�tc "<>"�
CHAPTER
 15

Managing Process Improvement�tc "<>Managing Process Improvement"�

EDITOR
’
S NOTE: Graphics quality will improve when printed.

CHAPTER OVERVIEW

	General Edward C. Meyer, former Army Chief of Staff (1979-1983), had good advice for software program managers.

Leadership and management are neither synonymous nor interchangeable. Clearly good civilian managers must lead and good military leaders must manage. Both qualities are essential to success. [MEYER80]

	In this chapter you will
 learn that managing process improvement
requires a commitment from you to provide leadership, management direction, and the resources necessary to achieve improvement goals. The theory and concepts behind process improvement, such as
 building-in-quality
 through prevention of errors and early detection of inserted defects, perpetual improvement, and customer focus, are all aimed at the software development effort. Technology, such as the TQM process of
 Plan, Do, Study,
 and
 Act
are the tools by which quality objectives can be achieved. It is your job to institute process improvement throughout your program by ensuring the software process is constantly revisited, analyzed, and improved throughout its life cycle. Your development team must be motivated, mobilized, trained and supplied with the resources necessary to accomplish their process improvement goals.
Clearly, your commitment is the most vital element. Without it, process improvement is not attainable.
	
Process improvement is a never-ending task that can be accomplished through an effective and interactive development process, quality built-in and controlled, metrics, reviews, audits, and inspections, proactive, meaningful training, and well-planned and executed configuration management. Another key factor in managing process improvement is feedback through disciplined program/contract measurement and monitoring. One approach for tracking contractor performance is to implement an earned-value/credit/revenue method for accepting and rating deliverables.
 Earned-value
is tied to objectively observable steps, deliverables, and milestones. Basing your management approach on these activities will give you the means to make quality assessments, establish a proactive decision process, and attain your quality goals.
	Defects are one of the greatest risk items in software development. A commitment to software quality demands that defects be eliminated, not only from all products delivered, but from the processes that create those products. Sources of errors must be identified with emphasis placed on improving techniques for their early removal. Sound software engineering includes multiple embedded mechanisms for early defect causal analysis with
 defect prevention
as the goal. Every new build should contain less defects than its predecessor as your software evolves into a zero-defect product.

	Software quality assurance
 teams, process action teams, reviews, audits, and peer inspections are all geared towards the zero-defect challenge. They should be integrated into a well-rounded total quality management process. Peer inspections are an especially effective quality assurance tactic as they lead to improved product quality by instilling a sense of teamwork and pride in producing quality work. Independent verification and validation has traditionally been a necessary component for all major software developments. An IV&V team, established as part of the program team and composed of contractors or independent DoD evaluators, may still be useful; but, it may be unnecessary if truly effective process control with strong peer inspection mechanisms is in place.

	Cleanroom engineering
is a statistically controlled development method based on a team-oriented process of certification for reliable software systems. This method solves the unit testing problems of programmer bias and testing coverage. In Cleanroom, correctness is built into the software by the development team through special techniques for specification, design, and verification, prior to its release to Cleanroom certification test teams. This replaces traditional unit testing and debugging, and produces software of sufficient quality to directly enter system testing with no prior execution. All errors are accounted for from first execution on —
 with no private debugging allowed.
Cleanroom software has typically entered system testing with near to, or zero, defects. Peer reviews and a concentrated team effort to produce zero defects contribute to the dramatic improvements in quality experienced by Cleanroom teams.
	Increasing productivity is a paramount process improvement goal. Costs go down, quality goes up, and schedules shrink when productivity is improved. Ada, reuse, design and process simplicity, end-user involvement, prototyping and demonstrations, and sophisticated automated tools are all productivity enhancers. Another way to increase productivity is by selecting the contractor with the most mature development capability, exceptional skills and experience, and a history of success in developing Ada software in your domain of comparable size, scope, and complexity. Configuration management is another vital factor in successful software development. It is the glue that holds the whole development together. It keeps track of where you have been, where you are now, and where you are going. The earlier the contractor establishes configuration management control over executable code, the greater the probability for success.
�

�tc "<>"�
CHAPTER
 15

Managing Process Improvement�tc "<>Managing Process Improvement"�
ATTAINING THE �xe "Quality"�QUALITY OBJECTIVE

I hold that leadership is not a science, but an art. It conceives an ideal, states it as an objective, and then seeks actively and earnestly to attain it, everlastingly persevering, because the records of war are full of successes coming to those leaders who stuck it out just a little longer than their opponents.
— General Mathew B. Ridgway [RIDGWAY66]

The concept of process improvement is not a panacea, a quick fix, a passing fancy, nor a trendy management buzzword. It is a framework from which an ideal state can be approached. It places your program in a state of constant improvement to produce customer-defined quality products. Former Under Secretary of Defense for Acquisition, Robert B. �xe "Costello, Robert B."�Costello, defined process improvement as

…not a finite program with a beginning and an ending. It must be woven into the fabric of a management style. It must be built into the way we do our day to day business...[It] is not a vague concept, nor a program. It’s a managed, disciplined process for improving quality, increasing productivity, and eliminating non-value added activity. From a conceptual viewpoint,...quality management makes the top manager squarely responsible for the quality of the organization. [COSTELLO88]

By requiring that offerors describe their approach to process improvement in their proposals, you will gain insight into whether they can and will produce quality software. If there is a corporate commitment to process improvement, there is a better chance they will have control over the critical processes used to develop their software. Control of critical processes leads to a predictable, repeatable, measurable development process. This, in turn, improves the quality of the software products — the outputs of those processes. [BAKER92] By requiring in your RFP a software �xe "Process:Improvement:Process Improvement Plan"�Process Improvement Plan, you will be including an important risk management element that treats the software task as a process that must be controlled, measured, and improved. Process improvement activities are also critical in determining an organization’s software development maturity level. [BAKER92] The DoD �xe "Total quality management (TQM):Total Quality Master Plan (DoD)"�Total Quality Master Plan clearly states, “source selection strategies will consider continuous process improvement as one element of selection.” [TQMMP88] Process improvement not only increases software quality, but also increases productivity — resulting in shorter development times and cost savings.

WARNING!	Many contractors can write good plans, but have a poor track record at executing them. In addition to a good plan, insist that contractors provide demonstrable evidence that they have a process improvement plan in place and that real improvement has resulted over time. Beware of “something new just for you!”

A software process problem usually translates into a software quality problem. The problem is often an ill-defined or missing process resulting from unrealistic schedules or insufficient resources. Whatever the problem, quality is always increased through effective process improvement. Managing for process improvement is a technique for achieving increasingly higher levels of quality, schedule reductions, higher productivity, and lower product costs. Because improvements do not stand everlasting once a quality goal is achieved, you must throw out the old adage, “If it ain’t broke, don’t fix it.” Your leadership must stress that even if something appears to be working, it can always be made better. Unremitting improvement demands that you fervently, passionately, and forever challenge and upgrade your program status quo.

DoD has made a commitment to Total Quality Management (�xe "Total quality management (TQM)"�TQM). Accomplishing TQM objectives within your program depends on the application of concepts, theory, technology, people, planning, and organization. Process improvement cannot be accomplished without a �xe "Process:Improvement:Process Improvement Plan"�Process Improvement Plan. This plan, which should be a required deliverable in the RFP, must specify a vision and short-term, mid-range, and long-term improvement goals.

�xe "Process:Improvement:continuous"�Continuous improvement focuses on management control, coordination, and feedback from three concurrent processes: (1) the software development process, (2) the error/defect analysis and prevention process, and (3) the quality improvement process. [KINDL92] Successful software managers establish procedures to incessantly improve these processes through the use of quality assessments and management techniques to attain quality goals.

NOTE:	See the discussion on error/defect detection and removal in Chapter 14, Managing Software Development.

The long term benefits of process improvement are significant. Quality procedures reduce the number of errors/defects inserted during each phase of software development. This translates into a decrease in scrap and rework and greater efficiency for all subprocesses. Rather than correcting errors and defects, developers concentrate on preventing them through careful work, improved communications, control of procedures, and satisfaction of customer needs. A sound �xe "Measurement/metrics"�metrics program is the foundation of a quality process. Metrics are not, however, just a technique for assessing quality. They must be applied to program management and engineering activities as well. They play the most important role in evaluating the processes and products of your development efforts. [MARCINIAK90]
 [See the STSC’s report, Process Technology, Volume 1, March 1994.]

The practice of process improvement has other positive impacts. It stabilizes development with repeatable processes. It defines clear procedures for change and enables gradual technology transition. There is less resistance to new technology because the implementors of change are the same people who suggest it. At the very least, process improvement fosters a willingness to try new ideas. [KINDL92]

Quality �xe "Management"�management concentrates on all repetitive, cyclical, or routine work, and its improvement. It defines processes, process owners, requirements for those processes, measurements of the process and its outputs, and feedback channels. [ARTHUR93] �xe "Deming, W. Edward"�Deming’s “chain-reaction-theory” states that improvements in quality always and automatically result in reductions in cost and schedule with increases in productivity and performance. He stressed that choosing quality does not result in tradeoffs in the other success discriminators. To manage process improvement, Deming proclaimed, you must “adopt and institute leadership.” [DEMING82] Management concerns in which you can institute leadership and directly influence relentless process improvement include:

•	Risk management [discussed in Chapter 6, Risk Management],
•	Program/contract management,
•	Error/defect detection, removal [discussed in Chapter 14, Managing Software Development], and prevention,
•	Process/product measurement [discussed in Chapter 8, Measurement and Metrics],
•	Software reviews, audits, and peer inspections,
•	Independent verification and validation,
•	Reuse [discussed in Chapter 9, Reuse]
•	Productivity [discussed in Chapter 8, Measurement and Metrics], and
•	Configuration management.

A �xe "Process:Focused approach"�process-focused approach can achieve progressive, measurable improvement in your program. “Process-focused” means that your attention is concentrated mainly on your process, rather than your product. For example, you find (through the use of metrics) programmer productivity is falling behind the norm and your source code contains more defects than acceptable. You may discover that if your developer increases the level of detail that goes into the design, your programmers will have an easier time translating the design into accurate code. This is a process-focused approach. If instead, you add another test cycle to catch the defects after the fact, you will be using a “product-focused” approach. Fixing defective products takes more time and money than building it right initially. Improving the development process always achieves lower costs and higher quality!

Besides focusing on process, you need a systematic method to identify, correct, and prevent the root causes of problems. There are many approaches to describe this general procedure. One is the �xe "Shewhart Cycle"�Shewhart Cycle, a systematic approach towards achieving uninterrupted quality improvement. Figure 15-1 illustrates this repetitive approach, the steps of which include:

•	PLAN an approach for quality improvement. This involves studying the process flow and any existing data. Select possible improvements to the process, experiments to run, or data to collect.
•	DO the planned activity. Implement the planned improvement effort. Train the people responsible for improvement implementation.
•	STUDY the results. Measure the results of the implemented improvement effort. Analyze the data gathered.
•	ACT on the results. If the effort was truly an improvement, standardize and document it. If it was not successful, determine how to improve it.
•	REPEAT. Continue the cycle again by planning and carrying out further activity. [ESD94]

�
Figure 15-1 The Shewhart Cycle

The fundamental goals of software process improvement transcend the goals for all management activities, with �xe "Quality"�quality as number one. They are to:

•	Increase software product quality and user satisfaction,
•	Increase development productivity,
•	Reduce development cost,
•	Reduce schedule and technical risk,
•	More accurately estimate costs, schedules, and resources, and
•	Reduce scrap and rework.

Methods and techniques for process improvement abound. You must choose those that best suit your program, which might well be a custom-designed approach based on an assessment of your own development process. [KRASNER91]

In contrast to DoD software program failures, numerous studies have been conducted on the success of software development in �xe "Japanese software development"�Japan. With few exceptions, the Japanese are achieving very low software defect rates (approximately two orders of magnitude lower than the best American software companies). These studies cite data that confirm Japanese companies are developing custom software packages (similar to large DoD procurements) in 35% less time than US companies do. These lower defect rates and shorter schedules have translated into significant quality gains at lower cost. It is possible to produce higher quality software, cheaper, quicker, that is easier to maintain. [BAKER92] US companies are finding the same is true. Quality doesn’t cost; it pays! Many examples illustrate that increased costs associated with process improvement and adequate training are normally amortized within 12 months. Commitment to relentless process improvement with better business practices works for software as well as hardware.

To achieve process improvement, you must measure process effectiveness against stated objectives, such as lowering defect rates in delivered products. Measuring a process for the purpose of analysis-driven improvement includes indicators of �xe "Measurement/metrics:Quality"�product (quality) and �xe "Measurement/metrics:Management"�management (estimating, planning, and monitoring) factors. �xe "Measurement/metrics:Process"��xe "Process:Effectiveness"�Process effectiveness (and opportunities for improvement) are assessed through quantitatively measuring product, process, and management quality. Some relationships between these types of measures and the general goals of each are suggested in Figure 15-2.

�
Figure 15-2 Process Measurement Metrics [STARS92]

NOTE:	See Chapter 7, Software Development Maturity, “Capability Maturity Model (CMMSM)” which is aimed at assessing “process.” See Chapter 8, Measurement and Metrics, for an in-depth discussion on how to set up a metrics program.

Data must be analyzed to identify weak aspects of the defined process and to provide feedback to improve the process. This can be a process used within the development program (intra-development process control or improvement) or within the framework of a database of process definitions, thereby leveraging process improvements across programs and organizations (institutionalized organizational or inter-development process improvement.) [STARS92]

The software problems identified in this book have affected software developments for decades. It is, therefore, important to recognize the benefits of analyzing past program problems. Applying the principles of TQM and the benefits gained from lessons-learned will help improve the development process. As your developer implements a structured approach for process improvement, they will be identifying problems, analyzing data, evaluating possible solutions, and working with teams. Placing emphasis on �xe "Process"�process, rather than product, results in a successful, defined, refined process and product. Table 15-1 outlines the �xe "Software Program Managers Network (SPMN)"�Software Program Managers Network’s �xe "Software Program Managers Network (SPMN):Flight Plan for Success"��xe "Flight Plan for Success"�Flight Plan for Success in managing large-scale software-intensive programs.

�

Table 15-1 Flight Plan for Success

�

Table 15-1 Flight Plan for Success (cont.)

NOTE:	The Air Force Process Improvement Guide provides an overview of a range of measurement tools you can use for process improvement and lists where to obtain additional information about them.
 [ESD94]

PROGRAM/CONTRACT MANAGEMENT

Software development is a very unique, complex management challenge, the approach for which must depend on your individual program needs. The process-approach to management has proven effective at the �xe "Warner Robbins Air Logistics Center (WR-ALC)"�Warner Robbins Air Logistics Center (WR-ALC), Robins AFB, Georgia, and is applicable to any software development organization (Government or industry). This approach is based on the application of sound, proven, process control techniques.

The first step in the WR-ALC approach is to ensure that those processes used to develop the software product(s) possess certain characteristics. These include:

·	Software deliverable characteristics must be defined before product development begins;
·	A software product that is workable, measurable, and deliverable must be produced at the completion of each process step; and
·	Each delivered software product must satisfy the user’s needs (or a designated portion thereof).

The next step is to put an �xe "Review:Informal"�informal review process in place, as well as a �xe "Repository, deliverables"�deliverable repository. The informal review process is implemented to determine if deliverables meet their intended design objectives. The repository is structured so it will not, under any circumstances, accept a deliverable unless, and until, the review activity agrees it properly meets its specification as defined in the �xe "Software Development Plan (SDP)"�SDP
 [discussed in Chapter 14, Managing Software Development].
 It is only when the repository accepts the deliverable that the development organization may receive credit, and therefore, earn compensation for the work performed. Care must be taken to ensure that the software development process is small enough so it represents a complete task that provides a distinct deliverable. Likewise, the review process must not be so large that it is overwhelming, lethargic, or meaningless. The development organization must posture itself to insure that each process is a credit/value/revenue earning entity. �xe "Earned-value"��xe "Cost:Earned-value"�Earned-value is tied to objectively observable steps, deliverables, and milestones, as illustrated in Figure 15-3. Each unit is either completed (or not completed. No credit is earned for incomplete units and value is only earned after completion of a milestone. Resources provided to the entity may ebb and flow as activities performed during the process vary. The assignment of process resources is one of the metrics reviewed as the deliverables are produced (or not produced).

�
Figure 15-3 Earned-Value through Objectively Observable Milestones

An important step in this process-approach is �xe "Process:Evaluation"�process evaluation. As software deliverables are created and sent to the repository (a one-way flow), resources used to produce deliverable(s) must be tracked. �xe "Resources:Tracking"�Resource tracking involves measuring actual resource expenditures against SDP projected resources. At review cycle conclusion, action must be taken to address any problem area that caused the deliverable not to be produced as planned. Problems might include: inadequate planning, insufficient type/number of resources committed, or personnel not properly trained. If the deliverable was not developed as planned, the development process must be revised to insure it will work more efficiently in the future. [WEISS92]

In 1984, the earned-value approach was used by the �xe "F-16 Fighting Falcon"�F-16C/D SPO during the Block 25D cockpit avionics remechanization, the delivery of which was to contain the complete �xe "Advanced Medium-Range Air-to-Air Missile (AMRAAM)"�Advanced Medium-Range Air-to-Air Missile (AMRAAM) capability. When the software contractor failed to deliver the second OFP on schedule, the SPO had objective earned-value data describing the dollar value of the delinquent work. This provided a basis for withholding progress payments. When the hardware contractor slipped delivery on the radar hardware (the APG-68), the Air Force withheld 10.6% on payments for deliveries with less than full specification compliance. By the end of 1984, approximately $24.7 million had been withheld from the software development contract and $21.8 million from the hardware production contract. By mid 1985, a total of $93 million in progress payments had been withheld.

