technical documentation should be avoided at all costs. Whenever the developer makes changes to data flow, the design architecture, module procedures, or any other software artifact, supporting xe "Documentation:Technical"technical documentation must be periodically updated to reflect those changes. This requirement must be clearly stated in the contract CDRLs. No matter how well your software product performs in fulfilling user requirements, if its supporting technical documentation is inadequate, your system is not a quality product. Without quality documentation the product can neither be adequately used nor maintained. Documentation (either in paper copy or electronic format) that confuses, overwhelms, bores, or generally irritates the users is of little or no value to you or your customers. [DENTON92]

NOTE:
Consider requiring on-line access to the developer’s software engineering environment as an alternative to technical documentation.

Documentation is one of those activities that requires experience to determine a proper balance between too much and too little. Too little technical documentation can create the proverbial “maintenance man’s nightmare;” whereas, too much effort expended on producing unnecessary xe "Documentation:Management"management documentation can waste precious development time and dollars. Table 14-5 illustrates the difference in time spent by software developers fulfilling DoD contracts and in fulfilling commercial software contracts. Management, meeting support, and documentation requirements comprise 45% of the total effort for military software developments, as compared to the 22% of effort spent on the same activities for commercial applications. Compared to the commercial sector, DoD places more emphasis on the management burden than on engineering. As you learned in Chapter 4, Engineering Software-Intensive Systems, a high concentration on upfront software engineering is essential to ensure that quality, supportability, and usability are built-in.

[image: image17.wmf]MILITARY

SOFTWARE

COMMERCIAL

SOFTWARE

Engineering

Evaluation

Management

Meeting Support

Documentation

Customer/User

Support

30%

20%

15%

15%

15%

5%

50%

20%

10%

5%

7%

8%

Copyright by RCI

Table 14-5 Military/Commercial Effort Distributiontc "Table 14-5 Military/Commercial Effort Distribution"
xe "Documentation:Must-have"Must-Have Documentation

Even where program management documentation is kept to a minimum, management and quality xe "Measurement/metrics:Quality"metrics reporting is essential and should be a contract requirement. Metrics reports describe the contractors’ progress against their plan. They reveal trends in current progress, give insights into early problem detection, indicate realism in plan adjustments, and can be used to forecast future progress. If not required, software developers are often reluctant to commit to paper their deficiencies and/or accomplishments. Your contractor may be agreeable to your suggestions and direction early in the game. However, as the development progresses and problems are encountered, this agreeability can deteriorate and the contractor may increasingly ask, “Where in the contract (or other documentation) does it say the software has to do that?” Once the honeymoon is over, the documented word (either in the contract, through delivered metrics documentation, or on-line access) has the most influence on contractor actions. By stressing the importance of metrics reporting early, you can avoid many problems later on.
From the user’s perspective, the software is only as good as the documentation (both written and interactive) that tells them how to use it. Failure to include in the xe "User:Documentation"user’s documentation changes made before delivery to the executable software can have profoundly negative effects. For example, changes in the order or format of the interactive input to an MIS, if not documented, can cause significant problems through confusing error messages — or even system crashes.

Software documentation can provide a vehicle for early user involvement in the development process. User visibility is necessary to ensure that user requirements are addressed early, rather than added later at much greater expense. Specification and design documents give the user the opportunity to review requirements before the system is designed or coded. If user documentation is not available for user review until program completion, design changes resulting from that review can cause significant schedule slippages and additional costs. Software requirements and designs must be clearly documented so they can be evaluated and deficiencies can be discovered and corrected. Remember, the best software design is of little value if it is incomprehensible to those who must translate it into code.
NOTE:
Touch-and-feel demonstrations are more effective mediums for user review of requirements than written specifications and design documents.

xe "Documentation:Development"Technical documentation should never be produced after the fact, nor for bureaucratic reasons. Like metrics, documentation must be an outgrowth of the normal development process, not an end in itself. It must be produced to capture the engineering process so that you and others can understand and benefit from what has occurred. Clear documentation prevents developers from getting lost in production activities, and helps maintainers in understanding what the software does and how it was built. Documentation must be prepared throughout the development process to capture the results of each engineering activity. [MARCINIAK90] Documentation, used as a reference tool to aid new personnel, users, and maintainers in becoming familiar with the software product, must be kept up to date. If not kept current, it will impede operational and maintenance efforts resulting in a needless waste of time, effort, and money. (Robust xe "Ada:Documentation"

xe "Documentation:Ada"Ada code with its narrative characteristics is almost self-documenting. However, the architecture and concept of operations must be clearly described.) [See the STSC’s Documentation Technology Report, April 1994.] [Online access to (or delivery of) technical documentation in electronic format saves development time and dollars.]
CAUTION!
The time and money saved by delaying or foregoing immediately needed documentation actually wastes time and money later in the program.