Use of the earned-value approach was an effective way to get these contractors’ attention. A hefty message was sent where it hurt the most — in their pocketbooks! Early in 1984, the software contractor quickly informed the SPO of the process improvement activities they were implementing to focus attention and manpower on solving their software development problems. These included:

•	They withdrew from competition on several other electronics contracts to free up experienced people for assignment to their avionics efforts.
•	They reorganized and reduced the supervision ratio from 40:1 to 20:1, allowing first-line supervisors to take a more active role in technical direction and group planning.
•	They split their software engineering/development section into three sections: F-16 Systems Engineering, F-111 Systems Engineering, and Validation and Testing.
•	They established a Planning and Control Group which studied the feasibility and impacts of taking on new corporate commitments and the manpower needed to support them. The group also tracked programs, alerted management to schedule deviations, and developed recovery plans.
•	They consolidated testing activities and talent into a centralized location.
•	They set up an Executive Software Review Committee to assess how the company developed software, to recommend improvements, and to implement long-term solutions for reducing development schedules. A single point of contact was appointed who reported directly to their vice president for research and engineering and to the F-16 Program Director.
•	They increased management commitment to place greater emphasis on software development and began an accelerated manpower ramp up in their avionics department to accommodate future block schedules.

Process improvement is always more successful when a government/contractor team effort. The SPO sought to improve their requirements process by better defining the remechanization task. Line pilots reinforced previous test perceptions that routine tasks were, in fact, more difficult in the F-16C/D than its predecessor. They formed a General Officers panel that flew orientation flights on the new system. An independent Cockpit Review Team was also implemented that used simulators and developmental aircraft to check and refine the �xe "Pilot Vehicle Interface (PVI)"�Pilot Vehicle Interface (PVI).

Two years after overcoming their difficulties, the dual team watched the first Block 25B roll off the production line. Over the next several years, the F-16 was equipped with even more capable software. With the implementation of management process improvement and the appropriate use of metrics tools to estimate software development workload (e.g., COCOMO, as discussed in Chapter 8
, Measurement and Metrics
) and track intermediate step completion (e.g., earned-value), the F-16 software upgrade went as smoothly as planned. The F-16’s revolutionary software systems were integral to its success (and the success of other Air Force weapons systems) in neutralizing the enemy during the �xe "Operation Desert Storm"�Gulf War. Whether the requirement was for precise bombing against fixed or mobile targets, carrying out “killer scout” missions, identifying and marking elusive ground targets for other attack aircraft, or providing reinforcement to air-to-air-combat missions, the F-16 proved to be a formidable adversary and an awesome team player in history’s greatest air campaign. The successful upgrades to its software-controlled systems were key to the F-16’s multi-tactical role in achieving an unprecedented victory for American air power.

�xe "Cost:Cost/Schedule Control System Criteria (C/SCSC)"�Cost/Schedule Control System Criteria (C/SCSC)

A C/SCSC and a �xe "Cost:Performance:Cost Performance Report (CPR)"�Cost Performance Report (CPR) should be employed on major contracts with an RDT&E budget greater than $70 million and a procurement value of more than $300 million (in FY96 constant dollars). The C/SCSC system was designed to produce a single database of management metrics for all major DoD acquisitions. [NOTE: C/SCSC, or a commercial equivalent, should also be considered for high risk MIS programs.] Cost data are provided through the standard CPR so managers (both Government and industry) can determine cost and schedule performance using earned-value techniques. Earned-value output data from these systems are then used to make independent assessments of contract cost and schedule status. As work proceeds against a budgeted program, dollars are earned as they are expended. Earned-value is a measure of progress against the plan. [HEWITT93]

To ensure uniformity across DoD programs, the contractor’s management system is validated against a set of predefined C/SCSC criteria. Contractors are not required to revise existing systems, except as necessary to satisfy DoD cost monitoring requirements with accurate data. The documentation and data required are limited to the minimum needed to satisfy requirements. The contractor’s C/SCSC must produce data that:

•	Indicate work progress,
•	Relate cost, schedule, and technical accomplishment,
•	Are valid, timely, and auditable, and
•	Provide DoD managers with practical summaries.

The important consideration is that financial management be integrated with program management. The contractor should breakdown all known work for the next six months into detailed �xe "Work breakdown structure (WBS):Work package"�work packages using the contract WBS supplied on contract award. A monthly �xe "Budget:Contract"��xe "Contract:Budget"�contract budget is then developed based on the work package start and stop dates and on the detailed budget for each package. [MARCINIAK90] The budget includes everything necessary to complete the work package, such as overhead, materials, labor, and schedule. This is a crucial step as it establishes the �xe "Budget:Baseline"�budget baseline for the entire contract.

As the work proceeds, expenditure and progress reports are used to track each work package. Performance is measured by comparing three quantities: �xe "Cost:Cost/Schedule Control System Criteria (C/SCSC):budgeted cost of work performed (BCWP)"�budgeted cost of work performed (BCWP), �xe "Cost:Cost/Schedule Control System Criteria (C/SCSC):actual cost of work performed (ACWP)"�actual cost of work performed (ACWP), and �xe "Schedule:Budgeted cost of work scheduled (BCWS)"��xe "Budget:Budgeted cost of work scheduled (BCWS)"��xe "Cost:Cost/Schedule Control System Criteria (C/SCSC):budgeted cost of work scheduled (BCWS)"�budgeted cost of work scheduled (BCWS). BCWP is the baseline measure of earned-value against the overall plan for the contract. Following each reporting period, BCWP is compared to ACWP for each work package to determine �xe "Cost:Performance"�cost performance (i.e., is the actual cost greater or less than the budgeted cost for each package). BCWP is also compared to BCWS to determine �xe "Schedule:Performance"�schedule performance (i.e., is each package ahead or behind schedule). Figure 15-4 is a simple illustration of how you can interpret these figures. In this example, BCWS exceeds BCWP. This negative variance implies the program is behind schedule. Likewise, the ACWP is greater than the BCWP, indicating that the program is headed for a cost overrun. The contractor is often required to report to the Government when cost or schedule variances exceed thresholds established by the contract.

�
Figure 15-4 C/SCSC Earned-Value Analysis

CAUTION!	It is important for your contractor to understand the causes of variances so they can take appropriate remedial action. It is also important for the Government to understand the causes of variances that will impact final program cost or schedule. Do not, however, set the reporting thresholds so low that your contractor spends all their time writing variance analyses rather than developing and delivering your product!

In 1991, the Office of the Under Secretary of Defense (Acquisition) sponsored a government/industry �xe "Team:Process action team (PAT)"�process action team (PAT) study of current RFPs and major contracts to determine why deficiencies in the C/SCSC system were occurring. They found that major problems, emanating from micro-management on the part of DoD and improper reporting on the part of contractors, indicate a need to streamline the system to reduce cost monitoring waste. The problems they encountered were:

•	WBS problems (e.g., levels too low; functional elements; or color of money),
•	C/SCSC implementation problems [e.g., C/SCSC is inappropriately required; on non-major contracts C/SCSC, CPR, and Cost/Schedule Status Report (C/SSR) are all required; improper subcontract flowdown; or a pert cost type system is specified],
•	Inadequate SOWs, and
•	Reporting problems [e.g., excessive CPR variance analysis; variance analysis guidance omitted; CCDR plans/reports; level-of-effort exceeded given percent required for notifying primary contracting office; or ANSI-X12 was not specified for �xe "
Electronic Data Interchange (EDI)"
�
Electronic Data Interchange (EDI
)]
.

Another common problem occurred when unrealistic baselines were established. While contractor cost management systems were closely aligned with C/SCSC compliance, their baselines could not be reset without contract modification. Large variances (attributable to the unrealistic baseline) occurred between baselines established early in the contract period and actual performance. To compensate, internal ad hoc systems began to evolve which documented performance against modified baseline work plans. This created a situation where the contractor planed activities using their ad hoc plan, and reported progress against a baseline they no longer used. The major symptom of these practices was poor �xe "Baseline:Integrity"�baseline integrity. Baseline integrity problems include:

•	�xe "Baseline:Front-loaded"�Front-loaded baselines delay the visibility of contract cost problems, as illustrated in Figure 15-5;

�

Figure 15-5 Front-loaded Baseline

•	�xe "Baseline:Rubber"�Rubber baselines also delay the visibility of contract cost problems since they are revised midstream in an attempt to match actual costs while staying within budgeted costs, as illustrated in Figure 15-6;

�

Figure 15-6 Rubber Baseline

•	Internal replanning causes large amounts of undistributed budget and excessive use of summary level planning packages, as illustrated in Figure 15-7;

�
Figure 15-7 Effects of Internal Planning

•	�xe "Budget:Baseline"��xe "Baseline:Budget"�Baseline budget exceeds contract value which builds overruns into plan and cost reports that do not depict true contact status (only performance against an ad hoc plan), as illustrated in Figure 15-8; and

�
Figure 15-8 Baseline Budget Exceeds Contract

•	Erratic variance patterns.

The PAT team concluded that baseline integrity is a function of data reliability, and problems associated with C/SCSC reviews were caused by poor contract management. Because the program management office owns the contract baseline, program management participation in the review process is key. The C/SCSC must not be viewed as merely a checklist drill, but as a program management tool. Your government team must, therefore, be prepared through pre-review analysis and training. The baseline must always be assessed before or during the C/SCSC review. Your technical staff must examine baseline content and time phasing so they understand the source of performance data, thus improving contract management understanding. Too often, earned-value insights remain the sole province of government/contractor cost analysis support staffs. Problems do not surface to the decision maker level until it is too late for remedial action. Therefore, earned-value must be a integral part of your “integrated” software development team approach. When management staffs are held accountable for earned-value analyses, they begin to understand earned-value implications. [OSD/A93]

Cost performance problems often surface as �xe "Estimation:Estimate at completion (EAC)"�estimate-at-completion (EAC) discrepancies. EAC is computed based on actuals to date, plus an estimate of future costs based on the contractor’s demonstrated cost and schedule efficiency. The �xe "Schedule:Performance:schedule performance index (SPI)"�schedule performance index (SPI) for efficiency is:

�

The �xe "Cost:Performance:cost performance index (CPI)"�cost performance index (CPI) for efficiency is:

�

Values greater than 1.0 represent performance better than planned (more efficient), and values less than 1.0 represent less efficient performance. Schedule inefficiencies, as well as cost inefficiencies, can contribute to cost overruns at completion. If your development effort is more than 15% complete and you are overrunning your baseline estimates — your percent of overrun at completion will be greater than your percent of overrun to date. This prediction is based on more than 700 DoD contracts since 1977. The conclusion is that, you cannot recover! If you have underestimated in the near-term, there is little hope you did much better on your far-term estimates. The solution to this problem is not to worry about recovering, but to figure out how you can keep from getting worse. Thus, you must adjust your far-term estimates. You must assume your future work will overrun at the same rate as your current behind-schedule condition, and adjust your far-term projections to this rate.

NOTE:	Consult with your cost analysis support staff if you need help in computing an EAC for your contract.

�xe "Measurement/metrics:Earned-value"�Earned-Value Software Metrics

According to Christensen and Ferens, there are several software metrics appropriate for BCWS, BCWP and ACWP. To be useful, a metric should be:

�

·	Relevant to the work being measured,
·	Explicit (directly measurable),
·	Objective,
·	Absolute (able to be assessed without reference to an average),
·	Timely (avail�able early in the program), and
·	Independent from the influence of personnel working on the program.

Of these, relevance is the most important property for earned-value. The first two metrics are also appropriate for earned-value measurement — with objectivity the most appropriate for ACWP. The re�maining four metrics are more useful in investigating variances than in the direct measurement of earned-value or actual costs. The following describes each metric and its relevance to the earned-value approach.

NOTE: 	See Chapter 8, Measurement and Metrics, for an in-depth discussion on metrics.

·	�xe "Requirements, software"�Requirements and �xe "Design"�design progress. This metric is based on the number of CSCI requirements determined during the first two phases of software development. The requirements are detailed in several documents [(�xe "System/Segment Design Document (SSDD)"�System/Segment Design Document (SSDD), �xe "Software Requirements Specification (SRS)"�Software Requirements Specification (SRS), �xe "Software Design Document (SDD)"�Software Design Document (SDD)] written during these phases. As illustrated in Figure 15-9, the planned and actual CSCI requirements are used for determining BCWS and BCWP, re�spectively. Figure 15-9 also illustrates that the total CSCI requirements may change. In addition, counting the requirements can be difficult. If these limitations can be overcome, this metric is a viable tool for earned-value application, especially early in the program.

�

Figure 15-9 Requirements and Design Process Metric

·	�xe "Coding"�Code and �xe "Testing"�testing progress. This metric is based on the number of CSUs that have been designed, coded, and tested. As illustrated in Figure 15-10, it is appropriate after the second phase of software development. Like the previous metric, the planned and actual CSUs represent BCWS and BCWP. In addition, the total number of planned CSUs for each phase represents the end point of the performance measurement baseline for that phase. Gener�ally, this metric is easier to measure than the previous one. CSU progress can be measured using a unit development folder or simi�lar technique. Also, more detailed information is known about the software program in these later phases.

�
Figure 15-10 Code and Test Progress Metric

Manmonths of �xe "Effort"�effort. As illustrated in Figure 15-11, this metric is based on manmonths throughout the program. As such, it is particularly useful for measuring ACWP because the costs of software development are almost entirely labor-related. Using planned manmonths (person-months) for BCWS and BCWP is inappropriate because available estimation methods may be inaccurate, and the time spent on the program may not correlate to progress. Neverthe�less, this metric is useful, if only because it is the single metric in this collection that directly reflects ACWP.

�
Figure 15-11 Manmonths Progress Metric

·	Software �xe "Size"�size. This metric tracks the size of the software during the entire program. Usually, size is expressed in source lines-of-code (SLOC) or function points. The total size may be divided into categories of new, modified, and reused code. Since there is a direct relationship between size and effort required, this metric is helpful in estimating actual cost. However, effort required and actual progress may not correlate; accordingly, the method may be inadequate as an earned-value metric, and should be used as a technical param�eter to investigate the cause of cost variances based on the other metrics.
·	�xe "Computer resource utilization"�Computer resource utilization. This metric is a measure of the available computer hardware timing, memory, and input/output (I/O) resources consumed by the software. It is closely related to the software size metric in that increases in total size result in a greater percentage of hardware resources utilized. Like software size, this metric is helpful early in the program for determining the causes of variances.
·	�xe "Requirements, software:Stability"�Requirements stability. This metric has similarities to the require�ments and design progress metric. Like that metric, requirements stability tracks total requirements; however, it also tracks the num�ber of changes (additions, deletions, and modifications) made to requirements throughout the entire development process. Numer�ous or frequent changes result in additional effort required, and explain unfavorable cost and schedule variances.
·	�xe "Design:Stability"�Design stability. This metric is like requirements stability in that it tracks the number of changes to the detailed design (CSUs). Like the code and testing progress metric, it is useful later in the program, after preliminary design is complete. Frequent lower-�level design changes result in additional effort required.

NOTE:	See Addendum A of this chapter, “Improving Software Economics in the Aerospace and Defense Industry.”

Table 15-2 lists the seven metrics just discussed, and indicates the role each metric can play in an earned-value performance mea�surement system. The table also indicates how well the metric satisfies the seven desirable properties of software metrics. Be�cause these properties are nearly identical to the goals for earned-value described in the C/SCSC, they are viable candidates for earned-value application, especially the first three listed in the table. Granted, the metrics described here are not the only ones. You should also consider the �xe "Measurement/metrics:Quality"�quality metrics [discussed in Chapter 8,
Measurement and Metrics]
 that track defects, complexity and modularity. While these metrics do not di�rectly relate to earned-value measurement, they help measure qual�ity, which is the sine qua non of software programs. Using them in tandem with the ones recommended for earned-value is highly recommended. [CHRISTENSEN95]

�
Table 15-2 Software Metrics for Earned-Value

�

Lessons-Learned from the Navy Seawolf Program
�tc "<>"�
NOTE:	See Chapter 5, Ada: The Enabling Technology, for a brief description of this program. Also see Volume 2, Appendix O, Chapter 15 Addendum C, “Lessons-Learned from BSY-2’s Trenches.”

•	Establish direct lines of communication among program office, developers, and IV&V for identifying and resolving problems.
•	Exchange information among stakeholder agencies for increased visibility program-wide.
•	Improve prime contractor control through weekly monitoring and quarterly audits of subcontractor efforts. Require mandatory attendance at technical and working group meetings for all team members.
•	Beginning early in the program, routinely review processes related to software development (e.g., CM, SQA, testing).
•	Establish a streamlined waiver request process for reporting contract deviations.
•	Develop an extensive Ada training program (with concentration on software engineering) that is customized for application-specific requirements.
•	Involve government representatives from multiple disciplines (quality, test, readiness, operability) in the review of contractor processes.

Lessons-Learned from SSC and CSC
�tc "<>"�
NOTE:	See Chapter 5, Ada: The Enabling Technology, for a description of the programs upon which these lessons-learned are based.

•	It is essential that management structure and communications procedures allow for the diplomatic and timely resolution of development problems. Use team building techniques to co-locate government/contractor teams and cultivate open lines of communications.
•	Development of a pre-review checklist ensures all necessary actions (e.g., arranging for the facility, notification, documentation preparation, distribution, etc.) are accomplished.
•	Lessons-learned must be documented as they occur because they are not easy to recall during the heavy workload associated with preparing for a major review. A standard form should be designed to aid in the collection of input from team members. Each task should appoint a POC to collect and document task input on a continuous basis.
•	Make sure the metrics used agree with the development methodology; e.g., the SDP should define a set of metrics tailored for use with object-oriented methodologies.
•	“Kits” are informal internal communications tools. Any design decision, regardless of how specific it is, should be documented in Kit format. If that decision is modified, then that Kit should be revised with the new information.
•	An integrated toolset enhances productivity. A tool that allows the use of any word processor, without losing the ability to directly port to other development and configuration management tools, saves valuable manhours spent retyping and reformatting documents.
•	Previous lessons-learned must be heeded. A single point of contact should be established for coordination and dissemination of lessons-learned.
•	To maximize the use of in-house expertise in problem solving, publish a list of experts and their corresponding areas of expertise.
•	Interfaces are key to establishing the system’s classification and security needs. Late identification of these key factors will adversely impact the program’s schedule. Planning for external interfaces must begin in the Task-Level Planning Phase with interface requirements gathering, identification, and agreements.
•	A system must operate effectively and support the needs of the environment in which it is placed. A business analysis establishes the policies and practices of the system’s users, and ensures that the requirements gathered and the system developed will meet users’ needs.
•	The process for learning how to use all the reuse repositories is time consuming because each is different. When possible, each team should assign reuse repository responsibilities to a single individual or small group of individuals.
•	To establish, refine, and maintain a repeatable process, a lessons-learned process improvement form should be established. The form provides a way to capture the results of an activity.
•	To facilitate the smooth release of a document which is revised periodically (such as the SDP), it is necessary that the changes be incessantly gathered and inserted into a master copy of the document rather than waiting until near delivery date to do it all.
•	Because DoD does not train its officers to be dedicated software program managers, the situation often occurs where program managers find themselves inadequately trained for the job at hand. The benefit of a proven and repeatable software development process is that a checklist of key practices required for proper software development may be used with confidence, even by someone inexperienced in the processes involved.
Software Quality Assurance

Offerors’ proposals should discuss their corporate program for �xe "Quality:Software quality assurance (SQA)"�software quality assurance (SQA) to include: organization, procedures, and personnel. Be aware, the traditional review-oriented approach to software quality assurance often fails to achieve quality software. A quality assurance approach emphasizing the evaluation of completed (or close to completion) software yields very little towards the goal of quality software. This type approach is a costly way to detect and correct defects already built into the code. It does not reduce or prevent the occurrence of errors. Software quality cannot be inspected or tested in, it must be built-in. A SQA program must emphasize early SQA involvement throughout the software development process. To fully integrate SQA into your software development, you should require that SQA status is reported monthly at all program management and software reviews. [�xe "MIL-STD-498"�MIL-STD-498, Appendix D, identifies those software products that should undergo quality evaluations. For an example of SQA efforts on the F-22 Program, see Volume 2, Appendix K, Software Support.]

In source selection, you must look for the offeror’s approach to SQA that not only conforms to specifications, plans, and procedures, but concentrates on a quality process for �xe "Error:Prevention"�error prevention. [BAKER92] You should also use these data to determine the level, extent, and type of independent verification and validation (�xe "Independent verification and validation (IV&V)"�IV&V) required for their software development effort. Obviously, the offeror with the most comprehensive, institutionalized quality control process will require the least IV&V. [Quality is discussed in Chapter 9, Measurement and Metrics. A sample paragraph for including software quality assurance in the RFP is provided in Volume 2, Appendix M.]

There is a distinction between quality control and quality assurance. �xe "Quality:Control"�Quality control is implementation (design/code/test)-oriented; it is the developer’s task to build a quality product. Quality assurance is inspection-oriented; it is the software quality assurance (SQA) team’s task to assure a quality product
 and
 process. [GLASS92] SQA must be an integral part of the software development effort. One approach is to have an independent team of people (who are not necessarily developers) review the development process. The SQA team’s role is to monitor and verify that methods and standards are being properly implemented by developers. SQA, a discipline in its own right, should consist of quality experts who establish a strong quality program. [HUMPHREY90] A SQA program is:

A planned and systematic pattern of all actions necessary to provide adequate confidence that the item or product conforms to established technical requirements.
[ANSI/IEEE83]

The SQA can take the form of a quality assurance team, a change/inspection review board, a product test group, independent verification and validation personnel, or a combination of these. [GLASS92] The SQA element should have both government and industry team members with knowledge of statistical methods, quality control principles, the software development process, and an ability to deal effectively with people in a constructive manner. [HUMPHREY90] Figure15-12 illustrates how SQA is integrated into the entire system life cycle.

�
Figure 15-12 Software Quality Assurance and System Life Cycle [KINDL92]

Another important quality team, the �xe "Team:Process action team (PAT)"�process action team (PAT), is made up of small groups of developers and software verifiers who analyze defects and identify their causes. Team members are the analysts, programmers, and verifiers for whom software product quality is their daily responsibility. These teams also determine how to remove defect cause, and subsequently, implement process changes. The idea is to have those who execute the development process also execute the improvement process. [KINDL92]

The effectiveness of SQA and process action teams is rooted in the strength of your management and of their combined contribution to a common quality goal. Once these teams are formed, there is a danger that the responsibility for quality itself can become split between the developers and the quality experts — thus diluted. It is your responsibility to make sure this does not happen. A clear definition of individual team responsibilities is vital. How these teams work together, from an overall program management perspective, is your call. Whichever method you choose, it is vital to maintain organizational independence between the two. Figure 15-13 illustrates how a development team might be organized to insure objectivity in a quality software process.

�
Figure 15-13	Sample Management Structure for an Independent SQA Element [GLASS92]

Key to a successful quality program is total support and commitment from management. The responsibility to analyze and execute rests with the SQA and the developer. The responsibility to allocate resources and make decisions that support process improvement rests with you. [KINDL92]

As you learned in Chapter 14,
Managing Software Development
, engineering quality into DoD software requires that your developer inspect, test, and remove defects from requirements, design, documentation, code, test plans, and tests. Effective quality assurance means that standard procedures are established to measure defects, determine their root causes, and take action to prevent future occurrences. Built-in, as part of the development process, must be a procedure to change the process, facilitating perpetual improvement. Such a process is self-correcting where future measurement provide convincing evidence of cost-effectiveness. Figure 15-14 illustrates the management factors that must be considered during the development process improvement.

�
Figure 15-14 Management Factors to Address for a Quality Product [KINDL92]

�xe "Defect:Prevention"�Defect Prevention

A formal defect prevention program should be established that empowers developers and software testers to analyze the causes of defects, and to enact improvements to their own local development processes. This empowerment helps prevent future defect insertion and enhances the detection process. [KINDL92] Defect prevention directly relates to the quality of the development process. The degree of prevention is dependent on the degree of process improvement accomplished throughout the development. How a process improvement approach pays off with defect prevention is best described through example. Prior to implementing a process improvement approach, the design manager for the Boeing �xe "B-1B Lancer"�B-1B avionics program admitted, “It used to take about 25% more effort to correct all the design errors than it took to complete the original software design.” [BENDER90] Prior to starting work on the newly awarded B-1B �xe "Short-range Attack Missile II (SRAMII)"�Short-Range Missile II (SRAMII) integration contract, the Boeing software designers and engineers took an in-depth look at their previous software development process. They found that 25% of the effort was spent designing software, 6% on coding, and 29% on testing. The remaining 40% was spent fixing problems that could have been avoided with better upfront design. They concluded that, “If we could do things better upfront, we could avoid the costs involved with inspection and testing, and we wouldn’t have to fool around with changes and fixes later down the road.” [BENDER90]

A 20-member �xe "Team:Process action team (PAT)"�process action team met twice a week to eliminate the prior dependence on testing and to break down communication barriers. Detailed agendas of each biweekly meeting were distributed to ensure all stakeholders in the software effort attended. One of the first initiatives was to adopt a �xe "Measurement/metrics:Quality"�measure-of-quality (the number of defects per lines-of-code), and to track progress. After implementing improvements to prior software block developments, the frequency of defects during the SRAMII block development went down 20%. In addition, the contract schedule was met and costs were reduced by 60%. [KEOHLER90] The program manager recalled, “The most important thing we learned was that the earlier we isolated the problems, the easier and less costly the fix.” [BENDER90]

�

NOTE:	See Chapter 7, Software Development Maturity, “Benefits of Moving Up the Maturity Scale,” for discussions on defect removal and prevention returns on investment.

�xe \b "Defect:Causal analysis"�Defect Causal Analysis

Perhaps the most important aspect of software process improvement is defect causal analysis. Quality software demands that defects be eliminated and prevented, not only from all products delivered to users, but also from all the processes that create those products. [HOLDEN92] As discussed throughout these Guidelines, finding and correcting mistakes makes up an inordinately large portion of total software development cost. The level of effort for �xe "Rework:Cost of"�rework to correct defects is typically 40% to 50% of total software development, as illustrated in Figure 15-15.

�
Figure 15-15 Defect Rework Hidden Cost [BOEHM89]

BE AWARE!	Because this high level of rework does not reflect positively on developers, it is often not openly reported.

In addition, rework is distributed throughout the development phase as shown on Figure

15-16
. The effort required to correct defects becomes compounded the later they are detected. The snowball effect on cost occurs because all the work completed after their insertion often must be reworked, as it was based on erroneous foundations. [BRYKCZYNSKI931]

�
Figure 15-16 Rework Cost per Development Phase

Defects happen! If we cannot build defect free software, the cheapest, quickest, next best way to build good software is to learn from our mistakes and build it right the next time. Defect causal analysis is an effective method for improving software quality. It is an orderly technique for identifying problems and preventing defects. Causal analysis focuses not only on defect discovery, but also on what caused the defect to occur. The importance of this SQA approach is that it provides the necessary feedback for the improvement of tool use, software engineering training and education, and ultimately, the development process itself.

Figure 15-17 illustrates the causal analysis process where, at the start of each development phase, an entrance conference is held to review deliverables from the previous phase, to review process methodology guidelines and standards, and to set the team quality goals. These exercises start the �xe "Defect:Prevention"�defect prevention process, since they concentrate the team’s attention on the process-oriented development details soon to be performed. Throughout each phase, government audits, reviews, and formal peer inspections are scheduled, in addition to walkthroughs by corporate management. During these reviews, each work-product is checked for defects and rework is performed (as required) with follow-up reviews.

�
Figure 15-17 Defect Causal Analysis Process [YOURDON92]

The most important activity during this process is the preliminary causal analysis of the defects themselves. During causal analysis meetings, individual problems are isolated and analyzed (somewhere between 1-20 defects can be scrutinized). Each defect item is then added to a database where it is tracked by its description, how it was resolved, and the preliminary analysis of its cause. Another meeting is held at the end of the development phase which consists of a brainstorming session. The purpose of this meeting is to analyze defect causes, evaluate results versus goals set at the start of the phase, and to develop a list of suggested process improvements. The �xe "Team:Process action team (PAT):responsibilities"��xe "Team:Process action team (PAT)"�process action team (e.g., people from the tools, training, development, support, and testing group) must then respond to these suggestions. The process action team is responsible for:

·	Action item prioritization,
·	Action item status tracking,
·	Action item implementation,
·	Dissemination of feedback,
·	Causal analysis database administration,
·	Analysis of defects for generic classification, and
·	Success story visibility. [YOURDON92]

An example of a causal analysis tool is the �xe "Models:Software Defect Detection Model"��xe "Defect:Detection:Software Defect Detection Model"�Software Defect Detection Model used on the �xe "F-16 Fighting Falcon"�F-16C/D avionics program. The model is used to predict the total number of defects in core avionics operational flight programs (OFPs) and the detection rate for finding those problems. Use of the model has greatly reduced software defect insertion over the span of F-16C/D avionics programs. Figure 15-18 illustrates how the defect insertion rate progressively decreased by 1/3rd between production Blocks 30 and 40 and again between Blocks 40 and 50.

(Block 30B Software Defect Density = 9.8 Defects/thousand delivered source instructions (KDSIs))
�
Block 40B Software Defect Density = 1/3 reduction in software defect insertion rate from Block 30B
�
Block 50B Software Defect Density = 1/3 reduction in software defect insertion rate from Block 40B
Figure 15-18 F-16 Software Defect Detection Model Results

The F-16 model is driven by discovered defects which are logged into a simple database that categorizes them as open, closed, or canceled. An analysis of each defect is included, in addition to whether a fix was identified and confirmed. Defects causal analysis gives visibility into the quality of the test program, and maximizes the cost effectiveness and use of test assets. This defect measuring and correction process has been successful in transferring defect discovery to the upfront development phases, and away from defect detection during operational flight testing where human life is at risk.

�xe \b "Defect:Removal:efficiency"�Defect Removal Efficiency

An anomaly about defect detection in large software-intensive systems was identified in studies performed by major corporations (IBM, DEC, Wang, AT&T, and Hewlett-Packard). The aberration about the defects they found was that they were not randomly distributed throughout software applications. Rather amazingly, they become clumped into localized sections, called “�xe "Defect:Prone modules"�defect-prone modules.” As a rule, about 5% of the modules in large software systems will be infected with almost 50% of reported defects. Once those modules are identified, the defects are usually removable. High complexity and poor coding procedures are often the cause of defect coagulations in defect-prone modules. [JONES91] If modules are kept small (e.g., 100 SLOC), it is often cheaper and faster to just rewrite the module rather than search for and remove its defects. One useful product of defect measurement is called “defect removal efficiency.” This cumulative measure is defined as the ratio of defects found prior to delivery of the software system to the total number of defects found throughout development.

�

This indicator gives the cumulative percent of how many previously injected defects have been removed by the end of each development phase. Since the �xe "Defect:Removal:cost"��xe "Cost:Of defect removal"�cost of defect removal roughly doubles with each phase, early removal must be a process improvement priority. With this goal, each newly delivered software product can be expected to be of significantly higher quality than its predecessor. Increases in defect removal efficiency can be accomplished through improving the code inspection and unit testing processes. [See Chapter 14
, Managing Software Development,
 for a discussion on developer testing.] �xe "Inspection, peer:Efficiency"�Peer inspection efficiency [discussed below] is a very sensitive indicator of delivered software quality. Table 15-3 lists the 1990 national software defect removal efficiencies measured in function points.

�
Table 15-3 1990 US Software Defect Averages (in function points)

Measuring the efficiency of defect removal requires that each defect be evaluated to determine during which phase of development the defect was inserted. To accomplish this, it is smart to have your developer provide an identifier for each line-of-code produced that tracks when (e.g., development, test, or field maintenance phases) it was entered or changed. This is especially critical with incrementally developed products to ensure the distinction between residual defects and newly injected ones. Defects made during development must be separated from those inserted during maintenance and should be related to the increment where they were injected.
�xe "Review"�Reviews, Audits, and Inspections

Reviews, audits, and �xe "Inspection, peer"�peer inspections provide an effective way to improve the quality of the software production process. These procedures have the ability to foster process improvement and to motivate better work. When developers know their work will be critically examined by the Government and/or their peers, they are motivated to work more carefully, either by avoiding embarrassing messy mistakes or through pride in consistently producing a quality product.
[HUMPHREY90]

The RFP should request that offerors identify formal reviews, audits, and peer inspections that they plan to conduct within their software development organization and those in which the Government is invited to participate. Reviews and audits help the Government (and the contractor) in determining the contractor’s technical progress against their plan relative to cost and schedule.

Peer inspections serve a different purpose by providing an effective in-house process improvement and quality control mechanism. Offerors should be required to describe the extent to which they will incorporate peer inspection techniques in their development process, that their staff has the experience to make these activities useful, and that the reviews are an integral part of the normal software development process.

Reviews and audits are a risk reduction technique used to ensure that delivered software meets the user’s needs. They provide feedback and clarification to the contractor on the interpretation and implementation of requirements. They give the Government a chance to participate in user interface design, definition, and refinement and in test programs to verify software reliability and requirements compliance. Reviews and audits, usually marking a major milestone event, also provide the Government with a means to ensure software supportability. The accuracy and consistency of user and maintenance documentation must be reviewed to ensure life cycle support requirements are met. Aside from their benefits, however, the Government review and approval process is a major acquisition �xe "Cost:Driver"�cost driver and should be used judiciously.

Peer Inspections

Reducing the cost of rework through full-fledged formal peer inspections is a major evaluation criterion in the attainment of an SEI maturity Level 3, a Defined Process. In the commercial sector, where productivity and quality are critical to the survival of globally competitive software developers, inspections are widely employed. Reports from companies such as Raytheon, AT&T, IBM, and Bell-Northern Research abound with the benefits and cost savings experienced through peer inspections. NASA’s �xe "Space Shuttle"�Space Shuttle program, its Jet Propulsion Laboratory, and Goddard Space Flight Center all have quantified positive benefits through the use of peer inspections.

If you rely on testing alone to remove software defects, you will be passing about one out of every four defects on to your user. In addition, testing is almost useless in its ability to deal with front-end errors, such as those found in requirements and designs. While testing concentrates mainly on code, peer inspections can be performed on anything created by the development process that is visible and readable (such as requirements, documentation, designs, test cases, and test plans). Peer inspections are performed much nearer the point of insertion than testing, they use less resources for rework, and thus, more than pay for themselves. In fact, inspections can be applied to all phases of development to verify that key software quality �xe "Quality:Attributes"��xe "Attribute:Quality"�attributes are present immediately after the point at which they should first be introduced into the product. They can also be applied to test plans and test cases to improve testing defect detection efficiency.
[FAGAN86]

Peer inspections provide a formal, structured, disciplined approach to software quality control and process improvement. Because they are conducted by the software developer’s peers and co-workers, they have the benefit of instilling a sense of pride in work well done. They also stimulate increased attention to detail and carefulness in performance, not necessarily present when work products are self-inspected/tested. As General Patton proclaimed, “One of the primary purposes of discipline is to produce alertness.” [PATTON47] Defects brought to your attention by your peers have the tendency to be well-remembered and seldom repeated. Other �xe "Inspection, peer:Benefits of"�peer inspection benefits include:

•	They ensure that associated team members are technically aware of theirs and each others products;
•	They help to build high-performing technical teams;
•	They help to use the organization’s best talents;
•	They provide team members with a sense of achievement and participation;
•	They help the participants develop their skills as reviewers;
•	They provide an orderly means to implement a standard of software engineering excellence throughout the development program; and,
•	They pass along the lessons-learned of more experienced engineers to their junior, less experienced peers.

The basic �xe "Inspection, peer:Objectives"�objectives of inspections are to:

•	Find errors at the earliest possible point in the development cycle,
•	Ensure that the appropriate parties technically agree on the work,
•	Verify that the work meets predefined criteria,
•	Formally complete a technical task; and,
•	Provide data on the product and the inspection process. [HUMPHREY90]

Peer inspections are not to be confused with walkthroughs, which can be anything from casual peer reviews to management inspections. �xe "Walkthrough"�Walkthroughs usually do not employ a process that is defined, repeatable, or that collects data (whereas inspections do), and hence, they do not represent a process that can be studied and improved. [FAGAN86] Formal software peer inspections are structured events with a system of checklists and predefined roles for participants.