The bottom line for successful software development is adherence to the software engineering discipline discussed throughout these Guidelines for its stabilizing effects on the development process. No sounder advice can be given. As General George Washington explained in a letter of instructions to the captains of his Virginia regiments in 1759,
Discipline is the soul of an army. It makes small numbers formidable; procures success to the weak and esteem to all. [WASHINGTON59]

[image: image18.wmf]COMMANDMENT

WHERE DISCUSSED IN GUIDELINES

1

Thou shalt use risk assessment to direct

the development strategy.

Chapter 6,

Risk Management

2

Thou shalt create and maintain a

Software Development Plan with

quantifiable progress indicators.

Chapter 8,

Measurement and Metrics

3

Thou shalt manage the specification and

change of requirements.

Chapter 15,

Managing Process

Improvement, “Configuration

Management”

4

Thou shalt develop a Test Strategy and

Plan as part of the initial planning

process

Chapter 14,

Managing Software

Development

5

Thou shalt use metrics to continually

assess both process and product.

Chapter 8,

Measurement and Metrics

6

Thou shalt have a designated software

technical lead.

Chapter 1,

Software Acquisition Overview,

“People”

7

Thou shalt conduct formal inspections.

Chapter 15,

 Managing Process

Improvement

8

Thou shalt identify and track

discrepancies throughout the entire life

cycle.

Chapter 8,

Measurement and Metrics

9

Thou shalt not select CASE tools before

establishing methods

Chapter 10,

Software Tools

10

Thou shalt not let documentation drive

the software development process

Chapter 14,

Managing Software

Development

Table 14-6 The Ten Commandments of Software Development [DYE93]tc "Table 14-6
The Ten Commandments of Software Development [DYE93]"
REFERENCES

[AGRESTI86] Agresti, William W., ed., New Paradigms for Software Development, IEEE Computer Society Press, Washington, D.C., 1986

[BESIER95] Besier, Boris, Black-Box Testing: Techniques for Functional Testing of Software and Systems, John Wiley & Sons, Inc., New York, 1995

[BLACK93] Black, Peter, “The Next Generation of Weapons: Dependency on Electronic Systems Make Us Vulnerable,” Washington Technology, December 2, 1993

[BOEHM76] Boehm, Barry W., “Software Engineering,” IEEE Transactions on Computers, C-25, No. 12, December 1976

[BOOCH94] Booch, Grady, Software Engineering With Ada, Third Edition, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California, 1994

[BROOKS75] Brooks, Frederick, The Mythical Man-Month: Essays on Software Engineering, Addison Wesley, Reading Massachusetts, 1975

[BRYKCZYNSKI93] Brykczynski, Bill and David A. Wheeler, “An Annotated Bibliography on Software Inspections,” Institute of Defense Analysis, Alexandria, Virginia, January 1993

[CAID91] Government/Industry Acquisition Process Review Team, Clear Accountability in Design, Final Report, October 1991

[CHANNING92] Channing, William Ellery, as quoted by Lowell Jay Arthur, Improving Software Quality: An Insider’s Guide to TQM, John Wiley & Sons, Inc., New York, 1993

[COAD90] Coad, Peter and Edward Yourdon, Object-Oriented Analysis, Yourdon Press, Prentice Hall, Englewood Cliffs, New Jersey, 1990

[CUSUMANO95] Cusumano, Michael A., and Richard W. Selby, Microsoft Secrets: How the World’s Most Powerful Software Company Creates Technology, Shapes Markets, and Manages People, The Free Press, New York, 1995