�xe "Inspection, peer:Cost of"��xe "Cost:Of inspections"�Cost and Quality Benefits of Inspections

Given their proven benefits, it is alarming that inspections are seldom used by software developers on large DoD software-intensive programs. A report by the �xe "Institute for Defense Analysis (IDA)"�Institute for Defense Analysis (IDA) states one reason for DoD’s reluctance to jump on the peer inspection bandwagon is the increased upfront spending required — even though the downstream benefits are well documented. IDA estimates inspections require an upfront investment of up to 15% of total software development costs. They indicate the peer inspection investment reaps 25% to 35% increases in total �xe "Productivity:Increasing"�productivity, which translates into 25% to 35% schedule savings by reducing costly rework in later phases.

Formal peer inspections are an industry-proven, verified and documented, successful method for removing defects and reducing costs. They can eliminate approximately 80% of all software �xe "Defect:Removal"�defects, and when combined with normal testing, can reduce the number of latent defects in fielded software by a factor of 10. [BRYKCZYNSKI932] Figures gathered from the O’Neill Software Inspections Course indicate that the implementation of a peer inspection program initially results in the detection of 50% of inserted defects. As an organization acquires inspection skills and refines its process, the detection rate increases from 80% to 90% within 18 months.
[O’NEILL94]

�xe "Process:Improvement:continuous"�Continuous process improvement eventually leads to fewer and fewer defects. This is a long-term commitment to quality based on a long-term evolutionary process. The question arises, “What do you do with the defects that are in your code now until such time that your process matures and you prevent more defects than you create?” In Chapter 14
, Managing Software Development, you learned
 that reliance on �xe "Testing"�testing alone will not remove all software defects. Because programmers perform unit testing on their own code, �xe "Defect:Removal:rate"�unit testing only has a 70-75% cumulative �xe "Defect:Removal:efficiency"�defect removal efficiency. [JONES91]

NOTE:	Defect detection (through testing) and their removal (through rework) leads to more defects through “bad fixes.” The Cleanroom process [discussed below], is a proven method for eliminating this source of defects.

Studies show that 31.2% of the defects found during system testing are inserted during the requirements analysis and design phases, 56.7% are inserted during coding, and 12.1% are inserted during unit testing and integration. [RAGLAND92] Figure 15-19 illustrates the number of defects that are passed on from one development phase to the next. The number of defects at the completion of unit testing, and the number of defects delivered to the field, are well documented industry averages. [JONES86]

�
Figure 15-19 Industry Average Defect Profile [JONES86]

Figure 15-20 illustrates the number of defects passed on from one development phase to the next when inspections are used as compared to testing alone. The cumulative effect of requirements, design, and code inspections has an order of magnitude reduction in the number of latent defects in fielded products. Jones’ statistics indicate that peer inspections produce the following results:

•	Peer inspections of requirements identify 40% of requirements errors;
•	Peer inspections of designs identify 55% of design errors and 15% of requirements errors escaping requirements reviews;
•	Peer inspections of code identify 65% of code defects, 20% of requirements errors, and 40% of design errors escaping design reviews; and
•	Peer inspections result in cumulative defect removals of 59% of requirements errors, 73% of design errors, and 65% of code defects. [JONES91]

�
Figure 15-20 Defect Profile with Inspections [JONES86]

In addition to the gains in quality, inspections produce corresponding �xe "Productivity:Increasing"�gains in productivity as the amount of rework needed to fix defects is greatly reduced. Inspections also uncover defects that are not found by testing. For example, testing alone cannot always identify special cases or unusual conditions where an algorithm produces incorrect results. [BRYKCZYNSKI932] �xe "Defect:Interface"�Interface defects are another example. Where one programmer’s code must interface with another programmer’s, the calling arguments in one module must be what the other module is expecting. If an inspection is not performed, this kind of defect can go undetected until integration or later. If left until coding, a defect of this type requires substantially more time and money to correct.
[Using Ada and compiling specifications will also catch the vast majority of these type defects.]
 [RAGLAND92] Design inspections examine the logic, efficiency, and clarity of the design as represented in design documentation. Studies show that almost �xe "Defect:Design insertion rate"�60% of software defects can be traced back to the design process. Design inspections provide detailed feedback on a relatively real-time basis. Therefore, they allow designers to experience process improvement as they progress through the design process. [AFFOURTIT92]

Studies show that companies using peer inspections tend to front load the commitment of �xe "Resources:Manpower"�personnel resources to the initial phases of development (to requirements and design). By doing this, they greatly reduce the effort required during testing and for scrap and/or rework of design and code. This results in an overall net reduction in development costs and schedule. Figure 15-21 illustrates the difference in resource loading against the time schedule between software development with and without inspections.

�
Figure 15-21 Personnel Resource Expenditures With and Without Inspections

Formal Peer Inspection �xe "Inspection, peer:Process"�Process

�xe "Team:Peer inspection team"�Inspection team members must prepare in advance, and have their concerns and questions identified before the inspection starts. The purpose of inspections is to identify problems, not to resolve them. Follow-up and defect removal are the responsibility of the inspected product’s creator. These strict procedures, combined with checklists and standards, ensure that inspections are conducted within a minimum time frame. Generic checklists and standards are developed for each inspection type and tailored to specific program needs. These checklists cover inspection planning, preparation, conduct, exit and reporting criteria. [HUMPHREY90] �xe "Inspection, peer:Exit criteria"�Exit criteria are the standards against which inspections measure the completion of a work product at the end of a development operation. They verify the presence or absence of the �xe "Quality:Attributes"��xe "Attribute:Quality"�quality attributes that satisfy the requirement(s). [A deviation from an exit criterion is a defect.] [FAGAN86] Inspections are conducted by technical personnel for technical personnel. Managers do not attend, but are provided with the findings and the dates when identified problems will be/are resolved. Inspection data must be entered into a database and used to monitor inspection effectiveness and track product quality. [HUMPHREY90]

The inspection consists of a defined series of steps, such as overview, preparation, inspection, rework, and follow-up, as illustrated by the �xe "Inspection, peer:Fagan Inspection Process"��xe "Fagan Inspection Process"�Fagan Inspection Process on Table 15-4. The inspected work product is relatively small, sometimes only 4 to 5 pages of code. The inspection meeting is usually attended by a small number (4 to 5) co-workers and lasts less than two hours. Because inspections are rigorous, exacting technical work, defect detection efficiency in meetings over two hours tends to drop considerably. [FREEDMAN90] A task is assigned to each inspector, which Fagan defines as:

·	�xe "Inspection, peer:Moderator"�Moderator. The moderator manages the inspection team while playing an active role as an inspector. He must be competent in the type of work being inspected and have the ability to be tactful, diplomatic, forceful, and to work well with others.
·	�xe "Inspection, peer:Author"�Author. The author is the creator of the work product being inspected. He has a vested interest in ensuring that the inspection finds all possible defects and the product meets exit criteria without ambiguity.
·	�xe "Inspection, peer:Reader"�Reader. The reader is usually someone who depends on the inspected product to perform their work. During the inspection, readers paraphrase each statement in their own words, expressing the meaning of each statement with a level of understanding sufficient to demonstrate that they can carry out the next stage of development or fully use the work product.
·	�xe "Inspection, peer:Tester"�Tester. The tester considers how he would test the product — what paths, data, states, conditions, what expected results, etc., — and express test cases as questions. [FAGAN95]

�

Table 15-4 Fagan Inspection Process Activities [FAGAN95]

The work product author is responsible for post-inspection defect removal and corrections. Suggested improvements are provided by other team members during the inspection meeting. �xe "Defect:Causal analysis"�Defect causal analysis is usually performed by a �xe "Team:Process action team (PAT)"�process action team after an inspection to identify process improvements that will prevent future occurrences of the same class of defect. [BRYKCZYNSKI932] [Consult a reference such as Humphrey’s Managing the Software Process for more information on how to implement an inspection program.] [HUMPHREY90]

Peer Inspection Case Study

A case study was performed on an engineering organization that manufactures products for other engineers. Their software is written by engineers (mechanical and electrical) who see testing as an integral part of the engineering process. Their products are highly specialized and semi-experimental. The users operate their products on a daily basis and call in problem reports. The study separated defects (did not meet requirements) from enhancements (new requirements). The study covered three groups of 30-35 engineers each. Each group was trained using a different inspection methodology; however, the amount of testing remained constant throughout the study. All the groups discovered numerous defects prior to testing, which meant few defects were found during testing. The amount of user-discovered defects remained the same as before implementing an inspection process for two of the groups. While, the third group experienced an 80% reduction in user-discovered defects.

The study concluded that you can tell at what SEI CMMSM Level an organization is by looking at its inspection checklists. Inspection checklists for Level 1 organizations contain things like format, comment readability, initialization of variables. The two groups which did not show improvement in user-discovered defects use a Level 1 inspection checklist in which they looked for things an automated test tool could have checked during unit testing. Inspection checklists used by Level 5 organizations focus on timing and interface problems usually not discovered until system integration. The third group used a Level 5 inspection checklist, which focused on understanding how a given module fit into the overall system, requirements traceability, and user profiles/scenarios. This required the third group to review artifacts (similar to OT&E) not normally reviewed during software inspections. The study arrived at the following conclusions:

·	An inspection process will reduce the amount of defects discovered during testing and allow defects to be corrected sooner and cheaper.
·	An inspection process’ ability to reduce the number of user-discovered defects depends heavily on its goals, format standardization, or early detection of errors an automated test tool would have trouble finding (e.g., determining if a module satisfies user operational requirements, interfaces with other models, or is devoid of timing problems).
·	The number of tests conducted should not be lower as a result of implementing an inspection process. The time it takes to conduct the tests could be less than without inspection, if testing finds fewer defects, which in turn, result in writing few problem reports. [SONNEMANN94]

�xe "Contractor:Buy-in"��xe "Inspection, peer:Buy-in"�Peer Inspection Buy-In

Current DoD acquisition guidance includes peer inspections as a recommended approach to software quality. However, less effective methods such as walkthroughs and informal reviews may also be used. This latitude in acceptable approaches makes it relatively easy for contractors to avoid peer inspections altogether. To benefit from this proven method of defect detection, removal, and prevention, you must make sure your developer has a formal, institutionalized, peer inspection process in place. You must also make sure you have your contractor’s full cooperation and buy-in on the value and use of formal peer inspections. Contractor management and technical personnel often resist peer inspections because the process requires that a software developer’s work be exposed to very intense group scrutiny. However, industry studies confirm that formal peer inspections are efficient ways to remove software defects, especially for ultra-large software developments. [RUSSELL91]

Peer Inspection �xe "Inspection, peer:Training"��xe "Training:Peer inspection"�Training

Do not forget that the application of effective software inspections requires �xe "Training:For peer inspections"�training. There are a number of industry training courses available. [O’Neill Software Inspections Course and Loral (formerly IBM-Houston) on contract to the Air Force are two sources. Contact the STSC for more information. (See Volume 2, Appendix A for information on how to contact these sources.)] Companies that provide inspection training rely on repeat business, and often train their customers’ entire software staff, including management. [BRYKCZYNSKI932]

ATTENTION!	If you are managing an on-going program for which inspections would be beneficial, consider an investment in this training for your team.

�xe "Independent verification and validation (IV&V)"�Independent Verification & Validation (IV&V)

IV&V is a process for evaluating software and associated products for compliance with requirements and specifications by a third party. In February 1992, the Air Force Inspector General published a report on the effectiveness of software IV&V within the Air Force. The results of this report showed that IV&V is an effective tool — but poorly utilized. It also found that, in programs where it was applied, it was performed inconsistently. [TIG92] Determining whether to implement IV&V in your program must depend on the degree of risk you identify. For guidance on IV&V, consult �xe "DoD-STD-1703"��xe "National Institute of Standards (NIST)"�NIST Special Publication 500-165, Software Verification and Validation, and �xe "American National Standards Institute (ANSI)"�ANSI/�xe "Institute of Electrical and Electronics Engineers"�IEEE Standard 1012-1986, IEEE Standard for Software Verification and Validation.
�xe "Cleanroom engineering"�Cleanroom Engineering

Software engineers have always sought to take advantage of evolutionary advances in technology to achieve revolutionary improvements in quality and productivity. The best technological approach of today quickly becomes outmoded in the wake of an innovative, superior process. In the engineering of software, several DoD organizations are demonstrating an approach to software engineering that is revolutionizing traditional software development practices. This approach is called “Cleanroom engineering,” which was adopted from the hardware industry to emphasize the concept of an engineering environment devoid of contaminating factors that adversely affect product quality. Like a contaminant-free hardware environment, the Cleanroom process emphasizes �xe "Cleanroom engineering:Defect prevention"��xe "Defect:Prevention:Cleanroom"�preventing defects, rather than removing them after the fact. [CLEAN902]

The Cleanroom approach differs from traditional software engineering approaches in that it is a theory-based, team-oriented process for development and verification of ultra-high-reliability software systems by improving productivity through statistical quality control. Cleanroom delivers software with a known and certified �xe "Mean-time-to-failure (MTTF)"�mean-time-to-failure (MTTF). It combines practical new methods of specification, design, correctness verification, and statistical testing for certifying software quality using a process based on incremental development, as summarized on Figure 15-22. Note that the formal specification is algebraic, and correctness verification is used in place of unit testing and debugging where all defects are accounted for from first execution.

�
Figure 15-22 Cleanroom Process Model [PRESSMAN93]

Cleanroom development teams produce software approaching zero-defects through the use of a rigorous stepwise refinement and verification process for specification and design using object-based Box Structure technology. Box Structures permit precise definition of required user functions and system object architectures which scale up to maintain intellectual control of large software developments. With Cleanroom, correctness is built-in, not tested in!

Cleanroom achieves statistical quality control over software development by strictly separating the design process from the testing process. Unlike the traditional waterfall, Cleanroom management is based on development and independent certification testing of a pipeline of user-function increments that accumulate into the final product, as illustrated in Figure 15-23. System integration is top-down with system functionality growing through the addition of successive increments. When the final increment is complete, the system is complete. At each stage, the harmonious operation of future increments at the next level of refinement is predefined by increments already in execution; therefore, interface and design defects are rare.

�
Figure 15-23 Cleanroom Pipeline Construction

Cleanroom applies a top-down, stepwise refinement of the total design, with correctness verification required at each refinement step. Cleanroom programmers deal with a complete set of eventualities in anticipation of the statistical testing of their code (not found in traditional methods) that are beyond their choosing or control. This leads to a level of design precision and completeness that is thought through at each refinement step. Mainline processing and exception handling [discussed in Chapter 5,
 Ada: The Enabling Technology]
 are addressed upfront because statistical testing requires that the software perform with all possible inputs, both correct and incorrect, at each increment. Incremental development enables early and continual user feedback and assessment of product quality, and facilitates improvements as development progresses. The incremental approach permits controlled, stepwise integration and quality certification of components — avoiding the risky eleventh-hour integration. The result is a more coherent, systematic design with complete required behavior built-in at each refinement, not added on after the fact.

�xe "Cleanroom engineering:Correctness verification"�Correctness Verification

Cleanroom-developed software is subject to rigorous verification by development teams prior to release to certification test teams. A practical and powerful process, correctness verification permits development teams to completely verify the software with respect to specifications. A “�xe "Cleanroom engineering:Correctness Theorem"�Correctness Theorem” defines conditions to be met for achieving zero-defect software. These conditions are confirmed in special team reviews — through group reasoning and analysis that result in “mental-proofs-of-correctness.” Even though programs of any size contain virtually an infinite number of paths, the theorem reduces verification to a finite number of steps and ensures that all software logic is completely validated in all possible circumstances of use.

�xe "Testing:Unit testing:Cleanroom engineering"�Unit testing and �xe "Debug"�debugging by programmers is not part of Cleanroom because they compromise the correctness of the original design and introduce complex software defects from the “tunnel vision” inherent in the debugging process. In unit testing, programmers often focus on getting mainline code working first, testing other parts (such as exception handling) only if time permits. Treating any part of program logic as an afterthought can lead to incomplete solutions delivered with little or no testing.

NOTE: 	See Chapter 14, Managing software Development, for a discussion on the inadequacies of unit, integration, and system testing.

The effectiveness of correctness verification drives down the cost of quality by eliminating unnecessary testing, debugging, and rework. The verification process is far more powerful than unit testing in eliminating defects and is a major factor in the dramatic quality improvements experienced by Cleanroom teams. Correctness verification results in software of sufficient quality to enter system testing directly with no prior execution by the development team.

Cleanroom certification teams mathematically certify software reliability — they do not test it in. Following correctness verification, software increments are placed under engineering change control and undergo first execution. Statistical usage testing is performed to produce scientifically valid measures of software quality and reliability by testing software the way it is intended to be used. Test cases are built based on �xe "Cleanroom engineering:Usage probability distribution"��xe "Usage probability distribution"�usage probability distributions that model anticipated use in all possible circumstances, including unusual and stressed situations. Objective statistical measures of software reliability, such as MTTF, are computed based on test results. Because Cleanroom statistical testing is based on random sampling driven from input probability distributions, independent of human selection, it is uniquely effective at finding first those more serious, high-frequency defects with high failure rates first. It is, thus, far more effective at improving software reliability in less time than traditional testing methods.

The Cleanroom test team is responsible for validating software quality with respect to its specification. If the software’s quality is not acceptable, it is removed from testing and returned to the development team for rework and reverification. [DYER92] Figure 15-24 illustrates the Cleanroom certification process.

�

Figure 15-24 Cleanroom Certification Process [LINGER94]

Cleanroom Engineering �xe "Cleanroom engineering:Results"�Results

The Cleanroom process can be applied to the development of new systems, maintenance and evolution of existing systems, and salvage and re-engineering of problem systems. It is language, environment, and subject-matter independent and can be used to develop and evolve a variety of systems, including real-time, embedded, host, distributed, workstation, client-server, and microcode systems. Cleanroom is compatible with object-oriented and prototyping techniques, and promotes reuse through precise definition of component functional semantics and certification of component reliability. Cleanroom has been adopted by over 30 development organizations who have never experienced a Cleanroom program failure. Examples of DoD Cleanroom programs include:

•	�xe "Software Technology for Adaptable, Reliable System:Air Force STARS Demo Project"��xe "Air Force STARS Demonstration Project"�Air Force STARS Demonstration Project. The USAF Space and Warning Support Center at Peterson AFB, Colorado is integrating the SET, Inc.’s Cleanroom engineering process and TRW’s �xe "Process:Ada Process Model"��xe "Models:Ada Process Model"��xe "Ada:Process Model"�Ada Process Model to use the �xe "Reusable Integrated Command Center (RICC)"�Reusable Integrated Command Center (RICC) architecture tools. This combination of methodology and tools are being used to develop a Space Command and Control application. The �xe "Rational:Apex™"�Rational Apex™ product set [discussed in Chapter 10,
Software Tools
] is also being used to support this integration process.
•	�xe "Software Technology for Adaptable, Reliable System:Army STARS Demo Project"��xe "Army STARS Demonstration Project"�Army STARS Demonstration Project. The Army Life Cycle Software Engineering Center at Picatinny Arsenal is using the Cleanroom process on two programs, the �xe "Conduct of Fire Trainer (COFT)"�Conduct of Fire Trainer (COFT) and the �xe "Mortar Ballistics Computer (MBC)"�Mortar Ballistics Computer (MBC). On these programs, the development team achieved productivity gains over their baseline by a factor of 4. Quality (in terms of failures observed from first execution) increased substantially to less than one failure per KLOC. An accounting of the costs to perform the program, and the process improvement costs incurred to transfer the technologies to the team, was maintained so process improvement return on investment (ROI) could be calculated. The ROI was in excess of a factor of 10.
•	�xe "Naval Coastal Systems Station"�Naval Coastal Systems Station. The AN/KSQ-1 development team is applying the Cleanroom process to develop an embedded software system that provides a bridge between workstations and the �xe "Position Location Reporting System"�Position Location Reporting System. [SET93]

Since late 1993, experience with one million lines of Cleanroom-developed software from a variety of programs has shown extraordinary quality compared to traditional results. [The million lines-of-code exhibited a weighted average of 2.3 defects per thousand lines-of-code (KLOC), measured from first-ever execution to the completion of all testing] [HAUSLER94] As shown in Table 15-5, this defect rate compares to 50-60 defects/KLOC for traditional, software-as-art practices and 20-40 defects/KLOC for contemporary software engineering practices. [DYER90]

�
Table 15-5 Cleanroom Performance Measures (KLOC = 1,000 lines-of-code)

Highlights of Cleanroom programs with defect rates measured from first-ever execution of the software to completion of all testing are listed here. These developments have been produced by first-time Cleanroom teams composed of journeyman programmers.

•	�xe "IBM COBOL Structuring Facility"�IBM COBOL Structuring Facility. A six-person team developed a 85-KLOC product which automatically structures unstructured COBOL programs and experienced only 3.4 defects/KLOC in all testing. The product experienced 7 minor defects in the first three years of field use (all simple fixes) demonstrating the dramatic reduction in maintenance costs associated with Cleanroom products.
•	�xe "Ericsson AB Telecommunications Operating System"�Ericsson AB Telecommunications Operating System. A 73-person, 18-month, on-schedule development of a 350-KLOC operating system for switching computers resulted in 1.0 defect/KLOC in all testing. Productivity improved 70% in development and 100% in testing. They announced that on the development of a new operating system to support real-time applications they increased productivity by nearly 100% and decreased failure rates by more than a factor of 5. These improvements meet an organizational baseline, they claim, meets or exceeds their competitors in the telecommunications industry. They are accelerating their adoption of Cleanroom so they can more fully engineer future software solutions.
•	�xe "IBM AOEXPERT/MVS"�IBM AOEXPERT/MVS. A 50-person team developed this 107-KLOC complex, systems management product and experienced 2.6 defects/KLOC during testing. No defects were reported from beta sites and early users.
•	�xe "National Aeronautical Space Agency (NASA):Satellite Control Projects"�NASA Satellite Control Projects. NASA’s �xe "National Aeronautical Space Agency (NASA):Goddard Space Flight Center"�Goddard Space Flight Center �xe "Software Engineering Laboratory (SEL)"�Software Engineering Laboratory has completed its second and third Cleanroom programs, a 20-KLOC attitude determination subsystem and a 150-KLOC flight dynamics system that experienced a combined defect rate of 4.2 defects/KLOC in all testing.
•	�xe "IBM Tape Drive Microcode Project"�IBM Tape Drive Microcode Project. A five-person team developed an 86-KLOC embedded system for processing real-time data streams in a multiple-processor bus architecture. The program experienced 1.2 defects/KLOC in all testing. A total of 490 statistical tests were executed against the final version of the product with no defects found.

Cleanroom for �xe "Program:New-start"�New-Start Programs

While Cleanroom incorporates technologies with strong theoretical foundations, it also has strong techniques for management, development, and testing which have been simplified for practical application and are effective in everyday use by journeyman programming teams. Cleanroom provides a coherent management and technical framework for intellectually-controlled, on-schedule software production. Incremental development permits early quality assessment and user feedback on system function and avoids the risk associated with 11th hour component integration often experienced in traditional developments. The high quality of Cleanroom-developed software results in substantial reductions in maintenance and support costs.

The Cleanroom process can be integrated into DoD acquisition practices in terms of required program processes and deliverables. For example, statistical reliability certification can be specified, together with an incremental development process and deliverables associated with rigorous software specification, design, correctness verification, and certification.

Cleanroom for �xe "Program:On-going"�On-Going Programs

Modifications and extensions to existing software and non-Cleanroom software can be developed with Cleanroom specification, design, verification, and certification technology. In addition, problem-prone modules in existing systems can be re-engineered to Cleanroom quality through use of design abstraction and correctness verification techniques.

Cleanroom for �xe "Program:Troubled"�Troubled Programs

Cleanroom specification, design, verification, and certification technology provides a framework for objective status assessments of troubled software programs. It can be used to salvage and re-engineer partially-completed components into intellectual controlled, coherent structures. Incremental development provides a framework for management control in salvaging software assets and for the introduction of disciplined development processes.

�xe "Cleanroom engineering:Acquisition"��xe "Acquisition:Cleanroom-based"�Cleanroom Training

The Cleanroom process can be introduced through short, skills-based courses combined with consultation support by experienced Cleanroom practitioners. [For more information, contact the �xe "Software Technology for Adaptable, Reliable System"�STARS program office or STARS reports, such as, “Cleanroom Reliability Manager: A Case Study using Cleanroom with Box Structures ADL.” [STARS90] Overviews of the Cleanroom process and its introduction can be found in Hausler and Linger.] [HAUSLER94] [LINGER94]

Cleanroom �xe "Cleanroom engineering:Information about"�Information

If considering Cleanroom, is it strongly recommended you obtain the STSC’s Cleanroom Pamphlet, April 1995. [See Volume 2, Appendix A for information on how to contact the STSC.] It contains the following:
	
·	Linger, Richard C., “Cleanroom Software Engineering: Management Overview,” Software Engineering Institute
·	Hausler, P.A., Richard C. Linger, and C.J. Trammell, “Adopting Cleanroom Software Engineering with a Phased-Approach,” IBM Systems Journal, Vol.33, No. 1, 1994
·	Linger, Richard C., “Cleanroom Process Model,” IEEE Software, March 1994
·	Sherer, Wayne S., Paul G. Arnold, and Ara Kouchakdjian, “Experience Using Cleanroom Software Engineering in the US Army,” Proceedings from STC ’94 (updated)
·	Henderson, Johnnie, “Why Isn’t Cleanroom the Universal Software Development Methodology?”
·	Bibliography of Cleanroom articles/books
·	Listing of organizations that assist with Cleanroom adoption
IMPROVING �xe \b "Productivity"�PRODUCTIVITY

It is more than probable that the average man could, with no injury to his health, increase his efficiency fifty percent. — Sir Walter Scott

There is no denying that software technology has been the greatest instrument for improving man’s efficiency since the Industrial Revolution. When properly used, it provides remarkable competitive advantages. The paradox is, while software significantly increases the efficiency of its users, the way software is produced is usually quite inefficient. Software development remains extremely human-intensive, because the production process is imbued with human limitations
(i.e., software is, and will be for the foreseeable future, largely hand written). The bottom line, the goal, for everything discussed in this chapter on process improvement is to
 increase productivity.

NOTE:	See Chapter 8, Measurement and Metrics, for a discussion on measuring productivity and productivity cost drivers.

The reason we want to remove and prevent defects early is to eliminate the time wasted in scrap and rework of defective code. We want to build statistically controlled Cleanroom software to minimize the need for time-consuming unit testing. We want to produce modifiable, understandable, well-documented software to eliminate the costly wheel-spinning that occurs during fielding. All these process improvements are aimed at increasing productivity, which shortens the time to field, saving development dollars. Process improvements (such as automated tools, reusable software components, iterative refinement of prototypes through continuous user input and buy-off) are also key factors for high productivity. As technology advances, the way these processes are employed will also increasingly improve. [FISHER91]

�xe "Boehm, Barry W"�Boehm tells us that to stabilize the process, reduce team communication overhead and ripple effects, reduce risk, minimize requirements changes, specify interfaces more precisely, and capitalize on the software engineering methods promoted by the �xe "Ada"�Ada language, the following set of guidelines should be followed.

•	Use a set of risk management plans to drive the process, using incremental development to stabilize the process.
•	Try to get the uncertainties out of the requirements process, partly by prototyping.
•	Do not force your developer into a PDR in 90 days.
•	Do not force your developer into having to build 52 documents in 90 days (i.e., the less documentation required, the higher the productivity).
•	Do not allow your developer to overload the team with a huge number of people.
•	Do not use document milestones to drive program organization.
•	Do not force developers into having separate requirements and design teams; they will eventually have to integrate them.
•	Do not force every development into the same sequence.
•	Do not wait around passively for someone to provide definitive requirements.
•	Software people have to get involved in the systems engineering process. “That,” Boehm claims, “is the biggest leverage item of them all.” [BOEHM89]

Other basic ways to improve productivity include:

·	Using Ada [discussed in Chapter 5, Ada: The Enabling Technology],
·	Software development maturity [discussed in Chapter 7, Software Development Maturity],
·	Reuse, [discussed in Chapter 9, Reuse],
·	Design simplicity [discussed in Chapter 14, Managing Software Development, and in Chapter 8, Measurement and Metrics, under “Size” and “Complexity,”]
·	User involvement [discussed in Chapter 14, Managing Software Development]
·	Prototyping [discussed in Chapter 14, Managing Software Development],
·	Automated tools [discussed in Chapter 10, Software Tools], and
·	Training [discussed below].

Ada �xe "Ada:Use"�Use

The methods for increasing productivity must be selectively applied based on your development needs. One basic way for improving productivity is by using Ada. Figure 15-25, based on data collected by Reifer, illustrates the difference in time spent by programmers on Ada programs versus non-Ada programs. With the substantial portion of development time spent on design, the effort is focused on building-in quality, thus avoiding the productivity nullifiers of defect removal, scrap, and rework in later stages.

�
Figure 15-25 How Programmers Spend Their Time [HORTON89]

NOTE:	As mentioned in Chapter 5, Ada: The Enabling Technology, there is an anomaly concerning Ada and productivity. With other languages, as software size increases, productivity decreases. The experts concur that the surest way to increase downstream software productivity is to decrease the number of SLOC to be delivered. With Ada, however, as software size increases so does productivity. This relates in large measure to internal code reuse (i.e., within the Ada program) of about 30%.

�xe \b "Reuse"�Reuse

As discussed above, reuse is an effective technique for increasing productivity by reducing the number of source code instructions to be produced. One way to enhance the possibility of reuse is through the concept of �xe "Object-oriented:Development (OOD)"�object-oriented development (OOD) [discussed in Chapter 4,
Engineering Software-Intensive Systems]. By basing the system architecture on the characteristics
 of data rather than functions, the software tends to be more robust, easier to maintain, and easier to reuse.

�xe "Design:Simplicity"�Design Simplicity

Software size
(number of deliverable source code statements)
 and complexity have enormous impact on productivity. Therefore, design simplicity is a productive strategy. When specifications are too abstract, users have trouble understanding them because they cannot imagine what the new system will be like. Through feelings of uncertainty, and not being able to visualize what they will be getting, users often derive additional requirements. Because they do not know enough about the user’s environment, the developer will incorporate all the new requirements into the system. Often these requirements become superfluous, unnecessarily inflating development costs. This type of over-specification is sometimes called “�xe "Goldplating"�goldplating,” a great hindrance to software development productivity. Thus, it is important that specifications be simple and clear enough that users do not feel obliged to goldplate in an attempt to gain functionality they might already have — but cannot divine from the specification. [GLASS92] [Prototyping also guards against goldplating.]

NOTE:	Keep your Ada software modules small with clearly defined inputs and outputs — as if you were designing dependable and discrete components for inclusion on a printed circuit card. [MOSEMANN94]

�xe "User:Involvement"�User Involvement

Software designers usually lack the detailed knowledge required to understand the subtle aspects of the user’s problem environment to design the optimal system. Since user satisfaction is the main criterion for software quality and program success, user involvement is extremely necessary. There is a direct correlation between user involvement in design and user satisfaction. IBM conducted a study on user participation in design using a joint design methodology (as compared to traditional design techniques). Productivity was measured in function points. Their user-participative design method produced productivity improvements of 50%. [GILL90]

�xe "Prototyping:Increasing productivity with"��xe "Prototyping"�Prototyping

One way to avoid unnecessary complexity in development is through prototyping (and demonstrations). It is the best method for solving the problems associated with abstract software specifications. The user can see and experiment with software that really works. They can understand how the software will fulfill their needs, and then make useful and practical suggestions. Working with prototypes is the most effective way to train users and to get them productively involved in the development process. [Prototyping is discussed in detail in Chapter
14, Managing Software Development.]

�
�xe "Tools:Computer-aided software engineering (CASE)"�Automated Tools

Improving productivity requires making the programmer’s job easier. CASE tools provide easy ways to do this, but their selection must depend on detailed knowledge of programmer activities. Tool selection should be based on a needs-driven process with the help of the people who have to use them. If tools do not fit into the current process, the training required to learn new processes, or bend the old ones to fit the tool, can be costly. [Tools are discussed in detail in Chapter 10,
Software Tools.]

Maintenance of test environments is another important productivity enhancer gained by tools. Programmers spend a great deal of time building and rebuilding test environments. A well-organized test environment saves tremendous time during unit testing, systems testing, systems reviews, and quality control. [FISHER91] CASE tools are often used to produce graphic representations of systems specifications for the user’s review. Although CASE tools are great productivity enhancers, if improperly applied, they can have negative impacts. The difficulty with many CASE products is that they produce abstract graphic representations that can be as difficult for users to understand as traditional specifications. CASE diagrams often help designers communicate better among themselves, but not with the average user. Excessive automatic diagram generation can have the effect of overwhelming the user with stacks of specifications. Users then become less able to visualize how the system will work, and are less effective participants in its development. Your developer must first decide on a specific development methodology, and then look for those tools that are necessary to accomplish the specific needs that evolve. Excessive complexity in the development process is inordinately counterproductive.

Software Productivity Consortium

Founded in 1985, the �xe "Productivity:Software Productivity Consortium (SPC)"��xe "Software Productivity Consortium (SPC)"�Software Productivity Consortium (SPC) represents one of the nation’s most innovative and unique approaches to improving the processes and methods needed to develop and deploy major software-intensive systems. Consortium technologies in systems and software engineering focuses on continuous process improvement, risk mitigation, measurement, design, reuse, and technology insertion. It provides a common forum for software and systems engineers in the defense and civilian government agencies, the aerospace, defense, and systems integration industries, and the academic community. Its products and services help members achieve the higher levels of software maturity defined by the SEI’s CMMSM [discussed in Chapter
7, Software Development Maturity].

Through an on-going series of technology and executive forums, workshops, training courses, round tables, user group meetings, and other events focused on key issues of concern to the systems and software engineering community, the consortium serves as a fulcrum by which to leverage our efforts to advance the productivity, quality, and capability of the systems and software engineering process. The consortium technical program is tightly focused on advancing the fundamental processes and methods required to build software-intensive systems competitively. This focus is timely, as industry experience increasingly demonstrates that organizations without such software and systems engineering processes and methods can expect only marginal productivity gains through the use of automation technologies alone. Consortium products include:

·	The �xe "ADARTSSM"�ADARTSSM design method for real-time systems, currently the standard design method for avionics software on the �xe "F-22 Advanced Tactical Fighter"�F-22 and used by many other programs.
·	The �xe "Evolutionary Spiral Process (ESP)"�Evolutionary Spiral Process (ESP), a life cycle decision management and risk mitigation process in use on the Air Force �xe "Cheyenne Mountain Granite Sentry C2 upgrade"�Cheyenne Mountain Granite Sentry C2 upgrade, the Army’s All Source Analysis System, and other programs.
·	The �xe "Software Productivity Consortium (SPC):Consortium Requirements Engineering"�Consortium Requirements Engineering method for analysis and specification of real-time system requirements, used on the �xe "C-130J Hercules program"�C-130J upgrade by Lockheed.
·	The Reuse-driven Software Process methodology, used on the STARS/Boeing/Navy T-34C flight trainer program.
·	Several process improvement, measurement, and technology insertion processes and methods.

NOTE: 	Contact the consortium [see Volume 2, Appendices A and B] to receive their Catalog of Products and Services.
�xe \b "Training"�TRAINING

In any epoch, the difference between a rabble and an effective professional Army is training. No task is more important than training as we face this decade. 	
—General Edward C. Meyer

In this decade, the difference between rabble software developers and world class software engineers is training! This axiom was disclosed in a report from the Standard Systems Center, Gunter AFB, Alabama and the Communications Systems Center, Tinker, AFB, Oklahoma on lessons-learned from their Ada and software engineering programs, requested by SAF/AQK in March 1993. According to �xe "Lampe, Col George P."�Brigadier General George P. Lampe,

The overall message in both inputs is the need for a mature software process guided by qualified software engineers. Sound software engineering principles, such as requirements management, project management, and configuration management are the basis for successful projects. Most of the lessons-learned relate directly to these principles. It is essential for educated software engineers to lead projects to increase the probability of success. Without trained software professionals and a mature process, projects risk failure. [LAMPE93]

General Lampe went further to say that they found the two primary nontechnical concerns with Ada were training and reuse. Because �xe "Training:Ada"�Ada programmers require more training on some of the language’s intricacies, program mangers must be prepared to allow for the learning curve. This applies to both sides of the joint government/industry development team. To be equipped with the highest quality software engineering and management professionals, training is one of the most critical issues you face.