[DEMING82] Deming, W. Edward, Out of Crisis, Massachusetts Institute for Technology, Center for Advanced Engineering Study, Cambridge, Massachusetts, 1982

[DENTON92] Denton, Lynn and Jody Kelly, Designing, Writing & Producing Computer Documentation, McGraw-Hill, Inc., New York, 1992

[deSAXE32] de Saxe, Field Marshall Maurice Comte, My Reveries on the Art of War, 1732

[DISNEY76] Disney, Walt, as quoted by Bob Thomas, Walt Disney, An American Original, Simon & Schuster, New York, 1976

[DMR91] “Strategies for Open Systems,” briefing presented by DMR Group, Inc. to SAF/AQK, March 14, 1991

[DOBBINS92] Dobbins, James H., “TQM Methods in Software,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[DYE93] Dye, Dick, “The Ten Commandments of Software Development,” CTA Tech-News, June 1, 1993

[HEIKAMP94] Heitkamp, Kenneth B., “Software Development Process Changes Implemented by the Cargo Movement Operations Systems (CMOS)”, memorandum from SSC/EA to SAF/AQK, February 25, 1994

[HOROWITZ91] Horowitz, Barry M., “Architecture, Architecture, Where Art Thou, Architecture?” briefing prepared by MITRE, May 8, 1991

[JONES86] Jones, Capers, Programming Productivity, McGraw-Hill Book Co., New York, 1986

[KEENE91] Keene, Charles A., white paper “Lessons-Learned: Nuclear Mission Planning and Production System,” AF Strategic Communications-Computer Center (SAC), Offutt AFB, Nebraska, January 17, 1991

[KELLER93] Keller, Ted, briefing “Providing Man-Rated Software for the Space Shuttle,” IBM, Houston, Texas, 1993

[KOLKHORST88] Kolkhorst, Barbara G., and A.J. Macina, “Developing Error-Free Software,” Fifth International Conference on Testing Computer Software, US Professional Development Institute, Silver Springs, Maryland, June 1988

[McMENAMIN84] McMenamin, Steve and John Palmer, Essential Systems Analysis, Yourdon Press, Englewood Cliffs, New Jersey, 1984

[MERRILL92] Merrill, Paul H., Not the Orange Book, Merlyn Press, Wright-Patterson, AFB, Ohio, 1992

[MOSLEY93] Mosley, Daniel J., The Handbook of MIS Application Software Testing: Methods, Techniques, and Tools for Assuring Quality Through Testing, Yourdon Press, Englewood Cliffs, New Jersey, 1993

[NAPOLEON08] Napoleon I, a conversation with Marshall Murat on March 14, 1808, Christopher J. Herold, ed., The Mind of Napoleon: A Selection from his Written and Spoken Words, Columbia University Press, New York, 1955

[PAULSON79] Paulson, Paul J., as quoted in the New York Times, May 4, 1979

[PAYTON92] Payton, Teri F., briefing, “Reuse Context,” presented at the STARS/Air Force Reuse Orientation, October 14, 1992

[PRESSMAN93] Pressman, Roger S., “Understanding Software Engineering Practices: Required at SEI Level 2 Process Maturity,” briefing prepared for the Software Engineering Process Group, July 30, 1993

[PUTNAM92] Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software On Time, Within Budget, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992

[REZNICHENKO84] Reznichenko, Col General V.G., Taktika, 1884

[SHUMATE92] Shumate, Ken and Marilyn Keller, Software Specification and Design: A Disciplined Approach for Real-Time Systems, John Wiley & Sons, Inc., New York, 1992

[STRASSMANN93] Strassmann, Paul A., “Information Warfare for Low-Intensity Conflicts,” briefing presented to the Army Executives for Software (ARES), West Point, New York, July 15, 1993

[THOMPSON91] Thompson (SCXS), “Guidelines” comments from SCXS, March 15, 1991

[WASHINGTON59] Letter to the captains of the Virginia regiments, July 29, 1759, The Writings of George Washington, John C. Fitzgerald, ed., Washington DC, 1931-41

[YOURDON90] Yourdon, Edward N., Modern Structured Analysis, Prentice Hall, New Jersey, 1990