It is incumbent upon all managers (government and industry) to identify the software engineering requirements in their organization and to actively pursue software engineering education and training for personnel filling these positions. Establishing, educating, and maintaining a corps of software engineers is critical to the successful implementation of software policy objectives. Thus, you must choose software engineers who have completed the course work necessary for competency within your program domain. For contractor personnel, it is important that offerors propose a comprehensive training program for their development team once awarded the contract. It is recommended that your Air Force liaison staff assigned to the contractor’s facility also be included in these training programs. Better yet, seek contractors whose teams have already been well-trained.

NOTE:	See Volume 2, Appendices A and B for sources of training and education.

Be aware, many offerors will claim their software professionals are highly skilled — but few development teams are adequately trained to use the language and tools required of a new development effort. Additional training is necessary to:

·	Understand the protocols, system services, and software processes needed to manage the multi-vendor team of a major software-intensive software acquisition;
·	Understand the unique subtleties of the application they are to develop and implement; and
·	Plan, measure, track, control, and improve their own work in a standardized, disciplined fashion.

Without plans, funding, and scheduling for required training, learning will be gained through trial-and-error, which not only wastes time and money, but often involves substantial error. [HUMPHREY90] General George S. Patton, Jr. summed up why team training is so important when he said,

A pint of sweat will save a gallon of blood. [PATTON47]

The pint of resources committed to team training will save a gallon of blood in development time and money spent detecting and removing errors and defects from virtually every software artifact produced.

TRAINING IS NOT A FRILL; IT IS A NECESSITY! Assure adequate time and funding for superior training. Also, consider employment of “coaches” (i.e., subject matter experts) to enhance the learning experience and to consult as the development progresses.

If an integrated government/industry development team is planned, training for the team must be planned for, in addition to the training of government users/maintainers. You must require that offerors submit a �xe "Training:Plan"�Training Plan as part of their proposals, or as a deliverable after contract award. The cost of this requirement must also be addressed in the offeror’s cost proposal. When evaluating proposed training programs, be aware that training is often wasted because it is given on some arbitrary schedule without regard to when the people needing the training are in a position and at the stage during development to actually use and benefit from it. IBM developed a �xe "Training:Just-in-Time"��xe "Just-in-Time training program"�Just-in-Time training program that addresses this issue. Figure 15-26 illustrates one phase of their training program, the team launch (execution phase). Other Just-in-Time training programs are implemented for subsequent software development phases.

�
Figure 15-26 IBM’s Just-in-Time Training Approach

Lessons-Learned from SSC and CSC
�tc "<>"�
NOTE:	See Chapter 5, Ada: The Enabling Technology, for a description of the programs upon which these lessons-learned are based.

•	Blanket training should be used as it gives all team members needed insight into the overall development process and to better understand the impact of their area of specialization. Formal and on-the-job training should concentrate on each individual’s tasking. This process of creating specialists produces a core of expertise.
•	Training of other than program office personnel (i.e., users and maintainers) on the development process needs to be incorporated into the program schedule. DoD counterparts must be made aware that the impact of this training on the development schedule is not trivial.
•	The use of the integrated team and training schedules tends to result in classes composed of individuals with diverse backgrounds and software expertise. By soliciting feedback from the students, course instructors and managers can ensure objectives are met for all students.

NOTE:	See Volume 2, Appendix O, Chapter 15 Addendum B, “Training — Your Competitive Edge in the 90s,” by Eileen Quann.
�xe \b "Configuration management (CM)"�CONFIGURATION MANAGEMENT

I have known commanders who considered that once their plan was made and orders issued, they need take no further part in the proceedings, except to influence the battle by means of their reserves. Never was there a greater mistake. The modern battle can very quickly go off the rails. To succeed, a C-in-C must ensure from the beginning a very firm grip on his military machine; only in this way will his force maintain balance and cohesion and thus develop its full fighting potential.
— Field Marshall Montgomery [MONTGOMERY58]

Indeed, the modern software battle can very quickly go off the rails! To succeed in software management you must also ensure from the very beginning that you have a very firm grip on your software machine. Configuration management (CM) provides that essential element of control at the heart of the development process. It maintains and controls the product baseline, relates the life cycle to the development process, and maintains balance and cohesion among the process, its products, and its producers. Figure 15-27 illustrates how CM is a main ingredient in the �xe "Space Shuttle"�Space Shuttle software development process.

�
Figure 15-27 Space Shuttle Software Development Process

The configuration management task is, in theory, quite simple. In software, it embodies the practice of disciplined change control, technical and administrative guidance, surveillance, and a historical database of program progress. It defines the configuration of the software system, at discrete points in time, by systematically controlling changes and by maintaining configuration integrity and traceability throughout the system life cycle.

Configuration management facilitates communication among development team members on the status of documentation and software engineering efforts. It provides management (both Government and contractor) an identification, control, and accounting system for changes to functional, allocated, and product baselines. Configuration management is the management of change. Your RFP should require that offerors provide a �xe "Configuration management (CM):Plan"�Configuration Management Plan that addresses change control throughout the development process. This plan discusses the offeror’s configuration management organization, the tools to be used, configuration management person�nel experience, and a description of their configuration management training program. This plan should be evaluated against the program needs identified by the program office during acquisition planning. [BERLACK92]

Although simple in concept, implementing CM can be quite complicated. As multiple versions of the product are produced, tracking the source and object code baseline, documentation, and modules making up the software product escalates. Mainly administrative, CM requires careful execution of a well-defined set of tasks. The procedures for CM must include a predefined strategy for how the product evolution will be managed and facilitated without disrupting the baseline. Careful definitions of baselines and baseline configuration elements are necessary to control the cost and schedule impact of the CM process. Be aware, CM can become overburdened if too many baselines are specified and/or too many configuration elements are incorporated into each baseline. Another caution is, government and contractor CM teams can become vested in protection of the process and lose sight of their function to manage, control, and accommodate change. If this happens, you must work to promote process improvement within the CM process. [GLASS92]

CM is performed by the development contractor and the program office during the life of the system. It is performed by the contractor during the development process to identify and control evolving versions of software and documentation. �xe "Configuration management (CM):By contractor"�Contractor CM coordinates activities such as integration of components, testing, repair or modification of the software and documentation. CM is especially useful when multiple users and development organizations are involved. Figure 15-28 illustrates how CM tracks requirements on the F-22 avionics software program.

�
Figure 15-28 Requirements Tracking for the �xe "F-22 Advanced Tactical Fighter"�F-22

During development, �xe "Configuration management (CM):By Government"�Government CM includes controlling changes to �xe "System/Segment Specification (SSS)"�SSS functional and performance requirements. This usually entails chairing and participating on the �xe "Configuration management (CM):Configuration Control Board"�Configuration Control Board that approves requirements changes. The program office is responsible for performing CM (with possible contractor participation) after the software and its documentation are released to the Government. The Government must also assume responsibility for the configuration management of software requirements, implementation, and related deliverables. �xe "Configuration management (CM):Activities"�Configuration management activities consist of:

•	Identifying and documenting the functional and physical characteristics of each configuration item;
•	Controlling changes to each item and its documentation;
•	Recording the configuration of actual items; and,
•	Auditing each configuration item and its identification. [ROZUM92]

The importance of an efficient, smooth-running CM process cannot be over emphasized. It maintains and improves the evolving software product’s quality by preventing the introduction of inconsistencies and defects into the software product and its documentation resulting from the change process. Too often, development teams down-play the CM requirement and view it as a burdensome, bean-counting exercise that inhibits rapid response to needed changes. For CM to be effective, it must be properly managed and understood by all team members. It should be used to enhance communication on the status of documents and coding, as well as changes as they are made. It provides a way to identify completed and tested modules that can be reused in subsequent development, and increases software supportability once delivered. Supportability is augmented through well-defined software elements and a history of the software’s development — enabling cost-effective fixes and modifications with little impact on the user. Figure 15-29 illustrates the flow of the overall CM process.

�
Figure 15-29 Software Configuration Management Process [ROZUM92]

Configuration management also plays an important role in �xe "Configuration management (CM):Requirements tracking"��xe "Quality:Tracking"�requirements tracking and control by ensuring that what was designed (to a specified requirement) is what was built. Because you, the user, the developer, and the maintainer must plan for and analyze many difficult problems simply to define and understand requirements, a good software configuration manager is invaluable. CM captures evolving decisions and written products, and communicates progress and status to you and the development team. A strong CM process is an effective tool for implementing a quality development process. [BERLACK92]

�xe "Configuration management (CM):With Ada"�Configuration Management with Ada

Before Ada, the software developer’s configuration control, scheduling, change tracking, and other CM activities were usually hidden from, or inaccessible to, the government manager. Configuration information was often obtained through contractor-generated status accounting reports which could be skewed in their favor. An Ada SEE, such as the �xe "Aeronautical Systems Center/ Software Engineering:ASC/SEE"�ASC/SEE or �xe "Rational:Environment™"�Rational Environment™ [discussed in Chapter 10,
Software Tools]
,
 has the capability of producing automatic status accounting data for government inspection. This provides greater visibility than was once possible through source code and data management, documentation, test results, and corrective action status reports.

Both government and contractor configuration managers should take advantage of the Ada SEE’s CM capabilities. However, managers must have experience (or be trained in) the fundamental concepts of computer programming and in the SEE. They must be able to create/use the tools necessary to develop an Ada program-specific CM system. The contractor’s CM plan should describe the Ada SEE and its tools in such a way that ensures data from the SEE can be trusted and used to effectively control the Ada software development. Major Ada CM activities include version control, configuration control, and product release control.

An Ada SEE provides a very efficient CM process that is internal to the software environment. To fully exploit its capabilities, both CM managers must have fundamental Ada language knowledge and object-oriented development (if implemented). They do not have to know how to write Ada code, but must understand Ada’s features, such as program units, specifications and
bodies, packages, library functions, information hiding, and objects

[all discussed in Chapter 5,
 Ada: The Enabling Technology]
.
 [BERLACK92]

Progress occurs when courageous, skillful leaders seize the opportunity to change things for the better. — Harry S. Truman

Successful software managers seize every opportunity to improve their software process. Progress occurs when skillful leaders adopt software engineering methods and tools to promote and implement continuous improvement of the procedures and processes that bring quality to their products. User satisfaction, reliability, productivity, and cost all directly affect the quality of our software. Embracing management techniques that improve the software development process is key to winning the software challenge.
REFERENCES

[AFFOURTIT92] Affourtit, Barba B., “Statistical Process Control Applied to Software,” G. G. Schulmeyer and J.I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992
[ARTHUR93] Arthur, Lowell Jay, Improving Software Quality: An Insider’s Guide to TQM, John Wiley & Sons, Inc., New York, 1993
[BENDER90] Bender, Gherry, as quoted by Tom Keohler, “On B-1B, Avoiding ‘Bugs’ Early Beats Debugging Later,” Boeing News, July 13, 1990
[BOEHM89] Boehm, Barry W., as quoted by Ware Myers, “Software Pivotal to Strategic Defense,” IEEE Computer, January 1989
[BRYKCZYNSKI931] Brykczynski, Bill and David A. Wheeler, “An Annotated Bibliography on Software Inspections,” Institute for Defense Analysis, Alexandria, Virginia, January 1993
[BRYKZYNSKI932] Brykczynski, Bill, et al., “Software Inspections: Eliminating Software Defects,” briefing prepared by the Institute for Defense Analysis, February 5, 1993
[CHARETTE89] Charette, Robert N., Software Engineering Risk Analysis and Management, McGrall Hill Book Company, New York, 1989
[CHRUSCICKI93] Chruscicki, Andy, as quoted by Karen D. Schwartz, “Air Force Gets Going with Software Measurement: DecisionVision1 Provides Needed Measurement Tool, But Is It Ahead of Its Time?” Government Computer News, September 20, 1993
[COSTELLO88] Costello, Robert B., presentation to the Air Force Scientific Advisory Board, The National Defense University, October 20, 1988
[DEMING82] Deming, W. Edward, Out of Crisis, Massachusetts Institute for Technology, Center for Advanced Engineering Study, Cambridge, Massachusetts, 1982
[DYER90] Dyer, Michael, and A Kouchakdjian, “Correctness Verification: Alternative To Structural Software Testing,” Information and Software Technology, January/February 1990
[DYER92] Dyer, Michael, The Cleanroom Approach to Quality Software Development, John Wiley and Sons, Inc., New York, 1992
[ESD94] The Air Force Process Improvement Guide, Electronic Systems Division, Hanscom AFB, Massachusetts, 1994
[FAGAN86] Fagan, Michael E., “Advances in Software Inspections,” IEEE Transactions on Software Engineering, Vol. SE-12, No. 7, July 1986
[FAGAN95] Fagan, Michael E., “Fagan Defect-Free Process: Including the Fagan Inspection Process,” briefing presented to Lloyd K. Mosemann, II, The Pentagon, Washington, DC, July 6, 1995
[FISHER91] Fisher, David T., Myths and Methods: A Guide to Software Productivity, Prentice Hall, New York, 1991
[FREEDMAN90] Freedman, Daniel P., and Gerald M. Weinberg, Handbook of Walkthroughs, Inspections, and Technical Reviews: Evaluating Programs, Projects, and Products, Dorset House Publishing, New York, New York, 1990
[GILL90] Gill, A., “Setting Up Your Own Group Design Session,” Datamation, November 15, 1987
[HAUSLER94] Hausler, P.A., R.C. Linger, and C.J. Trammell, “Adopting Cleanroom Software Engineering with a Phased-Approach,” IBM Systems Journal, Vol. 33, No. 1, March 1994
[HOLDEN92] Holden, James J., “Defect Analysis and TQM,” G. G. Schulmeyer and J.I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992
[HUMPHREY90] Humphrey, Watt S., Managing the Software Process, Software Engineering Institute, Addison-Wesley Publishing Company, Reading, Massachusetts, 1990
[JONES86] Jones, Capers, Programming Productivity, McGraw-Hill Book Co., New York, 1986
[KELLER93] Keller, Ted, briefing “Providing Man-Rated Software for the Space Shuttle,” IBM, Houston, Texas, 1993
[KEOHLER90] Keohler, Tom “On B-1B, Avoiding ‘Bugs’ Early Beats Debugging Later,” Boeing News, July 13, 1990
[KINDL92] Kindl, LTC Mark R., Software Quality and Testing: What DoD Can Learn from Commercial Practices, US Army Institute for Research in Management Information, Communications, and Computer Sciences, Georgia Institute of Technology, Atlanta, Georgia, August 31, 1992
[KRASNER91] Krasner, Herb, “Continuous Software Process Improvement,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992
[LINGER94] Linger, Richard C., “Cleanroom Process Model,” IEEE Software, March 1994
[MEYER80] Meyer, GEN Edward C., as quoted in Military Review, July 1980
[MONTGOMERY58] Montgomery, Field Marshall Bernard Law, The Memoirs of Field Marshall Montgomery, The World Publishing Co., Cleveland, Ohio, 1958
[MOSEMANN94] Mosemann, Lloyd K., II, comments provided to “Guidelines,” May 1994
[O’NEILL94] O’Neill, Don, “Software Inspections Course,” white paper, 1994
[PATTON47] Patton, GEN George S., Jr., War As I Knew It, Houghton Mifflin Co., Boston, Massachusetts, 1947
[RAGLAND92] Ragland, Bryce, “Inspections Are Needed Now More Than Ever,” CrossTalk, November 1992
[RIDGWAY66] Ridgway, GEN Mathew B., “Leadership,” Military Review, October, 1966
[ROZUM92] Rozum, James A., Software Measurement Concepts for Acquisition Program Managers, Technical Report CMU/SEI-92-TR-11/ESD-TR-92-11, Carnegie-Mellon University, Software Engineering Institute, Pittsburgh, Pennsylvania, June 1992
[RUSSELL91] Russell, Glen W., “Experience with Inspection in Ultralarge-Scale Developments,” IEEE Software, Vol. 8, No. 1, January 1991
[SET93] “The Cleanroom Software Engineering Process: The Concept and Benefits,” briefing prepared by Software Engineering Technology, Inc., Vero Beach, Florida, June 7, 1993
[SONNEMANN94] Sonnemann, Maj R. Michael (USAF), report on study presented to the Software Process Improvement Network meeting, December 7, 1994
[STARS90] Poore, J., et al., “Cleanroom Reliability Manager: A Case Study Using Cleanroom with Box Structures ADL,” Software Engineering Technology, Inc., IBM-STARS-CDRL-1949, May 1990
[STARS92] Hart, Hal et al., “STARS Process Concepts Summary,” TRI-Ada Conference Proceedings, Orlando, Florida, November 1992
[TIG92] TIG Report, Functional Management Inspection: Software Independent Verification and Validation (IV&V), PN 91-609, The Inspector General of the Air Force, February 6, 1992
[WEISS92] Weiss, Col Daniel H., information provided in correspondence to SAF/AQK regarding February 1992 Guidelines, Directorate of Avionics Management, Headquarters Warner Air Logistics Center, Robins AFB, Georgia, 1992
�

CHAPTER 15�tc "<>CHAPTER 15"�
 Addendum A

Improving Software Economics in the Aerospace and Defense Industry�tc "<>Improving Software Economics in the Aerospace and Defense Industry"�

Mike Devlin
Walker Royce�tc "<>Walker Royce"�

EDITOR’S NOTE

If you have read Chapters 1 through 15, you have traversed virtually the full range of challenges and opportunities associated with software management. These insights, when properly addressed and exploited, will help ensure that you deliver software products on the predicted schedule, at the predicted cost, with the predicted quality and performance desired by the user. On the other hand, by now you might be just a little confused. In seeking a means to bring you an effective summary, the following paper was brought to our attention. Co-written by Mr. Mike Devlin and Mr. Walker Royce of the Rational Software Corporation, this paper succinctly identifies the software engineering practice required to produce more capable defense systems in a more timely and more economic fashion. Although we cannot, and do not, recommend the Rational Software Corporation, we do strongly recommend that you consider them as a benchmark of capability against which to compare competing purveyors of software engineering technology.
INTRODUCTION

Modern aerospace and defense systems incorporate increasingly sophisticated information processing and control systems. These systems contain large amounts of complex software directly in the operational systems themselves, and in the associated development, test, logistics and support systems. This software typically must provide extensive functionality while meeting stringent requirements for safety, security, reliability, availability, and (real-time) performance. The aerospace and defense industry has long recognized that advances in software technology and process improvement are essential to the delivery of more capable systems with shorter development cycles and lower cost.

Rational Software Corporation has been intimately involved in dealing with the pragmatic successes and failures of its customer’s software engineering projects across a broad range of Aerospace, Defense, and Commercial applications for over 12 years. The purpose of this paper is to examine three interrelated issues which bear directly on the software capability of the aerospace and defense industry and summarize the current maturity of software engineering practice from Rational’s perspective. Advances in software process, improvements in acquisition policy and a continued focus on Ada need to be integrated into a complementary approach to provide breakthrough improvements in the economics of sophisticated software development.

•	Software Engineering in the Aerospace and Defense Industry examines the state of software engineering in the aerospace and defense industry in comparison to best commercial practice in other industries and defines the elements of a next generation software process.
•	The Defense Software Acquisition Process examines DoD software acquisition policy and its impact on the economics of software development in the aerospace and defense industry.
•	Ada and the Aerospace and Defense Industry examines DoD policy for a continued focus on Ada and its impact on the aerospace and defense industry.

The question of the Ada policy has received some recent prominence, influencing the timing and focus of this paper. While Ada is an important issue, it is inappropriate to address the issue of Ada separately from the broader issues of software engineering and acquisition policy. This paper concludes with recommendations which are based on Rational’s experience in employing advanced software technologies in both commercial and defense applications to highlight the discriminating practices of successful projects.

•	Recommendations presents a set of suggestions for accelerating further adoption of modern techniques within the defense and aerospace industry.
Software Engineering in the Aerospace and Defense Industry

Re-engineering the Software Development Process

Over the last decade there has been a significant re-engineering of the software development process, replacing many of the traditional management and technical practices with radically new approaches that combine some hard lessons of experience with advances in software engineering technology. We use the terms “object-oriented software process” and “modern techniques” to encompass these new practices. While the essence of this process can be used in most software systems, it is particularly appropriate in situations which are driven by the following needs:

Accommodating change. Those situations where requirements are expected to change over the life of the software, requirements definition requires extensive user input and iteration, or where a flexible architecture is necessary to accommodate growth and change in function, technology, or performance.

Achieving software return on investment (ROI). Those situations where economic considerations require a high degree of reuse of pre-existing components and/or newly developed components within a single system or across multiple systems within a given application domain or line of business.

Value engineering. Projects where there is a need to make accurate, rapid and flexible tradeoffs between cost, schedule, functionality, quality and performance throughout the development process.

Technical or schedule risk. Those situations where schedule pressure (based on mission requirements or time-to-market considerations) or technical uncertainty (complexity, scale, concurrent engineering) require an incremental approach with early delivery of useful versions that provide a solid foundation for further evolution into more complete products over time.

In the commercial world, the combination of competitive pressures, profitability, diversity of customers, and rapidly changing technology cause many systems to have some or all of the above characteristics. In the defense industry it is budget pressures, the dynamic and diverse threat environment, the long operational lifetime of systems, and the predominance of large scale, complex applications which cause many systems to share these characteristics. The paramount need of projects which contain some or all of the above characteristics is one of management control and adaptability. Consequently, our definition of the solution focuses primarily on process with strong support from advancing technologies in languages, environments and architectural reuse.

The Elements of an Object-Oriented Software Process

The salient elements of an object-oriented software process include a number of interrelated software engineering practices. We have avoided the use of the terms “megaprogramming,” “spiral model,” and “next generation software process” even though there is substantial commonality between the techniques of these process frameworks and our presentation. The following themes constitute the recurring practices of successful software projects based on our pragmatic field experience drawn from many sources.

Object-oriented analysis, design, and programming. These techniques replace traditional data-driven methods and functional decomposition methods (structured analysis and design) with an integrated approach to analysis, design and implementation based on an object model.

Rapid prototyping and iterative development. These techniques replace the conventional waterfall model. While there are variations, the basic concept is that early in the development process an initial version of the system is rapidly constructed with an emphasis on addressing high risk areas, stabilizing the basic architecture, and refining the requirements (with extensive user input where possible). Development then proceeds as a series of iterations building on the core architecture until the desired level of functionality, performance and robustness is achieved. This process places emphasis on the whole system rather than just the individual parts. Through a process of continuous integration, risk is reduced early in the project, avoiding integration surprises late in the project.

Architecture-driven development. Traditionally, the software development process has been requirements-driven, where an attempt is made to provide a precise requirements definition and then implement exactly those requirements. This results in both a process and end products (software) which are very sensitive to even small changes in requirements. In an architecture-driven process the goal is to produce an architecture that is resilient in the face of changing requirements, within some reasonable bounds. The iterative development process then produces a series of architectural prototypes which result in a robust architecture with the required properties.

Large scale reuse. Object-oriented design and an architecture-driven development process implicitly support reuse. However, field experience has demonstrated that reuse must be an explicit management and technical objective in order to achieve economic results. Reuse is most cost effective when reusing reasonably large components (subsystems or class categories), allowing reuse of the analysis, design, integration, and testing of these larger components. Reusing individual classes or modules is important and effective, but has less leverage than reusing larger subsystems consisting of many pre-integrated classes and prefabricated objects.

Software process control and improvement. The transition to an object-oriented software process introduces new challenges and opportunities for management control of concurrent activities and tangible progress and quality assessment. Real world project experience has shown that a highly integrated environment is necessary to both facilitate and enforce management control of the process. An environment that provides semantic integration (where the environment understands the detailed meaning of the development artifacts) and process automation can improve productivity, improve software quality, and accelerate the adoption of modern techniques. For example, it is difficult to fully exploit iterative development if the turnaround time for system builds is measured in days. An environment that supports incremental compilation, automated system builds, and integrated regression testing can provide rapid turnaround for iterative development and allow development teams to iterate more freely.

Software first focus. The onset of open systems standards (e.g., UNIX, TCP/IP), language standards (e.g., Ada, Ada 9X) with highly portable target implementations (e.g., VADS), distributed architecture middleware (e.g., UNAS) and target platform independent development environments (e.g., Rational Apex) has enabled the selection of target technologies (hardware platforms, operating systems, network protocols, and topologies) to be effectively postponed until the optimal time in a project’s life cycle. This is crucial to achieving effective software-based tradeoffs between function, performance, cost and schedule in an environment where target technologies are changing dramatically over a project’s life cycle.

Each of these elements is related to the others and the combination of the elements is far more powerful than the individual elements. Implementation of these strategies requires a number of organizational and cultural changes as part of re-engineering the development process. As with other paradigm shifts, one must diverge from many of the accepted management practices towards an improved process which better exploits the strengths of new technologies. Resistance to this change is commonplace, especially since it must originate from the senior ranks of project and organizational leaders who are generally comfortable with the status quo.

Relative Maturity of the Aerospace and Defense Software Practices

In order to compare the state of the practice in the aerospace and defense industry with that of commercial industry we examine the question of how the rate of adoption of modern techniques in the aerospace defense industry compares with the rate of adoption in commercial (nondefense) industries.

While object-oriented techniques have received considerable visibility (some would say “hype”) over the last several years, the aerospace industry has actually been a proving ground for many of its concepts as applied to large systems over the last decade. Some of the early successes which demonstrated the economic benefits of object technology occurred in the defense and aerospace industry (primarily using Ada as the implementation language). The 1991 IDC white paper on object technology (targeted at commercial industry) cites the NobelTech (now CelsiusTech) experience as one of the first demonstrations of the economic payoff from moving to object technology. Beginning in 1986 they used object-oriented design, Ada and iterative development to achieve large-scale reuse and significantly enhance their competitive position.

Similarly, TRW and the United States Air Force have extensively documented the successes of architecture-driven development on command and control systems. The Command Center Processing and Display System-Replacement (CCPDS-R) project, the Cobra Dane System Modernization (CDSM) project achieved twofold increases in productivity and quality (primarily reductions in delivered error rates and efficiency of software change) along with on-budget, on-schedule deliveries of large mission-critical systems by employing Ada and an iterative development process substantially similar to that described in the previous section. These improvements were largely due to a major reduction in the software scrap and rework (less than 25%) enabled by architecture-driven iterative development, open-minded acquisition practices, and the use of Ada.

While CelsiusTech and TRW were early adopters, over the last four years we have seen momentum shift toward using modern techniques on most of the large aerospace systems where Rational is involved (admittedly a biased sample, since Rational customers tend to be relatively advanced technologically). This shift in momentum represents a fundamental change from the 1983-1987 time frame when Rational first began to recommend this process to customers in the defense and aerospace industry. At that time most programs used functional decomposition, a waterfall life cycle model, requirements-driven development, etc. There was widespread resistance towards moving to these new techniques on a number of fronts.

Program control. Software managers were concerned that iterative development appeared to turn the programmers loose to start coding without requirements or a design. This violated the traditional standard of the waterfall model
 (
no coding before CDR
)
 and may have been a valid concern at that time, given that iterative development had not been well formalized and documented. Today, Rational and others have successfully demonstrated iterative development and software technologies for rapid prototyping have matured dramatically. It is now well accepted that iterative development actually gives managers greater control over projects than traditional waterfall models.

Military standards. Program managers were concerned that iterative development was inconsistent with DoD-STD-2167 and other military standards. While many would argue that the military standards did not define a development methodology, the reality was that the default interpretation and application of the standards did create significant issues. Over time the standards have become more consistent with modern practices, although many government program offices still interpret the standards in a manner which discourages iterative development and incremental deliveries.

Economics. Some early programs did not see the economic case for reuse. Those companies with a large number of fixed-price contracts in competitive markets and those who were interested in producing a reusable product-line immediately saw the benefits and adapted. Those contractors with large cost-plus contracts who felt secure from competition often saw little economic benefit. The current budgetary environment has begun to change attitudes. Program managers more frequently realize that cost and schedule overruns and poor software quality are likely to result in program cancellations in the current environment, rather than creating additional revenue opportunities. Unfortunately, there are still programs today where the resistance to adopting new technology is not based on skepticism that the technology will provide an adequate ROI, but rather concern that the technology will in fact perform as billed, reducing costs and therefore reducing revenue and profits (again this is primarily an issue for cost-plus or level-of-effort contracts).

Inertia. Most program managers are conservative by nature and do not wish to be early adopters of a new technology. This was certainly a reasonable position to take with respect to Ada, object-oriented design and iterative development in the 1983-1987 time frame. Today the inertia is definitely moving in the right direction toward adopting these techniques throughout the aerospace industry.

These obstacles have been (or are being) overcome and the modern techniques of the object-oriented software process described earlier are becoming increasingly common in the aerospace and defense industry. Many large projects (500,000 lines-of-code or greater) have adopted or are adopting these techniques, and many have experienced very positive results. The actual practice (not just study and evaluation) of this next generation software process in aerospace and defense is as widespread as in any other industry segment. This observation is confirmed both by Rational’s direct experience with customers and by all of the survey data available from independent research organizations (which Rational purchases as part of its marketing and business planning activities).

Only in the last three years have we seen general acceptance of object technology, architectural focus, and iterative development in other market segments and the usage there is predominantly exploratory rather than full-scale production. Even in the telecommunications industry, an advanced and sophisticated market, the rate of adoption of new techniques is no faster than in the aerospace industry. Three major factors have contributed to the adoption of modern techniques in the aerospace and defense industry.

Leading edge technology. As with many other technologies (semiconductors, materials, algorithms, etc.), aerospace and defense systems have frequently pushed the limits of software technology because of the scale of the systems being built and the extremely demanding requirements. From distributed systems to massively parallel processing, from enormous databases to extreme real-time performance, aerospace and defense systems continually push the limits of what is possible, while also requiring high reliability and affordability. These pressures have demanded the best possible software engineering technology and motivated the exploration, and then adoption of an object-oriented software process.

Focus on engineering rigor. While some market segments have at times emphasized software development as an art and occasionally encouraged a “hacker” mentality, the aerospace and defense industry has generally viewed software development as fundamentally an issue of engineering discipline. Perhaps because of the deadly serious nature of the defense business, or perhaps because of a similar focus on life-critical software (i.e., commercial avionics and air traffic control systems), the aerospace and defense industry has embraced software engineering as a top priority. This is now true of many other industries (medical instrumentation, telecommunications, etc.) in part because of increasing product liability issues and the focus on total quality management and continuous process improvement. Ironically, this focus on engineering is also largely responsible for producing many of the “classic” methods (functional decomposition, waterfall life cycle model, etc.) which sometimes stand in the way of progress.

Transition to Ada. In the late 1970’s and early 1980’s when Ada was being developed, the primary focus was on producing a single standard language for embedded and mission critical systems, replacing the 400+ languages in use at that time and thereby reducing the tooling, training, development, and maintenance costs associated with DoD software. While Ada did provide that standard language, an even more important result of the adoption of Ada within DoD has been that Ada has served as a very effective catalyst for the adoption of modern software engineering principles. Some of the early Ada projects did view Ada as “just another programming language” like JOVIAL, Fortran, or C. Those projects basically designed programs the same way they had in previous languages and simply coded them in Ada, achieving few of Ada’s benefits while incurring many of the costs of transitioning to a new technology. Fortunately, most of the aerospace and defense industry quickly realized that there was much more to Ada and proceeded to fundamentally re-evaluate all software engineering practices, leading eventually to the adoption of more modern techniques.

On the other side of the ledger, there is one major factor which has inhibited software process improvement in the aerospace and defense industry: the acquisition process.

The Defense Software Acquisition Process

The defense acquisition process and applicable software development standards (e.g., DoD-STD-2167A, MIL-STD-1521B) have historically discouraged the use of iterative development in the defense industry. It is useful to summarize those characteristics of the classic software acquisition process (as it has been typically applied, not necessarily as it was intended) where changes are required in order to enable an object-oriented software process like the one we have described.

Requirements definition. The conventional waterfall model depends upon completely and unambiguously specifying requirements before other development activities, treating all requirements as equally important, and further depends upon those requirements remaining constant over the software development life cycle. These assumptions do not fit the real world. Requirements specification is both the most difficult and the most important part of the software development process. Virtually every major software program suffers from severe difficulties in requirements specification. Moreover, the treatment of all requirements as “equals” has drained massive engineering hours away from the driving requirements and wasted those efforts on MIL-STD-required paperwork associated with traceability, testability, logistics support, etc., which is inevitably discarded later as the driving requirements and subsequent design understanding evolve. The intractability of correctly specifying and prioritizing requirements for complex systems has been one of the primary forces behind the move from the waterfall life cycle model to more iterative life cycle models. Iterative models allow the customer and the developer to work with successive “prototype” versions of the system. Pragmatically, requirements can and must be evolved along with an architecture and an evolving set of application increments so that the customer and the developer have a common understanding of the priorities and an objective understanding of some of the cost, schedule and performance tradeoffs associated with those requirements.

Waterfall architecture and design. Conventional techniques also tend to impose a waterfall model on the architecture and design process which inevitably results in late integration and performance showstoppers. In the conventional model the entire system is designed on paper, then implemented all at once, then integrated. Only at the end of this process was it possible to perform system testing to verify that the fundamental architecture (interfaces and structure) was sound. Iterative development produces the architecture first, allowing integration to occur “as the verification activity” of the design phase and design flaws to be detected and resolved earlier in the life cycle. This replaces the “big bang” integration at the end of a project with continuous integration throughout the project. Iterative development also enables much better quality insight because system characteristics which are largely inherent in the architecture (e.g., performance, fault tolerance, maintainability) are tangible earlier in the process where issues are still correctable without jeopardizing target costs and schedules.

Heterogeneous life cycle format. Given the immature languages and technologies employed in the conventional defense software approach, there was substantial emphasis on perfecting the “software design” prior to committing it to the target programming language where it was subsequently difficult to understand or change. This resulted in the use of multiple formats (requirements in English, preliminary design in flowcharts, detailed design in PDL, and implementations in the target language such as Fortran) and error-prone human-intensive translations between formats. The combination of Ada and iterative development enabled a much more homogeneous representation format across the software life cycle, namely a readable, compilable, and executable library of integrated Ada components which eliminated the need for error-prone translations between different, often incompatible formats, in favor of evolutionary refinements in abstraction and ever-increasing depth and breadth of tangible functionality, quality, and performance. Figure 15-30 illustrates the difference in focus between the intermediate products of the two life cycle models.

�

Figure 15-30	Iterative Development Products versus Conventional Development Products

Adversarial relationships. In large part because of the difficulties in requirements specification, the conventional process tends to be adversarial, with the customer and the contractor all too frequently locked in mortal combat. Many aspects of the classic acquisition process degenerate into mutual distrust. This makes it very difficult to achieve a balance between requirements, schedule and cost. A more iterative model, with a closer working relationship between customer, user, and contractor, allows tradeoffs to be made based on a more thorough understanding on both sides. This requires a competent and demanding program office with both application and software expertise and a focus on delivering a usable system (rather than blindly enforcing standards and contract terms) and allowing the contractor to make a profit with good performance. At the same time, it requires a contractor who is focused on achieving customer satisfaction and high product quality in a businesslike manner.

Focus on documents. The conventional process has been focused on producing various documents which attempt to describe the software product, with insufficient focus on producing tangible increments of the products themselves. Major milestones are defined solely in terms of specific documents. Contractors are driven to produce literally tons of paper in order to meet milestones (and get progress payments) rather than spending their energy on tasks that would reduce risk and produce quality software. An iterative process requires actual construction of a sequence of progressively more complete systems which (1) demonstrate the architecture, (2) enable objective requirements negotiations, (3) validate the technical approach, and (4) address key risk resolution. Ideally, both the government program office and the contractor would be focused on these “real” milestones with incremental deliveries of useful functionality rather than speculative paper descriptions of the end item vision.