[YOURDON92] Yourdon, Edward N., Decline and Fall of the American Programmer, Yourdon Press, Englewood Cliffs, New Jersey, 1992

tc "<>"
CHAPTER 14tc "<>CHAPTER 14"
 Addendum Atc "<> Addendum A"
 tc "<> "
The Multilevel Information Systems Security Initiativetc "<>The Multilevel Information Systems Security Initiative"
Robert Cooney

Gloria Bilinski

EDITOR’S NOTE: This article appeared in the Navy newsletter, CHIPS, July 1995
The Need for Information Security: Providing the Basic Building Blocks for Computer and Communications Security
Computer systems and networks are playing an increasingly significant role in the everyday activities of DoD workers. Daily communications take place through an increasing number of applications, such as e-mail. Files are transferred and databases are accessed to obtain information. Users even login to computer systems from remote locations while on travel or other duty assignments.

How does this happen? Connectivity to either a LAN, such as Banyan or Novell, or a wide area network (WAN), such as the DISN, NAVNET or Internet, provides the travel path (the Information Highway), for information and communications to be exchanged locally, nationally and worldwide.

However, the increased usage of computer systems and networks in daily communications and other work-related activities brings with it certain concerns. One of the most important concerns is a need for security. A typical example is the use of e-mail. When it’s used for important business transactions and organizational communications, rather than just interpersonal messages, additional security requirements begin to arise.

Certain Assurances Are Needed

•
Information exchange with other users is authentic — it has not been modified or tampered with.

•
Information received originated from valid, authorized parties.

•
Information sent is received only by the intended parties.

•
Privacy — information exchanged cannot be observed by unauthorized viewers.

•
Any information or data has definitely reached its destination.

•
Assurances and protections should not only be reliable and dependable, but also cost-effective.

•
Because of the increased use of commercial-off-the-shelf products, users also want security protections capable of being integrated into commercially available products.

While this may seem like a tall order, it truly represents the needs of DoD’s emerging network cruising employees.

The MISSI Solution

In response to these needs and requirements, the National Security Agency (NSA) began a computer security development effort called the Multilevel Information Systems Security Initiative (MISSI). MISSI encompasses both the traditional Communications Security (COMSEC) and Computer Security (COMPUSEC) disciplines. MISSI’s goal is to provide dependable and affordable security services necessary to protect information from unauthorized disclosure or modification and to provide mechanisms to authenticate users participating in the exchange of information.

MISSI will provide, in the not-too-distant future, multilevel security (MLS) technology — the ability to combine automated information systems (AISs) of different classifications or sensitivity levels into one single, integrated system. In today’s networking environment, more and more computer systems are being consolidated. As different networks are integrated, and different levels of information are being handled on a network, each level must be protected sufficiently. MLS permits different levels of information, such as unclassified, sensitive and secret to be managed and controlled, so that although there is a single, integrated system, the information will still be separated according to its classification. Users will be able to integrate different classifications of information, with adequate security protection being provided to the full range of security levels.

The MISSI Approach

To provide security services, MISSI is evolving a series of products designed to be as flexible as possible. NSA worked closely with users to determine their security needs. After the requirements were identified, they were incorporated into the MISSI products. NSA also worked with industry so the products developed would be based on common standards and interoperable with commercially available products. MISSI’s products will evolve incrementally, as new requirements are identified and new technology becomes available. Each product release will increase the security protections available to users, but will still be compatible with preceding releases.

MISSI will provide basic building block products. These products, when combined, will provide security for computer applications such as e-mail systems, file transfer activities, database operations and remote logins. MISSI will also include a security management infrastructure so that security services can be managed.

MISSI Release 1

The first release of MISSI will focus on protecting sensitive but unclassified (SBU) e-mail in the Defense Message System (DMS). DMS is an important part of the Defense Information Infrastructure (DII) and will be implemented in strategic, tactical, fixed and mobile environments. In fact, all electronic messaging within DoD will have to migrate to DMS-compliant messaging. MISSI’s first release centers on providing security at a user’s workstation with writer-to-reader or desktop-to-desktop protection for DMS users. Collectively, MISSI products will provide the following security services:


Data integrity. Data integrity is the assurance that no changes have been made to information that has been sent. Users can be confident that data sent is the same data that is received, that no unauthorized modifications have been made.