Requirements-driven functional decomposition. A fundamental property of the conventional approach is that it has been very requirements driven with the requirements specified in a functional manner. Built into the classic defense acquisition process is the fundamental assumption that the software itself is decomposed into functional components (CSCIs, CSCs, and CSUs in -2167A terminology), with requirements then allocated to these components. This decomposition is often very different than a decomposition based on object-oriented design and reuse. The functional CSCI decomposition becomes anchored in contracts and subcontracts, often precluding a more architecture-driven approach.

NIH (not-invented-here). The conventional process can discourage reuse between projects and tends to discourage the use of commercial technology. Since requirements are often “thrown over the wall” to the software developer, there is little opportunity to negotiate the compromises that are required to reuse an existing product or subsystem. Furthermore, effectively building reusable components or subsystems necessitates investment above and beyond that required for the narrow scope of the project at hand. Ideally the process would encourage customers and contractors to invest in developing reusable architectures which could be applied to a variety of systems in a given domain (avionics, C3I, etc.). Instead, the current process and incentives prevent most investment in reuse through encouragement of specific and singular contract-selfish performance.

Economic incentives. As part of the adversarial nature of the acquisition process, there is considerable focus on ensuring that contractor profits are within a certain acceptable range (typically 5-15%). Occasionally, excellent contractor performance, good value engineering, or significant reuse result in potential contractor profit margins in excess of “their acceptable initial bid.” As soon as customers (or their users or government SETA organizations) become aware of such a trend, there is inevitably substantial pressure applied to employ these “excess” resources on out-of-scope changes until the margin is back in the acceptable range. As a consequence, the simple profit motive which underlies commercial transactions and incentivizes efficiency is replaced by complex contractual incentives (and producer-consumer conflicts) which are usually suboptimal. Very frequently, contractors see no economic incentive to implement major cost savings, and certainly there is little incentive to take risks which may have a large return. On the other side of the ledger, contractors can easily manage to consume large amounts of money (usually at a small profit margin) without producing results and with very little real accountability for poor performance.

The success of new technologies has led to a more widespread view that the classic defense software acquisition process must be modified or replaced. The new MIL-STD-498, replacing DoD-STD-2167A and DoD-STD-7935A, represents a partial recognition of this problem. The goals of MIL-STD-SDD include removing the implied waterfall model, removing the implied preference for functional decomposition, providing clearer requirements for software reuse, and lessening the emphasis on documents. However, very few of the issues expressed above are dealt with in an explicit manner in the new standard and experience to date has indicated that it is still very difficult to implement iterative development, since most program offices do not understand the new technologies. Even where there is a relatively advanced program office in favor of using modern practices, the various matrix entities (e.g., IV&V contractors, FFRDC, and SETA contractors, etc.) are wedded to the old process model and are more concerned with protecting their turf (and their jobs) than with producing systems in a more cost effective manner.
Ada and the Aerospace and Defense Industry

Ada is an outgrowth of a remarkable vision that was first enunciated over fifteen years ago. Today, Ada is almost universally recognized as the software industry’s premiere language for mission critical software engineering. The struggle to transform the Ada vision into reality (via very useful products) has been pursued with surprising intellectual vigor even though it was far from being the most popular language initiative of the computer science community. Ada’s principle raison d’être is the DoD’s need for a single language in which the software engineering paradigm was supported by, and in some instances enforced within, the semantics of the language. This objective has been very nearly achieved. The table below identifies how the DoD contractor community viewed Ada’s risks in 1985 versus risk resolution focus emphasized today. The evolution depicted below represents remarkable progress which is a tribute to DoD and the Ada community.

Ada 83’s semantics can be characterized as providing strong support for project management functions; somewhat lesser support is provided to the advanced computer science attributes of object-oriented programming which evolved after Ada 83 was baselined. These drawbacks however, will be substantially corrected by Ada 9X. In spite of Ada’s success, the invention of new languages has continued unabated in commercial industry. C++ is one example of a relatively new language whose primary design goal was to provide object-oriented programming support (encapsulation, abstraction, polymorphism and inheritance) without compromising the advantages of C (primarily speed and ease of programming). In contrast to Ada, C++ provides little project management support in its selected semantics but it is designed for stronger support to the computer science attributes underlying object-oriented design.

The definition of the Ada language is unique in that it was designed with the goal of enabling better management, design, and architectural control (the higher leverage aspects of software engineering) while sacrificing some of the ease of programming. This is the essence of the Ada culture: top-down control where programmers are subordinates of the lead architects and managers. Other languages, and specifically C++, are focused at simplifying the programming activities while sacrificing some of the ease of control. This of course, is the essence of the C/C++ culture where programmers lead the way. For small programs and noncritical projects, the C++ culture can work well and the Ada culture is perhaps overkill. But for large, complex mission critical systems, the Ada culture is a field-proven necessity for success. Culture is a human-imposed set of trends. Clearly, an Ada culture can be practiced with C++ and vice versa, but the paradigm shift for an organization with cultural inertia is an emotional and extremely difficult undertaking.

It is interesting to note that in the definition of the C++ language, there are many new features which were clearly influenced by earlier Ada advances. Similarly, the O-O features being incorporated in Ada 9X have clearly been motivated by advances in C++. The point here is that both languages have contributed to each other’s technical evolution. This language competition has been healthy and while there are numerous rhetorical debates about which of Ada or C++ is better, there is very little debate that both of these languages are a quantum leap above all others in supporting the modern techniques of object-oriented software engineering as described within this paper.

As indicated earlier, the single greatest contribution of Ada was to act as a catalyst for the adoption of modern software engineering practices. There has been substantial progress in the software technology in use within this industry over the past decade. Figure 15-31 depicts the on-going transition of software economics from the conventional “dis-economy of scale” (caused by the dominance of custom development, ad hoc processes and ad hoc environments) to the emerging “megaprogramming” economy of scale being achieved by organizations who exploit reuse, integrated environments with high levels of automation, and mature, iterative development techniques. Ada, and its associated improvements in environments and process, was to a significant extent, the intermediate catalyst in this transition. In many ways it has been Ada which has turned software engineering into a true professional engineering discipline within this community. Ada provided a truly standard and portable language, widely available on virtually all hardware platforms, with extensive support for modern software engineering principles. Ada has also been a vehicle for introducing new life cycle models, new tools, new design and programming practices, and more secure approaches to the development of high-reliability and safety-critical software. Considerable momentum has been established and this momentum is accelerating with the recent emphasis (in both Ada 83 and Ada 9X) on the use of object-oriented analysis and design with Ada.

�

Figure 15-31
Progress Towards Improved Software Economics

Recently there has been considerable discussion of the DoD policy toward Ada, with some polarization between those who believe the current policy should be continued or strengthened and those who believe that the current policy should be abandoned. It is not necessary here to repeat all of the arguments pro and con, but it is useful to examine the key positions and assess their validity from the perspective of Rational’s experience. The arguments for continuing the Ada mandate can be reduced to the following:

Technical. Virtually every language evaluation study we know of has concluded that Ada is the best technical language for the DoD domain. Ada has satisfied the goals of the DoD in being a highly reliable and maintainable language. Its strengths include support for large scale projects, ultra-reliable software development, standardization, and real-time support, exactly the needs of the defense domain and other mission critical domains where complexity control and certifiability are required. Ada mandate risks have been substantially resolved whereas the other leading alternative (C++) is faced with many of the same risks that Ada faced 10
 years ago (see Table 15-6
).

�

Table 15-6 Ada Risk Evolution from 1985 to 1994

Inertia. The past 10 years of DoD investment have resulted in a substantial base of Ada assets including compilers, training, reusable components, and case studies. Furthermore, despite the mandate, Ada is commonly selected by DoD contractor preference and there are several domains (global air traffic control, NASA, Nuclear Power, FAA, NATO, etc.) that employ Ada in the absence of any mandate.

Standardization. DoD’s business case is very different than commercial industry’s. The need for a standard language in DoD is motivated by their current practice of organic maintenance with high personnel turnover rates, whereby the costs of tooling and training their maintenance force for a single language have huge economic benefits. This was, in fact, the dominating requirement for Ada’s development: to eliminate the divergence of languages, support environments and lack of any ROI in personnel training from assignment to assignment. This need is certainly just as important today as it ever was.

Economic. A substantial number of very large applications (greater than one million source lines) have been successfully delivered and maintained in Ada. While there is certainly not universal success in the financial performance of Ada projects, there is substantial evidence that a mature software organization will perform better with Ada than other languages. There are two important trends of note:

•	Prior to Ada, there were (close to) zero large scale projects that delivered on-budget or on-schedule. Over the last 10 years of employing Ada there have been several well-publicized successes.
•	Across all projects that have been “less than successful,” we know of none that attributed their failure in whole, or in part, to Ada.

The arguments for eliminating the Ada mandate can be summarized as follows:

•	No object-oriented support. Ada 83, while clearly not supportive of all the object-oriented programming features in vogue today, does support many of the techniques and processes of object-oriented software engineering as described earlier in this paper. In fact, most of the large-scale successful Ada projects Rational is familiar with, were successful predominantly because they were employing object-oriented techniques and modern processes. The primary leverage of these modern techniques is in the process and architecture focus, not in the programming language support. Furthermore, the Ada community has embraced the advantages of object-oriented programming support directly in the language as evidenced by their inclusion in Ada 9X.
•	Lack of commercial support. The argument that Ada lacks support in the commercial marketplace is subtle. On one hand, anyone that walks into any bookstore’s software section will find over 20 books on C++ and maybe 1 on Ada. On the other hand, despite their scarcity in commercial bookstores, there are 30+ textbooks on Ada and it is becoming an increasingly popular vehicle for teaching software engineering at universities. There are numerous non-DoD projects who employ Ada for technical and financial reasons. In general, these commercial applications are similar to DoD applications in scale and complexity and the organizations chose Ada for the same reasons as DoD. Perhaps there would be more acceptance of Ada in other commercial applications if DoD had done a better job of marketing, but then again, perhaps not. The real issue here is whether DoD and commercial domain must be closely in synch. A large percentage of the commercial market’s software is totally incongruent with DoD software and many commercial practices are equally inappropriate to most DoD software (the glaring exception is DoD’s MIS systems which only differ by perhaps their scale). The principal inhibitor of Ada’s commercial perception is probably the lack of PC based tools. The impact of PCs on training, software development, and available COTS products is profound. The huge installed base of PCs drives the software market trends and the lack of Ada support on PCs inhibits the single largest source of cheap computing cycles from being part of the Ada solution space. The GNU Ada Translator will help this problem considerably and the emerging next generation PC operating systems will enable today’s Ada environments to be more easily transitioned to PC platforms.
•	Insignificant Ada market segment. This argument is closely related to the previous one but rather than focusing on commercial projects, we examine commercial product markets. In 1992, the Ada compiler and tool market was somewhere in the range of $200-300 million while the C++ compiler and tool market was $300-500 million. While the Ada market is certainly smaller, it is by no means insignificant, and there is ample demand to stimulate considerable investment by small and large companies.
•	Conflict with use of COTS. There is little debate that there are fewer COTS products available for Ada than there are for some other languages. However, we see no real issue with integrating Ada with COTS products. Most of the globally important interfaces (DBMSs, GUIs, operating systems, network protocols) have been worked. Furthermore, there are Ada-based COTS products for development environments (e.g., Apex, VADS), and architecture middleware (e.g., UNAS) which are better than other language counterparts and provide proven leverage in achieving technical and financial success in large complex software projects.

As implied above, we believe that DoD should stand firm on the Ada mandate. In parallel, however, we support the continuing development of both Ada and C++ and DoD should support Ada-C++ interoperability advances which will continue as the C++ language matures (particularly with respect to compiler integrity and language standardization and control) to the current levels of Ada and Ada 95. Ada vendors are already investing aggressively to support this interoperability, C++ vendors should be equally as open. DoD should not consider dropping the Ada mandate; it is an asset in DoD business model which should not be polluted by the “in vogue” trends towards commercial practices. Re-evaluating this position and perhaps opening up the mandate to both Ada and C++ after C++ matures into a standard makes good business sense given the rate of software technology advance. However, this maturity level is not likely to occur before 1998. We believe that this long term strategy would promote further investment in Ada-C++ interoperability (which is good for both commercial and DoD domains) and permit some level of healthy competition to continue.
Recommendations

There are several general recommendations that Rational would suggest to policy makers and industry leaders in defense and aerospace. Rational recommends that DoD (and other agencies such as the FAA, NASA, etc.) be more demanding customers with a focus on results. DoD, while not so dominant that it drives the entire software industry, is still a large customer with significant clout. By demanding quality software at reasonable prices on reasonable schedules, DoD can, and will, impact the behavior of the industry. Demanding performance and refusing to tolerate failure will strengthen the industry and encourage the adoption of best practices. Programs with a significant track record of poor management, severe cost and schedule overruns, and poor software quality (defined in terms of fitness for use, not just defects and compliance with narrow specifications) should be terminated promptly, regardless of fault (Government, contractor, whatever). This must be tempered with the understanding that software development contains risk and one must not discourage appropriate risk taking. However, over the medium- and long-term a more businesslike and demanding attitude on the part of the Government (similar to the commercial market where weak products and producers are eliminated rapidly upon evidence of failure) will be much less expensive than continuing to subsidize poor performance. Without doubt, this is the single most important recommendation we can make.

Rational recommends full and continued support for Ada as a centerpiece of aerospace and defense software policy (DoD, NASA, FAA). As discussed above, we believe there are strong technical and business reasons for using Ada in defense applications.

Rational recommends that DoD continue to encourage the use of commercial-off-the-shelf technology. Procurement and project management practices must consistently encourage use of commercial technology. Today there is insufficient incentive to use commercial technologies and there is absolutely no incentive to compromise often arbitrary requirements in order to allow the use of commercial technology. While some may disagree, we view this as synergistic with the Ada initiative.

Rational recommends continued efforts to streamline and modernize the software acquisition process. The new MIL-STD-498, replacing DoD-STD-2167A and DoD-STD-7935A, is a step in the right direction but does not go far enough with respect to the state-of-the-practice. The pace of such a global change remains excruciatingly slow and most program offices do not understand modern software engineering principles well enough to properly manage software acquisition with the new standard. Further promotion and adoption of iterative development processes (where success and failure signals are more obvious and tangible earlier in the life cycle) is also critical to achieving any kind of success towards our first recommendation. DoD (and the contractor community) must institute a more aggressive program of process improvement to more rapidly evolve the defense software acquisition process into a quality process. DoD must become less insular, reaching out to understand the best practices and lessons-learned in other software markets (more specific recommendations are included below).

Rational recommends stronger support for applied research in software technology in the US Traditionally, software-related technology efforts have been extremely under-invested by both the government and defense contractors. For example, recent awards for the Technology Reinvestment Program were quite discriminatory against funding software related efforts despite the rapidly growing importance of such technologies. Software technology remains a “core competency” of US industry. Not only is advanced software technology developed within the US, but it is rapidly exploited and applied (unlike some other technologies). The US software market remains the largest and the most competitive worldwide and all of the participants (including the defense and aerospace industry) benefit from the dynamic nature of this market. Further investment would maintain this commercial competitiveness as well as benefit DoD software marketplace.

Rational recommends that DoD institute a required training program for all DoD project offices involved in acquisitions with software content greater than some threshold (say $1-5M). This program should be modeled after the Air Force’s BOLDSTROKE course but contain more up-to-date project case studies and more focus on software project management and acquisition. Furthermore, while DoD has successfully applied the SEI’s Software Capability Evaluations to discriminate contractors with software process maturity, it has yet to apply similar discipline to its own acquisition project offices.

About the Authors

Mike Devlin cofounded Rational in 1981 and served as a member of the Board, Executive Vice President and Chief Technical Officer until he was elected Chairman of the Board in December 1989. Mr. Devlin was appointed Chairman of the Board of Rational Software Corporation and formed from the combination of Rational and Verdix Corporation in March 1994. Mr. Devlin is a graduate of the United States Air Force Academy and was associated with the Air Force Space Division and Satellite Control Facility as a software program manager and as a computer scientist. Mr. Devlin was the Space Division’s liaison to the Defense Advanced Research Project Agency on issues relating to modern software languages and methodology. Mr. Devlin graduated first in the class of 1977 at the Academy and was the outstanding graduate in each of his two major fields of study, Engineering and Computer Science. He was awarded a National Science Foundation Graduate Fellowship and received a MS degree in Computer Science from Stanford University in 1978.

Walker Royce is the Director of Software Engineering Process for Rational Software Corporation. Prior to joining Rational Software Corporation, Mr. Royce spent 16 years in a variety of software technology and software management roles at TRW. He was the Project Manager of the Universal Network Architecture Services (UNAS) product-line where he defined and managed its state-of-the-art software process. He served as the Software Chief Engineer responsible for the software process, the foundation Ada components and the software architecture on the CCPDS-R Project, a highly successful, million-line Ada project. Mr. Royce led the development of TRW’s Ada Process Model and the UNAS product technologies which have been transitioned from research into practice on numerous large projects and earned him a TRW Technical fellowship and TRW’s Chairman’s Award for Innovation. His pioneering work in advancing distributed software architecture and evolutionary software process technologies have been published in numerous technical articles and guidebooks and he is a featured lecturer at the Air Force BOLDSTROKE forum on Software Management. Mr. Royce received his B.A. in Physics at the University of California, Berkeley in 1977, MS in Computer Information and Control Engineering at the University of Michigan in 1978, and completed three years of further postgraduate study in Computer Science at UCLA.
�
�tc "<>"�
CHAPTER 15
 Addendum B

Training — Your Competitive Edge in the 90’s�tc "<>Training — Your Competitive Edge in the 90’s"�

Eileen Steets Quann
President, Fastrak Training, Inc.

NOTE:	See this article in Volume 2, Appendix O, Additional Volume 1 Addenda.

�tc "<>"�
CHAPTER 15
 Addendum C

Lessons-Learned from BSY-2’s Trenches�tc "<>Lessons-Learned from BSY-2’s Trenches"�

Robert F. Sullivan Jr.

NOTE:	See this article in Volume 2, Appendix O, Additional Volume 1 Addenda.

Version 2.0
CHAPTER 15 Managing Software Development

15-� PAGE �
72
�

Version 2.0

15-� PAGE �
73
�

Version 2.0
CHAPTER 15 Addendum A