User identification and authentication. Authentication services verify the identity of the creator or originator of a message. The recipient of the message can be certain that the sender is the named originator and not some impostor or other fraudulent entity.


User non-repudiation. Non-repudiation services provide undeniable proof of the identities of both the originator and the recipient of a message. Neither party can deny involvement in the information exchange.


Data encryption and decryption. Protection is provided through data encryption and decryption mechanisms allowing messages to be confidential and private. Only the intended recipient has access.

The Fortezza Card

The star of the show is the product used to provide these services, a cryptographic card known as the Fortezza card. Originally, this crypto card was called the Tessera crypto card, but because of a copyright infringement, that name was changed. Fortezza is an Italian word which, when translated into English, means a fortress. Based on the Personal Computer Memory Card International Association (PCMCIA) industry standard package, the Fortezza card is a combination of hardware and software. Although it is only the size of several credit cards stacked together, it is, in fact, a separate computer on a card. It contains its own processor and memory, and inputs and outputs through the 50 pin connection points on the end of the card.

DISA plans to give every DoD employee who will be issuing DMS messages into the DISN a Fortezza crypto card. Along with cryptographic data and various MISSI algorithms, the card will contain important security information about the user to which it belongs, such as the user’s credentials, clearance information and authorizations.

To use the Fortezza card, it must be inserted into a special card reader installed on the user’s workstation or PC. The Fortezza card will work with DOS, Windows, SCO UNIX, Sun OS, Solaris, HPUX and Macintosh operating systems. The card is activated by a four-digit personal identification number (PIN), similar to those used at automatic teller machines.

The Fortezza card uses public key technology which features a unique public key and private key. Cryptographic functions are performed using a private cryptographic key stored on the card that is unique to the card’s owner. The private key will be kept secret by the card and should be used only by the owner of the Fortezza card. The public key should be made available to everyone. Although the two keys are mathematically related, the private key cannot be determined from the public key. For DMS, the public keys will be available in the DMS X.500 Directory. This should quickly expand into the DoD Directory and eventually be used by applications other than messaging. (See earlier articles in CHIPS.)

The cryptographic functions allow a user to encrypt and decrypt e-mail, giving the user privacy and confidentiality. The Fortezza card also allows a user to digitally sign messages, replacing a handwritten signature. The digital signature security service is the electronic equivalent of registered mail. Just like a handwritten signature, a digital signature can be used to identify and authenticate the originator of a message verifying a message was sent by a particular user. A digital signature can also confirm that information has not been changed or modified after it was signed, thus ensuring message integrity.

Although the first release of MISSI will handle sensitive but unclassified messaging, future releases will support stronger cryptography and will be used to protect classified information. Watch for additional articles on Fortezza Plus and Fortezza for Secret, two follow-on programs of NSA that use this technology.

MISSI Security Management Services

The first phase of MISSI includes the infrastructure necessary to manage the security services provided by MISSI. This infrastructure will generate, distribute, update and revoke the cryptographic keys and the Fortezza cards. Specifically, security management involves managing the cryptographic keying, access control permissions and digital signature mechanism. It will also collect and analyze audit data relevant to security.

These security management functions will be performed on a workstation with special purpose application software. After the most recent change in component names, this workstation is now called the Certification Authority Workstation (CAW). This unique component, which will actually program Fortezza crypto cards, will be deployed in the more densely populated locations and, eventually, will most likely be found at the command level.

Other MISSI Products and Applications

Besides the Fortezza card, the MISSI building block products include firewall products, Secure Network Server (SNS) products and in-line network encryption products. A firewall is a set of components used to control access between two networks. Firewalls protect a network because they are designed so all traffic must pass through the firewall components. Only authorized computer communications and traffic is permitted to pass. Use of proxy agents and packet screening by both the sender and recipient address blocks provides most of the real work of this device.

A Secure Network Server is a computer that typically resides on the local network boundary acting as an MLS guard for the information handled and transmitted on the local network. An SNS located on the border of a computer network handling Secret information is an example. The SNS would ensure that Secret information handled on the network being protected would not inadvertently be passed to a network that is not equipped to handle Secret data, such as an Unclassified network.

In-line Network Encryption (INE) products are usually located at enclave boundaries between local and wide area networks, or on a single network between individual hosts/workstations that are operating at different security levels. These products will provide both encryption and access control services. By providing end-to-end encryption of data communications and access control between local area networks, INE products will ensure that information being transmitted is not disclosed to unauthorized parties.

Applications other than e-mail may benefit from MISSI products. Authenticated logons, CD-ROM encryption, fax encryption, electronic commerce and electronic data interchange can use the encryption and digital signature capabilities provided by MISSI.

If you are interested in obtaining additional information about any of the components mentioned, give us a call. We have a MISSI Testbed to demonstrate these components and can quickly prototype your own unique environment. Several pilots are currently in place at the Washington Navy Yard.

CHAPTER 14tc "<>CHAPTER 14"
 Addendum Btc "<> Addendum B"
 tc "<> "
If Architects Had to Work Like Programmerstc "<>If Architects Had to Work Like Programmers"
Mike Morgan

PKR2, Defense Information Systems Agency

Dear Mr. Architect:
Please design and build me a house. I am not quite sure what I need, so let’s get started. My house should have between two and 45 bedrooms. Just make sure the plans are such that the bedrooms can be easily added or deleted. When you bring the blueprints to me, I’ll make the final decision about what I want. Also, bring me the cost breakdowns for each configuration so I can arbitrarily pick one at a later time.

Keep in mind that the house I ultimately choose must cost less than the one I am currently living in. Make sure, however, that you correct all the deficiencies that exist in my current house (the floor of my kitchen vibrates when I walk across it, and the walls don’t have nearly enough insulation in them).

As you design, also keep in mind that I want to keep yearly maintenance costs as low as possible. This should mean the incorporation of extra-cost features like insulated windows or composite siding. (If you choose not to use Anderson insulated windows, be prepared to explain you decision.)

Please take care that modern design practices and the latest materials are used in construction of the house, as I want it to be a showplace for the most up-to-date ideas and methods. Be alerted, however, that the kitchen should accommodate (among other things) my 1952 Gibson refrigerator.

To assure that you are building the correct house for our entire family, you will need to contact each of my children and our in-laws. My mother-in-law will have very strong feelings about how the house should be designed, since she visits us at least once a year. Make sure you weigh all these options carefully and make recommendations. However, I retain the right to overrule any recommendation you make.

Please don’t bother me with small details right now. Your job is to develop the overall plans for the house and get the big picture. At this time, for example, it is not appropriate to be choosing the color of the carpeting; however, keep in mind that my wife likes blue.

Also, do not worry at this time about acquiring the resources to build the house itself. Your first priority is to develop detailed plans and specifications. Once I approve these plans, however, I would expect the house to be under roof within 48 hours.

While you are designing this house specifically for me, keep in mind that sooner or later I will have to sell it to someone else. It should — therefore appeal to a wide variety of potential buyers. Please make sure, before you finalize the plans, that there is a consensus of the potential home buyers in my area that they like the features of this house.

I advise you to run up and look at the house my neighbor built last year, as we like it a great deal. It has many things that we feel we need in our new home, particularly the 75-foot swimming pool. With careful engineering, I believe you can design this into our new house without impacting the construction cost.

Please prepare a complete set of blueprints. It is not necessary at this time to do the real design, since they will be used only for construction bids. Be advised, however, that you will be held accountable for any increase of construction cost as a result of later design changes.

You must be thrilled to be working on such an interesting project! To be able to use the latest techniques and materials and to be given such freedom in your designs is something that can’t happen very often. Contact me as soon as possible with your ideas and completed plans.

Sincerely,

The Client

PS:
My wife just told me she disagrees with many of the instructions I have given you in this letter. As the architect, it is your responsibility to resolve these differences. I have tried in the past and have failed to accomplish this. If you can’t handle this responsibility, I will have to find another architect.

PPS:
Perhaps what I need is not a house at all, but a travel trailer. Please advise me as soon as possible if this is the case.

CHAPTER 14tc "<>CHAPTER 14"
 Addendum Ctc "<> Addendum C"
 tc "<> "
On Board Software for the Boeing 777tc "<>On Board Software for the Boeing 777"
NOTE:
This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

14-3
14-15

